
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 08.07.2024
C. Gros, D. Nevermann

Exercise Sheet #13

Note This sheet is optional and will not count towards your final grade.

Rock-Paper-Scissors World Cup The tournament, where your projects
clients will compete in the ultimate rock-paper-scissors world cup, will take
place July, 16th 2024 in lecture.

Exam The exam will take place July 24th, 2024 at 10:15h in Phys_ _.102.

Problem 1 (PyTorch: Perceptron Training)

A simple neural network is a perceptron (link) with just two layers: the input
and output layer. We here want to train a perceptron to resemble a logical
AND gate with the truth table

x1 x2 AND(x1, x2)
0 0 0
1 0 0
0 1 0
1 1 1

The perceptron receives a two-dimensional input vector

~x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}

The perceptron output is obtained through

y = σ(x1w1 + x2w2 + b),

where ~w = (w1, w2) is the weight vector, b is a bias and

σ(x) =
1

1 + e−x

is the sigmoid transfer function. Implement and train the perceptron in
PyTorch:

• Define a tensor for the inputs. Further, define a tensor for the weights
and a tensor for the bias. Initialize the weights and the bias randomly.
Make sure to define them using requires_grad=True.

1

https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2024_ML_Neural_Networks.html#(8)

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 08.07.2024
C. Gros, D. Nevermann

• Write a function that computes the forward pass.

Next we want to train the perceptron:

• Define a tensor with the correct outputs for the given inputs (our train-
ing data).

• Write a function that computes a loss

L = (y − ŷ)2,

where y is the correct output and ŷ is the obtained value through the
forward pass.

• Back propagate the loss and update the weights and the bias using
gradient decent with a learning rate η = 0.1

wi → wi − η(∇w)i, b → b− η∇b.

Do this for 10000 epochs and try out the trained perceptron.

Problem 2 (PyTorch: The XOR Problem and Optimizers)

In lecture, you discussed the XOR-problem (link), i.e. that XOR can not be
solved by a linear classifier, as the XOR gate is not linearly separable. This
problem can be solved, however, by introducing a hidden layer.
The code given below (and here for download) implements a simple neural
network with one hidden layer that replicates an XOR gate. Here is a sketch
of the architecture:

In the MyLayer class, the update method explicitly implements parameter
tweaking via gradient descent. PyTorch, however, provides optimizers that
efficiently implement parameter optimization.
Your task is to modify the code such that the explicit training via gradient
descent is replaced by an optimizer from torch.optim. A good choice is
torch.optim.Adam.

2

https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2024_ML_Neural_Networks.html#(9)
https://itp.uni-frankfurt.de/~nevermann/teaching/xor-sample.py

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 08.07.2024
C. Gros, D. Nevermann

#!/usr/bin/env python3

import torch

torch.manual_seed(42)

#
tanh layer
#
class MyLayer(torch.nn.Module): # inheritance

def __init__(self, dim1, dim2): # constructor
super().__init__()
self.weights = torch.randn(dim1,dim2,requires_grad=True)
self.bias = torch.randn(dim1,requires_grad=True)

def forward(self, x): # define forward pass
return torch.tanh(torch.matmul(self.weights,x)-self.bias)

def update(self, eps): # updating weights / bias
with torch.no_grad():

self.weights -= eps*self.weights.grad
self.bias -= eps*self.bias.grad
self.weights.grad = None
self.bias.grad = None

#
main
#
dimOutput = 1 # only 1 implemented
dimHidden = 2
dimInput = 2 # only 2 implemented
nEpoch = 4000
learningRate = 4.0e-2
myLayerObject = MyLayer(dimHidden,dimInput) # instanstiation
myOutputObject = MyLayer(1,dimHidden)

XOR for 2 inputs
booleanInput = torch.tensor([[1.0, 1.0],

[1.0,-1.0],
[-1.0, 1.0],
[-1.0,-1.0]])

booleanValue = torch.tensor([[-1.0],
[1.0],
[1.0],
[-1.0]])

print(booleanInput)
print(booleanValue)

#
training loop
#
for iIter in range(nEpoch): # trainning loop
#

thisInput = booleanInput[iIter%4]
thisTarget = booleanValue[iIter%4]

#
hidden = myLayerObject(thisInput) # forward pass (implicit)
output = myOutputObject(hidden)

3

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 08.07.2024
C. Gros, D. Nevermann

loss = (output-thisTarget).pow(2).sum() # generic loss function

if iIter % 100 == 0:
print(loss.item())

loss.backward() # backward pass

myLayerObject.update(learningRate) # gradients have
myOutputObject.update(learningRate) # been summed up

end of training

for input in booleanInput:
hidden = myLayerObject(input)
print(f"{input}: {myOutputObject(hidden)}")

4

	(PyTorch: Perceptron Training)
	(PyTorch: The XOR Problem and Optimizers)

