Exercise Sheet #3

Problem 1 (*Correlations*)

The correlation coefficient is defined by

$$\operatorname{Corr}(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\operatorname{E}[(X - \operatorname{E}(X))(Y - \operatorname{E}(Y))]}{\sigma_X \sigma_Y}$$

for random variables X, Y. Generate two NumPy arrays \mathbf{x} , \mathbf{y} of random numbers of length $N = 10\,000$, compute the correlation between them numerically, and create a scatter plot in Matplotlib for visualization. Generate arrays for four cases with

- (a) a correlation $\operatorname{Corr}(\mathbf{x}, \mathbf{y}) \approx 0$,
- (b) a correlation $\operatorname{Corr}(\mathbf{x}, \mathbf{y}) \approx 1$,
- (c) a correlation $\operatorname{Corr}(\mathbf{x}, \mathbf{y}) \approx -1$,
- (d) a correlation $Corr(x, y) \approx 0.5$.

Problem 2 (Bayesian Inference - Coin Flip)

Consider the example from the lecture (see here) of flipping a biased coin defined by

$$p(\text{heads}) = \alpha, \qquad p(\text{tails}) = 1 - \alpha,$$

where $\alpha \in [0, 1]$. The code in the lecture uses Bayesian inference to estimate the bias α of a coin from observations of flipping the coin.

The idea behind Bayesian inference is to start with a hypothesis about some probability distribution (usually one starts with a uniform distribution) and use observed data to iteratively update the distribution via Bayes' theorem

$$P(\text{hypo} \mid \text{data}) = \frac{P(\text{data} \mid \text{hypo})}{P(\text{data})} \cdot P(\text{hypo}).$$

In the case of the coin flip, the hypothesis P(hypo) (called *prior*) is a probability distribution assigning a probability to a potential value of the bias α . Numerically, this distribution is discretized to nX = 11 support points.

In this, **xx** resembles the discretized α values and **pp** the assigned probabilities.

In each call of the function updatePrior, the posterior $P(hypo \mid data)$ is computed using Bayes' theorem, considering new data (a coin flip) generated by

20 evidence = 0.0 if (np.random.uniform()>trueBias) else 1.0

The posterior becomes the new prior. This procedure is repeated for 200 observations.

- (a) Increase the number of support points to nX = 101.
- (b) In lines 37 to 45 a table of the current prior distribution is generated. Replace that table with an animated bar plot visualizing for each new coin flip how the prior changes.

 ${\bf Hint:} \ {\bf For \ animating \ plots \ you \ can \ use \ the \ {\tt FuncAnimation \ class \ from \ {\tt matplotlib.animation}}.$

To smooth out the updates over time, include a memory into the update process. Define a weight parameter $\beta \in [0, 1]$ that controls the degree of belief in new data

prior $\leftarrow (1 - \beta) \cdot \text{prior} + \beta \cdot \text{posterior},$

where in this new information is weighted by β .

- (c) Implement the memory, as defined above, in the program. How does this change things?
- (d) Generate a plot of the variance of the posterior distribution after a sufficient number of updates as a function of β . How does the variance scale with β ?