
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 03.06.2024
C. Gros, D. Nevermann

Exercise Sheet #8
Deadline: 10.06.2024, 12:00h

Problem 1 (Butcher Tableaus) (10 points)

The general form of an explicit Runge-Kutta method is given by

yn+1 = yn + h
s∑

i=1

biki,

where
k1 = f(tn, yn),

ki = f

(
tn + cih, yn + h

s∑
j=1

aijkj

)
, i = 2, . . . , s.

To specify a particular method, one needs to provide the integer s (the num-
ber of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for i = 1, . . . , s)
and ci (for i = 1, . . . , s), which is most conveniently done in a Butcher tableau

0
c2 a21
...
cs as1 as2 · · · ass

b1 b2 · · · bs

(a) What are the Butcher tableaus for Euler’s method and a fourth-order
Runge-Kutta method?

(3© points)

(b) Explicitly state the evolution equations for the Runge-Kutta method
with Butcher tableau

0
1 1

1
2

1
2

and implement the method in C++.
(5© points)

(c) Use your implementation to solve a simple harmonic oscillator
ẍ(t) + ω2

0x(t) = 0.

(2© points)

1

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 03.06.2024
C. Gros, D. Nevermann

Problem 2 (Numerical Solution of Differential Equations) (10 points)

The Kepler problem, namely a point mass in a plane under a −k/r potential,
was introduced in the lecture (link) as an example for a differential equation
that can be solved with different numerical methods.

(a) Implement solvers of the Kepler problem using

1. Euler’s method,
2. fourth-order Runge-Kutta,
3. the leapfrog scheme
4. and the Adams-Bashforth scheme.

Since the trajectories lie on a plane, only consider two dimensions.
(6© points)

(b) For initial conditions with negative energy, the trajectories are bounded
and closed. Plot the trajectories for the different algorithms. Are they
bounded and closed? Also, plot the total energy and angular momentum
over time to check whether they are conserved.

(3© points)

(c) What happens to the orbits with a potential V (r) = −k/rα with α 6= 1?
Use α = 1/2, 3/2.

(1© point)

(d) Optional: Experiment with a harmonic potential, i.e. with α = −2 and
k < 0.

2

https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2024_NM_Integration_Differential_Equations.html#(9)

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 03.06.2024
C. Gros, D. Nevermann

Problem 3 (Advanced: Hash Table) (10 points)

In many applications, the problem arises to store a pair of data, which we
will from now on denote key and value. Consider for example a phone book
software, where we want to associate a name (key) with a phone number
(value). For this purpose, an often encountered and very useful data structure
are hash tables1. The idea of behind hash tables is, to input the key into a
function, called hash function, that calculates an index for the key and then
stores the associated value at the respective index in an array underlying the
hash table. The great thing about hash tables from a programmers point
of view is that the lookup (i.e. finding the value for a given key or in our
example the phone number for a given name) is very fast, since the index, at
which the corresponding value is stored, can quickly be calculated from the
key.2 Note, that it is required that the keys are unique (on the other hand,
the values don’t have to be unique).
The goal of this problem is to implement a very simple (and mostly educa-
tional) hash table in C++ that stores int values associated with int keys.

• We first build the bare-bones structure of our hash table and implement
the functionality in the following parts. Write a class HashTable with
two private member variables int t_size and int* t_values that are
the size of the hash table, i.e. the number of values one can store, and a
pointer to the array, where the values will be stored, respectively. Add
a constructor, that takes an int size as an argument and initializes
t_size with size and t_values with an integer array of size size.
Furthermore, implement a destructor that deletes the t_values array.

• Next, we implement a hash function. In the calculation, that the hash
function performs to produce an index for a given key, it can happen
that two different keys produce the same index. This is referred to as
a hash collision and the quality of a good hash function is to have as
little collisions as possible. Usually, if a collision happens, two different
values (with their associated keys) are stored at the same index. The
terminology here is that we have buckets at every index. Then, at
lookup, we still have to go through the bucket to find the correct key,
but the number of items will be substantially smaller than the size of
the hash table. Since we do not care about quality here, we just use
a very simple hash function and only store a single value at a given

1Sometimes they are referred to by hash maps or (e.g. in Python) dictionaries.
2On the flip side, imagine you would store pairs of names and phone numbers in an

ordinary array: Finding the phone number of John Doe would require going through
(potentially the whole) array until we encounter John and his phone number!

3

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 03.06.2024
C. Gros, D. Nevermann

index. If a collision does happen, we just output a warning to the user
(we will implement that later). For your implementation we will use
the following hash function:

int hash(int key) const {
return key % t_size;

}

Implement that function as a private method in the HashTable class
(yes, you just have to copy-paste that function into your program).

• Next, implement a function
void insert(int key, int value){...}

that inserts value into the hash table. Use key and the hash function
to determine the index in t_values, where value must be stored. If
you detect a hash collision, simply output a warning to the user and
do absolutely nothing.
Hint: To easily detect a hash collision, it helps to make sure that t_values is
initialized with zeros.

• Further, implement a function
int get(int key)const {...}

that retrieves the value associated to key and returns it.

• Finally, test your implementation with a meaningful example. Try to
produce a hash collision.

4

	(Butcher Tableaus)(10 points)
	(Numerical Solution of Differential Equations)(10 points)
	(Advanced: Hash Table)(10 points)

