Exercise Sheet #5

Problem 1 (Implementing a Feedforward network)

According to Richard Feynman, you only really understands something if you know multiple ways to do it. In his spirit, let's implement a simple fully connected feedforward network with two hidden layers in various different ways in PyTorch. The hidden layers perform a linear transformation and apply a ReLU activation function. Consider the example from the lecture (link). Define the model

- (a) by explicitly defining the module parameters in the constructor of your nn.Module subclass and implementing the necessary matrix multiplications in the forward function.
- (b) using nn.Linear and nn.ReLU.
- (c) using a nn.ModuleList.
- (d) using nn.Sequential.

Problem 2 (Digging into the Code)

In this directory (link), you can find the implementations of all available PyTorch modules. With your current knowledge of ML and Python, look into

- (a) how the nn.Module base class is implemented.
- (b) how the nn.Linear module is implemented.
- (c) how certain functionalities work (e.g. passing input to a layer directly to the class instance¹ or how the parameters() method works).
- (d) how the nn.ReLU module works.

¹Hint: For this a __call__ method must be implement