
Machine Learning Primer
WiSe 24/25

02.12.2024
C. Gros, D. Nevermann

Project #3
Rocking Rock Paper Scissors

Deadline: 13.01.2025, 12:00h

Note: The code you get as a starting point for the project (see
below) might still be changed slightly to improve the game. Also,
if you encounter strange behavior, there might be a bug. Send
me (Daniel) a mail if there is something fishy.

What is the project about?
In this project you will train a reinforcement learning agent in a simple game.
In the Tuesday lecture after the project deadline (14.01.2025) we will have a
competition between different groups. Participation is mandatory.
The game is a modification of the famous child’s game rock paper scissors
played on a two-dimensional playing field.

Rules

• Each player gets one playing piece somewhere on the grid. The playing
piece can be either a rock, a paper or scissors.

• The players take turns. In each round, the player whose turn it is can
either make a move (one cell up, down, left or right) or convert its
piece.

• A conversion converts the piece to the next type in the repeating cy-
cle (R → P → S). Conversion is only possible if the distance to the
opposing piece is at least two moves.

• If the opposing pieces meet, they engage in a rock-paper-scissors fight,
where rock beats scissors, scissors beats paper and paper beats rock.
The loosing piece is removed from the board and the player lost the
match.

• If two pieces are of the same type, they cannot move to the same field.
Moves are bound by the borders of the playing field.

1



Machine Learning Primer
WiSe 24/25

02.12.2024
C. Gros, D. Nevermann

• There are holes in the playing field. Moving onto these holes also kills
the piece and causes the respective player to lose.

• In the bottom left corner there is a goal field. Walking on that wins
the round, but killing the opponent gains more points.

Code framework
Under this link

https://itp.uni-frankfurt.de/~nevermann/teaching/rps.zip

you find a starting point for working with the game. The repository includes

• The game itself (rps_game/game.py).

• An OpenAI gymnasium environment for the game (rps_game/env.py).

• Opponent classes (rps_game/opponent.py). They manage the moves
of the opponent player during training.

Game API
The game is implemented in the Game class. When constructing a new game,
one must pass the size of the square playing field and optionally may pass
the number of holes n_holes.
The players (instances of the Player class) store a position (pos: NDArray[int]),
a piece type (piece: Piece) and a unique ID (id: int).

Attributes

Game.board
The board as a NumPy array, where the game entities are encoded by

empty rock / paper / scissors hole goal
0 1 / 2 / 3 + player.id * 3 -2 -100

Game.size
The size of the playing field.

Game.next_player
The ID of the player whose turn it is.

Game.spawn_goal_field
If the game contains a goal field or not.

2

https://itp.uni-frankfurt.de/~nevermann/teaching/rps.zip
https://gymnasium.farama.org/index.html


Machine Learning Primer
WiSe 24/25

02.12.2024
C. Gros, D. Nevermann

Methods

Game.reset()-> None
Resets the playing field randomly.

Game.is_game_over()-> bool
If the game is over.

Game.set_static_hole_config(positions: NDArray)-> None
Set a static hole positions that persist resets.

Game.act(self, action: Action | None)-> None
Performs an action for the Game.next_player. If None is passed, no action
is taken.

Game.__str__()-> str
Returns a string representation of the game board.

Gymnasium environment
OpenAI gymnasium provides an API standard for reinforcement learning.
The package is well documented. Most importantly, an environment defines
an observation_space, an action_space and methods for reset and step,
where step expects a number representing an action in the action_space,
performs that action in the environment and returns, alongside other things,
a new observation and a reward for the action. Every time the step-function
is called, player 0 performs the passed action and player 1 performs acts in
response in accordance with the opponent class.

The render_mode controls if and how the observations are rendered, when
RPSEnv.render is called. For render_mode == "human" a graphic visualiza-
tion is presented (not recommended during training).

If you feel like you have to modify the environment, you can, but make sure
that you don’t break the API.

Hints on training your agent
You can, if you seek the challenge, implement a deep reinforcement learn-
ing algorithm yourself. Alternatively, Stable Baselines3 provides implemen-
tations for different algorithms, fully compatible with gymnasium environ-

3

https://gymnasium.farama.org/index.html
https://stable-baselines3.readthedocs.io/en/master/index.html


Machine Learning Primer
WiSe 24/25

02.12.2024
C. Gros, D. Nevermann

ments.

Note, that in the game, not all possible actions are necessarily allowed, given
the current game state, (e.g. a piece may not leave the board boundaries or
conversion with another piece close by). The environment already provides
an action mask (RPSEnv.compute_action_mask) that indicates valid moves.

If you encounter problems during training, simplify! Use a game without
holes and a trivial opponent. Then, once your agent is learning, gradually
increase complexity.

When thinking about what opponent to use during training, trivial opponents
are probably a good start. Later you might want to employ self-training,
where the agent is trained against a previous version of itself. You can find
examples how to implement that online.

Minimum requirements
Your project should fulfill some minimum requirements:

• Train a reinforcement learning agent to play the 2D rock paper scissors
game on a 4 × 4 grid with two holes in the static hole configuration
predefined in the environment and a goal field using an algorithm of
your choice.

• Document your training efforts, compare different approaches you might
take (e.g. a plot of the reward over training steps, the mean episode
length or the success rate over episodes).

• Submit the code and a documentation in a suitable format. Further-
more, include a script to enable participation in the tournament – de-
tails are enclosed in the README file found in the code repository.

Optional

• Increase game complexity: Add a second playing piece per player, im-
plement barriers in the game or consider randomly placed holes. For
this, you will most likely have to modify the game and the environment.
In this case, provide functionality such that the game with your modifi-
cations can be matched up against other teams in a ‘PRO’-tournament.
You can also coordinate with other teams that do the same modifica-
tions and fight against them on equal terms.

4


