
Chapter 13

Ideal Fermi gas

The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We
shall consider the limit:

kBT � µ, βµ � 1 ,

which defines the degenerate Fermi gas. In this limit, the quantum mechanical nature of
the system becomes especially important, and the system has little to do with the classical
ideal gas.

Since this chapter is devoted to fermions, we shall omit in the following the subscript (−)
that we used for the fermionic statistical quantities in the previous chapter.

13.1 Equation of state

Consider a gas of N non-interacting fermions, e.g., electrons, whose one-particle wave-
functions ϕr(�r) are plane-waves. In this case, a complete set of quantum numbers r is

given, for instance, by the three cartesian components of the wave vector �k and the z spin
projection ms of an electron:

r ≡ (kx, ky, kz,ms) .

Spin-independent Hamiltonians. We will consider only spin independent Hamiltonian
operator of the type

Ĥ =
�

k

�k c
†
kck +

�
d3r V (r) c†rcr ,

where the first and the second terms are respectively the kinetic and th potential energy.
The summation over the states r (whenever it has to be performed) can then be reduced
to the summation over states with different wavevector k (p = h̄k):

�

r

. . . ⇒ (2s+ 1)
�

k

. . . ,

where the summation over the spin quantum number ms = −s,−s + 1, . . . , s has been
taken into account by the prefactor (2s+ 1).

159



160 CHAPTER 13. IDEAL FERMI GAS

Wavefunctions in a box. We as-
sume that the electrons are in a vol-
ume defined by a cube with sides Lx,
Ly, Lz and volume V = LxLyLz. For
the one-particle wavefunction

�r|k� = ψk(r) =
1√
V

eik·r

we use periodicity condition, here
along the x-direction, at the cube’s
walls,

eikxx = eikxx+ikxLx ,

which is then translated into a condition for the allowed k-values:

eikxLx = ei2πnx , kx =
2π

Lx

nx , nx ∈ Z .

Analogously for the y- and for the z direction.

Summation over wavevectors. Each state has in k-space an average volume of

Δk =
(2π)3

LxLyLz

=
(2π)3

V
. (13.1)

For large V → ∞ we can then replace the sum
�

r over all quantum number by

�

r

→ (2s+ 1)
1

Δk

�
d3k = (2s+ 1)

V

(2π)3

�
d3k

= (2s+ 1)
V

h3

�
d3p , (13.2)

where k = p/h̄ has been used.

The factor 1
h
( 1
h3N for N particles) introduced “ad hoc” in clas-

sical statistical physics in Sect. 8.2 appears naturally in quan-
tum statistical physics. It is a direct consequence of the fact
that particles correspond to wavefunctions.

13.1.1 Grand canonical potential

We consider now the expression (12.36) for the fermionic grand canonical potential Ω(T, V, µ)
that we derived in Sect. 12.5,

Ω(T, V, µ) = −kBT
�

r

ln
�
1 + e−β(�r−µ)

�
.
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Using the substitution (13.2) and
�
d3k = 4π

�
k2dk we write the grand canonical potential

as

− β Ω(T, V, µ) = (2s+ 1)
V

(2π)3
4π

� ∞

0

dk k2 ln
�
1 + z e−βh̄2k2/(2m)

�
, (13.3)

where we used the usual expressions

z = eβµ, �r → �k =
h̄2k2

2m

for the fugacity z and for the one-particle dispersion and used an explicit expression for
the one-particle energies for free electrons �k.

Dimensionless variables. Expression (13.3) is transformed further by introducing with

x = h̄k

�
β

2m
, k2dk =

�
2m

βh̄2

�3/2

x2dx

a dimensionless variable x. One obtains

−β Ω(T, V, µ) = (2s+ 1)
4V√
π

�
m

2πβh̄2

�3/2 � ∞

0

x2dx ln
�
1 + z e−x2

�
.

De Broglie wavelengths. By making use of the definition of the thermal de Broglie
wavelength λ,

λ =

�
2πβh̄2

m
,

we then get

− β Ω(T, V, µ) =
(2s+ 1)

λ3

4V√
π

� ∞

0

dx x2 ln
�
1 + z e−x2

�
. (13.4)

Term by term integration. We use the Taylor expansion of the logarithm,

ln(1 + y) =
∞�

n=1

(−1)n+1y
n

n
,

in order to evaluate the integral

� ∞

0

x2 dx ln
�
1 + z e−x2

�
=

∞�

n=1

(−1)n+1 z
n

n

� ∞

0

dx x2 e−nx2

=
∞�

n=1

(−1)n+1 z
n

n

�
− d

dn

� ∞

0

dx e−nx2

�

=
∞�

n=1

(−1)n+1 z
n

n

�
− d

dn

1

2

√
π

1√
n

�
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term by term. The result is

� ∞

0

x2 dx ln
�
1 + z e−x2

�
=

√
π

4

∞�

n=1

(−1)n+1 zn

n5/2
.

Grand canonical potential. Defining

f5/2(z) =
∞�

n=1

(−1)n+1 zn

n5/2
=

4√
π

� ∞

0

dx x2 ln
�
1 + z e−x2

�
(13.5)

we obtain

β Ω(T, V, µ) = −2s+ 1

λ3
V f5/2(z) (13.6)

for the grand canonical potential for an ideal Fermi gas.

Pressure. Our result (13.6) reduces with Ω = −PV to

P

kBT
=

2s+ 1

λ3
f5/2(z) , λ =

�
2πh̄2

kBTm
, z = eµ/(kBT ) , (13.7)

which yields the pressure P = P (T, µ).

Density. With

Ω = −kBT lnZ = −PV
PV

kBT
= lnZ

we find, compare Eq. (10.14),

�N̂� = z

�
∂

∂z
lnZ

�

T,V

= V z

�
∂

∂z

P

kBT

�

T,V

(13.8)

for the number of particles N . The density n(T, µ) = �N̂�/V is then given by

n =
�N̂�
V

=
2s+ 1

λ3(T )
f3/2(z) . (13.9)

where we have defined

f3/2(z) = z
d

dz
f5/2(z) =

∞�

n=1

(−1)n+1 zn

n3/2
(13.10)

Thermal equation of state. As a matter of principle one could solve (13.9) for the
fugacity z = z(T, n), which could then be used to substitute the fugacity in (13.7) for T
and n, yielding such the thermal equation of state. This procedure can however not be
performed in closed form.
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Rewriting the particle density. The function f3/2(z) entering the expression (13.9)
for the particle density may be cast into a different form. Helping is here the result (13.7)
for P (T, µ):

P

kBT
=

2s+ 1

λ3
f5/2(z), f5/2(z) =

λ3

2s+ 1

lnZ
V

,
PV

kBT
= lnZ ,

which leads to

f3/2(z) = z
d

dz
f5/2(z) = z

d

dz

�
λ3

2s+ 1

lnZ
V

�

With
d

dz
=

d

dβ

�
dβ

dz

�
=

1

µz

d

dβ
, β =

ln z

µ
(13.11)

and λ =
�

(2πβh̄2)/m we then find

µV (2s+ 1)f3/2(z) =
d

dβ

�
λ3 lnZ

�
=

3λ3

2β
lnZ + λ3 d

dβ
lnZ .

For the particle density (13.9) we finally obtain

n =
2s+ 1

λ3(T )
f3/2(z), µnV =

3

2
PV +

d

dβ
lnZ , nV = N , (13.12)

where we have used lnZ/β = PV .

Caloric equation of state. The expression for µnV = µN in (13.12) leads with

U = − d

dβ
lnZ + µ�N̂�, Z =

�

r

e−β(�r−µ) .

to the caloric equation of state

U =
3

2
PV . (13.13)

The equation U = 3PV/2 is also valid for the classical ideal gas, as discussed in Sect. 8.2,
but it is not anymore valid for relativistic fermions.

13.2 Classical limit

Starting from the general formulas (13.7) for P (T, µ) and (13.9) for n(T, µ), we first
investigate the classical limit (i.e. the non-degenerate Fermi gas), which corresponds, as
discussed in Chap. 11, to

nλ3 � 1 , z = eβµ � 1 .
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Under this condition, the Fermi-Dirac distribution function reduces to the Maxwell-
Boltzmann distribution function:

�n̂r� =
1

z−1eβ�r + 1
≈ ze−β�r .

Expansion in the fugacity. For a small fugacity z we may retain in the series expansion
for f5/2(z) and f3/2(z), compare (13.5) and (13.10), the first terms:

f5/2(z) ≈ z − z2

25/2
βPλ3 ≈ (2s+ 1)z

�
1− z

25/2

�

f3/2(z) ≈ z − z2

23/2
nλ3 ≈ (2s+ 1)z

�
1− z

23/2

� (13.14)

where we have used (13.7) and (13.9) respectively.

High-temperature limit. The expression for nλ3 in (13.14) reduces in lowest approxi-
mation to

z(0) ≈ nλ3

2s+ 1
, nλ3 � 1 . (13.15)

The number of particles nλ3 in the volume spanned by the Broglie wavelength λ ∼ 1/
√
T

is hence small are small. This is the case at elevated temperatures.

Fugacity expansion. Expanding in the fugacity z = exp(βµ)

z ≈ nλ3

2s+ 1� �� �
z(0)

1

1− z2−3/2
≈ z(0)

1− z(0)2−3/2
, z(1) ≈ z(0)

�
1 + z(0)2−3/2

�
,

where 1/(1 − x) ≈ 1 + x for x � 1 was used. The equation of state (13.14) for the
pressure, namely βPλ3 ≈ (2s+ 1)(z − z22−5/2), is then

βPλ3 ≈ (2s+ 1)
�
z(0)

�
1 + z(0)2−3/2

�
− 2−5/2(z(0))2

�

= nλ3

�
1 + 2−5/2 nλ3

2s+ 1

�
,

when
1

√
2
3 − 1

√
2
5 =

2
√
2
5 − 1

√
2
5 =

1
√
2
5

is used. Altogether we then find

PV = �N̂�kBT
�
1 +

nλ3

4
√
2(2s+ 1)

�
. (13.16)

In this expression, the first term corresponds to the equation of state for the classical ideal
gas, while the second term is the first quantum mechanical correction.
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13.3 Degenerated Fermi gas

In the low temperature limit, T → 0, the Fermi distribution function behaves like a step
function:

nk =
1

eβ(�k−µ) + 1

T → 0−−−→
�

0 if �k > µ
1 if �k < µ

i.e.,

lim
T→0

nk = θ(µ− �k) .

Fermi energy. This means that all the states with energy below the Fermi energy �F ,

�F = µ(n, T = 0) ,

are occupied and all those above are empty.

Fermi sphere. In momentum space the occu-
pied states lie within the Fermi sphere of radius
pF . The system is then deep in the quantum
regime.

The Fermi energy is then be determined by the
condition that the the Fermi sphere contains the
correct number of states:

N =
�

states r
with �r < �F

1 ,

which can be written for the case of free
fermions, and with (13.1), d3k/Δk3 =
[V/(2π)3]d3k, as

N =
(2s+ 1)V

(2π)3

�

|k|<|kF |
d3k =

(2s+ 1)V

(2π)3
4

3
πk3

F . (13.17)

Here, kF = pF
h̄

is the Fermi wave number. We have

n =
N

V
=

2s+ 1

6π2
k3
F , kF =

�
6π2n

2s+ 1

�1/3

.

The Fermi energy is then

�F =
h̄2k2

F

2m
, �F =

h̄2

2m

�
6π2n

2s+ 1

�2/3

.
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13.3.1 Ground state properties

At T = 0, the system is in its ground state, with the internal energy U0 given by

U0 =
�

|�k|<kF

�k =
(2s+ 1)V

(2π)3

� kF

0

dk (4πk2)
h̄2k2

2m

=
(2s+ 1)V

(2π)3

�
h̄2

2m

�
4π

5
k5
F .

Using the expression for total particle number N ,

N =
V (2s+ 1)

(2π)3
4π

3
k3
F ,

for k5
F = k3

Fk
2
F , one obtains

U0

N
=

3

5

h̄2k2
F

2m
,

U0

N
=

3

5
�F (independent of s) .

for internal energy per particle at absolute zero.

Pressure. Since PV = 2U/3, we obtain now an expression for the zero-point pressure
P0:

P0 ≡ PT=0 =
2

5
n�F .

– The zero-point pressure arises from the fact that fermionic particles move even at
absolute zero. This is because the zero-momentum state can hold only one particle
of a given spin state.

– Taking a Fermi energy of typically �F ≈ 10 eV = 16 ·10−19 J and an electron density
of n ≈ 1022 · 1003 m−3 we find a zero-point pressure of

P0 ≈ 3.2 · 103 · 106 J

m3
≈ 3.2 · 104 bar,

where we have used that 1P = 1 J/m3 = 10−5 bar.

13.3.2 Fermi temperature

At low but a finite temperature, the Fermi distribution function �n̂r� = n(�) for the
occupation number smooths out around the Fermi energy.
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Such an evolution of n(�) with increasing temperature is due to the excitation of fermions
within a layer beneath the Fermi surface to a layer above. “Holes” are left beneath the
Fermi surface.

Fermi temperature. We define the Fermi temperature TF as

�F = kBTF .

– T � TF

For low temperatures T � TF , the Fermi distribution deviates from that at T = 0
mainly in the neighborhood of �F in a layer of thickness kBT . Particles at energies
of order kBT below the Fermi energy are excited to energies of order kBT above the
Fermi energy.

– T � TF

For T � TF , the Fermi distribution approaches the Maxwell-Boltzmann distribu-
tion. The quantum nature of the constituent particles becomes irrelevant.

Frozen vs. active electrons. The typical magnitude,

�F ≈ 2 eV, TF ≈ 2× 104 K ,

of the Fermi temperature in metals implies that room temperature electrons are frozen
mostly below the Fermi level. Only a fraction of the order of

T

TF

≈ 0.015

of the electrons contributes to thermodynamic properties involving excited states.

Particles and holes. We can define that
the absence of a fermion of energy �, mo-
mentum �p and charge e corresponds to the
presence of a hole with

energy = −�
momentum = −�p
charge = −e

The concept of a hole is useful only at low
temperatures T � TF , when there are few holes below the Fermi surface. The Fermi
surface “disappears” when T � TF , with the system approaching the Maxwell-Boltzmann
distribution function.

Specific heat. Since the average excitation energy per particle is kBT , the internal
energy of the system is of order

U ≈ U0 +

�
T

TF

�
NkBT , (13.18)
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where U0 is the ground-state energy. The specific heat capacity CV is then of the order of

CV

NkB
∼ T

TF

, CV =

�
∂U

∂T

�

V

. (13.19)

The electronic contribution to the specific heat vanishes linearly with T → 0. The room-
temperature contribution of phonons (lattice vibrations) to CV is therefore in general
dominant.

13.4 Low temperature expansion

In this section we will derive the scaling relations (13.18) and (13.19) together with the
respective prefactors.

13.4.1 Density of states

We will work from now on with density of state per volume D(E) = Ω(E)/V , which is
defined as the derivative of the integrated phase space per volume, φ(E) = Φ(E)/V :

D(E) =
∂φ(E)

∂E
, φ(E) =

1

V

�

�k≤E

d3k

Δk3
, Δk3 =

(2π)3

V
.

The spin degeneracy factor 2s+ 1 will be added further below.

Fermi sphere. With the phase space being isotropic we may write the volume of the
Fermi sphere as

�
VΔk3

�
φ(E) =

4

3
πk3

E =
4π

3

�
2mE

h̄2

�3/2

, E =
h̄2k2

E

2m
.

Introducing the spin degeneracy factor 2s+ 1 we then obtain

D(E) =

�
A
√
E if E ≥ 0,

0 otherwise,

A =
2s+ 1

(2π)2

�
2m

h̄2

�3/2

(13.20)

Since we did not use any special properties of a fermionic system, this expression is also
valid for bosons. For both types of systems, D(E) shows a

√
E dependence.

Energy and particle density. The energy density U/V is given by

U(T, µ)

V
=

� +∞

−∞
dE E n(E)D(E), n(E) =

1

eβ(E−µ) + 1
, (13.21)
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where n(E) is the Fermi distribution as a function of the energy. The analogous expression
for the particle density is

n(T, µ) =
�N̂�
V

=

� +∞

−∞
dE n(E)D(E) . (13.22)

For a bosonic system one substitutes the Boson distribution function 1/(eβ(E−µ) − 1) for
n(E).

13.4.2 Sommerfeld expansion

We are interested in the thermodynamic properties of a fermionic system at small but
finite temperature, viz at a low temperature expansion of expectation values like (13.21)
and (13.22).

Sommerfeld expansion. We denote with H(E) a function depending exclusively on
the one-particle energy E. We will show that

�H� =

� ∞

−∞
dEH(E)n(E) ≈

� µ

−∞
dEH(E) +

π2

6
(kBT )

2H �(µ) (13.23)

holds terms or order T 4 or higher.

– The first term on the r.h.s. of (13.23) survives when T → 0 and n(E) → θ(µ− E).
It represents the ground-state expectation value.

– The second term results from expanding both H(E) and n(E) around the chemical
potential µ.

Partial integration. We start the derivation of the Sommerfeld expansion with the
definition

K(E) =

� E

−∞
dE �H(E �), H(E) =

dK(E)

dE
,

which allows as to perform the partial integration

�H� =

� ∞

−∞
dE

dK(E)

dE
n(E) =

� ∞

−∞
dE K(E)

�
−dn(E)

dE

�
. (13.24)

– For the integration we have used limE→∞ n(E) = 0, namely that the probability to
find particles at elevated energies E falls of exponentially.

– We have also assumed that limE→−∞ H(E) = 0.

Taylor expansion. Substituting the first two terms of the Taylor expansion

K(E) = K(µ) + (E − µ)K �(µ) +
(E − µ)2

2
K ��(µ) +O((E − µ)3)
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of K(E) around the chemical potential µ into (13.24) leads to

�H� ≈
� ∞

−∞
dE

�
K(µ) + (E − µ)K �(µ) +

(E − µ)2

2
K ��(µ)

��
−dn(E)

dE

�
. (13.25)

Ground state contribution. The first term in (13.25) is

K(µ)

� ∞

−∞
dE

�
−dn(E)

dE

�
= K(µ)

�
n(−∞)− n(∞)

�
=

� µ

−∞
dEH(E) ,

viz the T = 0 value of �H�.
Symmetry cancellation. The second term in (13.25) vanishes because

− dn

dE
=

βeβ(E−µ)

[eβ(E−µ) + 1]
2 =

βe−β(E−µ)

[1 + e−β(E−µ)]
2 , n(E) =

1

eβ(E−µ) + 1
,

is symmetric in E − µ.

Finite temperature correction. The third term in (13.25) yields the first non-trivial
correction

K ��(µ)

� ∞

−∞
dE

(E − µ)2

2

�
−dn(E)

dE

�
=

π2

6
(kBT )

2H �(µ) ,

where the scaling with (kBT )
2 = 1/β2 follows from a transformation to dimensionless

variables y = β(E − µ). The factor π2/6 results form the final dimensionless integral.

This concludes our derivation of the Sommerfeld expansion (13.23).

13.4.3 Internal energy at low temperatures

We start applying the Sommerfeld expansion (13.23) to the particle density (13.22):

n(T, µ) =

� +∞

−∞
dE D(E)n(E) (13.26)

=

� µ

−∞
dE D(E) +

π2

6
(kBT )

2D�(µ)

=

� �F

−∞
dE D(E) +

�� µ

�F

dE D(E)

� �� �
≈ (µ−�F )D(�F )

+
π2

6
(kBT )

2D�(µ)

�
,

where we have taken into account that µ = µ(T ) may be different from the Fermi energy
�F = limT→0 µ(T ). We have also assumed that the density of states D(E) is essentially
constant around the Fermi energy.

Constant particle density. The terms inside the bracket in (13.26) need to cancel if
the particle density n is to be constant. The chemical potential µ varies hence as

µ = �F − π2

6
(kBT )

2D
�(�F )

D(�F )
, µ = �F − π2

12

(kBT )
2

�F
(13.27)

as a function of temperature.
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– We have approximated D�(µ) in (13.27) consistently by D�(�F ).

– The scaling D(E) ∼
√
E, as given by (13.20), leads to D�/D = 1/(2E).

Internal energy. The energy density (13.21) evaluated with the Sommerfeld expansion
is

u = U/V =

� +∞

−∞
dE E n(E)D(E)

= u0 +

� µ

�F

dE E D(E) +
π2

6
(kBT )

2 d

dE

�
ED(E)

����
E=µ� �� �

3
2
D(�F )

,

where u0 =
� �0
−∞ ED(E)dE is the ground state energy. The substitution µ → �F performed

for the argument of last term, for which we used D(E) ∼
√
E, is correct to order T 2. The

second term is
� µ

�F

dE E D(E) ≈ (µ− �F )�FD(�F ) = −π2(kBT )
2

12
D(�F ) .

when D(E) ∼
√
E. One finds hence with 3/12− 1/12 = 1/6 that

U

V
= u0 +

π2(kBT )
2

6
D(�F ) u− u0 ∝ (kBT )

2D0 . (13.28)

The internal energy increases quadratically with the temperature, being at the same time
proprotional to the density of states D0 = D(�0) at the Fermi level.

Specific heat. Assuming a constant density of states D(E) ≈ D(�F ) close to the Fermi
energy �F we find

cV =
CV

V
=

1

V

∂U

∂T
, cV ≈ π2

3

�
k2
BT

�
D(�F ) (13.29)

for the intensive specific heat. A trademark of a fermionic gas is that cV is linear in the
temperature.

The heat capacity per volume saturates however
for T → ∞, where it becomes identical with
the ideal gas value CV /V = 3nkB/2 derived in
Sec. 3.5.1.
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