
Machine Learning Primer
WiSe 24/25

11.11.2024
C. Gros, D. Nevermann

Project #2
Graduating Autograd

Deadline: 02.12.2024, 12:00h

At the heart of every deep learning framework (such as PyTorch) lies an
automatic differentiation engine. Typically, an input in a training dataset is
propagated through a neural network thereby producing an output and then,
using a suitable loss function, compare this to the desired output. The goal is
to minimize the loss function. This is done by computing the gradients of the
loss function with respect to the network parameters ϑij and adjusting them
using an optimization algorithm (e.g. gradient descent). Here, the automatic
differentiation engine comes into play.

In this project, you will implement your own automatic differentiation engine
and learn, how deep learning frameworks function on the way.

Forward propagation vs. backward propagation
The important bit when it comes to automatic differentiation is the backward
propagation. Neural networks are in essence just functions ~y = Net(~x).
While in a forward pass, the goal is to simply compute the output ~y of
the network, backward propagation is used to find the gradient of the loss
function numerically and automatically

∂ Loss(~y)

∂ϑij

=
∂ Loss(~y)

∂~y

∂~y

∂ϑij

=
∂ Loss(~y)

∂~y

∂ Net(~x)

∂ϑij

,

where we used the chain-rule. Things however get complex with the deriva-
tive of the network with respect to the parameters. The network contains
many small operations involving the various weights in the network. All of
these operations add up to the final result. For all of these atomic operations
we need to differentiate and apply the chain-rule to obtain ∂Net(~x)

∂ϑij
.

1



Machine Learning Primer
WiSe 24/25

11.11.2024
C. Gros, D. Nevermann

Building computation graphs
To be able to compute such complex derivatives, we need to somehow track
every operation to the input ~x. Later, in the backward pass, we can multi-
ply local derivatives of all these operations, while obeying the chain-rule, to
obtain the final result.
The trick here is to continuously build up a computation graph, taking note
of all performed operations. Let’s step back from neural networks for now
– instead of considering deep neural networks, we look simple functions,
changing the notation such that from now on x is the variable to which
derivatives are evaluated1. Suppose, for example, we have a function

z := f(x1, x2) = log(x1x2) sin(x2).

The corresponding computation graph would look something like this:

Notice that two different types of nodes: operational nodes (gray) and value
nodes (orange), and that after every atomic operation, an auxiliary value
node is defined.

Back propagation
Now how do we obtain the derivatives ∂z

∂xi
in the example above?2 Deep

learning frameworks, like PyTorch, store lists of atomic derivatives (see here).
So for our example, the derivatives of ∗, log and sin are simply known

∂

∂x
a ∗ x = a,

∂

∂x
log(x) =

1

x
,

∂

∂x
sin(x) = − cos(x).

The only thing left to do now is backwards traverse the computation graph,
use our atomic derivatives and apply the chain rule to obtain the desired

1In ML, x is often denoted the input to the network and ϑij the parameters which are
changed in the optimization.

2Note that we are of course only looking at the numerical derivative. So what we are
really computing is e.g. ∂z

∂xi

∣∣
xi=3

.

2

https://github.com/pytorch/pytorch/blob/master/tools/autograd/derivatives.yaml


Machine Learning Primer
WiSe 24/25

11.11.2024
C. Gros, D. Nevermann

derivative, e.g.
∂z

∂x1

=
∂z

∂w

∂w

∂y1

∂y1
∂a

∂a

∂x1

= 1 · y2 ·
1

a
· x2

= 1 · sin(x2) ·
1

x1x2

· x2

Very similarly, the other derivatives can be computed. While this algorithm
does not look like a great achievement for small functions, it is a necessity
for deep neural networks. Be reminded that neural networks are just a very
complex function of atomic operations.

How does this look in PyTorch?
All the above happens in PyTorch under the hood. Let’s look at the ex-
ample function f from above and compute its derivatives using PyTorch’s
autograd.

1 import torch
2 import numpy as np
3

4 x1_val, x2_val = 1., 2.
5 x1 = torch.tensor([x1_val], requires_grad=True)
6 x2 = torch.tensor([x2_val], requires_grad=True)
7 a = x1 * x2
8 y1 = torch.log(a)
9 y2 = torch.sin(x2)

10 z = w = y1 * y2
11

12 # Initialize backpropagation
13 z.backward()
14

15 # Computation using calculus
16 dzdx1 = lambda x1, x2: np.sin(x2)/x1
17 dzdx2 = lambda x1, x2: np.cos(x2) * np.log(x1*x2) +

np.sin(x2)/x2
18

19 print(f"PyTorch: x1.grad = {x1.grad}, x2.grad = {x2.grad}")
20 print(f"Calculus: dz/dx1 = {dzdx1(x1_val, x2_val):.4f},

dz/dx2 = {dzdx2(x1_val, x2_val):.4f}")

Here, we define two PyTorch tensors x1 and x2 and perform the operations
happening in f on them. The option requires_grad=True tells PyTorch
to record operations on that particular tensor, i.e. built up a computation
graph. In line 13, z.backward() starts the backpropagation, propagating

3



Machine Learning Primer
WiSe 24/25

11.11.2024
C. Gros, D. Nevermann

the gradient backwards through the computation graph. Play around with
the PyTorch autograd yourself!

What should you do?
The goal of the project is to implement backpropagation to build your own
autograd engine. Your final product should function similar to the PyTorch
autograd engine, we looked at above. You don’t necessarily have to im-
plement tensors; scalar values are enough. The program should be able to
compute gradients of functions similar to f . Here is a list of examples that
you should try for your testing:

f(x1, x2) = log(x1x2) sin(x2)

g(x1, x2) = x1x2(x1 + x2)

h(x) = 3x2 + 4x+ 2

Neuron(~x, ~w, b) = tanh (~x · ~w + b)

Minimum requirements
Your project should fulfill some minimum requirements:

• Implement an automatic differentiation engine using the backpropaga-
tion algorithm from scratch. Do not use PyTorch in your implementa-
tion.

• Show, that your algorithm works on the example functions above.

• Present your work in a suitable way, explaining what you did.

Optional

• Implement neurons and layers of neurons, viz implement neural net-
works, taking your autograd engine as a basis.

• Using an optimization algorithm, train a simple neural network. You
could e.g. train a neural network to replicate a logical AND gate or do
a simple classification task.

4


