
Chapter 6

Phase transitions

6.1 Concept of phase

Phases are states of matter characterized by distinct macroscopic properties. Typical
phases we will discuss in this chapter are liquid, solid and gas. Other important phases
are superconducting and magnetic states.

First and second order phase transitions. States of matter come with their stability
regions, the phase diagram. The properties of the microscopic state change by definition
at the phase boundary. This change is

discontinuous

continuous

�
for a

�
first order

second order

�
phase transition

The appropriate variables for phase diagram of water are the pressure P and the temper-
ature T .

critical point : The first-order phase boundary between gas and liquid becomes
second order right at the critical point. The two phases have then
equal densities and specific entropies (entropy per particle).

� There is no critical point for the liquid-solid transition.

triple point : The point at which gas, liquid and solid coexist.
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Skating on ice. The melting curve of water has negative slope. Ice does hence melt
at constant temperature T < T0 when increasing the pressure P . This happens during
skating on ice.

6.2 First-order phase transition

When water starts boiling, it undergoes a phase transition from a liquid to a gas phase.
For both phases independently, the equation of state is a well-defined regular function,
continuous, with continuous derivatives. However, while going from liquid to gas one
function “abruptly” changes to the other function. Such a transition is of first-order.

Gibbs enthalpy. Phase transitions in the P − T phase diagram are described by the
Gibbs enthalpy G(T, P,N), as defined by (5.11), which is itself a function of the pressure
P and of the temperature T . G(T, P,N) changes continuously across the phase boundary
when the transition is of first order. The entropy S and volume V , which are given by
the derivatives

S = −
�
∂G

∂T

�

P

, V =

�
∂G

∂P

�

T

, dG = −SdT + V dP + µdN

of the Gibbs potential, are in contrast discontinuous.

Latent heat. Let us consider an instead of the P − T the P − V diagram, which is a
projection of the equation of state for water.

Two phases 1 and 2 coexisting at a temperature T0 have different
entropies S1 and S2. The system must therefore absorb or release
heat, the latent heat ΔQL,

ΔQL = T0(S2 − S1) ,

during a phase transition of first order.

6.2.1 Condition for phase coexistence

We consider a system composed by one species of particles at given conditions of P and
T (constant). Let us assume coexistence of two phases in our system. In this case, the
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Gibbs potential is the sum of Gibbs potentials of the two phases,

G(T, P,N) = G1(T, P,N1) +G2(T, P,N2)

= N1µ1(T, P ) +N2µ2(T, P ) ,

where we have used the Gibbs-Duhem relation (5.17). Ni and µi are the number of
particles and the chemical potential in phase i and N = N1 +N2.

Principle of minimal Gibbs energy. The principle of minimal Gibbs energy discussed
in Sect. 5.5.2 states that Gibbs potential has to be at its minimum, i.e. dG = 0, when
P , T and N = N1 + N2 are fixed. G has to be therefore in equilibrium with respect to
particle transfer from one phase to the other. This implies that

dG = µ1dN1 + µ2dN2 = 0, µ1(T, P ) = µ2(T, P ) , (6.1)

with dN1 = −dN2. The condition of coexistence (6.1), tells us that the two phases 1 and
2 must have identical chemical potentials.

6.2.2 Clausius-Clapeyron equation

We denote the discontinuities across the phase boundary with

ΔG = G2(T, P,N1)−G1(T, P,N2) (6.2)

ΔS = S2 − S1 = −
�
∂(ΔG)

∂T

�

P

, ΔV = V2 − V1 =

�
∂(ΔG)

∂P

�

T

,

where we assume that S2 > S1.
Cyclic chain rule. The discontinuities ΔG, ΔS and ΔV are functions of V , T and P ,
which are in turn related by the equation of state f(P, V, T ) = 0. There must hence exist
a function f̃ such that

f̃(ΔG, T, P ) = 0 .

This condition allows to apply the cyclic chain rule discussed in Sect. 4.5. It leads to

�
∂(ΔG)

∂T

�

P� �� �
−ΔS

�
∂T

∂P

�

ΔG

�
∂P

∂(ΔG)

�

T� �� �
1/ΔV

= −1 , (6.3)



66 CHAPTER 6. PHASE TRANSITIONS

where we have used (6.2).

Vapor pressure. We note that P is the vapor pressure (Dampfdruck) for the gas-liquid
transition. It changes with temperature along the phase transition line as

dP

dT
≡

�
∂P

∂T

�

ΔG=0

, (6.4)

where we have used with ΔG = 0 when the two phases are in equilibrium with each other.
(∂P/∂T )ΔG=0 is hence slope of the transition line in the P − T diagram.

The slope ΔP/ΔT along the solid-liquid interface is positive when the substance contract
upon freezing, the standard situation. Water does however expands upon freezing due to
the Hydrogen bonding between molecules. ΔP/ΔT is in this case negative.

Clausius-Clapeyron relation. We rewrite (6.3) as

�
dP

dT

�

ΔG=0

=
ΔS

ΔV
,

dP

dT
=

ΔQL

TΔV
, (6.5)

where ΔQL = TΔS is the latent heat. All quantities entering the Clausius-Clapeyron
relation (6.5) can be measured. It can be used either as a consistency check or to determine
the latent heat ΔQ by measuring T , ΔV and the slope dP/dT .

Second order transitions. In a second-order phase transition the first derivatives of G
vanish and the Clapeyron equation is replaced by a condition involving second derivatives.

6.3 Ehrenfest classification of phase transitions

For the following discussion, let us denote the two phases in equilibrium at a given co-
existence curve as α and β. Following Ehrenfest we define next the order of the phase
transition.

The order of the lowest derivative of the Gibbs enthalpy G
showing a discontinuity upon crossing the coexistence curve is
the order of a phase transition.
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This definition quantifies the preliminary discussion of Sect. 6.1.

Phase transitions of order n. Explicitly, a phase transition between phases α and β
is of order n if�

∂mGα

∂Tm

�

P

=

�
∂mGβ

∂Tm

�

P

,

�
∂mGα

∂Pm

�

T

=

�
∂mGβ

∂Pm

�

T

for m = 1, 2, . . . , n− 1 and if
�
∂nGα

∂T n

�

P

�=
�
∂nGβ

∂T n

�

P

,

�
∂nGα

∂P n

�

T

�=
�
∂nGβ

∂P n

�

T

In practice, only phase transitions of first- and second-order are of importance. Their
properties are listed below.

1st order:

1) G(T, P ) continuous;

2) S = −
�
∂G

∂T

�

P

and V =

�
∂G

∂P

�

T

discontinuous;

3) ∃ latent heat.

2nd order:

1) G(T, P ) continuous;

2) S(T, P ) and V (T, P ) continuous;

3) the discontinuities in the second order derivative of G(T, P,N) leads to discontinu-
ities of the response functions

CP = T

�
∂S

∂T

�

P

= −T

�
∂2G

∂T 2

�

P

κT = − 1

V

�
∂V

∂P

�

T

= − 1

V

�
∂2G

∂P 2

�

T

α =
1

V

�
∂V

∂T

�
=

1

V

�
∂2G

∂T∂P

�

(susceptibilities) across the transition Here we have used the definition (4.19) for the
heat CP at constant pressure. κT is the isothermal compressibility, α the thermal
expansion coefficient, as defined in Sect. 4.5, and dG = −SdT + V dP + µdN .
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Specific heat jump. Phase transitions of the second order show a finite discontinuity
in the specific heat CP . An example is the transition to a superconducting state a at zero
magnetic field H.

Diverging correlation length at criticality. The Ehrenfest classification is only valid
if the motion of far away particles is not correlated, viz that the correlation length is finite.
The correlation length diverges however at criticality for second order phase transition
i.e. when T → Tc. This leads in turn also to diverging response functions. The magnetic
susceptibility χ of a magnetic system diverges f.i. as

χ =

�
∂M

∂H

�

T

, χ(T ) ∼ 1

(T − Tc)γ
, (6.6)

where γ is the critical exponent. Critical exponents are evaluated using advanced statis-
tical mechanics methods, such as the renormalization group theory. Note, however, that
(6.6) is observed in most cases only very close to the transition.

The entropy for a discontinuous transition. Discounting the exact order of transition
we may classify a phase transition in any case with regard to the continuity of the entropy.
For a discontinuous transition we have:

(i) ΔS �= 0 ; ∃ latent heat;

(ii) CP = −T
�

∂2G
∂T 2

�
P
is finite for T �= T0; no condition exists for T = T0.

The entropy for a continuous transition. In this case we find:

(i) S continuous ⇒ no latent heat;

(ii) ∃ critical point Tc;

(iii) singularities in CV , κT , χT

Density jumps. Consider a fluid system for which the volume V = (∂G/∂P )T shows a
finite discontinuity ΔV at a 1st order phase transition, such as the liquid-gas line below
the critical point. The corresponding densities particle density ρ = N/V is then likewise
discontinuous.
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The density jumpΔρ diminishes along the liquid-gas transition line, when the temperature
is increased, until it vanishing at Tc. The transition becomes continuous at the critical
point T = Tc.

Spontaneous magnetic ordering. The magnetization M of a magnetic compound is in
part induced by an external magnetic field and in part due to the spontaneous ordering,
viz by the alignment of the microscopic moments.

The magnetic work entering the internal energy dU = δQ+δW is δW = HdM , as defined
by (3.15). With the Gibbs enthalpy G(T,H) being the (two-fold) Legendre transform of
the internal energy U(S,M), we then have that

M = −
�
∂G

∂H

�

T

, dG = −SdT −MdH .

The magnetization M is discontinuous when spontaneous ordering is present, i.e. when
the transition is of 1st order. Following the transition line, by increasing the temperature
T → Tc, the jump 2Ms decreases until spontaneous ordering disappears and the phase
transition becomes second-order at T0 = Tc.

6.4 Van der Waals equation of state

The equation of state for an ideal gas,

PV = NkBT, PV = nRT , (6.7)

is only valid for very small densities of particles and, therefore, cannot describe the gas-
liquid phase transition. This phase transition is due to intermolecular interactions. In
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this section, we will derive an equation of state for a gas which includes intermolecular
interaction in a phenomenological way.

Renormalized ideal gas. We consider with

PeffVeff = nRT (6.8)

the ansatz that a gas of interacting molecules still obeys the ideal gas equation of state
(6.7), albeit with yet to determine effective variables, where the effective pressure and
temperature, Peff and Teff , are are functions of the physical pressure P and temperature
T respectively. One can regard (6.8) as a renormalized ideal gas equation of state.

Interaction potential. The interaction between molecules is generically composed of a
repulsive core (due to the Fermi repulsion between the electrons) and an attractive tail
(due to the van der Waals dipole-dipole interaction).

The depth of the attractive U(r) is about 1 eV (changes with the gas species). This
minimum is responsible for the chemical valence and for the crystal structure of solids.

Effective volume. The repulsive core of the intermolecular interaction leads to a volume
exclusion, which can be modeled by considering the individual molecules as hard spheres
of radius r0. The effective Volume entering (6.8) is then

Veff = V − b�N , b� ≈ 1

2

4π(2r0)
3

3
=

16πr30
3

, (6.9)

where N = n(R/kB) is the overall number of molecules. Note that two hard-core particle
of radius r0 cannot come closer than 2r0, with the factor 1/2 in (6.9) correcting for double
counting.

Effective pressure. The interaction between
molecules is pairwise and therefore proportional
to the square of the density N/V . The van der
Waals interaction mediated by induced dipoles
in furthermore attractive. We may hence assume
with

P = Peff − a�
N2

V 2
, a� > 0 (6.10)

that the physical pressure P is smaller than the
effective pressure Peff by an amount propor-
tional to (N/V )2.
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Van der Waals equation. We use

a = N2
aa

�, b = Nab
�, N = Nan,

where NA is Avogadro’s constant, together with the expressions (6.9) and (6.10) for the
effective volume Veff = V − Nb� and respectively for the effective pressure Peff = P +
a�N2/V 2. We then obtain the van der Waals equation

PeffVeff = nRT,

�
P + a

� n

V

�2
�
(V − bn) = nRT . (6.11)

6.4.1 Virial expansion

Inter-particle interactions become irrelevant in the low density limit (N/V ) → 0, for which
the the van der Waals equation 6.11), reduces consequently to the ideal-gas equation of
state PV = nRT . It is hence of interest to evaluate the corrections to the ideal-gas
equation of state by expanding (6.11) for fixed particle number N systematically in 1/V .

Rescaling. We start by rescaling the parameters of the van der Waals equation:

an2 = A, B = bn, R̄ = nR .

We then obtain

P =
R̄T

(V − B)
− A

V 2
,

PV

R̄T
=

�
1− B

V

�−1

− A

R̄TV
. (6.12)

for (6.11),

Virial expansions. With the Taylor expansion

�
1− B

V

�−1

= 1 +
B

V
+

�
B

V

�2

+ . . .

of the first term in (6.12) with respect to 1/V we obtain

PV

R̄T
= 1 +

1

V

�
B − A

R̄T

�
+

�
B

V

�2

+

�
B

V

�3

+ . . . . (6.13)

This expression has the form of a virial expansion:

PV

R̄T
= 1 +

C2

V
+

C3

V 2
+ . . . , C2 = B − A

R̄T
, (6.14)

where Cn is the nth virial coefficient. Measuring C2 and C3 = B2 by observing experimen-
tally the deviations from the ideal gas law on can extract the parameters A and B of the
van der Waals gas. The virial expansion is also important for microscopic calculations.
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6.4.2 Critical point

The the isotherms of the pressure P are uniquely defined via the van der Waals equation
(6.12) by the Volume P . The reverse is however not true. Rewriting (6.11) we obtain

�
PV 2 + an2

�
(V − bn) = nRTV 2 , (6.15)

which shows that V (P ) is given by the roots of a 3rd-order polynomial.

Roots of the Van der Waals equation. For given T and P there exist either three
real roots or one real and two complex roots of (6.15). There exists hence a critical point
(Pc, Vc, Tc) such that (6.15) has

T < Tc P < Pc : three different real roots

T = Tc P = Pc : one three-fold degenerate real root

T > Tc P > Pc : one real root

The van der Waals of equation of the state must be then proportional to

(V − Vc)
3 = 0, V 3 − 3VcV

2 + 3V 2
c V − V 3

c = 0 (6.16)

at the critical point (Pc, Tc, Vc). Comparing (6.15) with (6.16) we find Vc, Pc, and Tc:

3Vc = nb+
nRTc

Pc

3V 2
c = an2

Pc

V 3
c = abn3

Pc









Vc = 3bn

Pc =
a

27b2

RTc =
8a

27b

(6.17)

Comparison with the ideal gas. Combining the roots found in (6.17) we can define
with

Zc =
PcVc

nRTc

=
3

8
= 0.375

a universal parameter measuring the deviation of a real gas from the ideal gas limit
Zc → 1. For water we have Zc = 0.226 and Tc = 324 ◦C. Real gases are generically further
away from the ideal gas limit than the van der Waals theory would predict.
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6.4.3 Maxwell construction

The van der Waals isotherm is a monotonic function of V for T > Tc. For T < Tc, it has
a “kink” with negative compressibility:

κT = − 1

V

�
∂V

∂P

�

T

< 0,

�
∂P

∂V

�

T

> 0 . (6.18)

Negative compressibility, if existent for a real gas, would however lead to a collapse of
the system, with a decreasing volume V and pressure P inducing each other. The system
would not be thermodynamically stable.

Phase separation. The working substance avoids the collapse by separating sponta-
neously into two phases, with each of the two phases being located in a point in the
V − P state phase characterized by a positive compressibility κT . These two phase will
hence have different densities, corresponding respectively to a liquid and to a gas phase.

Coexistence condition. The two phases 1 and 2 are in equilibrium at the vapor pressure
PV , as discussed in Sect. 5.5.2, if the differentitials of the Gibbs enthalpies coincide for
contant N1 +N2 = N and V1 + V2 = V :

dG1(T, PV , N1) = dG2(T, PV , N2),

dF1(T, V1, N1) + PV dV1 = dF2(T, V2, N2) + PV dV2 , (6.19)

where we used that G(T, P,N) = F (T, V,N) + PV . Note that both the temperature T
and the vapor pressure PV are constant in (6.19).

Free energy. The free energy F (T, V,N) defined by (5.12),

F (V, T ) = −
�

isotherm

PdV, P = −
�
∂F

∂V

�

T,N

, (6.20)

can be obtained as the area under the isotherm.

Integrating the coexistence condition
(6.19) one obtains

F1 − F2 = PV (V2 − V1) , (6.21)

which implies that the volumes V1

and V2 are defined by a double tan-
gent construction.

– The free energy is is a weighted
mixture of two phases 1 and 2
at any point along the tangent
between 1 and 2. The resulting
non-uniform state has the same
P and T as the uniform state
3, but a lower free energy.
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Maxwell construction. We note that

F2 − F1 =

� V2

V1

(−P )dV =

� V3

V1

(−P )dV +

� V2

V3

(−P )dV

along any isotherm, according to (6.20). Rewriting the coexistence condition (6.21) as

F2 − F1 = PV (V1 − V3 + V3 − V2)

we then obtain with

PV (V3 − V1)−
� V3

V1

PdV

� �� �
area A

=

� V2

V3

PdV − PV (V2 − V3)

� �� �
area B

(6.22)

the Maxwell construction. Eq. (6.22) determines the vapor pressure PV = P (V3) as the
pressure for which the areas A and B are equal to each other.


