Goethe-Universität Frankfurt Institut für Theoretische Physik

Lecturer: Prof. Dr. Claudius Gros, Room 1.132 Tutorial supervisor: Dr. Francesco Ferrari, Room 1.143



Frankfurt, 18.04.2022

# Höhere Quantenmechanik Summer term 2022

## Exercise sheet 1

(Submission date: Until 25.04.2022 12:00)

#### Exercise 1: operators and states (6 Points)

We consider the quantum state  $|\psi\rangle$  which is a simultaneous eigenstate of the operators **A** and **B** with eigenvalues *a* and *b*, respectively. For simplicity, we also assume that **A** and **B** have a discrete spectrum.

- (i) if the two operators *anticommute*, i.e. AB + BA = 0, what can you say about the eigenvalues a and b? (1 Point)
- (ii) Denoting by  $|x\rangle$  the eigenstates of the position operator  $(x \in \mathbb{R})$ , we can define the parity operator **P** such that  $\mathbf{P}|x\rangle = |-x\rangle$ . What is the effect of the operator  $\frac{1}{2}(\mathbb{1} + \mathbf{P})$  ( $\mathbb{1}$  being the identity) on a generic state  $|\psi\rangle$ ? (1 Point)
- (iii) Prove that **P** is self-adjoint and that  $\mathbf{P}^2 = \mathbb{1}$ . What are the possible eigenvalues of **P**? (2 Points)
- (iv) The parity operator **P** anticommutes with the momentum operator  $\mathbf{p} = -i\hbar \frac{d}{dx}$ . Can you prove it? What is the *physical* implication for a quantum state that is an eigenstate of both operators? (2 Points)

### Exercise 2: perturbing a quantum harmonic oscillator (8 Points)

We consider the one-dimensional quantum harmonic oscillator

$$\mathbf{H}_0 = \frac{\mathbf{p}^2}{2m} + \frac{1}{2}m\omega^2 \mathbf{x}^2$$

where m is a mass and  $\omega$  a frequency.

- (i) Explicitly rewrite the Hamiltonian in terms of the ladder operators  $a = \sqrt{\frac{m\omega}{2\hbar}} (\mathbf{x} + \frac{i}{m\omega} \mathbf{p})$ and  $a^{\dagger}$  (remember:  $[a, a^{\dagger}] = 1$ ). What is the ground state of the system? (1 Point)
- (ii) We want to see the effect of three different perturbations on the harmonic oscillator:  $\mathbf{V}_1 = \alpha$ ,  $\mathbf{V}_2 = \beta \mathbf{x}$ , and  $\mathbf{V}_3 = \gamma \mathbf{x}^2$ . Considering each of these perturbation separately ( $\mathbf{H} = \mathbf{H}_0 + \mathbf{V}_i$ , i = 1, 2, 3), use time-independent perturbation theory to compute the firstand second-order corrections to the ground state energy. (3 Points)
- (iii) Compare the results that you have obtained by perturbation theory with the exact solutions of the three cases (show explicitly how you obtain the exact ground state energies).
  (4 Points)

#### Exercise 3: angular momentum (6 Points)

We consider the angular momentum operator  $\vec{\mathbf{L}} = (\mathbf{L}_x, \mathbf{L}_y, \mathbf{L}_z)$  and the eigenstates of  $\mathbf{L}_z$  and  $\mathbf{L}^2$  operators, defined by

$$\mathbf{L}_{z}|\Psi_{l,m}\rangle = \hbar m |\Psi_{l,m}\rangle$$
 and  $\mathbf{L}^{2}|\Psi_{l,m}\rangle = \hbar^{2} l(l+1)|\Psi_{l,m}\rangle$ 

We denote by  $\mathbf{L}_{+} = \mathbf{L}_{x} + i\mathbf{L}_{y}$  and  $\mathbf{L}_{-} = \mathbf{L}_{x} - i\mathbf{L}_{y}$  the raising and lowering operators, respectively. Using the commutation relation  $[\mathbf{L}_{a}, \mathbf{L}_{b}] = i\hbar\epsilon_{abc}\mathbf{L}_{c}$ 

- (i) compute the results of the commutators  $[\mathbf{L}_z, \mathbf{L}_{\pm}]$  and  $[\mathbf{L}^2, \mathbf{L}_{\pm}]$ . (2 Points)
- (ii) Show that

$$\mathbf{L}_{z}\mathbf{L}_{\pm}|\Psi_{l,m}\rangle = \hbar(m\pm 1)\mathbf{L}_{\pm}|\Psi_{l,m}\rangle$$

i.e. that  $\mathbf{L}_{\pm}$  raise and lower the angular momentum quantum number m. Why is  $\mathbf{L}_{\pm}|\Psi_{l,m}\rangle$  also an eigenstate of  $\mathbf{L}^2$ ? (2 Points)

(iii) Show that the value of m is bounded and it can only take values  $-l \le m \le l$  (with l > 0). Hint: you can use the condition  $\|\mathbf{L}_{\pm}|\Psi_{l,m}\rangle\|^2 > 0$  as a starting point (2 Points)