
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 27.05.2024
C. Gros, D. Nevermann

Exercise Sheet #7
Deadline: 03.06.2024, 12:00h

Problem 1 (Binary Trees) (10 points)

A binary tree is a tree in which every node has at most two child nodes. In
the lecture, the implementation of binary trees in C++ has been discussed,
where every node contained pointers to its child nodes, allowing the user to
traverse the tree downwards starting from a given a parent node.
Your task in this exercise is, to change the code to create double linked trees,
where each node additionally contains a pointer to its parent, allowing to
traverse the whole tree starting from any node.

(a) Add a parent variable to the node class constructor. Change the function
generateTree such that it initializes this variable for each node with its
corresponding parent.

(5© points)

(b) Check that your implementation works by traversing the tree backwards:
Starting with a node from the bottom layer, print out all its parents by
accessing the parent variable repeatedly to climb up the tree. Terminate,
once you reach the root node.

(5© points)

Problem 2 (File Streams and Searching) (10 points)

As seen in the lecture, the cursor inside a filestream can be moved with
seekg/seekp to control where to read/write in the file. Given a text file
with a list of numbers, you will use this possibility to implement a searching
algorithm that searches a target number in the list and, if it is present,
returns its position. You will implement a simple Binary Search Algorithm
that requires ordered lists.

(a) Define an output file stream ofstream myList, so that the list will be
written on a numbers.dat file.

(2© points)

(b) Generate a list of N random positive integers, with up to Nd digits. Sort
the list from low to high numbers using std::sort().

(2© points)

1

https://en.wikipedia.org/wiki/Binary_tree#:~:text=A%20binary%20tree%20is%20a%20rooted%20tree%20that%20is%20also,to%20it%20a%20level%20below.
https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2023_C++_OOP.html#(16)
https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2023_C++_OOP.html#(16)
https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2023_C++_Functions.html#(11)

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 27.05.2024
C. Gros, D. Nevermann

(c) Write the list to the file. Later, you will have to move the cursor in the
file to the positions where the numbers start. Therefore, to make things
easier, fix the number of printed characters by using
myList.width(n_chars). Close the ofstream and define an ifstream
to read from the generated file.

(2© points)

(d) Implement a function fstream_binary_search that takes a target inte-
ger and an ifstream as variables and returns the position in the list of
the target number if present, or −1 otherwise. Try out your implemen-
tation with N = 10 and Nd = 3. Make sure to pay attention that corner
cases (e.g. the target number is at either end of the list) are correctly
handled.

(4© points)

Problem 3 (Advanced: Overloading Stream Operators) (10 points)

Following the example of the lecture, implement a buffer class with extended
functionality.

• The basic operations of this class should be the use of the operators <<
and >> to stream data into and out of a buffer, e.g.
int nNumber;
BufferClass mybuffer;
mybuffer << 3;
mybuffer << 4 << 5;
mybuffer >> nNumber;

In this example, after streaming into nNumber, the integer element 5
should not be in the buffer anymore.

• Design the class as a templated class so that it can be used with dif-
ferent data types such as double or int, e.g.
BufferClass <int> int_buffer;
BufferClass <double > double_buffer;

• The size of the buffer should be specified via the constructor of the
class, e.g.
BufferClass <int> int_buffer (10);

for a buffer accepting 10 elements of type int.

2

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 27.05.2024
C. Gros, D. Nevermann

• Implement methods to:

– Reset the buffer to its initial state.
– Obtain the current load of the buffer (number of saved elements).
– Access information about the state of the buffer, specifically if it

is empty or full.

• Make proper use of private and public classifications, i.e. if your class
has an array to store the data type putting it into the private section
forbids misusing it from the outside. The same should apply to all
other data member elements of your class that should not be exposed
directly to the user. For instance:

class BufferClass
{

public:
boolean checkIfEmpty()
{

return isEmpty;
}
private:

boolean isEmpty;
};

In this way the user is prevented of having direct access to isEmpty and
avoid accidental modification of isEmpty. Instead, the user can have
access to isEmpty via checkIfEmpty() without being able to modify
it.

3

	(Binary Trees)(10 points)
	(File Streams and Searching)(10 points)
	(Advanced: Overloading Stream Operators)(10 points)

