Exercise Sheet #2

Deadline: 06.11.2023, 12:00

Problem 1 (Probability Generating Function)

(10 points)

Generating functions can be very useful for sums in processes with multiple random variables. To show this we will look at a dice game, where a player moves X steps on a board each turn according to the number rolled on the dice.

- (a) Write down the generating function $G_X(z)$ of the probability to get the number X on a six-sided dice throw.
- (b) During a game the player advances each turn according to a dice throw. The number of turns is N and the total sum of steps taken during the game is S_N . Derive the generating function $G_{S_N}(z)$ of S_N as a function of $G_X(z)$.
- (c) Now assume N is a random variable with distribution p_N , which is generated by the function $G_N(z)$. Prove that $G_{S_N}(z)$ is now given by

$$G_{S_N}(z) = G_N(G_X(z))$$

Hint: Use the law of total expectation, $E(x) = E_y(E(x|y))$.

(d) Assuming that N is a poissonian variable with probability

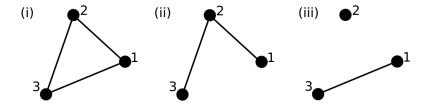
$$p_N = e^{-\lambda} \frac{\lambda^N}{N!},$$

calculate the average number of steps in a game $\langle S_N \rangle$ using your previous result.

Problem 2 (Graph Laplacian)

(5 points)

Consider the random graphs given below.



For each of these graphs, calculate

- (a) the adjacency matrix and the normalized graph Laplacian.
- (b) the eigenvalue spectrum of the Laplacian. What is its meaning?

Problem 3 (Percolation) (5 points)

We create a random graph by adding vertices with random edges connecting to other vertices. The degree of each vertex is geometrically distributed, decided by repeatedly tossing a coin until tails comes up, such that the degree is the number of heads tosses:

$$P(k) = (1 - p)^{k-1}p$$

Assuming the coin is unfair with probability p for tails. Find the percolation threshold of the graph where a giant connected cluster forms.