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Exercise 1: Group theory, reducible and irreducible representations (12 Points)

We have seen what groups and representations are in the previous exercise sheet. In this exercise,
we introduce the concepts of reducible and irreducible representations, and how to recognize
them. The ideas are once more quite abstract, but we try to keep them simple and use an
example. As in the previous sheet, we denote the group by G, a generic element of the group by
g and the operation of the group by ◦. Note: we again restrict our discussion to the case of a
finite group.

Let us consider the C3v group, which contains 6 elements. A practical way to visualize
them is considering the symmetries of the ammonia molecule (NH3). We can use the website
https://symotter.org/gallery for this purpose. In the menu on the left, you can select the entry
“pyramidal (Cnv)” and then the entry “C3v – ammonia”. You’ll have a three dimensional picture
of the molecule that you can freely rotate. The menu on the right lists all the symmetries of
NH3 (the identity, 2 three-fold rotations and 3 reflections with respect to different planes). Just
click on the play buttons to see their effects on the molecule.

Figure 1: Multiplication table of the C3v group.

Let us denote the elements of the group as E (the identity), C+
3 and C−3 (the two rotations),

σv, σ
′
v and σ′′v (the three reflections). A possible way to define the group is using its multiplication

table, reported in Fig. 1, in which each row and column corresponds to a certain element of the
group. If we denote by A the row element and by B the column element, the corresponding
entry of the table contains the result of the operation A ◦B.
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We introduce a three-dimensional representation of C3v:
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(i) Show that ρ1(C+
3 )ρ1(σv) = ρ1(σ

′′
v ) (as we expected from the multiplication table, Fig. 1).

(1 Point)

In general, two representations ρ1 and ρ2 are said to be equivalent if there is a non-singular
matrix A such that

ρ2(g) = Aρ1(g)A−1, ∀g ∈ G (2)

This is called a similarity transformation. We introduce a second three-dimensional representa-
tion for the C3v group:
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(ii) Take one g element at your choice (not E) and show that the two representations ρ1 and
ρ2 are equivalent for that element if we take

A =

1 0 0
0 1 1
0 1 −1

 A−1 =

1 0 0
0 1/2 1/2
0 1/2 −1/2


in the similarity transformation of Eq. (2). (1 Point)

(iii) An important property of two equivalent representations, ρ1 and ρ2, is the fact that the
traces of the matrices representing each element are equal in the two representations, i.e.

ρ1 and ρ2 are equivalent ⇒ Tr(ρ1(g)) = Tr(ρ2(g)), ∀g ∈ G

Can you prove this statement (for a generic similarity transformation)? (1 Point)
Note: the arrow is actually true also in the opposite direction, i.e.

Tr(ρ1(g)) = Tr(ρ2(g)), ∀g ∈ G ⇒ ρ1 and ρ2 are equivalent

but this is much harder to prove.

The invariance of the trace for two equivalent representations is a very important property.
Let use introduce the following notation for the traces of the matrices forming a certain repre-
sentation ρ:

χρ(g) = Tr(ρ(g)) (4)
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The set of traces {χρ(g)}g∈G is known as the character of the representation ρ. We also define
a scalar product between characters of two generic representations ρ and ρ′ as

(ρ, ρ′) =
1

N

∑
g∈G

χ∗ρ(g)χρ′(g). (5)

Here N the denotes the total number of elements in the group (N = 6 for C3v) and ∗ is a complex
conjugation. This scalar product will be useful in the following.

We can now introduce the concept of reducible and irreducible representations, by using
our example. Let’s take a closer look at the representation ρ1 in Eq. (1). All the matrices are
block-diagonal, with a 2 × 2 block in the upper-left corner and a 1 × 1 block in the lower-right
corner. Interestingly, if we isolate the 2 × 2 blocks themselves, we can see that they form a
valid representation of the group. The same happens for the 1 × 1 blocks (it is just the trivial
representation). Therefore, we say that ρ1 is a reducible representation. The same statement
applies to ρ2, although it is not immediately clear from the form of the matrices. It is reducible
because we can find a similarity transformation like the one of Eq. (2) that brings it to a block-
diagonal form (e.g., to ρ1, in this case). By contrast, when this is not possible, we say that the
representation is irreducible. For example, the 2× 2 and 1× 1 blocks that we can read off from
the matrices of ρ1 form two irreducible representations of C3v (one is two-dimensional, the other
is one-dimensional).

We are skipping a lot of mathematical details here, for simplicity. The important thing to
learn is that the number of irreducible representations of a finite group is finite. For the C3v

group that we are considering, there exist only three irreducible representations, called A1, A2

and E in Mulliken’s notation (please, don’t confuse this E with the identity element!). A1 and
A2 are one-dimensional, while E is two-dimensional. Any other representation is reducible and
can be decomposed into a combination of these irreducible representations. In other words, its
matrices can be made block diagonal by a transformation like the one in Eq. (2), such that each
of the blocks corresponds to one of the irreducible representations.

The irreducible representations of a certain finite group are listed in the so-called character
tables. In these tables the traces χρ(g) are reported, for each element g of the group and for
each irreducible representations ρ. The character table of C3v is shown in Fig. 2.

Figure 2: Character table of the C3v group. The rows correspond to the irreducible representa-
tions. The columns correspond to the group elements. The entries of the table are the traces of
the matrices in the given representation. As an example, we highlight the trace of the matrix
for the element C−3 in the A1 irreducible representation. Note: the trace of the identity element
(first column) always gives the dimension of the representation.
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(iv) Take the 2 × 2 blocks in the upper-left corner of the matrices of ρ1 (Eq. (1)) and show
that their traces are equal to the ones in the character of the irreducible representation E.
Do the same for the 1× 1 blocks. What irreducible representation is formed by the 1× 1
blocks, A1 or A2? (1 Point)

(v) Take the character table of Fig. 2 and show that, for each pair of irreducible representation
ρ and ρ′, the following property holds{

(ρ, ρ′) = 0 if ρ 6= ρ′

(ρ, ρ′) = 1 if ρ = ρ′

Use the scalar product defined in Eq. (5). (2 Points)
Hint: you can see the rows of the character table as vectors and do a scalar product between
them (and divide by N). Convince yourself that this is equivalent to the product in Eq. (5).

(vi) The property discussed in the previous point is peculiar of irreducible representations.
Now try to compute (ρ1, ρ1) for the representation ρ1 (Eq. (1)). You can conclude from
the result that ρ1 is not an irreducible representation. (1 Point)

In the case of ρ1, we could convince ourselves that it is reducible and decompose it by
seeing that it is block-diagonal. For ρ2 the story is more complicated if we don’t know how to
make it block-diagonal. We surely know that it is reducible, since it is three-dimensional, and the
irreducible representations of C3v are either one- or two-dimensional. Can we find the irreducible
representations in which ρ2 can be decomposed? There is a simple way to identify them. As we
will see, they turn out to be equal to the ones we obtained for ρ1, since ρ1 and ρ2 are equivalent.

(vii) The trick to decompose a reducible representation ρ into irreducible representations is the
following. For each irreducible representation ρi (i = A1, A2, E for C3v), compute (ρ, ρi).
You’ll get an integer number mi. If it is zero, the irreducible representation ρi is not part
of the decomposition of ρ. If it is finite, it tells you how many times ρi appears in the
decomposition of ρ.

Use the trick outlined above to explicitly show that ρ1 and ρ2 are both decomposable into
A1 “plus” E (i.e., mA1 = 1, mA2 = 0 and mE = 1). (2 Points)

(viii) Consider now the four-dimensional representation of C3v reported in Fig. 3 (denoted by Γ).
Use the trick described in the previous point to decompose it into irreducible representa-
tions. Is some irreducible representation appearing more than once in the decomposition?
(2 Points)

Figure 3: Four-dimensional representation of the C3v group.

In conclusion of the exercise: if you try to solve all of the points (i-viii), even if some are
wrong, you get 1 extra point for the patience of having read all the text up to here. (1 Point)
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Exercise 2: Time reversal (8 Points)

(i) Let H be a Hamiltonian with a nondegenerate discrete spectrum (eigenstates |n〉 with
energies En), which is invariant under time-reversal transformation Θ, i.e.

[H,Θ] = 0. (6)

Show that the wave functions of the eigenstates of the Hamiltonian can be chosen to be
real for any instant of time (i.e., φn(~x, t) ∈ R). (4 Points)
Hints: First figure out what the stationary state Θ|n〉 is (using the time-independent
Schrödinger equation). Then study how the operator Θ acts on the time-dependent eigen-
states of the Hamiltonian (use the real space representation and the Schrödinger picture).

(ii) Let |n〉 be a nondegenerate eigenstate of a time-reversal-invariant Hamiltonian.
Show that 〈n|~L|n〉 = 0. (2 Points)

(iii) Let φα(~p) = 〈~p|α〉 be a momentum-space representation of a state |α〉.
Show that 〈~p|Θα〉 = φ∗α(−~p). (2 Points)
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