#include <iostream>
#include <sstream> // for stringstream
#include <stdio.h> // for printf
#include <string> // c_str()
#include <cmath> // for abs
#include <fstream> // file streams
#include <stdlib.h> // srand, rand
using namespace std;
/* contains
*
* double nextRandom()
* string xyValuesGnu()
* void plotViaGnuplot()
* void gaussElimination()
* void generateClassificationData()
* void calcCoVarMatrices()
* void evaluatePlane()
* void svmGradientAscent()
*/
// ***
// *** random number in [0,1]
// ***
double nextRandom()
{ static bool firstTime = true;
if (firstTime)
{
srand( (unsigned)time( NULL ) );
firstTime = false;
}
return (rand()/(double)RAND_MAX);
} // end of nextRandom()
// ***
// *** (x,y) string for inline data input for gnuplot
// ***
template<int N>
string xyValuesGnu(double (&xyValues)[2][N], string dataName)
{
stringstream ss;
ss << dataName << " << " << "EOD\n"; // defining data block
for (int i=0; i<N; i++)
ss << xyValues[0][i] << " " << xyValues[1][i] << endl;
ss << "EOD\n"; // terminating data block
//
return ss.str();
} // end of xyValuesGnu()
// ***
// *** plot data via gnuplot
// ***
void plotViaGnuplot(string dataNameOne, string dataToPlotOne,
string dataNameTwo, string dataToPlotTwo,
string dataNamePlane, string dataToPlotPlane,
string dataNamePlaneSVM,string dataToPlotPlaneSVM,
string dataNameP_m1_SVM,string dataToPlotP_m1_SVM,
string dataNameP_m2_SVM,string dataToPlotP_m2_SVM,
string dataNameBasis, string dataToPlotBasis)
{
FILE *pipeGnu = popen("gnuplot", "w"); // streaming to gnuplot
fprintf(pipeGnu, "set term qt persist size 1000,800\n");
fprintf(pipeGnu, "set nokey\n"); // no legend
//
fprintf(pipeGnu, "%s\n",dataToPlotOne.c_str());
fprintf(pipeGnu, "%s\n",dataToPlotTwo.c_str());
fprintf(pipeGnu, "%s\n",dataToPlotPlane.c_str());
fprintf(pipeGnu, "%s\n",dataToPlotPlaneSVM.c_str());
fprintf(pipeGnu, "%s\n",dataToPlotP_m1_SVM.c_str());
fprintf(pipeGnu, "%s\n",dataToPlotP_m2_SVM.c_str());
fprintf(pipeGnu, "%s\n",dataToPlotBasis.c_str());
// // plot data
fprintf(pipeGnu, "plot \"%s\" w points pt 5 ps 4 \n", dataNameOne.c_str());
fprintf(pipeGnu, "replot \"%s\" w points pt 5 ps 4 \n", dataNameTwo.c_str());
fprintf(pipeGnu, "replot \"%s\" w lines lw 7 lt rgb \"grey\" dt 2 \n", dataNamePlane.c_str());
fprintf(pipeGnu, "replot \"%s\" w lines lw 7 lt rgb \"gold\" \n", dataNamePlaneSVM.c_str());
fprintf(pipeGnu, "replot \"%s\" w lines lw 2 lt rgb \"gold\" \n", dataNameP_m1_SVM.c_str());
fprintf(pipeGnu, "replot \"%s\" w lines lw 2 lt rgb \"gold\" \n", dataNameP_m2_SVM.c_str());
fprintf(pipeGnu, "replot \"%s\" w linesp pt 7 ps 4 lw 4 \n", dataNameBasis.c_str());
//
fclose(pipeGnu); // closing the pipe to gnuplot
} // end of plotViaGnuplot
// *** Gauss elimination of Ax=b with pivoting.
// *** On input quadratic matrix A and vector b.
// *** On ouput solution x.
template<int N>
void gaussElimination(double (&A)[N][N], double (&b)[N], double (&x)[N])
{
double temp; // temp variable
const double smallNumber = 1e-10; // a small number
//
//--- loop over all columns A[][col]; A[][col]
for (int col=0; col<N; col++)
{
//--- find pivot row; swap pivot with actualy row
int pivotRow = col;
for (int row=col+1;row<N;row++)
if ( abs(A[row][col]) > abs(A[pivotRow][col]) )
pivotRow = row;
//--- swap row A[col][] with A[pivotRow][]
for (int i=0;i<N;i++)
{
temp = A[col][i];
A[col][i] = A[pivotRow][i];
A[pivotRow][i] = temp;
}
//--- swap elements b[col] with b[pivotRow]
temp = b[col];
b[col] = b[pivotRow];
b[pivotRow] = temp;
//--- throw a warning if matrix is singular or nearly singular
if (abs(A[col][col]) <= smallNumber)
cerr << "Matrix is singular or nearly singular" << endl;
//--- Gauss with pivot within A and b
for (int row=col+1;row<N;row++)
{
double alpha = A[row][col] / A[col][col]; // divide by pivot
b[row] -= alpha*b[col];
for (int j=col;j<N;j++)
A[row][j] -= alpha * A[col][j];
}
} // end of loop over all columns
//--- back substitution
for (int i=N-1;i>=0;i--)
{
double sum = 0.0;
for (int j=i+1;j<N;j++)
sum += A[i][j] * x[j];
x[i] = (b[i] - sum) / A[i][i]; // pivots on diagonal after swapping
}
} // end of gaussElimination()
// ***
// *** generate data to be classified; only for (dim==2)
// ***
template<int nOne, int nTwo>
void generateClassificationData(double dataClassOne[2][nOne], double dataClassTwo[2][nTwo])
{
double angleOne = 0.75*M_PI; // angles of the large axis of the data with
double angleTwo = 0.75*M_PI; // respect to the x-axis
double L1One[2], L1Two[2]; // large eigen-directions of data distribution
double L2One[2], L2Two[2]; // minor eigen-directions of data distribution
//
double L1OneLength = 1.5; // respective lengths
double L2OneLength = 0.2; // respective lengths
double L1TwoLength = 1.0;
double L2TwoLength = 0.2;
//
double rr, ss;
//
L1One[0] = L1OneLength*cos(angleOne);
L1One[1] = L1OneLength*sin(angleOne);
L2One[0] = L2OneLength*sin(angleOne); // L2 orthognal to L1
L2One[1] = -L2OneLength*cos(angleOne);
//
L1Two[0] = L1TwoLength*cos(angleTwo);
L1Two[1] = L1TwoLength*sin(angleTwo);
L2Two[0] = L2TwoLength*sin(angleTwo);
L2Two[1] = -L2TwoLength*cos(angleTwo);
//
for (int iOne=0; iOne<nOne; iOne++) // generate data for first class
{
rr = 2.0*nextRandom()-1.0;
ss = 2.0*nextRandom()-1.0;
dataClassOne[0][iOne] = 1.0 + rr*L1One[0] + ss*L2One[0]; // x component
dataClassOne[1][iOne] = 0.0 + rr*L1One[1] + ss*L2One[1]; // y component
}
//
for (int iTwo=0; iTwo<nTwo; iTwo++) // generate data for second class
{
rr = 2.0*nextRandom()-1.0;
ss = 2.0*nextRandom()-1.0;
dataClassTwo[0][iTwo] = -1.0 + rr*L1Two[0] + ss*L2Two[0];
dataClassTwo[1][iTwo] = 0.0 + rr*L1Two[1] + ss*L2Two[1];
}
// test printing
if (1==2)
{
for (int iOne=0; iOne<nOne; iOne++)
cout << dataClassOne[0][iOne] << " " << dataClassOne[1][iOne] << endl;
cout << endl;
for (int iTwo=0; iTwo<nTwo; iTwo++)
cout << dataClassTwo[0][iTwo] << " " << dataClassTwo[1][iTwo] << endl;
}
} // end of generateClassificationData()
// ***
// *** calculate the covariance matrices
// ***
template<int nOne, int nTwo>
void calcCoVarMatrices(double dataClassOne[2][nOne], double dataClassTwo[2][nTwo],
double coVarOne[2][2], double coVarTwo[2][2],
double mOne[2], double mTwo[2],
double S[2][2], double deltaM[2])
{
mOne[0] = 0;
mOne[1] = 0;
mTwo[0] = 0;
mTwo[1] = 0;
//
for (int iOne=0; iOne<nOne; iOne++)
{
mOne[0] += dataClassOne[0][iOne]/nOne;
mOne[1] += dataClassOne[1][iOne]/nOne;
}
for (int iTwo=0; iTwo<nTwo; iTwo++)
{
mTwo[0] += dataClassTwo[0][iTwo]/nTwo;
mTwo[1] += dataClassTwo[1][iTwo]/nTwo;
}
//
deltaM[0] = mTwo[0] - mOne[0];
deltaM[1] = mTwo[1] - mOne[1];
//
for (int iOne=0; iOne<nOne; iOne++)
for (int i=0; i<2; i++)
for (int j=0; j<2; j++)
coVarOne[i][j] += (dataClassOne[i][iOne]-mOne[i])*
(dataClassOne[j][iOne]-mOne[j])/nOne;
for (int iTwo=0; iTwo<nTwo; iTwo++)
for (int i=0; i<2; i++)
for (int j=0; j<2; j++)
coVarTwo[i][j] += (dataClassTwo[i][iTwo]-mTwo[i])*
(dataClassTwo[j][iTwo]-mTwo[j])/nTwo;
//
for (int i=0; i<2; i++)
for (int j=0; j<2; j++)
S[i][j] = coVarOne[i][j] + coVarTwo[i][j];
//
} // end of calcCoVarMatrices()
// ***
// *** evaluate the plane
// ***
void evaluatePlane(double w[2], double dataPlane[2][2])
{
double rr = sqrt(w[0]*w[0]+w[1]*w[1]);
w[0] = w[0]/rr;
w[1] = w[1]/rr; // normalization
//
dataPlane[0][0] = 1.8*w[1]; // orthogonal
dataPlane[1][0] = -1.8*w[0];
dataPlane[0][1] = -dataPlane[0][0];
dataPlane[1][1] = -dataPlane[1][0];
//
// test printing
if (1==2)
cout << "# w[0], w[1] : " << w[0] << " " << w[1] << endl;
} // end of evaluatePlane()
// ***
// *** support vector machine optimization
// ***
template<int N>
void svmGradientAscent(double svmData[2][N], double svmL[N], double svmA[N],
double &svmB, double svmW[2], double svmDataPlane[2][2],
double svm_m1_Plane[2][2], double svm_m2_Plane[2][2])
{
int nIter = 400000; // fixed number of update iterations
double epsilon = 0.01; // update rate
double rr;
//
for (int iIter=0; iIter<nIter; iIter++)
{
svmW[0] = 0.0;
svmW[1] = 0.0;
for (int i=0; i<N; i++)
for (int k=0; k<2; k++)
svmW[k] += svmA[i]*svmL[i]*svmData[k][i];
// // (1) gradient
for (int i=0; i<N; i++)
{
rr = svmW[0]*svmData[0][i] + svmW[1]*svmData[1][i];
svmA[i] += epsilon*(1.0-svmL[i]*rr);
}
// // (2) orthogonalization
rr = 0.0;
for (int i=0; i<N; i++)
rr += svmA[i]*svmL[i];
for (int i=0; i<N; i++)
svmA[i] = svmA[i] - rr*svmL[i]/N;
// // (3) positiveness
for (int i=0; i<N; i++)
if (svmA[i]<0.0)
svmA[i] = 0.0;
} // end of loop over iterations
//
// // offset
//
svmB = 0.0;
for (int i=0; i<N; i++)
if (svmA[i]>0.001)
{
svmB = svmW[0]*svmData[0][i] + svmW[1]*svmData[1][i] - svmL[i];
//
cout << "# b " << svmW[0]*svmData[0][i] + svmW[1]*svmData[1][i] - svmL[i] << endl;
}
// // data plane
rr = sqrt(svmW[0]*svmW[0]+svmW[1]*svmW[1]);
// // w*b/|w|^2 on plane w*x=b
svmDataPlane[0][0] = svmB*svmW[0]/(rr*rr) + 1.8*svmW[1]/rr;
svmDataPlane[1][0] = svmB*svmW[1]/(rr*rr) - 1.8*svmW[0]/rr;
svmDataPlane[0][1] = svmB*svmW[0]/(rr*rr) - 1.8*svmW[1]/rr;
svmDataPlane[1][1] = svmB*svmW[1]/(rr*rr) + 1.8*svmW[0]/rr;
// // margin planes
svm_m1_Plane[0][0] = (svmB-1)*svmW[0]/(rr*rr) + 1.8*svmW[1]/rr;
svm_m1_Plane[1][0] = (svmB-1)*svmW[1]/(rr*rr) - 1.8*svmW[0]/rr;
svm_m1_Plane[0][1] = (svmB-1)*svmW[0]/(rr*rr) - 1.8*svmW[1]/rr;
svm_m1_Plane[1][1] = (svmB-1)*svmW[1]/(rr*rr) + 1.8*svmW[0]/rr;
//
svm_m2_Plane[0][0] = (svmB+1)*svmW[0]/(rr*rr) + 1.8*svmW[1]/rr;
svm_m2_Plane[1][0] = (svmB+1)*svmW[1]/(rr*rr) - 1.8*svmW[0]/rr;
svm_m2_Plane[0][1] = (svmB+1)*svmW[0]/(rr*rr) - 1.8*svmW[1]/rr;
svm_m2_Plane[1][1] = (svmB+1)*svmW[1]/(rr*rr) + 1.8*svmW[0]/rr;
//
// // test printout
//
if (1==1)
{
printf("#%4s %5s %10s %12s\n","", "class", "a_i", "w*x_i-b");
for (int i=0; i<N; i++)
printf("#%4d %5d %10.4f %12.4f\n",i, int(svmL[i]), svmA[i],
svmData[0][i]*svmW[0]+svmData[1][i]*svmW[1] - svmB ); // support condition
}
//
} // end of svmGradientAscent()
// ***
// *** main
// ***
int main()
{
const int N1 = 4; // number of training data per class
const int N2 = 2;
double dataClassOne[2][N1]; // class data points
double dataClassTwo[2][N2];
double dataBasis[2][2]; // connecting the center of masses
//
dataBasis[0][0] = -1.0; // (-1,0)
dataBasis[1][0] = 0.0;
dataBasis[0][1] = 1.0; // (1,0)
dataBasis[1][1] = 0.0;
//
double mOne[2]; // center of masses
double mTwo[2];
double deltaM[2]; // mTwo-mOne
double w[2]; // feature vector
double dataPlane[2][2]; // orthogonal to the feature vector
//
double coVarOne[2][2]; // covariance matrices
double coVarTwo[2][2];
double S[2][2]; // sum of covariance matrices
//
generateClassificationData(dataClassOne,dataClassTwo);
//
calcCoVarMatrices(dataClassOne, dataClassTwo, coVarOne, coVarTwo,
mOne, mTwo, S, deltaM);
//
gaussElimination(S,deltaM,w); // solve "S deltaM = w"
evaluatePlane(w, dataPlane); // w defines the plane
// --- ------------------
// --- start code for SVM (support vector machine)
// --- ------------------
const int N = N1+N2; // combined
double svmData[2][N]; // combined training data
double svmL[N]; // class labels
double svmA[N]; // Lagrange parameters
double svmB; // hyperplane offset
double svmW[2]; // weight vector
double svmDataPlane[2][2]; // orthogonal to weight vector
double svm_m1_Plane[2][2]; // margin one hyperplane
double svm_m2_Plane[2][2]; // margin two hyperplane
//
for (int i=0;i<N1;i++)
{
svmData[0][i] = dataClassOne[0][i]; // merge data
svmData[1][i] = dataClassOne[1][i];
svmL[i] = 1.0;
svmA[i] = nextRandom(); // (positive) random initialization
}
for (int j=0;j<N2;j++)
{
svmData[0][N1+j] = dataClassTwo[0][j];
svmData[1][N1+j] = dataClassTwo[1][j];
svmL[N1+j] = -1.0;
svmA[N1+j] = nextRandom();
}
svmGradientAscent(svmData, svmL, svmA, svmB, svmW, svmDataPlane, svm_m1_Plane, svm_m2_Plane);
// --- ------------------
// --- end code for SVM
// --- ------------------
string dataNameOne = "$dataOne";
string dataNameTwo = "$dataTwo";
string dataNamePlane = "$dataPlane";
string dataNamePlaneSVM = "$dataPlaneSVM";
string dataNameP_m1_SVM = "$dataP_m1_SVM";
string dataNameP_m2_SVM = "$dataP_m2_SVM";
string dataNameBasis = "$dataBasis";
string dataToPlotOne = xyValuesGnu(dataClassOne,dataNameOne); // data to string
string dataToPlotTwo = xyValuesGnu(dataClassTwo,dataNameTwo);
string dataToPlotPlane = xyValuesGnu(dataPlane,dataNamePlane);
string dataToPlotPlaneSVM = xyValuesGnu(svmDataPlane,dataNamePlaneSVM);
string dataToPlotP_m1_SVM = xyValuesGnu(svm_m1_Plane,dataNameP_m1_SVM);
string dataToPlotP_m2_SVM = xyValuesGnu(svm_m2_Plane,dataNameP_m2_SVM);
string dataToPlotBasis = xyValuesGnu(dataBasis,dataNameBasis);
//
//
plotViaGnuplot(dataNameOne, dataToPlotOne,
dataNameTwo, dataToPlotTwo,
dataNamePlane, dataToPlotPlane,
dataNamePlaneSVM,dataToPlotPlaneSVM,
dataNameP_m1_SVM,dataToPlotP_m1_SVM,
dataNameP_m2_SVM,dataToPlotP_m2_SVM,
dataNameBasis, dataToPlotBasis);
//
return 1;
} // end of main()