
Chapter 5

Cellular Automata and Self-Organized
Criticality

The notion of “phase transition” is a key concept in the theory of complex
systems. Right at the point of a continuous transition between one phase
and another, systems behave in a very special fashion; they are said to be
“critical”. Criticality is reached normally when tuning an external parameter,
such as the temperature for physical phase transitions.

The central question discussed in this chapter is whether “self-organized
criticality” is possible in complex adaptive systems, i.e. whether a system can
autonomously adapt its own parameters in a way to move towards criticality
on its own, as a consequence of a suitable adaptive dynamics. Possible self-
organized states in nature involve life as it is, where one speaks of “life at the
edge of chaos”, and the neural dynamics of the human brain.

We will introduce in this chapter the Landau theory of phase transitions
and then discuss cellular automata, an important and popular class of stan-
dardized dynamical systems. Cellular automata allow a very intuitive con-
struction of models, such as the forest fire mode, the game of life and the
sandpile model, which exhibits self-organized criticality. The chapter then
concludes with a discussion of whether self-organized criticality occurs in the
most adaptive dynamical system of all, namely in the context of long-term
evolution.

5.1 The Landau Theory of Phase Transitions

One may describe the physics of thermodynamic phases either microscopi-
cally with the tools of statistical physics, or by considering the general prop-
erties close to a phase transition. The Landau theory of phase transitions
does the latter, providing a general framework valid irrespectively of the
microscopic details of the material.
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Fig. 5.1 Phase diagram of a magnet in an external magnetic field h. Left : The order

parameter M (magnetization) as a function of temperature across the phase transition.
The arrows illustrate typical arrangements of the local moments. In the ordered phase

there is a net magnetic moment (magnetization). For h = 0/h > 0 the transition disorder–

order is a sharp transition/crossover. Right : The T − h phase diagram. A sharp transition
occurs only for vanishing external field h

Second-Order Phase Transitions Phase transitions occur in many physi-
cal systems when the number of components diverges, viz “macroscopic” sys-
tems. Every phase has characteristic properties. The key property, which dis-
tinguishes one phase from another, is denoted the “order parameter”. Math-
ematically one can classify the type of ordering according to the symmetry
of the ordering breaks.

The Order Parameter. In a continuous or “second-order” phase transition the high-
temperature phase has a higher symmetry than the low-temperature phase and the

degree of symmetry breaking can be characterized by an order parameter ϕ.

Note that all matter is disordered at high enough temperatures and
ordered phases occur at low to moderate temperatures in physical systems.

Ferromagnetism in Iron The classical example for a phase transition is
that of a magnet like iron. Above the Curie temperature of Tc = 1, 043K
the elementary magnets are disordered, see Fig. 5.1 for an illustration. They
fluctuate strongly and point in random directions. The net magnetic moment
vanishes. Below the Curie temperature the moments point on the average to
a certain direction creating such a macroscopic magnetic field. Since mag-
netic fields are generated by circulating currents and since an electric current
depends on time, one speaks of a breaking of “time-reversal symmetry” in
the magnetic state of a ferromagnet like iron. Some further examples of order
parameters characterizing phase transitions in physical systems are listed in
Table 5.1.

Free Energy A statistical mechanical system takes the configuration with
the lowest energy at zero temperature. A physical system at finite tempera-
tures T > 0 does not minimize its energy but a quantity called the free energy
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F, which differs from the energy by a term proportional to the entropy and
to the temperature.1

Close to the transition temperature Tc the order parameter ϕ is small and
one assumes within the Landau–Ginsburg model that the free energy density
f = F/V ,

f = f(T, ϕ, h) ,

can be expanded for a small order parameter ϕ and a small external field
h:

f(T, ϕ, h) = f0(T, h)− hϕ+ aϕ2 + b ϕ4 + . . . (5.1)

where the parameters a = a(T ) and b = b(T ) are functions of the tempera-
ture T and of an external field h, e.g. a magnetic field for the case of magnetic
systems. Note the linear coupling of the external field h to the order param-
eter in lowest order and that b > 0 (stability for large ϕ), compare Fig. 5.2.

Spontaneous Symmetry Breaking All odd terms ∼ ϕ2n+1 vanish in the
expansion (5.1). The reason is simple. The expression (5.1) is valid for all tem-
peratures close to Tc and the disordered high-temperature state is invariant
under the symmetry operation

f(T, ϕ, h) = f(T,−ϕ,−h), ϕ ↔ −ϕ, h ↔ −h .

This relation must therefore hold also for the exact Landau–Ginsburg func-
tional. When the temperature is lowered the order parameter ϕ will acquire
a finite expectation value. One speaks of a “spontaneous” breaking of the
symmetry inherent to the system.

The Variational Approach The Landau–Ginsburg functional (5.1)
expresses the value that the free-energy would have for all possible val-
ues of ϕ. The true physical state, which one calls the “thermodynamical
stable state”, is obtained by finding the minimal f(T, ϕ, h) for all possible

1 Details can be found in any book on thermodynamics and phase transitions, e.g.

Callen (1985), they are, however, not necessary for an understanding of the following
discussions.

Table 5.1 Examples of important types of phase transitions in physical systems. When the

transition is continuous/discontinuous one speaks of a second-/first-order phase transition.
Note that most order parameters are non-intuitive. The superconducting state, notable
for its ability to carry electrical current without dispersion, breaks what one calls the

U(1)-gauge invariance of the normal (non-superconducting) metallic state

Transition Type Order parameter ϕ

Superconductivity Second-order U(1)-gauge

Magnetism Mostly second-order Magnetization
Ferroelectricum Mostly second-order Polarization

Bose–Einstein Second-order Amplitude of k = 0 state
Liquid–gas First-order Density
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Fig. 5.2 Left : The functional dependence of the Landau–Ginzburg free energy f(T, ϕ, h)−
f0(T, h) = −hϕ+ aϕ2 + b ϕ4, with a = (t− 1)/2. Plotted is the free energy for a < 0 and
h > 0 (dashed line) and h = 0 (full line) and for a > 0 (dotted line). Right : Graphical

solution of Eq. (5.9) for a non-vanishing field h ̸= 0; ϕ0 is the order parameter in the

disordered phase (t > 1, dotted line), ϕ1, ϕ3 the stable solutions in the order phase (t < 1,
dashed line) and ϕ2 the unstable solution, compare the left-hand side illustration

values of ϕ:

δf =
(
−h+ 2 aϕ+ 4 b ϕ3

)
δϕ = 0,

0 = −h+ 2 aϕ+ 4 b ϕ3 , (5.2)

where δf and δϕ denote small variations of the free energy and of the order
parameter, respectively. This solution corresponds to a minimum in the free
energy if

δ2f > 0, δ2f =
(
2 a+ 12 b ϕ2

)
(δϕ)2 . (5.3)

One also says that the solution is “locally stable”, since any change in ϕ from
its optimal value would raise the free energy.

Solutions for h = 0 We consider first the case with no external field, h = 0.
The solution of Eq. (5.2) is then

ϕ =

{
0 for a > 0

±
√
−a/(2 b) for a < 0

. (5.4)

The trivial solution ϕ = 0 is stable,(
δ2f

)
ϕ=0

= 2 a (δϕ)2 , (5.5)

if a > 0. The nontrivial solutions ϕ = ±
√

−a/(2 b) of Eq. (5.4) are stable,(
δ2f

)
ϕ̸=0

= −4 a (δϕ)2 , (5.6)

for a< 0. Graphically this is immediately evident, see Fig. 5.2. For a > 0
there is a single global minimum at ϕ = 0, for a < 0 we have two symmetric
minima.
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Continuous Phase Transition We therefore find that the Ginsburg–
Landau functional (5.1) describes continuous phase transitions when a =
a(T ) changes sign at the critical temperature Tc. Expanding a(T ) for small
T − Tc we have

a(T ) ∼ T − Tc, a = a0 (t− 1), t = T/Tc, a0 > 0 ,

where we have used a(Tc) = 0. For T < Tc (ordered phase) the solution
Eq. (5.4) then takes the form

ϕ = ±
√

a0
2 b

(1− t), t < 1, T < Tc . (5.7)

Simplification by Rescaling We can always rescale the order parameter
ϕ, the external field h and the free energy density f such that a0 = 1/2 and
b = 1/4. We then have

a =
t− 1

2
, f(T, ϕ, h)− f0(T, h) = −hϕ+

t− 1

2
ϕ2 +

1

4
ϕ4

and

ϕ = ±
√
1− t, t = T/Tc (5.8)

for the non-trivial solution Eq. (5.7).

Solutions for h ̸= 0 The solutions of Eq. (5.2) are determined in rescaled
form by

h = (t− 1)ϕ+ ϕ3 ≡ P (ϕ) , (5.9)

see Fig. 5.2. In general one finds three solutions ϕ1 < ϕ2 < ϕ3. One can show
(see the Exercises) that the intermediate solution is always locally instable
and that ϕ3 (ϕ1) is globally stable for h > 0 (h < 0).

First-Order Phase Transition We note, see Fig. 5.2, that the solution
ϕ3 for h > 0 remains locally stable when we vary the external field slowly
(adiabatically)

(h > 0) → (h = 0) → (h < 0)

in the ordered state T < Tc. At a certain critical field, see Fig. 5.3, the order
parameter changes sign abruptly, jumping from the branch corresponding to
ϕ3 > 0 to the branch ϕ1 < 0. One speaks of hysteresis, a phenomenon typical
for first-order phase transitions.

Susceptibility When the system is disordered and approaches the phase
transition from above, it has an increased sensitivity towards ordering under
the influence of an external field h.

Susceptibility. The susceptibility χ of a system denotes its response to an external
field:
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Fig. 5.3 Left : Discontinuous phase transition and hysteresis in the Landau model. Plotted

is the solution ϕ = ϕ(h) of h = (t− 1)ϕ+ ϕ3 in the ordered phase (t < 1) when changing
the field h. Right : The susceptibility χ = ∂ϕ/∂h for h = 0 (solid line) and h > 0 (dotted

line). The susceptibility divergence in the absence of an external field (h = 0), compare

Eq. (5.11)

χ =

(
∂ϕ

∂h

)
T

, (5.10)

where the subscript T indicates that the temperature is kept constant. The suscep-
tibility measures the relative amount of the induced order ϕ = ϕ(h).

Diverging Response Taking the derivative with respect to the external
field h in Eq. (5.9), h = (t − 1)ϕ + ϕ3, we find for the disordered phase
T > Tc,

1 =
[
(t− 1) + 3ϕ2

] ∂ϕ

∂h
, χ(T )

∣∣∣
h→0

=
1

t− 1
=

Tc

T − Tc
, (5.11)

since ϕ(h = 0) = 0 for T > Tc. The susceptibility diverges at the phase
transition for h = 0, see Fig. 5.3. This divergence is a typical precursor of
ordering for a second-order phase transition. Exactly at Tc, viz at criticality,
the response of the system is, strictly speaking, infinite.

A non-vanishing external field h ̸= 0 induces a finite amount of order-
ing ϕ ̸= 0 at all temperatures and the phase transition is masked, compare
Fig. 5.1. In this case, the susceptibility is a smooth function of the tempera-
ture, see Eq. (5.11) and Fig. 5.3.

5.2 Criticality in Dynamical Systems

Length Scales Any physical or complex system normally has well defined
time and space scales. As an example we take a look at the Schrödinger
equation for the hydrogen atom,
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iℏ
∂Ψ(t, r)

∂t
= H Ψ(t, r), H = −ℏ2∆

2m
− Ze2

|r|
,

where

∆ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

is the Laplace operator. We do not need to know the physical significance
of the parameters to realize that we can rewrite the differential operator H,
called the “Hamilton” operator, as

H = −ER

(
a20∆+

2a0
|r|

)
, ER =

mZ2e4

2ℏ2
, a0 =

ℏ2

mZe2
.

The length scale a0 = 0.53 Å/Z is called the “Bohr radius” and the energy
scale ER = 13.6 eV the “Rydberg energy”, which corresponds to a frequency
scale of ER/ℏ = 3.39 · 1015 Hz. The energy scale ER determines the ground
state energy and the characteristic excitation energies. The length scale a0
determines the mean radius of the ground state wavefunction and all other
radius-dependent properties.

Similar length scales can be defined for essentially all dynamical systems
defined by a set of differential equations. The damped harmonic oscillator
and the diffusion equations, e.g. are given by

ẍ(t)− γẋ(t) + ω2x(t) = 0,
∂ρ(t, r)

∂t
= D∆ρ(t, r) . (5.12)

The parameters 1/γ and 1/ω, respectively, determine the time scales for
relaxation and oscillation, and D is the diffusion constant.

Correlation Function A suitable quantity to measure and discuss the
properties of the solutions of dynamical systems like the ones defined by
Eq. (5.12) is the equal-time correlation function S(r), which is the expecta-
tion value

S(r) = ⟨ ρ(t0,x) ρ(t0,y) ⟩, r = |x− y| . (5.13)

Here ρ(t0,x) denotes the particle density, for the case of the diffusion equation
or when considering a statistical mechanical system of interacting particles.
The exact expression for ρ(t0,x) in general depends on the type of dynamical
system considered; for the Schrödinger equation ρ(t,x) = Ψ∗(t,x)Ψ(t,x), i.e.
the probability to find the particle at time t at the point x.

The equal-time correlation function then measures the probability to find
a particle at position x when there is one at y. S(r) is directly measur-
able in scattering experiments and therefore a key quantity for the char-
acterization of a physical system. Often one is interested in the deviation
of the correlation from the average behaviour. In this case one considers
⟨ ρ(x) ρ(y) ⟩ − ⟨ ρ(x) ⟩⟨ ρ(y) ⟩ for the correlation function S(r).
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Correlation Length Of interest is the behavior of the equal-time corre-
lation function S(r) for large distances r → ∞. In general we have two
possibilities:

S(r)
∣∣∣
r→∞

∼
{

e−r/ξ non-critical
1/rd−2+η critical

. (5.14)

In any “normal” (non-critical) system, correlations over arbitrary large dis-
tances cannot be built up, and the correlation function decays exponentially
with the “correlation” length ξ. The notation d− 2 + η > 0 for the decay
exponent of the critical system is a convention from statistical physics, where
d = 1, 2, 3, . . . is the dimensionality of the system.

Scale-Invariance and Self-Similarity If a control parameter, often the
temperature, of a physical system is tuned such that it sits exactly at the
point of a phase transition, the system is said to be critical. At this point
there are no characteristic length scales.

Scale Invariance. If a measurable quantity, like the correlation function, decays like

a power of the distance ∼ (1/r)δ, with a critical exponent δ, the system is said to

be critical or scale-invariant.

Power laws have no scale; they are self-similar,

S(r) = c0

(r0
r

)δ

≡ c1

(r1
r

)δ

, c0 r
δ
0 = c1 r

δ
1 ,

for arbitrary distances r0 and r1.

Universality at the Critical Point The equal-time correlation function
S(r) is scale-invariant at criticality, compare Eq. (5.14). This is a surprising
statement, since we have seen before that the differential equations determin-
ing the dynamical system have well defined time and length scales. How then
does the solution of a dynamical system become effectively independent of
the parameters entering its governing equations?

Scale invariance implies that fluctuations occur over all length scales, albeit
with varying probabilities. This can be seen by observing snapshots of sta-
tistical mechanical simulations of simple models, compare Fig. 5.4. The scale
invariance of the correlation function at criticality is a central result of the
theory of phase transitions and statistical physics. The properties of systems
close to a phase transition are not determined by the exact values of their
parameters, but by the structure of the governing equations and their sym-
metries. This circumstance is denoted “universality” and constitutes one of
the reasons for classifying phase transitions according to the symmetry of
their order parameters, see Table 5.1.

Autocorrelation Function The equal-time correlation function S(r) mea-
sures real-space correlations. The corresponding quantity in the time domain
is the autocorrelation function
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Fig. 5.4 Simulation of the 2D-Ising model H =
∑

<i,j> σiσj , < i, j > nearest neighbors

on a square lattice. Two magnetization orientations σi = ±1 correspond to the dark/light

dots. For T < Tc (left, ordered), T ≈ Tc (middle, critical) and T > Tc (right, disordered).
Note the occurrence of fluctuations at all length scales at criticality (self-similarity)

Γ (t) =
⟨A(t+ t0)A(t0)⟩ − ⟨A⟩2

⟨A2⟩ − ⟨A⟩2
, (5.15)

which can be defined for any time-dependent measurable quantity A, e.g.
A(t) = ρ(t, r⃗). Note that the autocorrelations are defined relative to ⟨A⟩2, viz
the mean (time-independent) fluctuations. The denominator in Eq. (5.15) is
a normalization convention, namely Γ (0) ≡ 1.

In the non-critical regime, viz the diffusive regime, no long-term memory
is present in the system and all information about the initial state is lost
exponentially,

Γ (t) ∼ e−t/τ , t → ∞ . (5.16)

τ is called the relaxation time. The relaxation or autocorrelation time τ is
the time scale of diffusion processes.

Dynamical Critical Exponent The relaxation time entering Eq. (5.16)
diverges at criticality, as does the real-space correlation length ξ entering
Eq. (5.14). One can then define an appropriate exponent z, dubbed the
“dynamical critical exponent” z, in order to relate the two power laws for
τ and ξ via

τ ∼ ξz, for ξ = |T − Tc|−ν → ∞ .

The autocorrelation time is divergent in the critical state T → Tc.

Self-Organized Criticality We have seen that phase transitions can be
characterized by a set of exponents describing the respective power laws of
various quantities like the correlation function or the autocorrelation func-
tion. The phase transition occurs generally at a single point, viz T = Tc for a
thermodynamical system. At the phase transition the system becomes effec-
tively independent of the details of its governing equations, being determined
by symmetries.

It then comes as a surprise that there should exist complex dynamical
systems that attain a critical state for a finite range of parameters. This
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possibility, denoted “self-organized criticality” and the central subject of this
chapter, is to some extent counter intuitive. We can regard the parameters
entering the evolution equation as given externally. Self-organized criticality
then signifies that the system effectively adapts to changes in the external
parameters, e.g. to changes in the given time and length scales, in such a way
that the stationary state becomes independent of those changes.

5.2.1 1/f Noise

So far we have discussed the occurrence of critical states in classical ther-
modynamics and statistical physics. We now ask ourselves for experimental
evidence that criticality might play a central role in certain time-dependent
phenomena.

1/f Noise The power spectrum of the noise generated by many real-world
dynamical processes falls off inversely with frequency f . This 1/f noise has
been observed for various biological activities, like the heart beat rhythms, for
functioning electrical devices or for meteorological data series. Per Bak and
coworkers have pointed out that the ubiquitous 1/f noise could be the result
of a self-organized phenomenon. Within this view one may describe the noise
as being generated by a continuum of weakly coupled damped oscillators
representing the environment.

Power Spectrum of a Single Damped Oscillator A system with a single
relaxation time τ , see Eq. (5.12), and eigenfrequency ω0 has a Lorentzian
power spectrum

S(ω, τ) = Re

∫ ∞

0

dt eiωte−iω0t−t/τ = Re
−1

i(ω − ω0)− 1/τ
=

τ

1 + τ2(ω − ω0)2
.

For large frequencies ω ≫ 1/τ the power spectrum falls off like 1/ω2. Being
interested in the large-f behavior we will neglect ω0 in the following.

Distribution of Oscillators The combined power or frequency spectrum of
a continuum of oscillators is determined by the distributionD(τ) of relaxation
times τ . For a critical system relaxation occurs over all time scales, as dis-
cussed in Sect. 5.2 and we may assume a scale-invariant distribution

D(τ) ≈ 1

τα
(5.17)

for the relaxation times τ . This distribution of relaxation times yields a fre-
quency spectrum

S(ω) =

∫
dτD(τ)

τ

1 + (τω)2
∼

∫
dτ

τ1−α

1 + (τω)2
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=
1

ω ω1−α

∫
d(ωτ)

(ωτ)1−α

1 + (τω)2
∼ ωα−2 . (5.18)

For α = 1 we obtain 1/ω, the typical behavior of 1/f noise.
The question is then how assumption (5.17) can be justified. The wide-

spread appearance of 1/f noise can only happen when scale-invariant dis-
tribution of relaxation times are ubiquitous, viz if they were self-organized.
The 1/f noise therefore constitutes an interesting motivation for the search
of possible mechanisms leading to self-organized criticality.

5.3 Cellular Automata

Cellular automata are finite state lattice systems with discrete local update
rules.

zi → fi(zi, zi+δ, . . .), zi ∈ [0, 1, . . . , n] , (5.19)

where i+ δ denote neighboring sites of site i. Each site or “cell” of the lattice
follows a prescribed rule evolving in discrete time steps. At each step the new
value for a cell depends only on the current state of itself and on the state of
its neighbors.

Cellular automata differ from the dynamical networks we studied in
Chap. ??, in two aspects:

(i) The update functions are all identical: fi() ≡ f(), viz they are translational
invariant.

(ii) The number n of states per cell is usually larger than 2 (boolean case).

Cellular automata can give rise to extremely complex behavior despite their
deceptively simple dynamical structure. We note that cellular automata are
always updated synchronously and never sequentially or randomly. The state
of all cells is updated simultaneously.

Number of Update Rules The number of possible update rules is huge.
Take, e.g. a two-dimensional model (square lattice), where each cell can take
only one of two possible states,

zi = 0, (dead), zi = 1, (alive) .

We consider, for simplicity, rules for which the evolution of a given cell to the
next time step depends on the current state of the cell and on the values of
each of its eight nearest neighbors. In this case there are

29 = 512 configurations, 2512 = 1.3× 10154 possible rules ,
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since any one of the 512 configurations can be mapped independently to
“live” or “dead”. For comparison note that the universe is only of the order
of 3× 1017 seconds old.

Totalistic Update Rules It clearly does not make sense to explore system-
atically the consequences of arbitrary updating rules. One simplification is to
consider a mean-field approximation that results in a subset of rules called
“totalistic”.
For mean-field rules the new state of a cell depends only on the total
number of living neighbors and on its own state. The eight-cell neighborhood
has

9 possible total occupancy states of neighboring sites,

2 · 9 = 18 configurations, 218 = 262,144 totalistic rules .

This is a large number, but it is exponentially smaller than the number of all
possible update rules for the same neighborhood.

5.3.1 Conway’s Game of Life

The “game of life” takes its name because it attempts to simulate the repro-
ductive cycle of a species. It is formulated on a square lattice and the update
rule involves the eight-cell neighborhood. A new offspring needs exactly three
parents in its neighborhood. A living cell dies of loneliness if it has less than
two live neighbors, and of overcrowding if it has more than three live neigh-
bors. A living cell feels comfortable with two or three live neighbors; in this
case it survives. The complete set of updating rules is listed in Table 5.2.

Living Isolated Sets The time evolution of an initial set of a cluster of
living cells can show extremely varied types of behavior. Fixpoints of the
updating rules, such as a square

Table 5.2 Updating rules for the game of life; zi = 0, 1 corresponds to empty and living
cells. An “x” as an entry denotes what is going to happen for the respective number of

living neighbors

Number of living neighbors

zi(t) zi(t+ 1) 0 1 2 3 4. . . 8

0 1 x
0 x x x x

1 1 x x
0 x x x
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Fig. 5.5 Time evolution of some living configurations for the game of life, see Table 5.2.

(a) The “block”; it quietly survives. (b) The “blinker”; it oscillates with period 2. (c) The
“glider”; it shifts by (−1, 1) after four time steps

{
(0, 0), (1, 0), (0, 1), (1, 1)

}
of four neighboring live cells, survive unaltered. There are many configura-
tions of living cells which oscillate, such as three live cells in a row or column,{

(−1, 0), (0, 0), (1, 0)
}
,

{
(0,−1), (0, 0), (0, 1)

}
.

It constitutes a fixpoint of f(f(.)), alternating between a vertical and a hor-
izontal bar. The configuration{

(0, 0), (0, 1), (0, 2), (1, 2), (2, 1)
}

is dubbed “glider”, since it returns to its initial shape after four time steps but
is displaced by (−1, 1), see Fig. 5.5. It constitutes a fixpoint of f(f(f(f(.))))
times the translation by (−1, 1). The glider continues to propagate until it
encounters a cluster of other living cells.

The Game of Life as a Universal Computer It is interesting to inves-
tigate, from an engineering point of view, all possible interactions between
initially distinct sets of living cells in the game of life. In this context one finds
that it is possible to employ gliders for the propagation of information over
arbitrary distances. One can prove that arbitrary calculations can be per-
formed by the game of life, when identifying the gliders with bits. Suitable
and complicated initial configurations are necessary for this purpose, in addi-
tion to dedicated living subconfigurations performing logical computations,
in analogy to electronic gates, when hit by one or more gliders.
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Fig. 5.6 Time evolution (from left to right) of a configuration of living trees (green), burn-

ing trees (red) and of places burnt down (grey), in the forest fire model. Places burnt down
can regrow spontaneous with a small rate, the fire always spreads to nearest neighboring

trees

5.3.2 The Forest Fire Model

The forest fires automaton is a very simplified model of real-world forest fires.
It is formulated on a square lattice with three possible states per cell,

zi = 0, (empty), zi = 1, (tree), zi = 2, (fire) .

A tree sapling can grow on every empty cell with probability p < 1. There
is no need for nearby parent trees, as sperms are carried by wind over wide
distances. Trees do not die in this model, but they catch fire from any burning
nearest neighbor tree. The rules are illustrated in Fig. 5.6.

The forest fire automaton differs from typical rules, such as Conway’s game
of life, because it has a stochastic component. In order to have an interesting
dynamics one needs to adjust the growth rate p as a function of system size,
so as to keep the fire burning continuously. The fires burn down the whole
forest when trees grow too fast. When the growth rate is too low, on the
other hand, the fires, being surrounded by ashes, may die out completely.

zi(t) zi(t+ 1) Condition

Empty Tree With probability p < 1
Tree Tree No fire close by

Tree Fire At least one fire close by

Fire Empty Always

When adjusting the growth rate properly one reaches a steady state,
the system having fire fronts continually sweeping through the forest, as is
observed for real-world forest fires; this is illustrated in Fig. 5.7. In large
systems stable spiral structures form and set up a steady rotation.
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Fig. 5.7 Simulations of the forest fire model. Left : Fires burn in characteristic spirals for

a growth probability p = 0.005 and no lightning, f = 0 (From Clar et al. 1996). Right :
A snapshot of the forest fire model with a growth probability p = 0.06 and a lightning

probability f = 0.0001. Note the characteristic fire fronts with trees in front and ashes

behind

Criticality and Lightning The forest fire model, as defined above, is not
critical, since the characteristic time scale 1/p for the regrowth of trees gov-
erns the dynamics. This time scale translates into a characteristic length scale
1/p, which can be observed in Fig. 5.7, via the propagation rule for the fire.

Self-organized criticality can, however, be induced in the forest fire model
when introducing an additional rule, namely that a tree might ignite spon-
taneously with a small probability f , when struck by lightning, causing also
small patches of forest to burn. We will not discuss this mechanism in detail
here, treating instead in the next section the occurrence of self-organized
criticality in the sandpile model on a firm mathematical basis.

5.4 The Sandpile Model and Self-Organized Criticality

Self-Organized Criticality We have learned in Chap. ?? about the con-
cept “life at the edge of chaos”. Namely, that certain dynamical and orga-
nizational aspects of living organisms may be critical. Normal physical and
dynamical systems, however, show criticality only for selected parameters,
e.g. T = Tc, see Sect. 5.1. For criticality to be biologically relevant, the sys-
tem must evolve into a critical state starting from a wide range of initial
states – one speaks of “self-organized criticality”.

The Sandpile Model Per Bak and coworkers introduced a simple cellular
automaton that mimics the properties of sandpiles, i.e. the BTW model.
Every cell is characterized by a force

zi = z(i, j) = 0, 1, 2, . . . , i, j = 1, . . . , L
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on a finite L×L lattice. There is no one-to-one correspondence of the sandpile
model to real-world sandpiles. Loosely speaking one may identify the force zi
with the slope of real-world sandpiles. But this analogy is not rigorous, as the
slope of a real-world sandpile is a continuous variable. The slopes belonging
to two neighboring cells should therefore be similar, whereas the values of zi
and zj on two neighboring cells can differ by an arbitrary amount within the
sandpile model.

The sand begins to topple when the slope gets too big:

zj → zj − ∆ij , if zi > K ,

where K is the threshold slope and with the toppling matrix

∆i,j =

 4 i = j
−1 i, j nearest neighbors
0 otherwise

. (5.20)

This update rule is valid for the four-cell neighborhood {(0,±1), (±1, 0)}.
The threshold K is arbitrary, a shift in K simply shifts zi. It is customary
to consider K = 3. Any initial random configuration will then relax into a
steady-state final configuration (called the stable state) with

zi = 0, 1, 2, 3, (stable state) .

Open Boundary Conditions The update rule Eq. (5.20) is conserving:

Conserving Quantities. If there is a quantity that is not changed by the update rule
it is said to be conserving.

The sandpile model is locally conserving. The total height
∑

j zj is con-
stant due to

∑
j ∆i,j = 0. Globally, however, it is not conserving, as one

uses open boundary conditions for which excess sand is lost at the boundary.
When a site at the boundary topples, some sand is lost there and the total∑

j zj is reduced by one.
However, here we have only a vague relation of the BTW model to real-

world sandpiles. The conserving nature of the sandpile model mimics the fact
that sand grains cannot be lost in real-world sandpiles. This interpretation,
however, contrasts with the previously assumed correspondence of zi with
the slope of real-world sandpiles.

Avalanches When starting from a random initial state with zi ≪ K the
system settles in a stable configuration when adding “grains of sand” for a
while. When a grain of sand is added to a site with zi = K

zi → zi + 1, zi = K ,

a toppling event is induced, which may in turn lead to a whole series of
topplings. The resulting avalanche is characterized by its duration t and the
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Fig. 5.8 The progress of an avalanche, with duration t = 3 and size s = 13, for a sandpile

configuration on a 5×5 lattice with K = 3. The height of the sand in each cell is indicated
by the numbers. The shaded region is where the avalanche has progressed. The avalanche

stops after step 3

size s of affected sites. It continues until a new stable configuration is reached.
In Fig. 5.8 a small avalanche is shown.

Distribution of Avalanches We define with D(s) and D(t) the distribu-
tions of the size and of the duration of avalanches. One finds that they are
scale-free,

D(s) ∼ s−αs , D(t) ∼ t−αt , (5.21)

as we will discuss in the next section. Equation (5.21) expresses the essence of
self-organized criticality. We expect these scale-free relations to be valid for
a wide range of cellular automata with conserving dynamics, independent of
the special values of the parameters entering the respective update functions.
Numerical simulations and analytic approximations for d = 2 dimensions
yield

αs ≈
5

4
, αt ≈

3

4
.

Conserving Dynamics and Self-Organized Criticality We note that
the toppling events of an avalanche are (locally) conserving. Avalanches of
arbitrary large sizes must therefore occur, as sand can be lost only at the
boundary of the system. One can indeed prove that Eqs. (5.21) are valid only
for locally conserving models. Self-organized criticality breaks down as soon
as there is a small but non-vanishing probability to lose sand somewhere
inside the system.

Features of the Critical State The empty board, when all cells are ini-
tially empty, zi ≡ 0, is not critical. The system remains in the frozen phase
when adding sand; compare Chap. ??, as long as most zi < K. Adding one
sand corn after the other the critical state is slowly approached. There is no
way to avoid the critical state.

Once the critical state is achieved the system remains critical. This critical
state is paradoxically also the point at which the system is dynamically most
unstable. It has an unlimited susceptibility to an external driving (adding a
grain of sand), using the terminology of Sect. 5.1, as a single added grain of
sand can trip avalanches of arbitrary size.
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It needs to be noted that the dynamics of the sandpile model is determinis-
tic, once the grain of sand has been added, and that the disparate fluctuations
in terms of induced avalanches are features of the critical state per se and
not due to any hidden stochasticity, as discussed in Chap. ??, or due to any
hidden deterministic chaos.

5.4.1 Absorbing Phase Transitions

One can take away from the original sandpile model both the external drive,
the adding of sand grains, and the dissipation. Instead of losing sand at the
boundaries one then considers periodic boundary conditions and the number
of grains is consequently conserved both locally as well as globally. Starting
with a random configuration {zi} there will be a rush of intial avalanches,
following the toppling rules (5.20), until the system settles into either an
active or an absorbing state.

– All grain topplings will stop eventually whenever the average number of
grains is too small. The resulting inactive configuration is called “absorbing
state”.

– For a large average number of grains the redistribution of grains will never
terminate, resulting in a continously “active state”.

Adding externally a single grain to an absorbing state will lead generically
only to a single avalanche with the transient acitivity terminating in another
absorbing state. In this picture the grain of sand added has been absorbed.

Transition from Absorbing to Active State The average number of
particles ρ = ⟨zi⟩ controls the transition from absorbing to active state. The
active state is characterized by the mean number κ of active states, which
is the number of sites with heights zi greater then the threshold K. The
avalanche shown in Fig. 5.8, has, to give an example, 1/2/2/0 active sites
respectively at time steps 1/2/3/4. The transition from the absorbing to the
active state is of second order, as illustrated in Fig. 5.9, with κ acting as an
order parameter.

Self-Organization Towards the Critical Density There is a deep rela-
tion between absorbing state transitions in general and the concept of self-
organized criticality, based on a separation of time scales.

The external drive, the addition of grains of sand, one by one, is infinites-
imal slow in the sandpile model. The reason being that the external drive
is stopped once an avalanche starts, and resumed only once the avalanche
has terminated. The avalanche is hence instantaneous, relative to the time
scale of the external drive. Slowly adding one particle after another con-
tinuously increases the mean particle number and drives the system, from
below, towards criticality, Fig. 5.8. Particles surpassing the critical density
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Fig. 5.9 Changing the mean particle density, ρ an absorbing phase transition may occur,

whith the density of active sites acting as an order parameter. The system may self-organize
towards the critical particle density ρc through balancing of a slow external drive, realized

by adding grains in the sandpile model, and a fast internal dissipative process, when loosing

grains of sand at the boundaries

are instantaneously dissipated through large avalanches reaching the bound-
aries of the systems, the mean particle density is hence pinned at criticality.

5.5 Random Branching Theory

Branching theory deals with the growth of networks via branching. Networks
generated by branching processes are loopless; they typically arise in theories
of evolutionary processes.

5.5.1 Branching Theory of Self-Organized Criticality

Avalanches have an intrinsic relation to branching processes: at every time
step the avalanche can either continue or stop. Random branching theory is
hence a suitable method for studying self-organized criticality.

Branching in Sandpiles A typical update during an avalanche is of the
form

time 0: zi → zi − 4 zj → zj + 1
time 1: zi → zi + 1 zj → zj − 4

when two neighboring cells i and j initially have zi = K+1 and zj = K. This
implies that an avalanche typically intersects with itself. Consider, however,
a general d-dimensional lattice with K = 2d − 1. The self-interaction of the
avalanche becomes unimportant in the limit 1/d → 0 and the avalanche can
be mapped rigorously to a random branching process. Note that we encoun-
tered an analogous situation in the context of high-dimensional or random



20 5 Cellular Automata and Self-Organized Criticality
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Fig. 5.10 Branching processes. Left : The two possible processes of order n = 1. Right : A

generic process of order n = 3 with an avalanche of size s = 7

graphs, discussed in Chap. ??, which are also loopless in the thermodynamic
limit.

Binary Random Branching In d → ∞ the notion of neighbors loses mean-
ing, avalanches then have no spatial structure. Every toppling event affects 2d
neighbors, on a d-dimensional hypercubic lattice. However, only the cumula-
tive probability of toppling of the affected cells is relevant, due to the absence
of geometric constraints in the limit d → ∞. All that is important then is the
question whether an avalanche continues, increasing its size continuously, or
whether it stops.

We can therefore consider the case of binary branching, viz that a toppling
event creates two new active sites.

Binary Branching. An active site of an avalanche topples with the probability p and

creates two new active sites.

For p < 1/2 the number of new active sites decreases on the average and
the avalanche dies out. pc = 1/2 is the critical state with (on the average)
conserving dynamics. See Fig. 5.10 for some examples of branching processes.

Distribution of Avalanche Sizes The properties of avalanches are deter-
mined by the probability distribution,

Pn(s, p),

∞∑
s=1

Pn(s, p) = 1 ,

describing the probability to find an avalanche of size s in a branching process
of order n. Here s is the (odd) number of sites inside the avalanche, see
Figs. 5.10 and 5.11 for some examples.

Generating Function Formalism In Chap. ??, we introduced the gen-
erating functions for probability distribution. This formalism is very useful
when one has to deal with independent stochastic processes, as the joint
probability of two independent stochastic processes is equivalent to the sim-
ple multiplication of the corresponding generating functions.

We define via
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Fig. 5.11 Branching processes of order n = 2 with avalanches of sizes s = 3, 5, 7 (left,

middle, right) and boundaries σ = 0, 2, 4

fn(x, p) =
∑
s

Pn(s, p)x
s, fn(1, p) =

∑
s

Pn(s, p) = 1 (5.22)

the generating functional fn(x, p) for the probability distribution Pn(s, p).
We note that

Pn(s, p) =
1

s!

∂sfn(x, p)

∂xs

∣∣∣
x=0

, n, p fixed . (5.23)

Small Avalanches For small s and large n one can evaluate the probability
for small avalanches to occur by hand and one finds for the corresponding
generating functionals:

Pn(1, p) = 1− p, Pn(3, p) = p(1− p)2, Pn(5, p) = 2p2(1− p)3 ,

compare Figs. 5.10 and 5.11. Note that Pn(1, p) is the probability to find an
avalanche of just one site.

The Recursion Relation For generic n the recursion relation

fn+1(x, p) = x (1− p) + x p f2
n(x, p) (5.24)

is valid. To see why, one considers building the branching network backwards,
adding a site at the top:

– With the probability (1− p)
one adds a single-site avalanche described by the generating functional x.

– With the probability p
one adds a site, described by the generating functional x, which generated
two active sites, described each by the generating functional fn(x, p).

In the terminology of branching theory, one also speaks of a decomposition
of the branching process after its first generation, a standard procedure.

The Self-Consistency Condition For large n and finite x the generat-
ing functionals fn(x, p) and fn+1(x, p) become identical, leading to the self-
consistency condition

fn(x, p) = fn+1(x, p) = x (1− p) + x p f2
n(x, p) , (5.25)

with the solution
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f(x, p) ≡ fn(x, p) =
1−

√
1− 4x2p(1− p)

2xp
(5.26)

for the generating functional f(x, p). The normalization condition

f(1, p) =
1−

√
1− 42p(1− p)

2p
=

1−
√

(1− 2p)2

2p
= 1

is fulfilled for p ∈ [0, 1/2]. For p > 1/2 the last step in above equation would
not be correct.

The Subcritical Solution Expanding Eq. (5.26) in powers of x2 we find
terms like

1

p

[
4p(1− p)

]k (
x2

)k
x

=
1

p

[
4p(1− p)

]k
x2k−1 .

Comparing this with the definition of the generating functional Eq. (5.22) we
note that s = 2k − 1, k = (s+ 1)/2 and that

P (s, p) ∼ 1

p

√
4p(1− p)

[
4p(1− p)

]s/2
∼ e−s/sc(p) , (5.27)

where we have used the relation

as/2 = eln(a
s/2) = e−s(ln a)/(−2), a = 4p(1− p) ,

and where we have defined the avalanche correlation size

sc(p) =
−2

ln[4p(1− p)]
, lim

p→1/2
sc(p) → ∞ .

For p < 1/2 the size correlation length sc(p) is finite and the avalanche is con-
sequently not scale-free, see Sect. 5.2. The characteristic size of an avalanche
sc(p) diverges for p → pc = 1/2. Note that sc(p) > 0 for p ∈]0, 1[.

The Critical Solution We now consider the critical case with

p = 1/2, 4p(1− p) = 1, f(x, p) =
1−

√
1− x2

x
.

The expansion of
√
1− x2 with respect to x is

√
1− x2 =

∞∑
k=0

1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − k + 1

)
k!

(
− x2

)k

in Eq. (5.26) and therefore

Pc(k) ≡ P (s = 2k−1, p = 1/2) =
1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·

(
1
2 − k + 1

)
−k!

(−1)k .
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This expression is still unhandy. We are, however, only interested in the
asymptotic behavior for large avalanche sizes s. For this purpose we consider
the recursive relation

Pc(k + 1) =
1/2− k

k + 1
(−1)Pc(k) =

1− 1/(2k)

1 + 1/k
Pc(k)

in the limit of large k = (s+ 1)/2, where 1/(1 + 1/k) ≈ 1− 1/k,

Pc(k + 1) ≈
[
1− 1/(2k)

] [
1− 1/k

]
Pc(k) ≈

[
1− 3/(2k)

]
Pc(k) .

This asymptotic relation leads to

Pc(k + 1)− Pc(k)

1
=

−3

2k
Pc(k),

∂Pc(k)

∂k
=

−3

2k
Pc(k) ,

with the solution

Pc(k) ∼ k−3/2, D(s) = Pc(s) ∼ s−3/2, αs =
3

2
, (5.28)

for large k, s, since s = 2k − 1.

Distribution of Relaxation Times The distribution of the duration n
of avalanches can be evaluated in a similar fashion. For this purpose one
considers the probability distribution function

Qn(σ, p)

for an avalanche of duration n to have σ cells at the boundary, see Fig. 5.11.
One can then derive a recursion relation analogous to Eq. (5.24) for the

corresponding generating functional and solve it self-consistently. We leave
this as an exercise for the reader.

The distribution of avalanche durations is then given by considering
Qn = Qn (σ = 0, p = 1/2), i.e. the probability that the avalanche stops
after n steps. One finds

Qn ∼ n−2, D(t) ∼ t−2, αt = 2 . (5.29)

Tuned or Self-Organized Criticality? The random branching model dis-
cussed in this section had only one free parameter, the probability p. This
model is critical only for p → pc = 1/2, giving rise to the impression that
one has to fine tune the parameters in order to obtain criticality, just like in
ordinary phase transitions.

This, however, is not the case. As an example we could generalize the
sandpile model to continuous forces zi ∈ [0,∞] and to the update rules

zj → zj − ∆ij , if zi > K ,
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and

∆i,j =


K i = j

−cK/4 i, j nearest neighbors
−(1− c)K/8 i, j next-nearest neighbors

0 otherwise

(5.30)

for a square-lattice with four nearest neighbors and eight next-nearest neigh-
bors (Manhattan distance). The update rules are conserving,∑

j

∆ij = 0, ∀c ∈ [0, 1] .

For c = 1 this model corresponds to the continuous field generalization of
the BTW model. The model defined by Eqs. (5.30), which has not yet been
studied in the literature, might be expected to map in the limit d → ∞ to an
appropriate random branching model with p = pc = 1/2 and to be critical
for all values of the parameters K and c, due to its conserving dynamics.

5.5.2 Galton-Watson Processes

Galton-Watson processes are generalizations of the binary branching pro-
cesses considered so far, with interesting applications in evolution theory and
some everyday experiences.

The History of Family Names Family names are handed down tradi-
tionally from father to son. Family names regularly die out, leading over the
course of time to a substantial reduction of the pool of family names. This
effect is especially pronounced in countries looking back on millenia of cul-
tural continuity, like China, where 22% of the population are sharing only
three family names.

The evolution of family names is described by a Galton-Watson process
and a key quantity of interest is the extinction probability, viz the probability
that the last person bearing a given family name dies without descendants.

The Galton-Watson Process The basic reproduction statistics deter-
mines the evolution of family names, see Fig. 5.12.

We denote with pm the probability that an individual has m offsprings

and with G0(x) =
∑

m pmxm its generating function. Defining with p
(n)
m the

probability of finding a total of m descendants in the n-th generation, we find
the recursion relation

G(n+1)(x) =
∑
m

p(n)m [G0(x)]
m

= G(n)(G0(x)), G(n)(x) =
∑
m

p(n)m xm

for the respective generating function. Using the initial condition G(0)(x) = x
we may rewrite this recursion relation as
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Fig. 5.12 Galton-Watson processes. Left : Example of a reproduction tree, pm being the

probabilities of having m = 0, 1, . . . offsprings. Right : Graphical solution for the fixpoint
equation (5.33), for various average numbers of offsprings W

G(n)(x) = G0(G0(. . . G0(x) . . . )) = G0

(
G(n−1)(x)

)
. (5.31)

This recursion relation is the basis for all further considerations; we consider
here the extinction probability q.

Extinction Probability The reproduction process dies out when there is a
generation with zero members. The probability of having zero persons bearing
the given family name in the n-th generation is

q = p
(n)
0 = G(n)(0) = G0

(
G(n−1)(0)

)
= G0(q) , (5.32)

where we have used the recursion relation Eq. (5.31) and the stationary con-
dition G(n)(0) ≈ G(n−1)(0). The extinction probability q is hence given by
the fixpoint q = G0(q) of the generating functional G0(x) of the reproduction
probability.

Binary Branching as a Galton-Watson Process As an example we
consider the case that

G0(x) = 1− W

2
+

W

2
x2, G ′

0(1) = W ,

viz that people may not have but either zero or two sons, with probabilities 1−
W/2 and W/2 < 1 respectively. The expected number of offsprings W is also
called the fitness in evolution theory, see Chap. ??. This setting corresponds
to the case of binary branching, see Fig. 5.10, with W/2 being the branching
probability, describing the reproductive dynamics of unicellular bacteria.

The self-consistency condition (5.32) for the extinction probability q =
q(W ) then reads

q = 1− W

2
+

W

2
q2, q(W ) =

1

W
±
√

1

W 2
− (2−W )2

W 2
, (5.33)
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with the smaller root being here of relevance. The extinction probability
vanishes for a reproduction rate of two,

q(W ) =

 0 W = 2
q ∈ ]0, 1[ 1 < W < 2

1 W ≤ 1

and is unity for a fitness below one, compare Fig. 5.12.

5.6 Application to Long-Term Evolution

An application of the techniques developed in this chapter can be used to
study a model for the evolution of species proposed by Bak and Sneppen.

Fitness Landscapes Evolution deals with the adaption of species and their
fitness relative to the ecosystem they live in.

Fitness Landscapes. The function that determines the chances of survival of a

species, its fitness, is called the fitness landscape.

In Fig. 5.13 a simple fitness landscape, in which there is only one dimension
in the genotype (or phenotype)2 space, is illustrated.

The population will spend most of its time in a local fitness maximum,
whenever the mutation rate is low with respect to the selection rate, since
there are fitness barriers, see Fig. 5.13, between adjacent local fitness maxima.
Mutations are random processes and the evolution from one local fitness
maximum to the next can then happen only through a stochastic escape, a
process we discussed in Chap. ??.

Coevolution It is important to keep in mind for the following discussion
that an ecosystem, and with it the respective fitness landscapes, is not static
on long time scales. The ecosystem is the result of the combined action of geo-
physical factors, such as the average rainfall and temperature, and biological
influences, viz the properties and actions of the other constituting species.
The evolutionary progress of one species will therefore, in general, trigger
adaption processes in other species appertaining to the same ecosystem, a
process denoted “coevolution”.

Evolutionary Time Scales In the model of Bak and Sneppen there are
no explicit fitness landscapes like the one illustrated in Fig. 5.13. Instead the
model attempts to mimic the effects of fitness landscapes, viz the influence
of all the other species making up the ecosystem, by a single number, the
“fitness barrier”. The time needed for a stochastic escape from one local

2 The term “genotype” denotes the ensemble of genes. The actual form of an organism, the
“phenotype”, is determined by the genotype plus environmental factors, like food supply

during growth.
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Fig. 5.13 Illustration of a one-dimensional fitness landscape. A species evolving from an

adaptive peak P to a new adaptive peak Q needs to overcome the fitness barrier B

fitness optimum increases exponentially with the barrier height. We may
therefore assume that the average time t it takes to mutate across a fitness
barrier of height B scales as

t = t0 e
B/T , (5.34)

where t0 and T are constants. The value of t0 merely sets the time scale
and is not important. The parameter T depends on the mutation rate, and
the assumption that mutation is low implies that T is small compared with
the typical barrier heights B in the landscape. In this case the time scales
t for crossing slightly different barriers are distributed over many orders of
magnitude and only the lowest barrier is relevant.

The Bak and Sneppen Model The Bak and Sneppen model is a phe-
nomenological model for the evolution of barrier heights. The number N of
species is fixed and each species has a respective barrier

Bi = Bi(t) ∈ [0, 1], t = 0, 1, 2, . . .

for its further evolution. The initial Bi(0) are drawn randomly from [0, 1].
The model then consists of the repetition of two steps:

1. The times for a stochastic escape are exponentially distributed, see
Eq. (5.34). It is therefore reasonable to assume that the species with
the lowest barrier Bi mutates and escapes first. After escaping, it will
adapt quickly to a new local fitness maximum. At this point it will
then have a new barrier for mutation, which is assumed to be uniformly
distributed in [0, 1].

2. The fitness function for a species i is given by the ecological environment it
lives in, which is made up of all the other species. When any given species
mutates it therefore influences the fitness landscape for a certain number
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Fig. 5.14 The barrier values (dots) for a 100 species one-dimensional Bak–Sneppen model

after 50, 200 and 1,600 steps of a simulation. The horizontal line in each frame represents
the approximate position of the upper edge of the “gap”. A few species have barriers

below this level, indicating that they were involved in an avalanche at the moment when

the snapshot of the system was taken

of other species. Within the Bak and Sneppen model this translates into
assigning new random barriers Bj for K − 1 neighbors of the mutating
species i.

The Bak and Sneppen model therefore tries to capture two essential ingredi-
ents of long-term evolution: The exponential distribution of successful muta-
tions and the interaction of species via the change of the overall ecosystem,
when one constituting species evolves.

The Random Neighbor Model The topology of the interaction between
species in the Bak–Sneppen model is unclear. It might be chosen as two-
dimensional, if the species are thought to live geographically separated, or
one-dimensional in a toy model. In reality the topology is complex and can
be assumed to be, in first approximation, random, resulting in the soluble
random neighbor model.

Evolution of Barrier Distribution Let us discuss qualitatively the redis-
tribution of barrier heights under the dynamics, the sequential repetition of
steps (1) and (2) above, see Fig. 5.14. The initial barrier heights are uniformly
distributed over the interval [0, 1] and the lowest barrier, removed in step (1),
is small. The new heights reassigned in steps (1) and (2) will therefore lead,
on the average, to an increase of the average barrier height with passing time.

With increasing average barrier height the characteristic lowest barrier is
also raised and eventually a steady state will be reached, just as in the sand-
pile model discussed previously. It turns out that the characteristic value for
the lowest barrier is about 1/K at equilibrium in the mean-field approxima-
tion and that the steady state is critical.

Molecular Field Theory In order to solve the Bak–Sneppen model, we
define the barrier distribution function,

p(x, t) ,
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viz the probability to find a barrier of hight x ∈ [0, 1] at time step t = 1, 2, . . . .
In addition, we define with Q(x) the probability to find a barrier above x:

Q(x) =

∫ 1

x

dx′ p(x′), Q(0) = 1, Q(1) = 0 . (5.35)

The dynamics is governed by the size of the smallest barrier. The distribution
function p1(x) for the lowest barrier is

p1(x) = N p(x)QN−1(x) , (5.36)

given by the probability p(x) for one barrier (out of the N barriers) to have
the barrier height x, while all the other N − 1 barriers are larger. p1(x) is
normalized,∫ 1

0

dx p1(x) = (−N)

∫ 1

0

dxQN−1(x)
∂Q(x)

∂x
= −QN (x)

∣∣∣x=1

x=0
= 1 ,

where we used p(x) = −Q′(x), Q(0) = 1 and Q(1) = 0, see Eq. (5.35).

Time Evolution of Barrier Distribution The time evolution for the
barrier distribution consists in taking away one (out of N) barrier, the lowest,
via

p(x, t)− 1

N
p1(x, t) ,

and by removing randomly K−1 barriers from the remaining N −1 barriers,
and adding K random barriers:

p(x, t+ 1) = p(x, t)− 1

N
p1(x, t) (5.37)

−K − 1

N − 1

(
p(x, t)− 1

N
p1(x, t)

)
+

K

N
.

We note that p(x, t + 1) is normalized whenever p(x, t) and p1(x, t) were
normalized correctly:∫ 1

0

dxp(x, t+ 1) = 1− 1

N
− K − 1

N − 1

(
1− 1

N

)
+

K

N

=

(
1− K − 1

N − 1

)
N − 1

N
+

K

N
=

N −K

N
+

K

N
≡ 1 .

Stationary Distribution After many iterations of Eq. (5.37) the barrier
distribution will approach a stationary solution p(x, t + 1) = p(x, t) ≡ p(x),
as can be observed from the numerical simulation shown in Fig. 5.14. The
stationary distribution corresponds to the fixpoint condition
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0 = p1(x)
1

N

(
K − 1

N − 1
− 1

)
− p(x)

K − 1

N − 1
+

K

N

of Eq. (5.37). Using the expression p1 = NpQN−1, see Eq. (5.36), for p1(x)
we then have

0 = Np(x)QN−1(x)(K −N)− p(x) (K − 1)N + K(N − 1) .

Using p(x) = −∂Q(x)
∂x we obtain

0 = N(N −K)
∂Q(x)

∂x
QN−1 + (K − 1)N

∂Q(x)

∂x
+K(N − 1)

0 = N(N −K)QN−1 dQ + (K − 1)N dQ +K(N − 1) dx .

We can integrate this last expression with respect to x,

0 = (N −K)QN (x) + (K − 1)N Q(x) +K(N − 1) (x− 1) , (5.38)

where we took care of the boundary condition Q(1) = 0, Q(0) = 1.

Solution in the Thermodynamic Limit The polynomial Eq. (5.38) sim-
plifies in the thermodynamic limit, with N → ∞ and K/N → 0, to

0 = QN (x) + (K − 1)Q(x)−K (1− x) . (5.39)

We note that Q(x) ∈ [0, 1] and that Q(0) = 1, Q(1) = 0. There must therefore
be some x ∈]0, 1[ for which 0 < Q(x) < 1. Then

QN (x) → 0, Q(x) ≈ K

K − 1
(1− x) . (5.40)

Equation (5.40) remains valid as long as Q < 1, or x > xc:

1 =
K

K − 1
(1− xc), xc =

1

K
.

We then have in the limit N → ∞

lim
N→∞

Q(x) =

{
1 for x < 1/K

(1− x)K/(K − 1) for x > 1/K
, (5.41)

compare Fig. 5.15, and, using p(x) = −∂Q(x)/∂x,

lim
N→∞

p(x) =

{
0 for x < 1/K

K/(K − 1) for x > 1/K
. (5.42)

This result compares qualitatively well with the numerical results presented
in Fig. 5.14. Note, however, that the mean-field solution Eq. (5.42) does not
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1

Fig. 5.15 The distribution Q(x) to find a fitness barrier larger than x ∈ [0, 1] for the

Bak and Sneppen model, for the case of random barrier distribution (dashed line) and the
stationary distribution (dashed-dotted line), compare Eq. (5.41)

predict the exact critical barrier height, which is somewhat larger for K = 2
and a one-dimensional arrangement of neighbors, as in Fig. 5.14.

1/N Corrections Equation (5.42) cannot be rigorously true for N < ∞,
since there is a finite probability for barriers with Bi < 1/K to reappear at
every step. One can expand the solution of the self-consistency Eq. (5.38) in
powers of 1/N . One finds

p(x) ≃
{

K/N for x < 1/K
K/(K − 1) for x > 1/K

. (5.43)

We leave the derivation as an exercise for the reader.

Distribution of the Lowest Barrier If the barrier distribution is zero
below the self-organized threshold xc = 1/K and constant above, then the
lowest barrier must be below xc with equal probability:

p1(x) →
{
K for x < 1/K
0 for x > 1/K

,

∫ 1

0

dx p1(x) = 1 . (5.44)

Equations (5.44) and (5.36) are consistent with Eq. (5.43) for x < 1/K.

Coevolution and Avalanches When the species with the lowest barrier
mutates we assign new random barrier heights to it and to its K − 1 neigh-
bors. This causes an avalanche of evolutionary adaptations whenever one of
the new barriers becomes the new lowest fitness barrier. One calls this phe-
nomenon “coevolution” since the evolution of one species drives the adaption
of other species belonging to the same ecosystem. We will discuss this and
other aspects of evolution in more detail in Chap. ??. In Fig. 5.16 this pro-
cess is illustrated for the one-dimensional model. The avalanches in the sys-
tem are clearly visible and well separated in time. In between the individual
avalanches the barrier distribution does not change appreciably; one speaks
of a “punctuated equilibrium”.
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Fig. 5.16 A time series of evolutionary activity in a simulation of the one-dimensional

Bak–Sneppen model with K = 2 showing coevolutionary avalanches interrupting the punc-
tuated equilibrium. Each dot represents the action of choosing a new barrier value for one

species

Critical Coevolutionary Avalanches In Sect. 5.5 we discussed the con-
nection between avalanches and random branching. The branching process
is critical when it goes on with a probability of 1/2. To see whether the
coevolutionary avalanches within the Bak and Sneppen model are critical
we calculate the probability pbran that at least one of the K new, randomly
selected, fitness barriers will be the new lowest barrier.

With probability x one of the new random barriers is in [0, x] and below
the actual lowest barrier, which is distributed with p1(x), see Eq. (5.44). We
then have

pbran = K

∫ 1

0

p1(x)xdx = K

∫ 1/K

0

K x dx =
K2

2
x2

∣∣∣1/K
0

≡ 1

2
,

viz the avalanches are critical. The distribution of the size s of the coevolu-
tionary avalanches is then

D(s) ∼
(
1

s

)3/2

,

as evaluated within the random branching approximation, see Eq. (5.28), and
independent of K. The size of a coevolutionary avalanche can be arbitrarily
large and involve, in extremis, a finite fraction of the ecosystem, compare
Fig. 5.16.

Features of the Critical State The sandpile model evolves into a critical
state under the influence of an external driving, when adding one grain of
sand after another. The critical state is characterized by a distribution of
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slopes (or heights) zi, one of its characteristics being a discontinuity; there is
a finite fraction of slopes with zi = Z − 1, but no slope with zi = Z, apart
from some of the sites participating in an avalanche.

In the Bak and Sneppen model the same process occurs, but without
external drivings. At criticality the barrier distribution p(x) = ∂Q(x)/∂x
has a discontinuity at xc = 1/K, see Fig. 5.15. One could say, cum grano
salis, that the system has developed an “internal phase transition”, namely a
transition in the barrier distribution p(x), an internal variable. This emergent
state for p(x) is a many-body or collective effect, since it results from the
mutual reciprocal interactions of the species participating in the formation
of the ecosystem.

Exercises

Solutions of the Landau–Ginzburg Functional
Determine the order parameter for h ̸= 0 via Eq. (5.9) and Fig. 5.2. Dis-
cuss the local stability condition Eq. (5.3) for the three possible solutions
and their global stability. Note that F = fV , where F is the free energy,
f the free energy density and V the volume.

Entropy and Specific Heat Within the Landau Model
Determine the entropy S(T ) = ∂F

∂T and the specific heat cV = T ∂S
∂T within

the Landau–Ginzburg theory Eq. (5.1) for phase transitions.
The Game of Life

Consider the evolution of the following states, see Fig. 5.5, under the rules
for Conway’s game of life:
{(0,0),(1,0),(0,1),(1,1)}
{(0,−1),(0,0),(0,1)}
{(0,0),(0,1),(1,0),(−1,0),(0,−1)}
{(0,0),(0,1),(0,2),(1,2),(2,1)}
The predictions can be checked with Java-applets you may easily find in
the Internet.

The Game of Life on a Small-World Network
Write a program to simulate the game of life on a 2D lattice. Consider this
lattice as a network with every site having edges to its eight neighbors.
Rewire the network such that (a) the local connectivities zi ≡ 8 are
retained for every site and (b) a small-world network is obtained. This
can be achieved by cutting two arbitrary links with probability p and
rewiring the four resulting stubs randomly.
Define an appropriate dynamical order parameter and characterize the
changes as a function of the rewiring probability. Compare Chap. ??.

The Forest Fire Model
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Develop a mean-field theory for the forest fire model by introducing
appropriate probabilities to find cells with trees, fires and ashes. Find
the critical number of nearest neighbors Z for fires to continue burning.

The Realistic Sandpile Model
Propose a cellular automata model that simulates the physics of real-
world sandpiles somewhat more realistically than the BTW model. The
cell values z(x, y) should correspond to the local height of the sand. Write
a program to simulate the model.

Recursion Relation for Avalanche Sizes
Use the definition (5.22) for the generating functional fn(x, p) of
avalanche sizes in (5.24) and derive a recursion relation for the probabil-
ity Ps(n, p) of finding an avalanche of size s in the nth generation, given
a branching probability p. How does this recursion relation change when
the branching is not binary but, as illustrated in Fig. 5.12, determined
by the probability pm of generating m offsprings?

The Random Branching Model
Derive the distribution of avalanche durations Eq. (5.29) in analogy to
the steps explained in Sect. 5.5, by considering a recursion relation for
the integrated duration probability Q̃n =

∑n
n′=0 Qn(0, p), viz for the

probability that an avalanche last maximally n time steps.
The Galton-Watson Process

Use the fixpoint condition, Eq. (5.32) and show that the extinction prob-
ability is unity if the average reproduction rate is smaller than one.

Further Reading

Introductory texts to cellular automata and to the game of life are Wol-
fram (1986), Creutz (1997) and Berlekamp et al. (1982). For a review of the
forest fire and several related models, see Clar et al. (1996), for a review
on absorbing phase transitions Hinrichsen (2000); for a review of sandpiles,
see Creutz (2004), and for a general review of self-organized criticality, see
Marković et al. (2014). Exemplary textbooks on statistical physics and phase
transitions have been written by Callen (1985) and Goldenfeld (1992).

Some general features of 1/f noise are discussed by Press (1978); its
possible relation to self-organized criticality has been postulated by Bak
et al. (1987). The formulation of the Bak and Sneppen (1993) model for
long-term coevolutionary processes and its mean-field solution are discussed
by Flyvbjerg et al. (1993).

The interested reader may also glance at some original research literature,
such as a numerical study of the sandpile model (Priezzhev et al. 1996) and
the application of random branching theory to the sandpile model (Zapperi
et al. 1995). The connection of self-organized criticality to local conservation
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rules is worked out by Tsuchiya and Katori (2000), and the forest fire model
with lightning is introduced by Drossel and Schwabl (1992).
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