
Adv. intr. to C++, scientific computing and machine learning
Hand in by Monday 15/11/21 at 15:00.

WS 20/21
C.Gros

Exercise Sheet #4

Problem 1 (Template functions) 10Pts

For the following tasks, implement the requested functions and call them in
the main function.

(a) Implement a function with a template type for the arguments and the
return value, which takes two numbers of the same template type (e. g.
int, double) and returns the product, which is of the same type. (2Pts)

(b) Write a function that has a templated integer parameter and takes as an
argument an array of template type T and length N. The function shall
print all entries of the array and the size of the array. (2Pts)

Hint: The function declaration then looks like
template<typename T, int N> func name (T (&array)[N]) {...}.

(c) Check what happens if the function is called with a dynamic allocated
array, i.e. int * a = new int[N]. Why does this happen? (2Pts)

Hint: The functions with the appropriate data types are generated from
the templates at compile time, what about dynamically allocated arrays?

(d) Re-write the function such that you can pass a two dimensional n ×m
array. (2Pts)

Note: In the case of a quadratic 2d array the function becomes a bit
simpler (but thus more confusing) and can take the form
template<typename T, int N> func name (T (&array)[N][N]) {...}.

Problem 2 (Root Finding Function) 10Pts

A simple algorithm for finding the root of a function is iterative bisection:
Aiming to find the point where f(x) = 0, start with an upper and lower
bound, sign(f(xlower)) = −sign(f(xupper)), then update one of the bounds
to xmid = xlower+xupper

2
replacing the bound with the same sign. Repeating

this process approaches exponentially to the root, with a declining error range
given by |xlower − xupper|.

Implement a root-finding function and pass some arbitrary function to it:

(a) Define a function find_root that takes as arguments a pointer to a
function, starting values for xMin and xMax, the desired accuracy and a
maximal iteration count.

1

Adv. intr. to C++, scientific computing and machine learning
Hand in by Monday 15/11/21 at 15:00.

WS 20/21
C.Gros

(b) Implement the iterative bisection algorithm inside the function. it should
run until either the desired accuracy or the maximal iteration count is
reached, then print out the root that it found, the remaining error range
and the number of iterations until convergence.

(c) If the function fails, an appropriate error message should be given. The
algorithm fails when the given initial bounds do not satisfy the sign
condition.

(d) Write a function find_root_recursive that runs the same algorithm,
but does so using recursion. Validate that both functions yield the same
results by testing them with a number of functions of your choice.

Problem 3 (Bitwise Operations, advanced) 10Pts

C++ also allows he manipulation of data on the level of its binary represen-
tation. The six bitwise operations are:

Operator Symbol Form Operation
left shift << x << y all bits in x shifted left y bits
right shift >> x >> y all bits in x shifted right y bits
bitwise NOT ~ ~ x all bits in x flipped
bitwise AND & x & y each bit in x AND each bit in y
bitwise OR | x | y each bit in x OR each bit in y
bitwise XOR ^ x ^ y each bit in x XOR each bit in y

(a) Write a function that takes two positive integers and returns their sum,
not using +, -, * or /. You should be able to achieve this by manip-
ulating the numbers on the bitwise level. Your are also allowed to use
the conventional syntax to control the program flow, as well as compara-
tors (e.g. x > y). For a start, consider how addition of numbers is
done in binary arithmetic https://en.wikipedia.org/wiki/Binary_

number#Addition. Hint: It might be necessary to perform the carry-
ing, as described in the reference, multiple times. You need to add the
carried bits to the result, so recursion could be useful. (5 Pts)

(b) Write a function that implements the multiplication of two positive inte-
ger numbers with the same restrictions to bitwise operations. See https:
//en.wikipedia.org/wiki/Binary_number#Multiplication for details.
Hint: You should use the adding function from the first part of the ex-
ercise. (5Pts)

2

https://en.wikipedia.org/wiki/Binary_number#Addition
https://en.wikipedia.org/wiki/Binary_number#Addition
https://en.wikipedia.org/wiki/Binary_number#Multiplication
https://en.wikipedia.org/wiki/Binary_number#Multiplication

	(Template functions)10Pts
	(Root Finding Function)10Pts
	(Bitwise Operations, advanced)10Pts

