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Problem 1 (Landau-Ginzburg Theory, 7pts)

Consider a system with the following free energy density:
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where α, γ, λ and T0 are positive parameters.

a) Show that the system has a first order phase transition at the critical temperature
T 2
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b) Show that the second minimum at ϕ > 0 exists only when T 2 ≤ 8T 2
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Problem 2 (Probability Generating Functions, 7pts)

Generating functions can be very useful for sums in processes with multiple random variables.
To show this we will look at a dice game, where a player moves X steps on a board each
turn according to the number rolled on the dice.

a) Write down the generating function GX(z) of the probability to get the number X on
a six-sided dice throw.

b) During a game the player advances each turn according to a dice throw. The number
of turns is N and the total sum of steps taken during the game is SN . Derive the
generating function GSN

(z) of SN as a function of GX(z).

c) Now assume N is a random variable with distribution pN , which is generated by the
function GN(z). Prove that GSN

(z) is now given by:

GSN
(z) = GN(GX(z))

Hint: Use the law of total expectation, E(x) = Ey(E(x|y)).

d) Assuming that N is a poissonian variable with probability pN = e−λ λN

N !
, calculate the

average number of steps in a game ⟨SN⟩ using your previous result.

Problem 3 (Galton Watson Process, 6pts)

You have seen in the lecture notes (Eq. 5.32) the stationary condition for extinction of a
family name in the Galton-Watson process:

q = G(n)(0) = G0(G
(n−1)(0)) = G0(q)

Where limn→∞G(n)(0) = q is the extinction probability at a late generation n. Use this
condition to prove that the extinction probability is 1 when the average reproduction rate
is smaller than 1.

Hint: It may help to look at the function F (x)=̇G0(x)− x.
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