Chapter 5

Rotationsinvariante Potentiale

5.1 Schrödinger-Gleichung für rotationssymmetrische Potentiale

Drehimpulserhaltung

Für ein rotationssymmetrisches Potential $V(\vec{x}) = V(|\vec{x}|)$ ist der Hamiltonian invariant unter Rotationen. Klassisch wie quantenmechanisch ist der Drehimpuls eine gute Quantenzahl. Es gilt

$$[\mathbf{L}_{j}, \mathbf{H}] = 0, \qquad j = 1, 2, 3, \qquad \text{also auch} \qquad [\vec{\mathbf{L}}^{2}, \mathbf{H}] = 0$$

Wie wir später noch sehen werden, ist ein Operator genau dann eine Erhaltungsgrösse, wenn er mit dem Hamiltonoperator vertauscht. Aus Abschnitt ?? wissen wir: Vertauschen zwei Operatoren, kann man sie gleichzeitig auf Diagonalform bringen. Dies bedeutet:

• Man kann die Eigenfunktionen von

$$\mathbf{H} = \frac{\vec{\mathbf{p}}^2}{2m} + V(r)$$

gleichzeitig als Eigenfunktionen zu $\vec{\mathbf{L}}^2$ und \mathbf{L}_3 wählen.

<u>Beweis</u> Wir benutzen

$$[AB,C] = A[B,C] + [A,C]B \qquad [AB,C] = ABC - CAB$$

um $[\mathbf{L}_i, \vec{\mathbf{p}}^2] = 0$ nachzuvollziehen, sowie $\vec{\mathbf{p}}^2 = p_l p_l$:

$$\epsilon_{ijk} [x_j p_k, p_l p_l] = \epsilon_{ijk} (x_j [p_k, p_l p_l] + [x_j, p_l p_l] p_k) = -\epsilon_{ijk} [p_l p_l, x_j] p_k$$

$$= -\epsilon_{ijk} (p_l [p_l, x_j] + [p_l, x_j]) p_k$$

$$= i\hbar \epsilon_{ilk} (p_l + p_k).$$

Wegen $\epsilon_{ilk} = -\epsilon_{ikl}$ verschwindet der letzte Term.

In Bezug auf das Potential genügt die Bemerkung, dass die Komponenten des Drehimplusoperators mit jeder Operator-Funktion trivialerweise vertauschen, wenn diese nur von r abhängt. Man betrachte z.B. $L_3 = (\hbar/i) \partial_{\varphi}$.

Hamilton-Operator in Kugelkoordinaten

Der Laplace-Operator lautet in sphärischen Koordinaten

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin^2 \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta} + \frac{\partial^2}{\partial \varphi^2} \right)$$
$$= \frac{1}{r} \frac{\partial^2}{\partial r^2} r - \frac{1}{r^2 \hbar^2} \vec{\mathbf{L}}^2$$

Die Herleitung ist länglich, ansonsten aber elementar. Der erste Term in der zweiten Gleichung ist lediglich eine alternative Darstellung,¹ für den zweiten Term vergleiche Abschnitt ??. Der Ausgangspunkt unserer Überlegungen ist damit

$$H = -\frac{\hbar^2}{2rm_0}\frac{\partial^2}{\partial r^2}r + \frac{1}{2m_0r^2}\vec{\mathbf{L}}^2 + V(r)$$

Entwicklung nach Kugelfunktionen

Sei $u(\vec{x})$ eine Lösung der zeitunabhängigen Schrödinger–Gleichung. Wir entwickeln den Winkelanteil nach Kugelfunktionen Y_{lm} :

$$u(\vec{x}) = \sum_{l=0}^{\infty} \sum_{m=-l}^{m=+l} R_{lm}(r) Y_{lm}(\vartheta, \varphi) , \qquad r = |\vec{x}|$$

Damit wird die Schrödinger-Gleichung zu

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{m=+l} \left[-\frac{\hbar^2}{2rm_0} \frac{\partial^2(rR_{lm})}{\partial r^2} + \frac{\hbar^2 l(l+1)}{2m_0 r^2} R_{lm}(r) + V(r) R_{lm}(r) \right] Y_{lm}(\vartheta,\varphi)$$
$$= E \sum_{l=0}^{\infty} \sum_{m=-l}^{m=+l} R_{lm}(r) Y_{lm}(\vartheta,\varphi).$$

Multipliziert man diese Gleichung mit $Y_{l'm'}^*$ und integriert über ϑ und φ , so folgt wegen $(Y_{l_1m_1}, Y_{l_2m_2}) = \delta_{l_1l_2}\delta_{m_1m_2}$ für $R_{lm}(r)$ die Gleichung

$$-\frac{\hbar^2}{2rm_0}\frac{\partial^2(rR_{lm})}{\partial r^2} + \left[\frac{\hbar^2 l(l+1)}{2m_0 r^2} + V(r)\right]R_{lm}(r) = E R_{lm}(r)$$

Zentrifugalpotential

Im folgenden wird angenommen, daß das Zentrifugalpotential

$$\frac{\hbar^2 l(l+1)}{2mr^2}$$

 $\overline{{}^{1}(1/r)\partial_{r}^{2}r = 2/r + \partial_{r}^{2} = (1/r^{2})\partial_{r}(r^{2}\partial_{r})}.$

für $l \neq 0$ und $r \rightarrow 0$ gegenüber V(r) dominiert, d.h. dass

$$\lim_{r \to 0} \left(r^2 V(r) \right) = 0$$

gilt, wie es für das Coulomb-Potential der Fall ist. Anschaulich bedeutet dieses, daß auch quantenmechanisch das Teilchen nicht in den Ursprung "fallen" soll, die Wahrscheinlichkeitsdichte

$$w(\vec{x}) = u^*(\vec{x})u(\vec{x})$$

für $\vec{x} \to 0$ also endlich bleibt, d.h. $R_{lm}(r=0)$ soll endlich sein.

Verhalten für $r \to 0$

Für $r \to 0$ kann man E und V(r) gegenüber r^{-2} vernachlässigen:

$$-\frac{d^2}{dr^2} \left(r R_{lm}(r) \right) - \frac{l(l+1)}{r^2} R_{lm}(r) \approx 0, \qquad \text{für } r \to 0.$$

Die Lösungen sind

$$R_{lm}(r) \approx C r^{\nu}, \qquad \nu(\nu+1) = l(l+1); \qquad \nu = l, \quad \text{oder} \quad \nu = -l-1.$$

Wenn $R_{lm}(r=0) < \infty$, kommt nur die reguläre Lösung $\nu = l$ in Frage

5.2 Die Bindungszustände des Wasserstoffatoms

Es sei nun

$$V(r) = -\frac{Ze_0^2}{4\pi\varepsilon_0 r} ,$$

das Potential für ein Elektron mit Ladung $-e_0$ im Feld eines Kernes mit Ladung Ze_0 . Mit $R_{lm}(r) \equiv R(r)$ wird die Schrödingergleichung für die radiale Wellenfunktion zu

$$\left(\frac{d^2}{dr^2} + \frac{2}{r}\frac{d}{dr}\right)R + \frac{2m_0}{\hbar^2}\left[E + \frac{Ze_0^2}{4\pi\varepsilon_0 r} - \frac{\hbar^2 l(l+1)}{2m_0 r^2}\right]R(r) = 0$$

Gesucht werden quadratintegrierbare Lösungen mit E < 0 (gebundene Zustände).

Dimensionslose Variablen

Führt man die neuen Variablen

$$\rho = \left(\frac{8m_0|E|}{\hbar^2}\right)^{\frac{1}{2}}r, \qquad \lambda = Z \alpha \left(\frac{c^2 m_0}{2|E|}\right)^{\frac{1}{2}}$$
$$\alpha = \frac{e_0^2}{4\pi\varepsilon_0 \hbar c} \approx \frac{1}{137} \qquad : \text{ Sommerfeldsche}$$
Feinstrukturkonstante

ein, so erhält man die radiale Schrödingergleichung

$$\frac{d^2R}{d\rho^2} + \frac{2}{\rho}\frac{dR}{d\rho} + \left(\frac{\lambda}{\rho} - \frac{1}{4} - \frac{l(l+1)}{\rho^2}\right)R = 0$$

Die Kontrolparameter sind der Drehimplus l(l+1) und λ .

<u>Verhalten für $r \to \infty$ </u>

Für große ρ ergibt sich für $R \sim R_\infty(\rho)$ näherungsweise

$$\frac{d^2 R_{\infty}}{d\rho^2} - \frac{1}{4} R_{\infty} = 0, \qquad R_{\infty} \sim e^{\pm \rho/2} .$$

Als normierbare Lösung kommt nur $e^{-\rho/2}$ in Frage.

Allgemeine Lösung

Wir hatten bereits gezeigt, daß $R(\rho) \sim \rho^l$ für $\rho \to 0$ gilt. Daher betrachten wir nun den Ansatz

$$R(\rho) = \rho^l e^{-\rho/2} g(\rho)$$

Hiermit finden wir für $g(\rho)$ die Gleichung

$$\frac{d^2g(\rho)}{d\rho^2} + \left(\frac{2l+2}{\rho} - 1\right)\frac{dg}{d\rho} + \frac{\lambda - 1 - l}{\rho}g(\rho) = 0$$

Taylor-Entwicklung

Wir entwickeln die Lösung in eine Taylorreihe in ρ ,

$$g(\rho) = \sum_{n=0}^{\infty} a_n \rho^n$$

und setzen sie ein. Wir finden

$$\sum_{n=0}^{\infty} \left[n(n-1)a_n \rho^{n-2} + \left(\frac{2l+2}{\rho} - 1\right) n a_n \rho^{n-1} + (\lambda - 1 - l)a_n \rho^{n-1} \right] = 0 ,$$

bzw.

$$\sum_{n=0}^{\infty} \left[(n+1) \left(na_{n+1} + (2l+2)a_{n+1} \right) + (\lambda - 1 - l - n)a_n \right] \rho^{n-1} = 0 .$$

Da diese Gleichung für alle ρ gelten soll, müssen die Koeffizienten einzeln verschwinden:

$$a_{n+1} = \frac{n+l+1-\lambda}{(n+1)(n+2l+2)} a_n$$

Bricht die Reihe nicht ab, so hätte man für große $n: a_{n+1} \sim \frac{1}{(n+1)}a_n$, d.h. $g(\rho)$ verhielte sich für große ρ wie

 $g(\rho) \sim e^{\rho}$.

Dies würde jedoch zu einem nicht normierbaren $R(\rho)$ führen. Die Reihe muß für normierbare R also abbrechen.

Hauptquantenzahl

Es muß also ein $n = n_r$ geben, für welches $a_{n_r+1} = 0$, d.h.

$$\lambda = n_r + l + 1 , \qquad n_r \ge 0$$

 $n = n_r + l + 1$: "Hauptquantenzahl" n: natürliche Zahl mit $n \ge l + 1$

Als muss $\lambda = Z \alpha \sqrt{\frac{c^2 m_0}{2|E|}}$ eine ganze Zahl sein, $\lambda = n$. Hieraus folgt für die möglichen Energiewerte $E = E_n$ der gebundenen Zustände des Wasserstoffatoms:

$$E_n = -\frac{1}{2}m_0c^2\frac{(Z\alpha)^2}{n^2} \qquad \text{(Bohr'sche Formel)}$$

Bahn-Quantenzahlen

Die Abbruchbedingung

$$a_{n_r+1} = 0, \qquad n-1 = n_r+l$$

hat für feste Hauptquantenzahl n noch einen Freiheitsgrad,

$$l = 0, 1, \dots, n-1$$

Dieses sind die erlaubten Werte des Drehimpules.

Entartungsgrad

Da zu l schon 2l + 1 Zustände mit verschiedenen l_3 -Komponenten gehören, so ist der gesamte *Entartungsgrad* durch

$$\sum_{l=0}^{n-1} \left(2l+1 \right) \; = \; n^2$$

gegeben. Zu vorgegebenem E_n gehören also n^2 verschiedene Bahndrehimpuls-Zustände. Berücksichtigt man außerdem, daß zu jedem Bahndrehimpuls-Zustand (l,m) noch je 2 Spin-Zustände des Elektrons gehören, so bekommt man schließlich als Entartungsgrad von E_n den Wert $d_n = 2n^2$. Dies ist die Dimension des zu E_n gehörigen Unterraumes.

$$d_1 = 2, \quad d_2 = 8, \qquad d_3 = 18 \qquad \text{etc.}$$

Dieses Ergebnis ist für die Atomphysik wichtig.

Eigenfunktionen des Wasserstoffatoms

Die Funktionen $g(\rho)$ sind Polynome vom Grad $n_r = n - l - 1$, mit $n_r = 0, 1, ...$ Für gegebene n und l gilt die Rekursionsformel für die Koeffizienten a_{ν} ,

$$a_{\nu+1} = \frac{\nu+l+1-n}{(\nu+1)(\nu+2l+2)} a_{\nu} \qquad \nu = 0, \dots n_r$$

wobei $n_r = n - l - 1$. Bei geeigneter Wahl von a_0 sind die Polynome identisch mit denn sogenannten zugeordneten Laguerre'schen Polynomen:

$$L_{n_r}^{\alpha}(\rho) = \sum_{\nu=0}^{n_r} (-1)^{\nu} \begin{pmatrix} n_r + \alpha \\ n_r - \nu \end{pmatrix} \frac{\rho^{\nu}}{\nu!}$$
$$= \frac{1}{n_r!} e^{\rho} \rho^{-\alpha} \frac{d^{n_r}}{d\rho^{n_r}} \left(e^{-\rho} \rho^{n_r + \alpha} \right)$$

Für $\alpha=0$ erhält man die Laguerre'schen Polynome. Für das Wasserstoffatom gilt $\alpha=2\,l+1.$

Beispiele

Die radialen Eigenfunktionen $R_{nlm}(\rho) \equiv R_{nl}(\rho)$ des Wasserstoffatoms mit Energie E_n sind

$$R_{nl}(\rho) = C_{nl} e^{-\frac{1}{2}\rho} \rho^l L_{n-l-1}^{2l+1}(\rho)$$

wobe
i \mathcal{C}_{nl} der Normierungsfaktor ist. Setzt man

$$a \equiv \frac{\hbar^2 4\pi\varepsilon_0}{m_e e^2}$$
 : Bohr'scher Atomradius,

so hat man z.B. (normiert)

$$R_{10}(r) = 2 \left(\frac{Z}{a}\right)^{3/2} e^{-Zr/a}$$

$$R_{20}(r) = 2 \left(\frac{Z}{2a}\right)^{3/2} \left(1 - \frac{Zr}{2a}\right) e^{-Zr/(2a)}$$

$$R_{21}(r) = \frac{1}{\sqrt{3}} \left(\frac{Z}{2a}\right)^{3/2} \frac{Zr}{a} e^{-Zr/(2a)}$$

Aufenthaltswahrscheinlichkeit

Die Wahrscheinlichkeit, das Elektron in einer Kugelschale mit Radius r und $r + \Delta r$ anzutreffen, ist durch

$$w(\Delta r) = \int_{r}^{r+\Delta r} dr \ w_{nl}(r), \qquad w_{nl}(r) = r^2 R_{nl}^2(r)$$

gegeben. Das Maximum der Aufenthaltswahrscheinlichkeit liegt für $w_{10}(r) = C_{10}^2 r^2 e^{-2Zr/a}$ bei r = a/Z. Im allgemeinen hat $w_{nl}(r)$ genau n - l Maxima.

Die Mittelwerte $\langle r^k \rangle = \int_0^\infty dr r^k w_{nl}(r)$ lassen sich für $k = \pm 1$ einfach berechnen:

$$< r > = \frac{a}{2Z} \Big[3n^2 - l(l+1) \Big], \qquad < r^{-1} > = \frac{Z}{an^2}$$

5.2.1 Korrekturen

Die Bohr'sche Formel für die Energieniveaus des Elektrons im Wasserstoffatom stellt nur eine Näherung dar, zu der eine ganze Reihe von *Korrekturen* kommen (Feinstruktur, Hyperfeinstruktur etc).

Mitbewegung des Kernes

Wir haben bisher so getan, als ob der Kern des Wasserstoffatoms unendlich schwer sei (und deshalb ruht). Tatsächlich haben Kern und Elektron die Masse

$$c^2 m_p = 938 \,\mathrm{MeV}, \qquad c^2 m_e = 0.51 \,\mathrm{MeV}$$

und seine Mitbewegung macht sich bemerkbar.

Die Energie \tilde{E} zweier Teilchen mit Koordinaten $\vec{x}_i = (x_1^{(i)}, x_2^{(i)}, x_3^{(i)}), i = 1, 2,$ und wechselseitigem Potential $V(\vec{x}_1 - \vec{x}_2)$ ist klassisch durch

$$\tilde{E} = \frac{1}{2m_1}\vec{p}_1^2 + \frac{1}{2m_2}\vec{p}_2^2 + V(\vec{x}_1 - \vec{x}_2)$$

gegeben. Das Äquvalenzprinzip,

$$\vec{p_1} \rightarrow \frac{\hbar}{i} \operatorname{grad}_1, \quad \vec{p_2} \rightarrow \frac{\hbar}{i} \operatorname{grad}_2, \quad \operatorname{grad}_j = \left(\frac{\partial}{\partial x_1^{(j)}}, \frac{\partial}{\partial x_2^{(j)}}, \frac{\partial}{\partial x_3^{(j)}}\right)$$

führt zu der stationären Schrödinger-Gleichung für zwei Teilchen:

$$\left(-\frac{\hbar^2}{2m_1}\Delta_1 - \frac{\hbar^2}{2m_2}\Delta_2 + V(\vec{x}_1 - \vec{x}_2)\right)\tilde{u}(\vec{x}_1, \vec{x}_2) = \tilde{E}\,\tilde{u}(\vec{x}_1, \vec{x}_2)$$

Schwerpunktskoordinaten

Mittels Relativ– und Schwerpunktkoordinaten

$$\vec{x} = \vec{x}_1 - \vec{x}_2, \qquad \vec{R} = \frac{(m_1 \vec{x}_1 + m_2 \vec{x}_2)}{(m_1 + m_2)}$$
$$\vec{x}_1 = \vec{R} + \frac{\mu}{m_1} \vec{x}, \qquad \vec{x}_2 = \vec{R} - \frac{\mu}{m_2} \vec{x}, \qquad \mu = \frac{m_1 m_2}{m_1 + m_2}$$

wird die Kern-Elektron Schrödingergleichung zu

$$\left(-\frac{\hbar^2}{2(m_1+m_2)}\Delta_R - \frac{\hbar^2}{2\mu}\Delta_x + V(\vec{x})\right)\tilde{u}(\vec{x},\vec{R}) = \tilde{E}\,\tilde{u}(\vec{x},\vec{R})$$

die man auch herleiten kann, indem man das Äquivalenzprinzip direkt auf Relativ- und Schwerpunkts-Koordinaten anwendet. Hier is m_1+m_2 die Gesamtmasse und $\mu = m_1 m_2/(m_1+m_2)$ die Relativmasse, wie schon aus der Mechanik bekannt.

Seperation der Variablen

Als Separation der Variablen nennt man Produkt-Ansätze für die Lösung von Differentialgleichungen, wie $\psi(\vec{x},t) = u(\vec{x}) \exp(iEt/\hbar)$. Der analoge Ansatz für Relativ- und Schwerpunkts-Koordinaten ist

$$\tilde{u}(\vec{x},\vec{R}) = u(\vec{x}) \, u(\vec{R}), \qquad u(\vec{R}) = e^{i \, \vec{K} \cdot \vec{R}}$$

wobei wir davon Gebrauch gemacht haben, daß der der Gesamptimpuls $\vec{p_1} + \vec{p_2}$ erhalten ist, d.h. dass sich die Schwerpunktskoordinate frei bewegt (als ebene Welle). Die Schrödingergleichung für die Relativ-Koordinate ist damit

$$\left(-\frac{\hbar^2}{2\mu}\Delta_x + V(\vec{x})\right)u(\vec{x}) = Eu(\vec{x}), \qquad E = \tilde{E} - \frac{\hbar^2 \vec{K}^2}{2(m_1 + m_2)}$$

Dabei ist

$$\frac{\hbar^2 \vec{K}^2}{2(m_1 + m_2)} : \text{ kinetische Energie des Schwerpunktes}$$
$$E : \text{ Energie der Relativbewegung}$$

Die Schrödinger–Gleichung für die Relativbewegung ist also die gleiche wie für die Bewegung in einem äußeren Potential $V(\vec{x})$. Man hat lediglich die Masse m durch die reduzierte Masse $\mu = m_1 m_2/(m_1 + m_2)$ zu ersetzen.

Energieniveaus

Die Energie-Niveaus des Wasserstoffatoms ist somit

$$E_n = -\frac{1}{2}\mu c^2 \frac{\alpha^2}{n^2}, \qquad \mu = \frac{m_e}{1 + m_e/m_p}$$

Geht man vom Proton zum Deuteron über, so hat man $m_p \rightarrow m_d \approx 2m_p$ und eine entsprechende Verschiebung der Energieniveaus des schwerer Wasserstoffs. Aufgrund dieses Effektes wurde das Deuteron entdeckt. Eine Reihe weiterer physikalischer Effekte führen zu Korrekturen der Bohr'schen Energieniveaus.

- Das magnetischen Moment des Elektrons.
- Relativistischen Geschwindigkeit des Elektrons.
- Das magnetischen Moment des Kerns.

5.3 Radialsymmetrische Lösungen für V(r) = 0

Die Lösungen der freien Schrödinger-Gleichung lassen sich in verschiedenen Systemen von Basisfunktionen darstellen. Bisher haben wir dazu ebenen Wellen verwendet, die Eigenfunktionen des Impulsoperators.

Hier betrachten wir Lösungen der Form $R_{lm}(r) Y_{lm}(\vartheta, \varphi)$, welche bei Streuprozessen auftreten. Zunächst beschäftigen wir uns mit der Lösung für die radialen Wellenfunktionen, $R_{lm}(r)$. und schreiben kurz $R_{lm}(r) \equiv R_l(r)$. Für $V \equiv 0$ hat die radiale Schrödingergleichung die Form

$$-\frac{\hbar^2}{2mr}\frac{\partial^2(rR_l)}{\partial r^2} + \frac{\hbar^2 l(l+1)}{2mr^2}R_l(r) = ER_l(r)$$

Da diese freie Teilchen beschreibt, sind die Energie-Eigenwerte kontinuierlich, aber positiv, $E \ge 0$.

5.3.1 Sphärische Bessel- und Neumann-Funktionen

Es gibt verschiedene Wege, dimensionslose Variable für die radiale Schrödingergleichung einzuführen, eine Möglichkeit haben wir auf Seite 4 im Zusammenhang mit der Diskussion gebundener Zustände benutzt. Hier setzen wir

$$\frac{2mE}{\hbar^2} = k^2 = |\vec{k}|^2$$
, und $\rho \equiv kr$.

Damit erhalten wir

$$\frac{d^2 R_l}{d\rho^2} + \frac{2}{\rho} \frac{dR_l}{d\rho} - \frac{l(l+1)}{\rho^2} R_l + R_l = 0$$

Man beachte, daß die Energie $\hbar^2 k^2/(2m)$ nur via der Reskalierung des radialen Abstandes eingeht, via $\rho = kr$. Als Differentialgleichung 2. Ordnung hat diese Gleichung zwei unabhängige Lösungen, welche man auch "sphärischen Zylinderfunktionen" nennt.

Bessel-Funktion

Die Lösungen der radialen Schrödinger-Gleichung stehen in einem engen Zusammenhang mit den Bessel-Funktionen $J_{\nu}(\rho)$:

$$0 = \frac{d^2 J_{\nu}}{d\rho^2} + \frac{1}{\rho} \frac{d J_{\nu}}{d\rho} + \left(1 - \frac{\nu^2}{\rho^2}\right) J_{\nu}(\rho)$$
$$J_{\nu}(\rho) = \frac{\rho^{\nu}}{2^{\nu}} \sum_{k=0}^{\infty} (-1)^k \frac{\rho^{2k}}{2^{2k} k! \Gamma(\nu + k + 1)}$$

Diese werden überall da gebraucht, wo es um Lösungen der Laplace Gleichung in polaroder sphärischen Koordinaten geht. Dabei kann ν complex sein.

Sphärische Bessel-Funktion

Wir betrachten nun die bei $\rho = 0$ reguläre Lösung, die sphärische Bessel-Funktion $j_{\nu}(\rho)$:

$$j_l(\rho) = \left(\frac{\pi}{2\rho}\right)^{\frac{1}{2}} J_{l+\frac{1}{2}}(\rho), \qquad j_l(\rho) = (-\rho)^l \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^l \left(\frac{\sin\rho}{\rho}\right)$$

Aus der zweiten Darstellung folgt

$$j_0(\rho) = \frac{\sin \rho}{\rho}, \qquad j_1(\rho) = \frac{\sin \rho}{\rho^2} - \frac{\cos \rho}{\rho}.$$

Man kann durch vollständige Induktion verifizieren, dass die $j_l(\rho)$ Lösungen der radialen Schrödingergleichung sind. D.h. man beweist zunächst den Fall l = 0 und schliesst dann aus der Richtigkeit für l auf die Richtigkeit für l + 1.

Sphärische Neumann-Funktionen

Wir betrachten nun die bei $\rho = 0$ singuläre Lösung, die sphärische Neumann-Funktionen $n_l(\rho)$:

$$n_{l}(\rho) = (-1)^{l+1} \left(\frac{\pi}{2\rho}\right)^{\frac{1}{2}} J_{-l-\frac{1}{2}}(\rho), \qquad n_{l}(\rho) = -(-\rho)^{l} \left(\frac{1}{\rho} \frac{d}{d\rho}\right)^{l} \left(\frac{\cos\rho}{\rho}\right)$$

Mit

$$n_0(\rho) = -\frac{\cos \rho}{\rho}$$
, $n_1(\rho) = -\frac{\cos \rho}{\rho^2} - \frac{\sin \rho}{\rho}$

Grenzwertverhalten

Für $\rho \rightarrow 0$ gilt

$$j_l(\rho) \approx \frac{\rho^l}{(2l+1)!!}$$
 $(2l+1)!! \equiv 1 \cdot 3 \cdot 5 \cdots (2l+1)$
 $n_l(\rho) \approx \frac{-(2l-1)!!}{\rho^{l+1}}$

Für $\rho \to \infty$ gilt and ererse its

$$j_l(\rho) \sim \frac{1}{\rho} \sin\left(\rho - \frac{l\pi}{2}\right), \qquad n_l(\rho) \sim -\frac{1}{\rho} \cos\left(\rho - \frac{l\pi}{2}\right)$$

5.3.2 Entwicklung von ebenen Wellen nach Legendre-Polynomen

Ebene Wellen,

$$e^{i \vec{k} \cdot \vec{x}} = e^{i k r \cos \vartheta} = e^{i \rho z}, \qquad \vartheta = \angle(\vec{k}, \vec{x}), \qquad \rho = k r, \qquad z \cos \vartheta \ ,$$

sind reguläre Lösungen von $(\Delta + k^2)u(\vec{x}) = 0$, sie lassen sich daher ebenfalls nach Kugelfunktionen und sphärischen Bessel-Funktionen $j_l(\rho)$ entwickeln.

Eine ebene Welle hängt von der Energie $\hbar^2 k^2/(2m)$ nur via der Reskalierung des radialen Abstandes $\rho = kr$ ab, sie ist zudem rotations-invariant um die Ausbreitungsrichtung $\vec{k} = (0, 0, k)$, und damit unabhängig vom Polarwinkel φ . In der Entwicklung nach Kugelfunktionen $Y_{lm}(\varphi, \vartheta)$ treten daher nur die Terme m = 0 auf, und damit nur die Legendre Polynome

$$P_l(z) = \left(\frac{4\pi}{2l+1}\right)^{1/2} Y_{l0}, \qquad z = \cos\vartheta$$

also

$$e^{i\rho z} = \sum_{l=0}^{\infty} c_l j_l(\rho) P_l(z)$$

Der radiale Anteil ist durch die sphärische Besselfunktion $j_l(\rho)$ gegeben, da diese die für $\rho \to 0$ regulär sind.

Entwicklungskoeffizienten

Es bleiben die Entwicklungskoeffizienten c_l mit Hilfe der Orthogonalitätsrelationen

$$\int_{-1}^{+1} dz P_{l_1}(z) P_{l_2}(z) = \frac{2\delta_{l_1 l_2}}{(2l_1 + 1)}, \qquad c_l j_l(\rho) = \frac{2l + 1}{2} \int_{-1}^{+1} dz P_l(z) e^{i\rho z} dz$$

für Legendre-Polynome zu bestimmen. Wenn wir z^n nach $P_l(z)$ entwicklen, so tragen nur Terme $l \leq n$ bei. Andererseits ist $P_l(z)$ orthogonal zu allen $P_n(z)$ mit $n \neq l$, daher gilt

$$\int_{-1}^{+1} dz \ z^n \ P_l(z) = \begin{cases} 0 & \text{für } n < l \\ \frac{2 \ l!}{(2l+1)!!} & \text{für } n = l \end{cases}$$

Für $e^{i\rho z} = \sum_{n=0}^{\infty} (i\rho z)^n / (n!)$ finden wir daher

$$\int_{-1}^{+1} dz P_l(z) e^{i\rho z} = \frac{2}{(2l+1)!!} (i\rho)^l + O(\rho^{l+1}) .$$

Wir können jetzt den Grenzwert $\rho \to 0$ betrachten. Mit $j_l(\rho) \to \rho^l/(2l+1)!!$ erhalten

$$c_l j_l(\rho) \approx c_l \frac{\rho^l}{(2l+1)!!} \approx \frac{(2l+1)}{2} \frac{2(i\rho)^l}{(2l+1)!!} + \dots$$
 (höhere Potenzen in ρ).

Ein Koeffizientenvergleich führt via

$$c_l = (2l+1)i^l$$

zu dem zentralen Ergebnis

$$e^{i\vec{k}\cdot\vec{x}} = e^{ikr\cos\vartheta} = \sum_{l=0}^{\infty} (2l+1) i^l j_l(kr) P_l(\cos\vartheta)$$

Physikalische Interpretation

Das asymptotischen Verhaltens der spährischen Bessel Funktion $j_l(\rho)$ für große ρ ist

$$j_l(\rho) \sim \frac{1}{\rho} \sin\left(\rho - \frac{l\pi}{2}\right) = -\frac{1}{2ikr} \left[e^{-i(kr - \frac{1}{2}l\pi)} - e^{i(kr - \frac{1}{2}l\pi)}\right]$$

 mit

$$\frac{1}{r} e^{-i(\omega t + kr)} : \text{ ein-laufende Kugelwelle}$$
$$\frac{1}{r} e^{-i(\omega t - kr)} : \text{ aus-laufende Kugelwelle}$$

wobei $\omega = \hbar k^2/(2m)$. Um ein- und auslaufende Wellen zu unterscheiden betrachtet man den Ort konstanter Phase, $\omega t + kr = 0$. Die sphärische Besselfunktion $j_l(\rho)$ ist also für große Abstände $(kr \gg 1)$ eine Superposition von ein- und auslaufenden Kugelwellen. Der Drehimpuls l geht nur via der *Phasenverschiebung* $l\pi/2$ ein.

Beweis

Man bemerke, dass $\sin(\rho - l\pi/2)$ je nach Quantenzahl $\pm \sin(\rho)$ entspricht (*l* gerade), bzw. $\pm \cos(\rho)$ (*l* ungerade).² Das ist in Einklang mit

$$j_l(\rho) = (-\rho)^l \left(\frac{1}{\rho}\frac{d}{d\rho}\right)^l \left(\frac{\sin\rho}{\rho}\right) = (-\rho)^l \left(\frac{1}{\rho}\frac{d}{d\rho}\right)^{l-1} \left(\frac{\cos\rho}{\rho} - \frac{\sin\rho}{\rho^2}\right),$$

wobei der zweite Term für grosse ρ verschindet.

5.4 Elastische Potentialstreuung

Voraussetzung

Für die Formulierung der Streutheorie brauchen wir die Annahme, dass sich die ungebundenen Lösungen der Schrödinger-Gleichung im Unendlichen wie ebene Wellen verhalten. Dazu muss das Potential V(r) schnell genug für $r \to \infty$ abfallen, man kann zeigen, daß dies für

$$\lim_{r \to \infty} \left(rV(r) \right) = 0 \,,$$

der Fall ist. Wir behandeln hier nicht die Streuung am Coulomb–Potential, die eine gesonderte Behandlung braucht.

²Gemäß dem Ableitungs-Zyklus sin $\rightarrow \cos \rightarrow (-\sin) \rightarrow (-\cos) \rightarrow \sin$.

Experimenteller Aufbau

Längs der x_3 -Achse fallen Teilchen der Stromdichte $s_3 ein^3$ die am Streuzentrum in $\vec{x} = 0$ (Relativkoordinate) in das Raumwinkelelement $\Delta\Omega$ mit radialer Teilchenstromdichte $s_r(r, \vartheta, \varphi)$ gestreut werden. Durch ein Flächenelement ΔS im Abstand r treten dann pro Zeiteinheit $s_r \Delta S$ Teilchen.

Raumwinkelelement	:	$\Delta \Omega = \sin \vartheta \Delta \vartheta \Delta \varphi$
Fäschenelement	:	$\Delta S = r^2 \Delta \Omega$
Stromdichte einfallender Teilchen	:	s_3
radiale Teilchenstromdichte	:	$s_r(r,\vartheta,\varphi) = \vec{s} \cdot \vec{e_r}$

Wirkungsquerschnitt

Der differentielle Wirkungsquerschnitt für die Streuung in das Raumwinkele
lement $\Delta\Omega$ ist durch

$$\Delta \sigma(\vartheta, \varphi) = \frac{s_r r^2 \Delta \Omega}{s_3}$$
$$\frac{d\sigma}{d\Omega}(\vartheta, \varphi) = \frac{s_r(r, \vartheta, \varphi) r^2}{s_3}$$

definiert. Die Größe $d\sigma/d\Omega$ ist i.a. eine Funktion der Energie $E = \hbar^2 k^2/(2\mu)$, wobei μ die reduzierte Masse ist. Für rotationssymmetrische $V(\vec{x})$ hängt $d\sigma/d\Omega$ nicht von φ ab.

Streuamplituden

Sei $u(\vec{x})$ die Lösung der stationären Schrödinger-Gleichung zum Potential V(r). Diese Lösung soll für große $r = |\vec{x}|$ aus einlaufender ebener Welle und auslaufender Kugelwelle

³Vergleich den Abschnitt ?? zur Kontinuitätsgleichung.

bestehen,

$$u(\vec{x}) \sim e^{i\vec{k}\cdot\vec{x}} + f(k,\vartheta)\frac{e^{ikr}}{r}, \qquad \vec{k} = (0,0,k)$$

mit $f(k, \vartheta) = 0$ für V(r) = 0. Die Größe $f(k, \vartheta)$ heißt Streuamplitude. Aus der Kontinuitätsgleichung folgt

$$s_3 = \hbar k_3 / \mu, \qquad s_r = \hbar k |f(k, \vartheta)|^2 / (\mu r^2) ,$$

und somit

$$\frac{d\sigma(k,\vartheta)}{d\Omega} = \frac{s_r r^2}{s_3} = |f(k,\vartheta)|^2$$

da $k_3 = k$.

Entwicklung nach Partialwellen

Die Partialwellen-Entwicklung ebener Wellen (siehe Abschnitt 5.3.2) reduziert sich für große r zu

$$e^{i\vec{k}\cdot\vec{x}} = \sum_{l=0}^{\infty} (2l+1) i^l j_l(kr) P_l(\cos\vartheta)$$

$$\sim -\frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) i^l \left(\frac{e^{-i(kr-\frac{1}{2}l\pi)}}{r} - \frac{e^{i(kr-\frac{1}{2}l\pi)}}{r}\right) P_l(\cos\vartheta)$$

Diese ebene Welle entspricht dem Fall V(r) = 0. Falls nun $V(r) \neq 0$, so wird lediglich die Amplitude/Phase der auslaufende Kugelwelle modifiziert. Wir machen den Ansatz

$$u(\vec{x}) \approx -\frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1) i^{l} \left(\frac{e^{-i(kr - \frac{1}{2}l\pi)}}{r} - S_{l}(k) \frac{e^{i(kr - \frac{1}{2}l\pi)}}{r} \right) P_{l}(\cos \vartheta)$$

Streuphasen

Bei einer rein elastischen Streuung können keine Teilchen verlorengehen, es werden also nur die Phasen, aber nicht jedoch die Intensitäten der auslaufenden Kugelwelle geändert werden. Also gilt $|S_l(k)| = 1$ (bei inelastischer Streuung hat man $|S_l(k)| < 1$), d.h.

$$S_l(k) = e^{2i\delta_l(k)}$$

 $\delta_l(k)$: zur *l*-ten "Partialwelle" gehörige *Streuphase*.

Der Radialanteil $R_l(r)$ der Wellenfunktion verhält sich für große r also asymptotisch wie

$$R_{l}(r) \sim -\left(\frac{e^{-i(kr-\frac{1}{2}l\pi)}}{2ikr} - e^{2i\delta_{l}(k)}\frac{e^{i(kr-\frac{1}{2}l\pi)}}{2ikr}\right) = e^{i\delta_{l}(k)}\frac{\sin(kr-\frac{1}{2}l\pi+\delta_{l}(k))}{kr}$$

Partialwellenentwicklung für Streuamplituden

 $\overline{\text{Mit } S_l = (S_l - 1) + 1 \text{ läßt sich das obige } u(\vec{x}) \text{ auch als}}$

$$u(\vec{x}) \sim e^{i\vec{k}\cdot\vec{x}} + \left[\sum_{l=0}^{\infty} \left(2l+1\right)i^l \frac{S_l(k)-1}{2ik} P_l(\cos\vartheta) \frac{e^{i(kr-\frac{1}{2}l\pi)}}{r}\right]$$

schreiben. Benutzen wir

$$e^{-\frac{i}{2}l\pi} = i^{-l}, \qquad u(\vec{x}) \sim e^{i\vec{k}\cdot\vec{x}} + f(k,\vartheta)\frac{e^{ikr}}{r}$$

so erhält man für große r mit

$$f(k,\vartheta) = \sum_{l=0}^{\infty} (2l+1) \frac{e^{2i\delta_l(k)} - 1}{2ik} P_l(\cos\vartheta)$$

Partialwellenentwicklung für die Streuamplituden $f(k, \vartheta)$.

Totaler Wirkungsquerschnitt

Integrieren wir den differentiellen Wirkungsquerschnitt über die Einheitskugel, so erhalten wir den totalen elastischen Wirkungsquerschnitt $\sigma_{el}(k)$:

$$\sigma_{el}(k) = \int d\Omega \, |f(k,\vartheta)|^2$$

Wegen der Orthogonalität der $P_l(\cos \vartheta)$ und da $(e^{2i\delta_l} - 1)/2i = e^{i\delta_l} \sin \delta_l$, folgt

$$\sigma_{el}(k) = \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l(k)$$

Die Streuphasen $\delta_l(k)$ sind bei vorgegebenem Potential aus dem asymptotischen Verhalten der Partialwellen $R_l(kr)$ zu bestimmen. Als Beispiel werden wir weiter unten den 3-dimensionalen Potentialtopf diskutieren.

Optisches Theorem

Für den Imagninätteil $\Im m f(k, \vartheta)$ der Streuamplitude gilt

$$\Im m f(k, \vartheta = 0) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l(k),$$

da $\Im m(e^{i\delta_l}\sin\delta_l) = \sin^2\delta_l(k)$ und $P_l(1) = 1$, und somit

$$\Im m f(k, \vartheta = 0) = \frac{k}{4\pi} \sigma_{el}(k)$$

Dieser Zusammenhang wird das *Optisches Theorem* genannt. Der Verlust an einfallender Intensität (σ_{el}) entsteht durch "kohärente" (elastische) Interferenz.

5.5 3-dimensionaler Potentialtopf

Wir betrachten als Beispiel den 3-dimensionalen, rotations-symmetrischen Potentialtopf,

$V(r) = -V_0$	für	r < a,	$V_0 > 0$
V(r) = 0	für	r > a	

Analog zum endlich tiefen Potentialtopf in einer Dimension (siehe Abschnitt ??), definieren wir

$$\begin{array}{rcl} q &=& \displaystyle \frac{1}{\hbar} \sqrt{2\mu(V_0 + E)} \\ \kappa &=& \displaystyle \frac{1}{\hbar} \sqrt{-2\mu E} \ , & \mbox{für } E < 0 \\ k &=& \displaystyle \frac{1}{\hbar} \sqrt{2\mu E} & \mbox{für } E > 0 \end{array}$$

Wobe
iE < 0/E > 0gebundenen-/Streu-Zuständen entspricht. Wir berachten zu
erstE < 0.

5.5.1 Gebundene Zustände

Für E < 0 genügt $R_l(r)$ den Gleichungen

$$\frac{d^2 R_l}{dr^2} + \frac{2}{r} \frac{dR_l}{dr} - \frac{l(l+1)}{r^2} R_l + q^2 R_l = 0, \qquad r < a$$
$$\frac{d^2 R_l}{dr^2} + \frac{2}{r} \frac{dR_l}{dr} - \frac{l(l+1)}{r^2} R_l - \kappa^2 R_l = 0, \qquad r > a$$

Für grosse r folgt aus der zweiten Gleichung $R_l'' = \kappa^2 R_l$, also $R_l \sim \exp(-\kappa r)$.

Innerer Zustand

Für r < a kommt nur die beir=0reguläre Lösung in Frage, also die sphärische Bessel Funktion

$$R_l(r) = A j_l(\rho), \qquad r < a ,$$

mit $\rho = qr$.

Äusserer Zustand

Für r > a muss die Lösung wie $\exp(-\kappa\rho)$ exponentiel abfallen. Welche der sphärischen Funktionen tut das?

Die Bestimmungsgleichungen für R_l unterscheiden sich in den Termen $q^2 R_l$, bzw $-\kappa^2 R_l$, mit $q, \kappa \ge 0$. Für die Transformation auf die Normalform führt das zu $\rho = qr$ und $\rho = i\kappa r$, jeweils für die Argumente der entsprechenden sphärichen Funktionen. Die sphärischen Hankel-Funktionen,

$$h_l^{(1)}(\rho) \equiv j_l(\rho) + i n_l(\rho),$$

verhalten sich asymptotisch, also für $r \to \infty$, wie

$$h_l^{(1)}(\rho) \sim \frac{\sin(\rho - l\pi/2)}{\rho} - \frac{i}{\rho}\cos(\rho - l\pi/2) = \frac{1}{i\rho}e^{i(\rho - \frac{1}{2}l\pi)}.$$

Für r > a erhält daher

$$R_l(r) = B h_l^{(1)}(i\kappa r), \qquad -\frac{\hbar^2 \kappa^2}{2\mu} = E = \frac{\hbar^2 q^2}{2\mu} - V_0,$$

wobei wir $\rho = i\kappa r$ eingesetzt haben.

Randbedingungen

Die zulässigen Energiewerte E ergeben sich aus den Anschlussbedingungen bei $r = \pm a$,

$$A j_l(aq) = B h_l^{(1)}(ia\kappa)$$
$$A \frac{d}{dr} j_l(rq)\Big|_{r=a} = B \frac{d}{dr} h_l^{(1)}(ir\kappa)\Big|_{r=a}$$

aus denen die transzendenten Bestimmungsgleichungen

$$\frac{\frac{d}{dr}j_{l}(rq)}{j_{l}(rq)} = \frac{\frac{d}{dr}h_{l}^{(1)}(ir\kappa)}{h_{l}^{(1)}(ir\kappa)} \qquad r = a, \qquad l = 0, 1, \dots$$

folgen. Diese Gleichungen sind i.a. nur numerisch zu lösen.

Tiefer Potentialtopf

Für einen *tiefen* Topf, d.h. für $qa \gg 1$ (da $q \sim \sqrt{V_0 + E}$), kann man auf der linken Seite die asymptotischen Formen für $j_l(rq)$ benutzen:

$$j_l(rq) \sim \frac{1}{rq} \sin\left(rq - \frac{l\pi}{2}\right)$$
$$\frac{dj_l(rq)}{dr} \sim -\frac{1}{r^2q} \sin\left(rq - \frac{l\pi}{2}\right) + \frac{1}{r} \cos\left(rq - \frac{l\pi}{2}\right)$$

Einsetzen ergibt

$$-\frac{1}{a} + q \cot\left(qa - \frac{l\pi}{2}\right) = \frac{\frac{a}{dr}h_l^{(1)}(ir\kappa)|_{r=a}}{h_l^{(1)}(ia\kappa)}$$

1

Da die Hankel-Funktionen die Lösungen für r > a sind (wo V(x) = 0), hängt die rechte Seite nicht von V_0 ab. Die linke Seite hängt via q jedoch von V_0 ab, also muß für $|E| \ll V_0$ (hieraus folgt: grosses q) der Kotangens auf der linken Seite asymptotisch klein sein,

$$\cot\left(qa-\frac{l\pi}{2}\right) \approx 0, \qquad qa-\frac{l\pi}{2}=\left(m+\frac{1}{2}\right)\pi, \qquad m=0, 1, \ldots$$

oder

$$a q \approx \left(m + \frac{1}{2}\right) \pi + l \frac{\pi}{2}, \qquad m = 0, 1 \dots$$

Via $q = \sqrt{2\mu(V_0 + E)}/\hbar$ ergeben sich hieraus für kleine |E| die Energie
eigenwerte der gebundenen Zustände.

5.5.2 Streuzustände

Für Streuzustände is die Energie positive, E > 0. Das bedeutet für r > a:

$$R_l(r) = B j_l(kr) + C n_l(kr)$$

für r < a gilt wie vorher $R_l(r) = A j_l(qr)$ (wobei jetzt E > 0). Die Stetigkeitsbedingungen bei r = a sind

$$\frac{\frac{d}{dr}j_l(qr)\big|_{r=a}}{j_l(qa)} = \frac{\frac{d}{dr}(Bj_l(kr) + Cn_l(kr))\big|_{r=a}}{Bj_l(ka) + Cn_l(ka)}$$

Damit ist C/B bestimmt.

<u>Verhalten für $r \to \infty$ </u>

Das asymptotische Verhalten der sphärischen Bessel- und von Neumann-Funktionen für große r bedeutet für die den Radialteil der Lösung

$$R_l(r) \sim \frac{1}{kr} \left[B \sin\left(kr - \frac{l\pi}{2}\right) - C \cos\left(kr - \frac{l\pi}{2}\right) \right] .$$

Mit $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$ gilt

$$R_{l}(r) \sim \frac{e^{i\delta_{l}}}{kr} \sin\left(kr - \frac{l\pi}{2} + \delta_{l}\right)$$
$$= \frac{e^{i\delta_{l}}}{kr} \left[\sin\left(kr - \frac{l\pi}{2}\right)\cos\left(\delta_{l}\right) + \cos\left(kr - \frac{l\pi}{2}\right)\sin\left(\delta_{l}\right)\right]$$

für den allgemeinen Ausdruck des Radialanteils durch die Streuphasen δ_l (siehe Abschnit 5.4). Der Vergleich ergibt

$$B = e^{i\delta_l}\cos(\delta_l), \qquad C = -e^{i\delta_l}\sin(\delta_l), \qquad \tan \delta_l(k) = -\frac{C}{B}.$$

Wir eliminieren C/B und erhalten schlussendlich die Streuphasen:

$$\tan \delta_l(k) = \frac{\frac{d}{dr} j_l(kr) j_l(qa) - \frac{d}{dr} j_l(qr) j_l(ka)}{\frac{d}{dr} n_l(kr) j_l(qa) - \frac{d}{dr} j_l(qr) n_l(ka)}$$

wobei die Ableitungen an der Stelle r = a auszuwerten sind.

5.5.3 Grenzfälle

Niederenergie-Streuung $ka \ll l$

Der Impuls $\hbar k = \sqrt{2\mu E}$ sei klein, und damit auch die kinetische Energie ausserhalb

des Potentialtopf. Dieser kann beliebig tief sein, also auch $q = \sqrt{2\mu(V_0 + E)/\hbar}$. Damit können wir aus dem Ausdruck für tan $\delta_l(k)$ nach kleinen kr entwickeln, nicht aber nach qr. Wir verwenden

$$j_l(\rho) \approx \frac{\rho^l}{(2l+1)!!}, \qquad n_l(\rho) \approx -\frac{(2l-1)!!}{\rho^{l+1}}, \qquad \text{für} \quad \rho \to 0 ,$$

mit $(2l+1)!! = (2l+1) \cdot (2l-1)!!$, und erhalten

$$\tan \delta_l(k) \approx \frac{2l+1}{[(2l+1)!!]^2} (ka)^{2l+1} \frac{lj_l(qa) - a\frac{d}{dr} j_l(qr)}{(l+1)j_l(qa) + a\frac{d}{dr} j_l(qr)}$$

wobei die Ableitung wieder bei r = a zu nehmen sind. Der Factor $(ka)^{2l+1}$ setzt sich aus $\rho^l \cdot \rho^{l+1}$ zusammen.

Schwellen-Verhalten

Das Schwellen-Verhalten

$$\tan \delta_l(k) \approx c_l k^{2l+1} \quad \text{für} \quad k \to 0$$

gilt nicht nur für den Potentialtopf, sondern für alle Potentiale, deren Streuverhalten für $k \to 0$ bzw. $r \to 0$ durch das Zentrifugalpotential dominiert wird.

Schreibt man für den totalen elastischen Wirkungsquerschnitt, siehe Abschnitt 5.4,

$$\sigma_{el}(k) = \sum_{l=0}^{\infty} \sigma_l(k), \qquad \qquad \sigma_l(k) = \frac{4\pi(2l+1)}{k^2} \sin^2 \delta_l(k)$$

so hat man für $k \to 0$, da $\sin \alpha \approx \tan \alpha$ für $\alpha \to 0$,

$$\sigma_l(k) = \frac{4\pi(2l+1)}{k^2} |C_l|^2 k^{4l+2}, \quad \text{d.h.}$$
$$\lim_{k \to 0} \sigma_l(k) = \begin{cases} const. \neq 0 & \text{für } l = 0\\ 0 & \text{für } l \neq 0 \end{cases}$$

Unitärer Limes

Für gewisse Energien $E_R = \hbar^2 k_R^2 / (2\mu)$ verschwindet der Nenner in der obigen Formel für $\tan \delta_l(k)$. Man hat dann

$$\tan \delta_l(k_R) = \pm \infty,$$
 $\delta_l(k_R) = \left(m + \frac{1}{2}\right)\pi,$ m ganze Zahl.

Mit $\sin^2[(n+1/2)\pi] = 1$ werden die partiellen Streuquerschnitte $\sigma_l(k)$ für $k = k_R$ maximal,

$$\sigma_l(k_R) = \frac{4\pi(2l+1)}{k_R^2} = \frac{4\pi\hbar^2(2l+1)}{2\mu E_R}$$

der unitärer Limes.

Resonanzstreuung

Diese Phänomen läßt sich als eine Resonanzerscheinung interpretieren. Der Einfachheit halber sei

$$\frac{a}{\hbar}\sqrt{2\mu(V_0+E)} = qa \gg 1 \gg ka = \frac{a}{\hbar}\sqrt{2\mu+E}$$

(tiefer Topf und Niederenergiestreuung). Bei dieser Approximation kann man die oben entwickele Näherungsformel für tan δ_l für Niederenergiestreuung benutzen. An der Resonanz, d.h. für $k = k_R$ und $q = q_R$, gilt die Bedingung

$$(l+1)j_l(q_R a) + a \frac{d}{dr} j_l(q_R r)|_{r=a} = 0$$

Wegen der Annahme $\rho = q_R a \gg 1$ können wir für die sphärische Besselfunktion den genäherten Ausdruck $j_l(\rho) \sim \sin(\rho - l\pi/2)/\rho$ für große Argumente benutzen (siehe Abschnitt 5.3.2),

$$0 = \frac{l+1}{aq_R} \sin\left(q_R a - \frac{l\pi}{2}\right) + \cos\left(q_R a - \frac{l\pi}{2}\right) - \frac{1}{q_R^2} \sin\left(q_R a - \frac{l\pi}{2}\right)$$
$$\approx \cos\left(q_R a - \frac{l\pi}{2}\right) .$$

Hieraus folgt

$$a q_R = m \pi + \frac{1}{2} (l+1) \pi, \quad m \text{ ganz.}$$

Dies sind aber gerade die gleichen Bedingungen wie für die diskreten gebundenen Zustände aus Abschnitt 5.5.1. Im Unterschied zu den (echten) gebundenen Zuständen ist hier jedoch $E_R > 0$. Es handelt sich um ausgezeichnete diskrete Energieniveaus, die z.B. bei der Streuung angeregt werden, ähnlich wie bei erzwungenen Schwingungen in der Mechanik und Elektrodynamik:

> Bei bestimmten Frequenzen $\omega_R = E_R/\hbar$ der einfallenden Teilchen werden die Eigenschwingungen des streuenden Systems angeregt.

'Instabile' Bindungszutände

Resonanz-Niveaus E_R lassen sich in gewisser Hinsicht als instabile Bindungszustände interpretieren:

Breit-Wigner Formel

In der Nähe der Resonanz kann man näherungsweise

$$\tan \delta_l = \gamma_l \frac{(ka)^{2l+1}}{E - E_R}, \qquad \gamma_l = const.$$

setzen: Schwellenverhalten für den Zähler, Taylor-Entwicklung um die Nullstelle im Nenner. Für den Wirkungsquerschnitt σ_l der Partialwelle l ergibt sich daraus

$$\sigma_{l}(E) = \frac{4\pi(2l+1)}{k^{2}} \sin^{2} \delta_{l} = \frac{4\pi(2l+1)}{k^{2}} \frac{\tan^{2} \delta_{l}}{1+\tan^{2} \delta_{l}}$$
$$= \frac{4\pi(2l+1)}{k^{2}} \frac{\left(\gamma_{l}(ka)^{2l+1}\right)^{2}}{(E-E_{R})^{2} + (\gamma_{l}(ka)^{2l+1})^{2}}$$

Dies ist die Breit-Wigner-Formel für den Wirkungsquerschnitt in der Umgebung der Resonanzenergie E_R .

Resonanzbreite

Die entsprechende Amplitude der Partialwelle ist

$$f_l(k) = \frac{1}{2ik} \left(e^{2i\delta_l(k)} - 1 \right) = \frac{1}{2ik} \left(\frac{1 + i\tan\delta_l}{1 - i\tan\delta_l} - 1 \right) = \frac{1}{k} \frac{\tan\delta_l}{1 - i\tan\delta_l}$$

wobei wir $\exp(2x) = \exp(x) / \exp(-x)$ verwendet haben. Man erhält

$$f_l(k) = \frac{1}{k} \frac{\gamma_l(ka)^{2l+1}}{E - E_R - i\gamma_l(ka)^{2l+1}}$$

Die Größe

$$\Gamma_l = 2\gamma_l \, (ka)^{2l+1}$$

bezeichnet man als die Breite der Resonanz, da $\sigma_l(E_R \pm \frac{1}{2}\Gamma_l) = \frac{1}{2}\sigma_l(E_R)$. Die Resonanzstreuung spielt eine zentral Rolle in der Atom-, Kern- und Elementarteilchenphysik. In ihrer allgemeinen Form gelten die hier hergeleiteten Formeln für viele Potentiale.

