
Adv. intr. to C++, scientific computing and machine learning
Hand in by Monday 20/12/21 at 15:00.

WS 20/21
C.Gros

Exercise Sheet #9

Problem 1 (Containers) 10Pts

This problem will treat different container types and how they perform com-
pared to the generic array. Therefore we want to store N elements, e. g. we
want to store the hexadecimal representation (i.e. a string) of all numbers
in the set {0, N − 1}. The types of storages we want to investigate are the
container types vector, map, list and additionally the array.

(a) Measure the time it needs to put all N elements into the respective
storage for each type. Try with N ∈ {105, 106, 107, 108}, but keep an
eye on your machine’s memory. And do not forget to correctly delete
the storages right after last usage. How can you speed up for the vector
container? Can you estimate how much memory it should optimally take
to store the N strings?

(b) Measure the access time, i. e. the time it needs to look up K ∼ 106

random entries from the array, vector and map. Compare the average
time needed to look up a single element for these storage types, using the
highest possible N . Does this fit to what you know about the memory
representation of the types?

(c) Measure the access time for list as well. Mind that this will be much
slower, as you have to look up the entries by traversing the list manually,
therefore use K ∼ 104.

Iterators are a generalization of pointers and take care of pointer increment
dynamics. Therefore, a program written with iterators can be easily adapted
to different containers.

(d) Write a function look_up_time that takes as arguments a templated
variable that is a pointer to a container, K, and N , and computes the
average access time. This function has to be compatible with different
containers (arrays, vectors and lists), so you should traverse the con-
tainer. How does this affect performance? What is the problem if one
were to use maps as well? Hint: You can use auto when instantiating
iterators with containers’ begin method (2Pts)

1

Adv. intr. to C++, scientific computing and machine learning
Hand in by Monday 20/12/21 at 15:00.

WS 20/21
C.Gros

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-3 -2 -1 0 1 2 3

s
(x

)

x

s(x)
N=2
N=4
N=6
N=8
N=8

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-3 -2 -1 0 1 2 3

s
(x

)

x

s(x)
N=2, analytic

N=2, numeric simpson rule
N=2 trapezoid rule

Problem 2 (Numeric Integration) 10Pts

Consider the square wave periodic function, defined by:

s(x) =

{
−1 , −π ≤ x < 0

1 , 0 ≤ x < π
, s(x+ 2π) = s(x) . (1)

(a) Calculate the Fourier series representation of the function analytically.
Remember that, given an f(x) = f(x+T) periodic function, the Fourier
series expansion can be written as:

f(x) =
a0
2

+
N→∞∑
k=1

(
ak cos

2πkx

T
+ bk sin

2πkx

T

)
, (2)

where the Fourier coefficients ak and bk are given by:

ak =
2

T

∫ x0+T

x0

f(x) cos
2πkx

T
dx ,

bk =
2

T

∫ x0+T

x0

f(x) sin
2πkx

T
dx .

(3)

2

Adv. intr. to C++, scientific computing and machine learning
Hand in by Monday 20/12/21 at 15:00.

WS 20/21
C.Gros

(b) Compute the first ten pairs of Fourier coefficients, i. e. ak and bk for
k ∈ {0, . . . , 9}, by evaluating the integrals numerically. Do this using the
Simpson rule as well as the trapezoid rule, which were both introduced in
the lecture, evaluating the function at n points. Calculate errors between
the analytically and numerically calculated coefficients as a function of
n (let n ∈ {10, ..., 1000}, where n is the number of integration steps).
Verify the error scaling given in the lecture by plotting this function in
a log-log scale.

(c) Reproduce the plots above, considering the five partial sums SN(x) cor-
responding to N ∈ {2, 4, 6, 8, 100}. The Fourier series approximation of
the square wave exhibits the so-called Gibbs phenomenon, which refers
to the non-vanishing series expansion error close to the step. To ver-
ify this, plot the error εN = |SN(T/2N) − f(T/2N)| as a function of
N . Verify that it does not converge to zero but a finite limit if you use
exact coefficients. Does this also hold if you use numerically calculated
coefficients (trapezoid & Simpson)?

Problem 3 (Matrix Inversion using Gauss Elimination) 5Pts

In the lecture, you learned how to implement the Gauss elimination method
to solve a linear set of equations. Now, given that finding the inverse of
a N × N square matrix A is equivalent to finding the solution A−1 of the
equation AA−1 = I, where I is the identity matrix, we can use the same
Gauss method as for finding the solution x of a square linear system of
equations Ax = b. This can be seen by the fact that the matrix inversion
problem is equivalent to solving N linear systems of size N , each of the form
AA−1

i = Ii, where A
−1
i and Ii is the i-th column of the inverse and the identity

matrix, respectively.
Write a template function

gaussInversion(double (&A)[N][N], double (&A_i)[N][N]){...} that
takes a matrix A by reference and writes the solution into A_i. You should
also include appropriate error handling, i.e., return error messages if the
matrix is not invertible. Hint : You could run the Gauss algorithm for each
row, but this would be very inefficient. Rather, you should work with an
augmented Matrix of the form (A|I) and work on that.

3

	(Containers)10Pts
	(Numeric Integration)10Pts
	(Matrix Inversion using Gauss Elimination)5Pts

