Exercise Sheet #4

Oren Neumann <neumann@itp.uni-frankfurt.de> Daniel Nevermann <nevermann@itp.uni-frankfurt.de>

Problem 1 (*Time-Delayed Differential Equation*, 10pts)

Consider a car following a truck. The driver of the car should accelerate or break depending on the velocity of the truck that is in front. As the driver has a certain non-zero reaction time T > 0, the acceleration of the car is given by

$$\dot{v}(t+T) = \alpha \left(v_{\text{truck}}(t) - v(t) \right) ,$$

where v(t) is the velocity of the car, v_{truck} is the velocity of the truck and $\alpha > 0$ is an acceleration parameter of the car.

Assume that the truck has a constant speed of $v(t) \equiv v_0$. Analyze the solution for the velocity $\dot{x}(t)$ for this case. Study the stability of this solution as function of the parameters α and T.

Problem 2 (Discrete SIR Model, 10pts)

In the lecture, the discrete SIR model was given as

$$x(t+1) = ax(t) \left[1 - \sum_{k=0}^{\tau_{\mathrm{R}}} x(t-k) \right] .$$

Using $\tau_{\rm R} = 0$ gives you the logistic map, which undergoes a Hopf bifurcation at a = 3. We would like to find the value of a for this critical point for different values of $\tau_{\rm R}$. The following hints should guide you to a solution that expresses the critical value for a (that is, the value where the fixed point loses its stability) as a function of $\tau_{\rm R}$.

- a) Find an expression for the non-trivial fixed point of the system for given a and $\tau_{\rm R}$.
- b) Transform the system into a coordinate frame that puts the fixed point to zero.
- c) Use the exponential "ansatz" $x(t) = x_0 b^t$, keeping in mind that generally, $b \in \mathbb{C}$.
- d) State the proper condition on b corresponding to the transition point between a stable/unstable fixed point.
- e) You should get a set of equations, where the following identities are useful to proceed: $\sum_{k=0}^{n} \sin(xk) = \sin(nx/2) \sin((n+1)x/2) / \sin(x/2),$ $\sum_{k=0}^{n} \cos(xk) = \cos(nx/2) \sin((n+1)x/2) / \sin(x/2).$
- f) You should eventually arrive at an explicit expression for the critical parameter $a_{\rm c}(\tau_{\rm R})$ as a function of $\tau_{\rm R}$. It is also ok to use algebraic math tools like wolframalpha.com to lead you to the solution. Sketch this function. What is the effect of larger $\tau_{\rm R}$?