
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 20.05.2024
C. Gros, D. Nevermann

Exercise Sheet #6
Deadline: 27.05.2024, 12:00h

Exam The exam (Klausur) will take place
July 24, 2024 in Phys_ _.102, starting 10:15h.

Problem 1 (Discrete Dynamical Systems: The Tent Map) (10 points)

The tent map,
xn+1 = Tµ(xn) = µmin{xn, 1− xn},

is a discrete dynamical system defined on the unit interval [0, 1], with a
parameter µ ∈ [0, 2].
(a) For now, let µ < 1. Find all fixpoints of the tent map, i.e. find all points

that fulfill x∗ = Tµ(x
∗)1. You may present your solution to this part in

a comment of your submitted code.
(4© points)

(b) Now implement the tent map in C++. Define a function
float tent_map(float x, float mu)

that performs one iteration of the tent map. To get a feeling for the sta-
bility of the fixpoint(s) found in part (a), experiment with your code by
setting µ < 1 and iterating the map for different initial values x0 ∈ [0, 1]
and printing |xn − x∗| to the console for n = 1, . . . , N with a sufficiently
large number of iterations N ∈ N.
Optional: You may verify your intuition analytically.
Hint: For better readability use #include <iomanip> to print a value x in scientific
notation using
std::cout << std::scientific << std::setprecision(3)<< x << std::endl;

(3© points)

(c) Perform a numerical stability analysis as described in part (b) with a
stable fixpoint you identified.
Explicitly use the values x0 = 0.6 and µ = 0.8 trying different maximum
iterations N = 10, 100, 1 000 and 10 000. Do you notice anything fishy?
If so, what and how could you fix it?

(3© points)
1Note that this equation means that starting the iteration of the map from the fixpoint

x∗, the time series never moves away from the fixpoint.

1

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 20.05.2024
C. Gros, D. Nevermann

Problem 2 (Classes and Inheritence) (10 points)

A zoo wants to keep track of its animals and wants you to write the framework
to do so. You should define each animal as a class instance, such that data
about them can be accessed and manipulated easily. Please follow these steps
to implement the framework:

(a) Create a class Animal with the member variables std::string name
storing the animal’s nickname, int cageNumber storing the cage the
animal occupies, int birthYear storing the year of birth and a method

void printAge(int year)
that receives the current year as input and prints the animal’s age in
years to the console. Set the constructor to initialize all the variables.

(4© points)

(b) To make sure the zoo employees don’t corrupt the data, define all vari-
ables as private. The method printAge shall be public. Further, imple-
ment another public method

void printData()
that prints all available data about an animal to the console.

(2© points)

(c) The zoo has grown much larger and would like to keep a count of the
different species it has. Write a species-specific child class, Wolf, which
inherits from Animal. Add a counter to the new class static int
counter and change the constructor and destructor such that they in-
crease and decrease the counter by 1, respectively. Print out the updated
count each time an instance is created or destroyed. Remember to ini-
tialize the counter to zero before running your code.

(2© points)

(d) Override the method printAge in Wolf such that it prints the age multi-
plied by a factor of 7 (measured in dog years). Can you access birthYear?
Change its definition to protected in the base class, so it becomes visi-
ble to the child class.

(1© point)

(e) Try out the framework with a meaningful example.
(1© point)

2

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 20.05.2024
C. Gros, D. Nevermann

Problem 3 (Advanced: Linked List) (10 points)

A linked list is a commonly used data structure comprising a sequence of
nodes that contain two fields: a data field and a link (pointer) to the next
node. The last node is linked to a terminator used to signify the end of
the list. The following illustration demonstrates a linked list storing integer
values.

In this exercise we will implement a linked list (or more specifically a singly
linked list) in C++.

• Create a templated class Node with two public variables storing data
of the templated type T and a pointer to the next node in the list.

• Write a templated class LinkedList with a public variable head that
is a pointer to the head node of the list (i.e. the first node in the list).
In the constructor, initialize head with the nullptr.

• Implement a public method for the LinkedList
void addNode(T val)

that appends an element to the head of the list. Make sure to adjust
the head variable.

• Implement a public method for the LinkedList
void printList()

which prints out the list to the console.

• Implement a public method for the LinkedList
void removeNode(T val)

which removes the first occurrence of a node holding the data val.
Again, make sure to adjust head accordingly and mind the case that
the given data val is not in the list.

• Test your implementation with a meaningful example.

3

	(Discrete Dynamical Systems: The Tent Map)(10 points)
	(Classes and Inheritence)(10 points)
	(Advanced: Linked List)(10 points)

