
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 13.05.2024
C. Gros, D. Nevermann

Exercise Sheet #5
Deadline: 20.05.2024, 12:00h

Problem 1 (Lambda Expressions) (10 points)

For all the following parts, provide the implementation and at least one
meaningful example.

(a) Use a lambda expression that takes two ints and returns their sum to
assign this returned value to a variable.

(1© point)

(b) Use a lambda expression that captures an int from its enclosing function
and takes an int parameter to directly assign the return value to a
variable. Again, the lambda should return the sum of the captured
variable and the parameter.

(1© point)

(c) Instead of directly calling the lambda expressions, try to create function
pointers from them. You should get an error message for the lambda
expression that captures a variable but not for the one that only takes
parameters. This is perfectly fine, since C++ does not allow the conversion
of a lambda expression that captures variables to a function pointer.

(1© point)

(d) Using the variable capturing lambda expression, try to add a line that
changes the value of the captured variable. You should get a compilation
error that tells you that you are trying to assign a value to a read-only
variable. Provide a simple fix for that.

(1© point)

(e) An often encountered use case for lambda expressions is to pass them to
functions expecting a small instruction how to operate. Write a function
print_vector that takes an integer array and a lambda expression as
input. The function should apply the lambda expression to each element
of the array and print the result to the console.
Hint: To pass a lambda expression to a function you can use std::function (see
here) or simply use function pointers, as we used previously on sheet #4.

(3© points)

1

https://en.cppreference.com/w/cpp/utility/functional/function

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 13.05.2024
C. Gros, D. Nevermann

(f) Lambda expressions can simplify your code and make it more readable.
Write two versions of a function that takes an array of integers
int (&arr)[N] and an int &s as input and adds all the elements of
arr to s. The first version should work using a simple for-loop, while
the second iterates over the vector using std::for_each (see here) and
adds the elements of arr to s using a lambda expression.

(3© points)

2

https://en.cppreference.com/w/cpp/algorithm/for_each

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 13.05.2024
C. Gros, D. Nevermann

Problem 2 (Header Files and Namespaces) (10 points)

For more complex projects and especially when developing code in a group,
it can be useful to create a multi-file structure. Then there is exactly one
executable file containing the main function and all functions, classes, structs
etc. are loaded from external C++ files and header files. E.g. a function is
defined in a separate C++ file (e.g. test.cpp) and only the function body,
i.e. with name, argument types, return type, is defined in a header file of
same name (test.h). The function in the external file can be loaded by
including the corresponding header file (#include "test.h"). Notice that
here quotation marks are used instead of angle brackets.

(a) Write a function that generates a random 4×4 array with integer entries
in the range of [0, 10], by receiving an existing empty array and changing
its entries. You can use the rand() function to do that, but you will
need to provide it with a seed, using srand(time(0));. Note that the
seed should be initialized outside the function.

(3© points)

(b) Write a matrix multiplication function that takes as input two 4 × 4
arrays and prints the result of their multiplication.

(3© points)

(c) Write a main function in which you initialize two empty 4 × 4 arrays
and call the random array generator on both. Print out both arrays and
multiply them using the multiplication function.

(1© point)

(d) In big projects it is helpful to separate your smaller functions (utility
functions) to another file. Split your code into two parts: A main.cpp
file containing only the main function, and a utilities.cpp file con-
taining your other functions. Add a header file where you define a new
namespace and declare the function bodies. Import the namespace (and
your function in it) into the main.cpp code. When compiling with g++,
make sure to use g++ main.cpp utilities.cpp. The process of com-
bining different object files into a single executable is called linking.

(2© points)

(e) Use doxygen to generate documentation for your project.
(1© point)

3

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 13.05.2024
C. Gros, D. Nevermann

Problem 3 (Advanced: Gradient Descent Algorithm) (10 points)

A frequently encountered task in machine learning is to find the local minima
of a given N ∈ N dimensional function. In this exercise we want to implement
the Gradient Descent Algorithm, a simple method to find local minima. Your
goal is to implement the algorithm and try out your implementation with an
example of your choice. The algorithm works as follows:
Let U ⊆ RN and F : U → R be a differentiable function. For every x ∈ U ,
the steepest descent of F is given by the gradient ∇F (x). Start by setting
x1 ∈ U . For n = 1, 2, . . . , progress into the direction of the steepest descent,
i.e. set

xn+1 = xn − α∇F (xn),

where α > 0 is a suitable step size. Terminate if ‖α∇F (xn)‖ < ε, for an
absolute tolerance ε > 0.
Follow these steps which will guide you through the implementation:

• Define a function steepest_descent which takes the function under
investigation, its respective gradient, a starting point x1, a step size α
and a tolerance ε as input and computes an approximation to a local
minimum of the function using the gradient descent algorithm. Make
sure that the function can handle arbitrary dimensionality N . Use a
template to accept arbitrary vector space dimensionality. The function
F and its gradient should be passed to the function as function point-
ers.
Hint: To handle vectors either read up on std:array or use C-style arrays, pass
them to the respective function by reference and modify them in-place.
Hint: To make your code more readable, you can define types for the function
pointers to F and gradF . With that the full function declaration could look some-
thing like this:
template <size_t N>
using f_ptr = double (*)(double(&x)[N]);
template <size_t N>
using g_ptr = void (*)(double(&x)[N], double(&grad)[N]);

template <size_t N>
void steepest_descent(

func_ptr<N> f, grad_ptr<N> g,
double(&x)[N], double alpha, double tol)

{
...

}

• Test your implementation with an example for the function F of your
choice and compare the result with your analytical prediction.

4

https://en.cppreference.com/w/cpp/container/array

	(Lambda Expressions)(10 points)
	(Header Files and Namespaces)(10 points)
	(Advanced: Gradient Descent Algorithm)(10 points)

