
Exercise Sheet 1 Theoretische Physik 4: Quantenmechanik

SoSe 2025 Prof. Dr. C. Gros

Posted 28.04.2025, due by 12:00pm 05.05.2025.

Exercise 1 (10 points)

Let us examine the properties of the delta function δ(x). The intuitive definition of the delta function is a function
that is almost everywhere zero, except at x = 0 where it is infinity, but in such way that the total area under the
curve is unity. This somewhat singular notion can be defined as a functional, i.e., a function that is defined under
integration, and the full definition reads

δ(x) = 0 if x ̸= 0, and

η2∫
η1

dx δ(x) = 1 for any η1, η2 such that η1 < 0 < η2, (1)

where “for any η1, η2” also includes the limit η1 → −∞, η2 → +∞. Suppose that we have a well behaved test
function f(x), in other words any possible random function which is continuous and finite, and differentiable as often
as needed.

1. (1/10) Calling the dimensions of length [x] = L, and using the definition Eq. (1), what are the dimensions of

the delta function δ(x)? If we where working with the three dimensional generalization :

∫
V

d3xδ(x) = 1 for any

volume V that contains the origin (0, 0, 0), what are the dimensions of δ(x)?

2. (1/10) Argue from the definition Eq. (1) that, for any well behaved test function f(x), it must be the case that

b∫
a

dx f(x)δ(x) =

{
f(0) a < 0 < b

0 otherwise

assuming that the integration bounds always respect the ordering a < b.

3. (1/10) Show that

b∫
a

dx f(x)δ(x− xo) =

{
f(xo) xo ∈ (a, b)

0 otherwise

assuming that the integration bounds always respect the ordering a < b.

4. (1/10) Show that δ(−x) = δ(x)

5. (1/10) For any c ∈ R, c ̸= 0, show that δ(cx) =
1

|c|
δ(x).

6. (1/10) Given a function g(x) that has no coincident roots at x1, x2, ..., xn , i.e. g(xi) = 0 for every i in {1, 2, ..., n}

and all xi are different, show that δ(g(x)) =
n∑

i=1

δ(x− xi)

|g′(xi)|
.

The delta function cannot be represented by any smooth function, however, it can be “reached” by a smooth function
∆(ϵ, x) against some control parameter ϵ in an appropriate limit. The key is to engineer this procedure such that
the total area under the curve is unity in the limit. In practical applications, we some times use these “smooth”
approximations, but some care must be taken to make the approximation respect the delta function definitions. Such
considerations also bring up questions about the behaviour of the test function in the extrema cases where η1 → −∞,
η2 → +∞.
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7. (1/10) Show that the Gaussian ∆1(ϵ, x) =
e−x2/ϵ2

ϵ
√
π

will become the delta function δ(x) in the limit lim
ϵ→0

∆1(ϵ, x),

by showing that the limit follows the definition Eq. (1).

(Hint: +∞∫
−∞

dxe−x2

=
√
π)

8. (1/10) Show that the Lorentzian ∆2(ϵ, x) =
ϵ/π

x2 + ϵ2
will become the delta function δ(x) in the limit lim

ϵ→0
∆(ϵ, x)

in the similar way.

(Hint:
+∞∫

−∞

dx
1

x2 + 1
= π)

9. (1/10) Argue about the asymptotic restrictions of f(x) so that

+∞∫
−∞

dx f(x)δ(x) = 1 make sense when approaching

δ(x) from the Lorentzian representation ∆2(ϵ, x).

10. (1/10) Find the Fourier transform ∆̃2(ϵ, k) =
1√
2π

+∞∫
−∞

dx∆2(ϵ, x)e
−ikx, and considering the limit ϵ → 0 argue

that δ(x) =
1

2π

+∞∫
−∞

dk eikx.

Exercise 2 (5 points)

In the lectures we learned how observables in classical mechanics A become hermitian operators Â (hermitian

operator: Â† = Â) in quantum mechanics, that operate on wavefunctions ψ(r). We saw that we can make the
corresponding operators by promoting the position rj → r̂j = rj and the conjugate momentum pj → p̂j = −iℏ∂rj . We
can use this correspondence to build other operators. One particularly important operator is the angular momentum
L, and in classical mechanics we have L = r× p.

1. (1/5) Using the correspondence principle to promote to operators, show that the angular momentum operators

L̂j are written as L̂x = −iℏ(y∂z − z∂y), L̂y = −iℏ(z∂x − x∂z), L̂z = −iℏ(x∂y − y∂x).

The most important property of the quantum operators are its commutation relations to other operators. This defines
its behavior.

2. (1/5) Using the differential operators above, show that [L̂x, L̂y] = iℏL̂z.

(Hint: Take the commutator and apply it to a trial wavefunction [L̂x, L̂y]ψ(r), which is just a complex function
of the position r. From there you can expand and replace the differential form of the operators, and doing the
algebra you need to show that it will be equal to iℏL̂zψ(r). Showing this for any random trial wavefunction
ψ(r) means the operator identity hold true in all cases and you have proven the equality.)

This commutation relation you proved above also holds for cyclic permutations of the indexes, in other words it
is also true that [L̂y, L̂z] = iℏL̂x and [L̂z, L̂x] = iℏL̂y. The algebra to show them is completely analogous to the
above derivation. From here we can built other commutation relations using only the commutator identities, without
expanding the operators into differential form.

3. (1/5) For any three operators, Â, B̂, and Ĉ, show that [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ].

Following the same algebra we would also find that [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂. These two identities let you
decompose commutators of string of multiplications until only simple commutators remain. Lets make use of them
bellow.

4. (1/5) Show that [L̂2, L̂z] = 0, where L̂2 = L̂2
x + L̂2

y + L̂2
z is the square of the total angular momentum.
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Following the same algebra you could also show that [L̂2, L̂x] = [L̂2, L̂y] = 0. All the commutators we found completely

define the relations of angular momentum set of operators {L̂x, L̂y, L̂z, L̂
2}.

5. (1/5) Using the commutator relations of the set {L̂x, L̂y, L̂z, L̂
2}, and remembering the result you showed in the

previous week (Ex.3.4 of exercise sheet 00), discuss the implications for what operators out of the set share or
do not share eigenstates. What is the maximal set of commuting operators you can construct out of these? Is
it a unique choice?

Exercise 3 (5 points)

In quantum mechanics, the Hamiltonian that defines all the dynamics of the system is promoted to a hermitian
operator, and we generally wrote a one dimensional, one particle, Hamiltonian Ĥ = p̂/2m + V (x̂) where p̂ = −iℏ∂x
and V (x̂) is a real function of x describing some external field acting on the particle. Consider the case where the
Hamiltonian is modified as

Ĥ = p̂/2m+ V (x̂)− iW (x̂) (2)

where W (x) is also a real function of x. This makes the Hamiltonian non-hermitian.

1. (1/5) For the Hamiltonian of the form Eq. (2), show that the continuity equation now becomes

∂ρ(x, t)

∂t
+
∂J(x, t)

∂x
= −2

ℏ
W (x)ρ(x, t),

where ρ(x, t) = |ψ(x, t)|2 the probability density and J =
ℏ

2im

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

)
the prob-

ability current.

2. (1/5) Find the time evolution equation of the total probability Ptot(t), where by total probability we mean the

probability of being anywhere in space at a given time Ptot(t) =

+∞∫
−∞

dxρ(x, t).

(Hint: There should be no losses at infinity, in other words J(±∞, t) = 0)

3. (1/5) Consider the simplified case whereW (x̂) = w just a constant w ∈ R, and show that Ptot(t) = Ptot(0)e
−t/τ ,

where τ = ℏ/(2w).

4. (1/5) If W (x̂) = 0 we recover the familiar Hamiltonian of a free particle under an external potential. In this
case, what is the above telling us about the behavior of the total probability over time?

5. (1/5) Now return to the case W (x̂) = w but with w ̸= 0, what is the above telling us about the behavior of the
total probability over time? What type of system could this non-hermitian Hamiltonian describe for w > 0 and
w < 0?
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