
Goethe-Universität Frankfurt
Institut für Theoretische Physik

Lecturer: Prof. Dr. Claudius Gros, Room 1.132
Tutorial supervisor: Dr. Francesco Ferrari, Room 1.143

Frankfurt, 02.05.2022

Höhere Quantenmechanik
Summer term 2022

Exercise sheet 3
(Submission date: Until 09.05.2022 12:00)

Exercise 1: time evolution (5 Points)

A particle with mass m is confined to a one-dimensional potential well of width a, and with
infinite barriers, i.e. 0 < x < a.

(i) Find the eigenfunctions and energies of the time-independent Schrödinger equation. (2 Points)

(ii) Suppose that at time t = 0 the particle is in the state described by the wave function

Ψ(x, t = 0) =
1√
a

[
1 + 2 cos

(πx
a

)]
sin
(πx
a

)
.

Compute its time-evolved wave function at a generic time t. (1 Point)
Hint: use the information from the previous point

(iii) Compute the probability that the particle is at x ≥ a/2 at time t. (2 Points)
Hint:

∫
dx sin(x) sin(2x) = 2

3 sin3(x)

Exercise 2: groups and representations (6 Points)

In mathematics, a group is a set of elements with a binary operation that fulfills certain properties.
For simplicity, in this exercise we consider the case of finite discrete groups, where we can denote
the set of elements as G = {gα}α=1,...,N (N being the total number of elements). The binary
operation is indicated by ◦. The properties that define a group are the following

• closure: the set needs to be closed with respect to the operation. This means that the result
of the application of ◦ between two elements of G is an elements of G, i.e. gα ◦ gβ = gγ ,
gα, gβ, gγ ∈ G.

• associativity : the operation needs to be associative, i.e. (gα ◦ gβ) ◦ gγ = gα ◦ (gβ ◦ gγ)

• existence of the identitiy element : there exist an element e ∈ G such that gα◦e = e◦gα = gα

• existence of the inverse: for each element gα ∈ G, there exist an inverse element g−1α ∈ G
such that gα ◦ g−1α = g−1α ◦ gα = e

When the operation ◦ is commutative, i.e. gα ◦ gβ = gβ ◦ gα, the group is said to be Abelian.
Groups are abstract concepts. To define them, we just need to specify the elements of G

and how the operation connects them. Representation theory is the study of the concrete ways
in which abstract groups can be realized. A representation is a mapping ρ from the group G
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(elements and operation) to a vector space V . For our practical purposes, representing a group
means expressing its elements as matrices of a given dimension, g ∈ G 7→ ρ(g) ∈ V , and the
operation among them as a matrix-matrix product (note: this explanation is a bit sloppy), such
that gα ◦ gβ = gγ ⇒ ρ(gα)ρ(gβ) = ρ(gγ). The dimension of the representation is equal to the
dimension of the vector space V (which can be a complex space, in general).

(i) We consider a group that contains two elements (among others), σ and τ . Its binary
operation is denoted by ◦. The above elements satisfy the following properties

σ ◦ τ = τ ◦ σ τ2 = e σ4 = e (1)

Here, the powers denote a repeated application of the operation ◦ between identical ele-
ments, e.g. τ3 = τ ◦ τ ◦ τ . The element e is the identity. Using σ, τ and e it is possible to
construct all the inequivalent elements of the group by applying the operation ◦. Can you
do it? How many are they? Is the group Abelian? (1 Point)

(ii) In the previous point, we gave an abstract definition of the group. Now we want to construct
a representation ρ. Consider the matrices

Σ = ρ(σ) =

(
1 0
0 i

)
T = ρ(τ) =

(
−1 0
0 1

)
and E = ρ(e) =

(
1 0
0 1

)
Verify that ρ is a valid representation. Note: the operation ◦ is represented by the matrix
product. (1 Point)

(iii) Representations of a group are not unique. This is exemplified by the fact that we can
define a new representation ρ′ for the group, i.e.

Σ′ = ρ′(σ) =

(
i 0
1 1

)
T ′ = ρ′(τ) =

(
−1 0
i+ 1 1

)
and E′ = ρ′(e) =

(
1 0
0 1

)
Prove that this is a valid representation. (1 Point)

(iv) So far we have constructed two-dimensional representations of the group (i.e., 2× 2 matri-
ces). We could also construct one-dimensional representations, i.e. represent the elements
by scalars (“1×1 matrices”). The simplest example is the trivial representation, where each
element of the group is represented by the number 1. This obviously satisfies the relations
among the elements. Can you find another one-dimensional representation for the group
of this exercise? (1 Point)

(v) We now want to give a physical interpretation of the group. Consider the planar molecule
in Fig. 1. We have numbered its “arms”. Our group is the group of symmetries of this
molecule (the group is sometimes called C4h). Indeed, we have a so-called C4 rotation, i.e.
a rotation of 90◦, which transforms arm 1 into arm 2, arm 2 into arm 3, and so on. This
corresponds to our element σ (after four rotations, we are back to the initial configuration).
Another symmetry is the inversion with respect to the center of the molecule (i.e., the Cu
atom). This operations transforms arm 1 into arm 3 (and viceversa), arm 2 into arm 4
(and viceversa). This corresponds to our element τ (two inversions bring us back to the
initial configuration).

Does σ ◦ τ = τ ◦σ hold for these symmetry operations? Sketch an example to show that it
holds. We can express the coordinates of the atoms in terms of the cartesian axes depicted
in Fig. 1 (x parallel to arm 1 and y parallel to arm 2). Can you write down the 2×2 matrices
which implement the symmetries in these coordinates? Are they a valid representation of
our group? (2 Points)

2



Figure 1: Tetraazidocopper(II). Orange and blue denote Cu and N atoms, respectively.

Exercise 3: spin-1
2

rotations (4 Points)

(i) Consider a particle with spin 1
2 . Rotate the wave function |φ〉 = 1√

2
(|↑〉 + i |↓〉) by 90◦

around the x-axis. (1 Point)

(ii) We now consider a system of two spin-12 particles. Show that the singlet wave function,
|S〉 = 1√

2
(|↑↓〉 − |↓↑〉), is invariant under generic global rotations (i.e. rotations of both

spins). (3 Points)

Hint: As discussed in the notes, a generic rotation for a single spin can be written as a
2× 2 unitary matrix with determinant 1. A possible parametrization of the matrix is

U =

(
eiδ cos(γ) ie−iφ sin(γ)
ieiφ sin(γ) e−iδ cos(γ)

)
For the system of two spins, we need to consider the global rotation, which can be written
as U ⊗ U , and apply it to the singlet state, |S〉 = 1√

2
(|↑〉 ⊗ |↓〉 − |↓〉 ⊗ |↑〉).

Exercise 4: translation operator (5 Points)

(i) Compute the commutator [x, U(a)] between the position operator x and the translation
operator U(a) = exp

(
i
~ap

)
in one dimension. (3 Points)

Hint: first obtain the result of the commutator [x,pn] by induction (n ∈ N).

(ii) If x|x′〉 = x′|x′〉, show that U(a)|x′〉 is still an eigenstate of x. What is the corresponding
eigenvalue? (2 Points)
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