
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 17.06.2024
C. Gros, D. Nevermann

Exercise Sheet #10
Deadline: 24.06.2024, 12:00h

Rate us! Please evaluate the course via this link on the 21st of June 2024
from 8:00 to 10:00h.

Sign up for the exam! If you want to take the exam, send a quick,
informal email to

nevermann@itp.uni-frankfurt.de.
by the 17th of July 2024.

Problem 1 (Multithreading and Mutex) (20 points)

Multithreading is often a valuable tool to speed up the computation of a
program. While threads cannot make the computer run faster (i.e. they do
not speed up the execution of a block of code), they can increase the efficiency
of the computer by using time that would otherwise be wasted. The reason
that time is wasted in the execution of a program is often caused by the
hardware. The CPU can execute calculations more quickly than the time it
takes to input or output from or to memory and hard storage.
Your task in this exercise is to add up numbers in an array. In particular,
we consider the sum

S :=
N∑

n=1

n, N ∈ N. (1)

According to the young Carl Friedrich Gauß, this sum can be easily evaluated
analytically to

S =
N(N + 1)

2
. (2)

We will now verify this numerically.

(a) Write a function that sums the elements in a given array, i.e. a function
with the signature

long long calculateSum(int arr[], int N){...}
where we return a long long to avoid integer overflows (we will test this
with large arrays later). In the main function, create an int array with
N = 1000 000 entries 1, 2, . . . , N , representing the terms in (1). Using

1

https://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/C++_evaluation.pdf
mailto:nevermann@itp.uni-frankfurt.de

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 17.06.2024
C. Gros, D. Nevermann

calculateSum, verify (2). Time the execution of the summation and
output the sum and the execution time to the console.
Hint: To time your program recall the code presented on sheet #3.

(6© points)

(b) We now want to implement a multithreaded version of that program.
For that first define a global variable1 long long sum = 0; and write a
function

void calculateSum(int arr[], int start, int end){...}
that calculates a partial sum of the array from a start index int start
to an end index int end and adds the result to sum. Then create a total
of nthreads = 5 threads, that calculate the partial sums for chunks of the
array of equal size nthreads/N using calculateSum. Await all threads to
finish using the join() method and print the sum and the execution
time of the summation to the console. Run the code a couple of times.
You should see some incorrect results that also change between different
executions of the program.

(8© points)

(c) The reason you see incorrect and changing results in part (b) is a so-
called race condition. This occurs, when two or more threads access
shared data (in our case the global variable sum) and try to change it
at the same time. Both threads ‘race’ to change the data. To overcome
that, we can use a mutex2. Create a mutex and lock it before accessing
the shared variable sum. Then unlock it again. Now your code should
yield the correct result.

(4© points)

(d) Did the multithreading speed up the execution? Compare the execution
times between part (a) and part (c).

(2© points)

Hint: Remember to compile with flags -std=c++11 -pthread.

1A global variable is defined in the global scope, i.e. outside any function.
2Mutex stands for mutual exclusion.

2

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 17.06.2024
C. Gros, D. Nevermann

Problem 2 (Advanced: Implementing a Mutex) (10 points)

In this problem we will implement our own mutex. The following steps will
guide you through the implementation.

(1) Create a class Mutex with a private member variable locked which in-
dicates if the mutex is locked or not. Since a race condition could occur
in the process of locking the mutex, we need to use an atomic variable3

provided by std::atomic. Include the header file and define the atomic
variable using std::atomic<bool> locked;.

(2) In the constructor of the Mutex class, initialize locked to false.

(3) Implement a public method to lock the mutex. The code is given below
void lock()
{

while (locked.exchange(true, std::memory_order_acquire))
{

// Wait for the lock to be released
}

}

In this, exchange() atomically exchanges the value of locked with the
given value true and returns the previous value. std::memory_order_acquire
specifies that any memory access that occurs after the acquire operation
must not be reordered by the thread scheduling algorithm before the
acquire operation.

(4) Implement a public method to unlock the mutex. The code is given below
void unlock() {

locked.exchange(false , std::memory_order_release);
}

This completes the Mutex class. Now define and initialize a shared global
variable int sharedVariable = 0; and define a function

void incrementVariable(){...}
that increments the variable in a for-loop to 100000. In the main function,
create two threads that both execute incrementVariable() and call join()
on them. Output the final value of sharedVariable. Create a Mutex object
and lock / unlock it in the required places. Compare the result with and
without using a mutex.

3For an atomic variable it is ensured that operations on the variable are executed
atomically, i.e. without interference from other threads.

3

	(Multithreading and Mutex)(20 points)
	(Advanced: Implementing a Mutex)(10 points)

