
Chapter 1

Synchronization Phenomena

Here we consider the dynamics of complex systems constituted of interact-
ing local computational units that have their own non-trivial dynamics. An
example for a local dynamical system is the time evolution of an infectious
disease in a certain city that is weakly influenced by an ongoing outbreak of
the same disease in another city; or the case of a neuron in a state where it
fires spontaneously under the influence of the afferent axon potentials.

A fundamental question is then whether the time evolutions of these local
computational unit will remain dynamically independent of each other or
whether, at some point, they will start to change their states all in the same
rhythm. This is the notion of “synchronization”, which we will study through-
out this chapter. Starting with the paradigmal Kuramoto model we will learn
that synchronization processes may be driven either by averaging dynamical
variables or through causal mutual influences.

1.1 Frequency Locking

In this chapter we will be dealing mostly with autonomous dynamical sys-
tems which may synchronize spontaneously. A dynamical system may also
be driven by outside influences, being forced to follow the external signal
synchronously.

The Driven Harmonic Oscillator As an example we consider the driven
harmonic oscillator

ẍ+ γ ẋ+ ω2
0 x = F

(
eiωt + c.c.

)
, γ > 0 . (1.1)

In the absence of external driving, F ≡ 0, the solution is

x(t) ∼ eλt, λ ± = −γ
2
±
√
γ2

4
− ω2

0 , (1.2)
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which is damped/critical/overdamped for γ < 2ω0, γ = 2ω0 and γ > 2ω0.

Frequency Locking In the long time limit, t → ∞, the dynamics of the
system follows the external driving, for all F 6= 0, due the damping γ > 0.
We therefore consider the ansatz

x(t) = aeiωt + c.c., (1.3)

where the amplitude a may contain an additional time-independent phase.
Using this ansatz for Eq. (1.1) we obtain

F = a
(
−ω2 + iωγ + ω2

0

)
= −a

(
ω2 − iωγ − ω2

0

)
= −a (ω + iλ+) (ω + iλ−) ,

where the eigenfrequencies λ± are given by Eq. (1.2). The solution for the
amplitude a can then be written in terms of λ± or alternatively as

a =
−F

(ω2 − ω2
0)− iωγ

. (1.4)

The response becomes divergent, viz a→∞, at resonance ω = ω0 and small
damping γ → 0.

The General Solution The driven, damped harmonic oscillator Eq. (1.1)
is an inhomogeneous linear differential equation and its general solution is
given by the superposition of the special solution Eq. (1.4) with the general
solution of the homogeneous system Eq. (1.2). The latter dies out for t→∞
and the system synchronizes with the external driving frequency ω.

1.2 Coupled Oscillators and the Kuramoto Model

Any set of local dynamical systems may synchronize, whenever their dynam-
ical behaviours are similarly and the mutual couplings substantial. We start
by discussing the simplest non-trivial set-up, viz harmonically coupled har-
monic oscillators.

Limiting Cycles A free rotation

x(t) = r
(

cos(ωt+ φ0), sin(ωt+ φ0)
)
, θ(t) = ωt+ θ0, θ̇ = ω

often occurs (in suitable coordinates) as limiting cycles of dynamical sys-
tems, see Chap. ??. One can then use the phase variable θ(t) for an effective
description.

Coupled Dynamical Systems We consider a collection of individual
dynamical systems i = 1, . . . , N , which have limiting cycles with natural
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frequencies ωi. The coupled system then obeys

θ̇i = ωi +

N∑
j=1

Γij (θi, θj), i = 1, . . . , N , (1.5)

where the Γij are suitable coupling constants.

The Kuramoto Model A particularly tractable choice for the coupling
constants Γij has been proposed by Kuramoto:

Γij (θi, θj) =
K

N
sin(θj − θi) , (1.6)

where K ≥ 0 is the coupling strength and the factor 1/N ensures that the
model is well behaved in the limit N →∞.

Two Coupled Oscillators We consider first the case N = 2:

θ̇1 = ω1 +
K

2
sin(θ2 − θ1), θ̇2 = ω2 +

K

2
sin(θ1 − θ2) , (1.7)

or

∆θ̇ = ∆ω −K sin(∆θ), ∆θ = θ2 − θ1, ∆ω = ω2 − ω1 . (1.8)

The system has a fixpoint ∆θ∗ for which

d

dt
∆θ∗ = 0, sin(∆θ∗) =

∆ω

K
(1.9)

and therefore
∆θ∗ ∈ [−π/2, π/2], K > |∆ω| . (1.10)

This condition is valid for attractive coupling constants K > 0. For repulsive
K < 0 anti-phase states are stabilized. We analyze the stability of the fixpoint
using ∆θ = ∆θ∗ + δ and Eq. (1.8). We obtain

d

dt
δ = − (K cos∆θ∗) δ, δ(t) = δ0 e

−K cos∆θ∗t .

The fixpoint is stable since K> 0 and cos∆θ∗> 0, due to Eq. (1.10). We
therefore have a bifurcation.

– For K < |∆ω| there is no phase coherence between the two oscillators,
they are drifting with respect to each other.

– For K > |∆ω| there is phase locking and the two oscillators rotate together
with a constant phase difference.

This situation is illustrated in Fig. 1.1.

Natural Frequency Distribution We now consider the case of many cou-
pled oscillators, N → ∞. The individual systems have different individual
frequencies ωi with a probability distribution
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Fig. 1.1 The relative phase ∆θ(t) of two coupled oscillators, obeying Eq. (1.8), with ∆ω =

1 and a critical coupling strength Kc = 1. For an undercritical coupling strength K = 0.9
the relative phase increases steadily, for an overcritical coupling K = 1.01 it locks

g(ω) = g(−ω),

∫ ∞
−∞

g(ω) dω = 1 . (1.11)

We note that the choice of a zero average frequency∫ ∞
−∞

ω g(ω) dω = 0

implicit in Eq. (1.11) is actually generally possible, as the dynamical equa-
tions (1.5) and (1.6) are invariant under a global translation

ω → ω +Ω, θi → θi +Ωt ,

with Ω being the initial non-zero mean frequency.

The Order Parameter The complex order parameter

r eiψ =
1

N

N∑
j=1

eiθj (1.12)

is a macroscopic quantity that can be interpreted as the collective rhythm
produced by the assembly of the interacting oscillating systems. The radius
r(t) measures the degree of phase coherence and ψ(t) corresponds to the
average phase.

Molecular Field Representation We rewrite the order parameter defini-
tion Eq. (1.12) as

r ei(ψ−θi) =
1

N

N∑
j=1

ei(θj−θi), r sin(ψ − θi) =
1

N

N∑
j=1

sin(θj − θi) ,
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Fig. 1.2 Spontaneous synchronization in a network of limit cycle oscillators with dis-
tributed individual frequencies. Color coding: slowest (red)–fastest (violet) natural fre-

quency. With respect to Eq. (1.5) an additional distribution of individual radii ri(t) has

been assumed, the asterisk denotes the mean field reiψ =
∑
i rie

iθi/N , compare Eq. (1.12),
and the individual radii ri(t) are slowly relaxing (From ? ?)

retaining the imaginary component of the first term. Inserting the second
expression into the governing equation (1.5) we find

θ̇i = ωi +
K

N

∑
j

sin(θj − θi) = ωi + Kr sin(ψ − θi) . (1.13)

The motion of every individual oscillator i = 1, . . . , N is coupled to the other
oscillators only through the mean-field phase ψ; the coupling strength being
proportional to the mean-field amplitude r.

The individual phases θi are drawn towards the self-consistently deter-
mined mean phase ψ, as can be seen in the numerical simulations presented
in Fig. 1.2. Mean-field theory is exact for the Kuramoto model. It is never-
theless non-trivial to solve, as the self-consistency condition (1.12) needs to
be fulfilled.

The Rotating Frame of Reference The order parameter reiψ performs
a free rotation in the thermodynamic limit, and for long times t→∞,

r(t)→ r, ψ(t)→ Ωt, N →∞ ,

and one can transform via
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Fig. 1.3 The region of locked and drifting natural frequencies ωi → ω within the

Kuramoto model

θi → θi + ψ = θi +Ωt, θ̇i → θi +Ω, ωi → ωi +Ω

to the rotating frame of reference. The governing equation (1.13) then
becomes

θ̇i = ωi −Kr sin(θi) . (1.14)

This expression is identical to the one for the case of two coupled oscillators,
Eq. (1.8), when substituting Kr by K. It then follows directly that ωi =Kr
constitutes a special point.

Drifting and Locked Components Equation (1.14) has a fixpoint θ∗i for
which θ̇∗i = 0 and

Kr sin(θ∗i ) = ωi, |ωi| < Kr , θ∗i ∈
[
−π

2
,
π

2

]
. (1.15)

θ̇∗i = 0 in the rotating frame of reference means that the participating limit
cycles oscillate with the average frequency ψ; they are “locked” to ψ, see
Figs. 1.2 and 1.3.

For |ωi| > Kr the participating limit cycle drifts, i.e. θ̇i never vanishes.
They do, however, slow down when they approach the locked oscillators, see
Eq. (1.14) and Fig. 1.1.

Stationary Frequency Distribution We denote by

ρ(θ, ω) dθ

the fraction of evolving oscillators with natural frequency ω that lie between
θ and θ + dθ. It obeys the continuity equation

∂ρ

∂t
+

∂

∂θ

(
ρ θ̇
)

= 0 ,

where ρθ̇ is the respective current density. In the stationary case, ρ̇ = 0, the
stationary frequency distribution ρ(θ, ω) needs to be inversely proportional
to the speed

θ̇ = ω −Kr sin(θ) .

The oscillators pile up at slow places and thin out at fast places on the circle.
Hence
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ρ(θ, ω) =
C

|ω −Kr sin(θ)|
,

∫ π

−π
ρ(θ, ω) dθ = 1 , (1.16)

for ω > 0, where C is an appropriate normalization constant.

Formulation of the Self-consistency Condition We write the self-
consistency condition (1.12) as

〈eiθ〉 = 〈eiθ〉locked + 〈eiθ〉drifting = r eiψ ≡ r , (1.17)

where the brackets 〈·〉 denote population averages and where we have used
the fact that we can set the average phase ψ to zero.

Locked Contribution The locked contribution is

〈eiθ〉locked =

∫ Kr

−Kr

eiθ
∗(ω)g(ω) dω =

∫ Kr

−Kr

cos ((θ∗(ω)) g(ω) dω ,

where we have assumed g(ω) = g(−ω) for the distribution g(ω) of the natural
frequencies within the rotating frame of reference. Using Eq. (1.15),

dω = Kr cos θ∗ dθ∗ ,

for θ∗(ω) we obtain

〈eiθ〉locked =

∫ π/2

−π/2
cos(θ∗) g(Kr sin θ∗)Kr cos(θ∗) dθ∗ (1.18)

= Kr

∫ π/2

−π/2
cos2(θ∗) g(Kr sin θ∗) dθ∗ .

The Drifting Contribution The drifting contribution

〈eiθ〉drifting =

∫ π

−π
dθ

∫
|ω|>Kr

dω eiθρ(θ, ω)g(ω) = 0

to the order parameter actually vanishes. Physically this is clear: oscillators
that are not locked to the mean field cannot contribute to the order param-
eter. Mathematically it follows from g(ω) = g(−ω), ρ(θ + π,−ω) = ρ(θ, ω)
and ei(θ+π) = −eiθ.

Second-Order Phase Transition The population average 〈eiθ〉 of the
order parameter Eq. (1.17) is then just the locked contribution Eq. (1.18)

r = 〈eiθ〉 ≡ 〈eiθ〉locked = Kr

∫ π/2

−π/2
cos2(θ∗) g(Kr sin θ∗) dθ∗ . (1.19)
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Fig. 1.4 The solution r =
√

1−Kc/K for the order parameter r in the Kuramoto model,

compare Eq. (1.21)

For K < Kc Eq. (1.19) has only the trivial solution r = 0; for K > Kc a
finite order parameter r > 0 is stabilized, see Fig. 1.4. We therefore have a
second-order phase transition, as discussed in Chap. ??.

Critical Coupling The critical coupling strength Kc can be obtained con-
sidering the limes r → 0+ in Eq. (1.19):

1 = Kc g(0)

∫ π/2

−π/2
cos2 θ∗ dθ∗ = Kc g(0)

π

2
, Kc =

2

πg(0)
. (1.20)

The self-consistency condition Eq. (1.19) can actually be solved exactly with
the result

r =

√
1− Kc

K
, Kc =

2

πg(0)
, (1.21)

as illustrated in Fig. 1.4.

The Physics of Rhythmic Applause A nice application of the Kuramoto
model is the synchronization of the clapping of an audience after a perfor-
mance, which happens when everybody claps at a slow frequency and in tact.
In this case the distribution of “natural clapping frequencies” is quite narrow
and K > Kc ∝ 1/g(0).

When an individual wants to express especial satisfaction with the per-
formance he/she increases the clapping frequency by about a factor of 2,
as measured experimentally, in order to increase the noise level, which just
depends on the clapping frequency. Measurements have shown, see Fig. 1.5,
that the distribution of natural clapping frequencies is broader when the
clapping is fast. This leads to a drop in g(0) and then K < Kc ∝ 1/g(0). No
synchronization is possible when the applause is intense.
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Fig. 1.5 Normalized distribution for the frequencies of clappings of one chosen individual

from 100 samplings (??)

1.3 Synchronization in the Presence of Time Delays

Synchronization phenomena need the exchange of signals from one subsys-
tem to another and this information exchange typically needs a certain time.
These time delays become important when they are comparable to the intrin-
sic time scales of the individual subsystems. A short introduction into the
intricacies of time-delayed dynamical systems has been given in Sect. ??, here
we discuss the effect of time delays on the synchronization process.

The Kuramoto Model with Time Delays We start with two limiting-
cycle oscillators, coupled via a time delay T :

θ̇1(t) = ω1+
K

2
sin[θ2(t−T )−θ1(t)], θ̇2(t) = ω2+

K

2
sin[θ1(t−T )−θ2(t)] .

In the steady state,

θ1(t) = ω t, θ2(t) = ω t+∆θ∗ , (1.22)

there is a synchronous oscillation with a yet to be determined locking
frequency ω and a phase slip ∆θ∗. Using sin(α + β) = sin(α) cos(β) +
cos(α) sin(β) we find

ω = ω1 +
K

2

[
− sin(ωT ) cos(∆θ∗) + cos(ωT ) sin(∆θ∗)

]
, (1.23)

ω = ω2 +
K

2

[
− sin(ωT ) cos(∆θ∗)− cos(ωT ) sin(∆θ∗)

]
.

Taking the difference we obtain
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Fig. 1.6 Left : Graphical solution of the self-consistency condition (1.25), given by the

intersections of the dashed with the solid and shaded lines, for the locking frequency ω,
and time delays T = 1 (one solution) and T = 6 (three solutions in the interval ω ∈ [0, 1.5]).

The coupling constant is K = 1.8. Right : An example of a directed ring, containing five

sites

∆ω = ω2 − ω1 = K sin(∆θ∗) cos(ωT ) , (1.24)

which generalizes Eq. (1.9) to the case of a finite time delay T . Equa-
tions (1.23) and (1.24) then determine together locking frequency ω and the
phase slip ∆θ∗.

Multiple Synchronization Frequencies For finite time delays T , there
are generally more than one solution for the synchronization frequency ω.
For concreteness we consider now the case

ω1 = ω2 ≡ 1, ∆θ∗ ≡ 0, ω = 1− K

2
sin(ωT ) , (1.25)

compare Eqs. (1.24) and (1.23). This equation can be solved graphically, see
Fig. 1.6.

For T → 0 the two oscillators are phase locked, oscillating with the original
natural frequency ω = 1. A finite time delay then leads to a change of the
synchronization frequency and eventually, for large enough time delay T and
couplings K, to multiple solutions for the locking frequency. These solutions
are stable for

K cos(ωT ) > 0 ; (1.26)

we leave the derivation as an exercise to the reader. The time delay such
results in a qualitative change in the structure of the phase space.

Rings of Delayed-Coupled Oscillators As an example of the possible
complexity arising from delayed couplings we consider a ring of N oscillators,
as illustrated in Fig. 1.6, coupled unidirectionally,

θ̇j = ωj +K sin[θj−1(t− T )− θj(t)], j = 1, . . . , N . (1.27)
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The periodic boundary conditions imply that N + 1=̂1 in Eq. (1.27). We
specialize to the uniform case ωj ≡ 1. The network is then invariant under
rotations of multiples of 2π/N .

We consider plane-wave solutions1 with frequency ω and momentum k,

θj = ω t− k j, k = nk
2π

N
, nk = 0, . . . , N − 1 , (1.28)

where j = 1, . . . , N . For N = 2 only in-phase k = 0 and anti-phase k =
π solutions exist. The locking frequency ω is then determined by the self-
consistency condition

ω = 1 +K sin(k − ωT ) . (1.29)

For a given momentum k a set of solutions is obtained. The resulting solu-
tions θj(t) are characterized by complex spatio-temporal symmetries, oscil-
lating fully in phase only for vanishing momentum k → 0. Note however,
that additional unlocked solutions cannot be excluded and may show up in
numerical solutions. It is important to remember in this context, as discussed
in Sect. ??, that initial conditions in the entire interval t ∈ [−T, 0] need to be
provided.

1.4 Synchronization Mechanisms

The synchronization of the limiting cycle oscillators discussed in Sect. 1.2
is mediated by a molecular field, which is an averaged quantity. Averaging
plays a central role in many synchronization processes and may act both on
a local basis and on a global level. Alternatively, synchronization may be
driven by the casual influence of temporally well defined events, a route to
synchronization we will discuss in Sect. 1.4.2.

1.4.1 Aggregate Averaging

The coupling term of the Kuramoto model, see Eq. (1.6), contains differences
θi − θj in the respective dynamical variables θi and θj . With an appropriate
sign of the coupling constant, this coupling results in a driving force towards
the average,

θ1 →
θ1 + θ2

2
, θ2 →

θ1 + θ2
2

.

1 In the complex plane ψj(t) = eiθj(t) = ei(ωt−kj) corresponds to a plane wave on a

periodic ring. Equation (1.27) is then equivalent to the phase evolution of the wavefunction
ψj(t). The system is invariant under translations j → j + 1 and the discrete momentum k

is therefore a good quantum number, in the jargon of quantum mechanics. The periodic

boundary condition ψj+N = ψj is satisfied for the momenta k = 2πnk/N .
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This driving force competes with the differences in the time-development of
the individual oscillators, which is present whenever their natural frequencies
ωi and ωj do not coincide. A detailed analysis is then necessary, as carried
out in Sect. 1.2, in order to study this competition between the synchroniz-
ing effect of the coupling and the desynchronizing influence of a non-trivial
natural frequency distribution.

Aggregate Variables Generalizing above considerations we consider now
a set of dynamical variables xi, with ẋi = fi(xi) being the evolution rule for
the isolated units. The geometry of the couplings is given by the normalized
weighted adjacency matrix

Aij ,
∑
j

Aij = 1 .

The matrix elements are Aij > 0 if the units i and j are coupled, and zero
otherwise, compare Chap. ??, with Aij representing the relative weight of the
link. We define now the aggregate variables x̄i = x̄i(t) by

x̄i = (1− κi)xi + κi
∑
j

Aijxj , (1.30)

where κi ∈ [0, 1] is the local coupling strength. The aggregate variables x̄i
correspond to a superposition of xi with the weighted mean activity

∑
j Aijxj

of all its neighbors.

Coupling via Aggregate Averaging A quite general class of dynamical
networks can now be formulated in terms of aggregate variables through

ẋi = fi(x̄i), i = 1, . . . , N , (1.31)

with the x̄i given by Eq. (1.30). The fi describe the local dynamical systems
which could be, e.g., harmonic oscillators, relaxation oscillators or chaotic
systems.

Expansion around the Synchronized State In order to expand
Eq. (1.31) around the globally synchronized state we first rewrite the aggre-
gate variables as

x̄i = (1− κi)xi + κi
∑
j

Aij (xj − xi + xi) (1.32)

= xi

(
1− κi + κi

∑
j

Aij

)
+ κi

∑
j

Aij (xj − xi) = xi + κi
∑
j

Aij (xj − xi) ,

where we have used the normalization
∑
j Aij = 1. The differences in activi-

ties xj − xi are small close to the synchronized state and we may expand
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fi(x̄i) ≈ fi(xi) + f ′i(xi)κi
∑
j

Aij (xj − xi) . (1.33)

Differential couplings ∼(xj −xi) between the nodes of the network are hence
equivalent, close to synchronization, to the aggregate averaging of the local
dynamics via the respective x̄i.

General Coupling Functions We may go one step further and define with

ẋi = fi(xi) + hi(xi)
∑
j

gij (xj − xi) (1.34)

a general system of i = 1, . . . , N dynamical units interacting via the coupling
functions gij (xj − xi), which are respectively modulated through the hi(xi).
Close to the synchronized state we may expand Eq. (1.34) as

ẋi ≈ fi(xi) + hi(xi)
∑
j

g′ij (0)(xj − xi), hi(xi)g
′
ij (0) =̂ f ′i(xi)κiAij .

The equivalence of hi(xi)g
′
ij (0) and f ′i(xi)κiAij , compare Eq. (1.33), is local

in time, but this equivalence is sufficient for a local stability analysis; the
synchronized state of the system with differential couplings, Eq. (1.34), is
locally stable whenever the corresponding system with aggregate couplings,
Eq. (1.31), is also stable against perturbations.

Synchronization via Aggregated Averaging The equivalence of
Eqs. (1.31) and (1.34) tells us that the driving forces leading to synchroniza-
tion are aggregated averaging processes of neighboring dynamical variables.

Till now we considered globally synchronized states. Synchronization pro-
cesses are however in general quite intricate processes, we mention here two
alternative possibilities. Above discussion concerning aggregate averaging
remains however valid, when generalized suitably, also for these more generic
synchronized states.

– We saw, when discussing the Kuramoto model in Sect. 1.2, that generically
not all nodes of a network participate in a synchronization process. For
the Kuramoto model the oscillators with natural frequencies far away from
the average do not become locked to the time development of the order
parameter, see Fig. 1.3, retaining drifting trajectories.

– Generically, synchronization takes the form of coherent time evolution with
phase lags, we have seen an example when discussing two coupled oscilla-
tors in Sect. 1.2. The synchronized orbit is then

xi(t) = x(t) +∆xi, ∆xi const. ,

viz the elements i = 1, . . . , N are all locked in.

Stability Analysis of the Synchronized State The stability of a globally
synchronized state, xi(t) = x(t) for i = 1, . . . , N , can be determined by
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considering small perturbations, viz

xi(t) = x(t) + δi c
t, |c|t = eλt , (1.35)

where λ is the Lyapunov exponent. The eigenvectors (δ1, . . . , δN ) of the per-
turbation are determined by the equations of motion linearized around the
synchronized trajectory. There is one Lyapunov exponent for every eigenvec-
tor, N in all,

λα, (δα1 , . . . , δ
α
N ), α = 1, . . . , N .

One of the exponents, namely

λ1 ≡ λs, δsi = δ, i = 1, . . . , N ,

characterizes the flow along the synchronized direction. The synchronized
state is stable if all the remaining λj (j = 2, . . . , N) Lyapunov exponents are
negative.
δs itself can be either positive or negative. In the case that the synchronized

state is periodic, with period T , its integral over one period vanishes,∫ T

0

δs(t) dt = 0, (1.36)

as discussed in Chap. ??, with expression (1.36) being actually valid for any
closed trajectory; the increase (or decrease) of the velocity of the flow would
otherwise add at infinitum.

Coupled Logistic Maps As an example we consider two coupled logistic
maps, see Fig. ??,

xi(t+ 1) = r x̄i(t)
(
1− x̄i(t)

)
, i = 1, 2, r ∈ [0, 4] , (1.37)

with
x̄1 = (1− κ)x1 + κx2, x̄2 = (1− κ)x2 + κx1

and κ ∈ [0, 1] being the coupling strength. Using Eq. (1.35) as an Ansatz we
obtain

c

(
δ1
δ2

)
= r
(
1− 2x(t)

)( (1− κ) κ
κ (1− κ)

)(
δ1
δ2

)
,

which determines c as the eigenvalues of the Jacobian of Eq. (1.37). We have
hence two local pairs of eigenvalues and eigenvectors, namely

c1 = r(1− 2x) (δ1, δ2) =
1√
2

(1, 1)

c2 = r(1− 2x)(1− 2κ) (δ1, δ2) =
1√
2

(1,−1)
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corresponding to the respective local Lyapunov exponents, λ = log |c|,

λ1 = log |r(1− 2x)|, λ2 = log |r(1− 2x)(1− 2κ)| . (1.38)

As expected, λ1 > λ2, since λ1 corresponds to a perturbation along the
synchronized orbit. The overall stability of the synchronized trajectory can
be examined by averaging above local Lyapunov exponents over the full time
development, obtaining such the maximal Lyapunov exponent, as defined in
Chap. ??.

Synchronization of Coupled Chaotic Maps The Lyapunov exponents
need to be evaluated numerically, but we can obtain an lower bound for
the coupling strength κ needed for stable synchronization by observing that
|1− 2x| ≤ 1 and hence

|c2| ≤ r|1− 2κ| .

The synchronized orbit is stable for |c2| < 1. Considering the case κ ∈ [0, 1/2]
we find

1 > r(1− 2κs) ≥ |c2|, κs >
r − 1

2r

for the lower bound for κs. The logistic map is chaotic for r > r∞ ≈ 3.57 and
above result, being valid for all r ∈ [0, 4], therefore proves that also chaotic
coupled systems may synchronize.

For the maximal reproduction rate, r = 4, synchronization is guaranteed
for 3/8 < κs ≤ 1/2. Note that x̄1 = x̄2 for κ = 1/2, synchronization through
aggregate averaging is hence achieved in one step for κ = 1/2.

1.4.2 Causal Signaling

The synchronization of the limiting cycle oscillators discussed in Sect. 1.2 is
very slow, see Fig. 1.2, as the information between the different oscillators is
exchanged only indirectly via the molecular field, which is an averaged quan-
tity. Synchronization may be sustantially faster, when the local dynamical
units influence each other with precisely timed signals, the route to synchro-
nization discussed here.

Relaxational oscillators, like the van der Pol oscillator discussed in
Chap. ?? have a non-uniform cycle and the timing of the stimulation of
one element by another is important. This is a characteristic property of
real-world neurons in particular and of many models of artificial neurons,
like the so-called integrate-and-fire models. Relaxational oscillators are hence
well suited to study the phenomena of synchronization via causal signaling.

Terman–Wang Oscillators There are many variants of relaxation oscil-
lators relevant for describing integrate-and-fire neurons, starting from the
classical Hodgkin–Huxley equations. Here we discuss the particularly trans-
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Fig. 1.7 The ẏ = 0 (thick dashed-dotted lines) and the ẋ = 0 (thick full lines) isocline of

the Terman–Wang oscillator, Eq. (1.39), for α = 5, β = 0.2, ε = 0.1. Left : I = 0.5 with the
limiting relaxational cycle for ε � 1 (thin dotted line arrows). Right : I = −0.5 with the

stable fixpoint: PI

parent dynamical system introduced by Terman and Wang, namely

ẋ = f(x)− y + I

ẏ = ε
(
g(x)− y

) f(x) = 3x− x3 + 2

g(x) = α
(
1 + tanh(x/β)

) . (1.39)

Here x corresponds in neural terms to the membrane potential and I repre-
sents the external stimulation to the neural oscillator. The amount of dissi-
pation is given by

∂ẋ

∂x
+
∂ẏ

∂y
= 3− 3x2 − ε = 3(1− x2)− ε .

For small ε� 1 the system takes up energy for membrane potentials |x| < 1
and dissipates energy for |x| > 1.

Fixpoints The fixpoints are determined via

ẋ = 0

ẏ = 0

y = f(x) + I

y = g(x)

by the intersection of the two functions f(x) + I and g(x), see Fig. 1.7. We
find two parameter regimes:

– For I ≥ 0 we have one unstable fixpoint (x∗, y∗) with x∗ ' 0.
– For I < 0 and |I| large enough we have two additional fixpoints given by

the crossing of the sigmoid α
(
1 + tanh(x/β)

)
with the left branch (LB) of

the cubic f(x) = 3x− x3 + 2, with one fixpoint being stable.

The stable fixpoint PI is indicated in Fig. 1.7.

The Relaxational Regime For the case I > 0 the Terman–Wang oscillator
relaxes in the long time limit to a periodic solution, see Fig. 1.7, which is
very similar to the limiting relaxation oscillation of the Van der Pol oscillator
discussed in Chap. ??.
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Fig. 1.8 Sample trajectories y(t) (thick dashed-dotted lines) and x(t) (thick full lines) of

the Terman–Wang oscillator Eq. (1.39) for α = 5, β = 0.2, ε = 0.1. Left : I = 0.5 exhibiting
spiking behavior, having silent/active phases for negative/positive x. Right : I = −0.5,

relaxing to the stable fixpoint

Silent and Active Phases In its relaxational regime, the periodic solution
jumps very fast (for ε � 1) between trajectories that approach closely the
right branch (RB) and the left branch (LB) of the ẋ = 0 isocline. The time
development on the RB and the LB are, however, not symmetric, see Figs. 1.7
and 1.8, and we can distinguish two regimes:

The Silent Phase. We call the relaxational dynamics close to the LB (x < 0) of the

ẋ = 0 isocline the silent phase or the refractory period.

The Active Phase. We call the relaxational dynamics close to the RB (x > 0) of

the ẋ = 0 isocline the active phase.

The relative rate of the time development ẏ in the silent and active phases
are determined by the parameter α, compare Eq. (1.39).

The active phase on the RB is far from the ẏ = 0 isocline for α � 1, see
Fig. 1.7, and the time development ẏ is then fast. The silent phase on the
LB is, however, always close to the ẏ = 0 isocline and the system spends
considerable time there.

The Spontaneously Spiking State and the Separation of Time Scales
In its relaxational phase, the Terman–Wang oscillator can therefore be con-
sidered as a spontaneously spiking neuron, see Fig. 1.8, with the spike corre-
sponding to the active phase, which might be quite short compared to the
silent phase for α� 1.

The Terman–Wang differential equations (1.39) are examples of a standard
technique within dynamical system theory, the coupling of a slow variable,
y, to a fast variable, x, which results in a separation of time scales. When
the slow variable y(t) relaxes below a certain threshold, see Fig. 1.8, the fast
variable x(t) responds rapidly and resets the slow variable. We will encounter
further applications of this procedure in Chap. ??.

The Excitable State The neuron has an additional phase with a stable fix-
point PI on the LB (within the silent region), for negative external stimulation
(suppression) I < 0. The dormant state at the fixpoint PI is “excitable”: A
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positive external stimulation above a small threshold will force a transition
into the active phase, with the neuron spiking continuously.

Synchronization via Fast Threshold Modulation Limit cycle oscilla-
tors can synchronize, albeit slowly, via the common molecular field, as dis-
cussed in Sect. 1.2. A much faster synchronization can be achieved via fast
threshold synchronization for a network of interacting relaxation oscillators.

The idea is simple. Relaxational oscillators have distinct states during their
cycle; we called them the “silent phase” and the “active phase” for the case
of the Terman–Wang oscillator. We then assume that a neural oscillator in
its (short) active phase changes the threshold I of the other neural oscillator
in Eq. 1.39 as

I → I +∆I, ∆I > 0 ,

such that the second neural oscillator changes from an excitable state to the
oscillating state. This process is illustrated graphically in Fig. 1.9; it corre-
sponds to a signal send from the first to the second dynamical unit. In neural
terms: when the first neuron fires, the second neuron follows suit.

Propagation of Activity We consider a simple model

of i = 1, . . . , N coupled oscillators xi(t), yi(t), all being initially in the
excitable state with Ii ≡ −0.5. They are coupled via fast threshold mod-
ulation, specifically via

∆Ii(t) = Θ(xi−1(t)) , (1.40)

where Θ(x) is the Heaviside step function. That is, we define an oscillator i
to be in its active phase whenever xi > 0. The resulting dynamics is shown
in Fig. 1.10. The chain is driven by setting the first oscillator of the chain
into the spiking state for a certain period of time. All other oscillators start
to spike consecutively in rapid sequence.

1.5 Synchronization and Object Recognition
in Neural Networks

Synchronization phenomena can be observed in many realms of the living
world. As an example we discuss here the hypothesis of object definition via
synchronous neural firing, a proposal by Singer and von der Malsburg which
is at the same time both fascinating and controversial.

Temporal Correlation Theory The neurons in the brain have time-
dependent activities and can be described by generalized relaxation oscil-
lators, as outlined in the previous section. The “temporal correlation theory”
assumes that not only the average activities of individual neurons (the spik-
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Fig. 1.10 Sample trajectories xi(t) (lines) for a line of coupled Terman–Wang oscillators,
an example of synchronization via causal signaling. The relaxational oscillators are in

excitable states, see Eq. (1.39), with α = 10, β = 0.2, ε = 0.1 and I = −0.5. For t ∈ [20, 100]

a driving current ∆I1 = 1 is added to the first oscillator. x1 then starts to spike, driving
the other oscillators one by one via a fast threshold modulation

ing rate) are important, but also the relative phasing of the individual spikes.
Indeed, experimental evidence supports the notion of object definition in the
visual cortex via synchronized firing. In this view neurons encoding the indi-
vidual constituent parts of an object, like the mouth and the eyes of a face,



20 1 Synchronization Phenomena

fire in tact. Neurons being activated simultaneously by other objects in the
visual field, like a camera, would fire independently.

The LEGION Network of Coupled Relaxation Oscillators As an
example of how object definition via coupled relaxation oscillators can be
achieved we consider the LEGION (local excitatory globally inhibitory oscil-
lator network) network by Terman and Wang. Each oscillator i is defined
as

ẋi = f(xi)− yi + Ii + Si + ρ
ẏi = ε

(
g(xi)− yi

) f(x) = 3x− x3 + 2
g(x) = α

(
1 + tanh(x/β)

) . (1.41)

There are two terms in addition to the ones necessary for the description of
a single oscillator, compare Eq. (1.39):

ρ: a random-noise term and
Si: the interneural interaction.

The interneural coupling in Eq. (1.41) occurs exclusively via the modulation
of the threshold, the three terms Ii +Si + ρ constitute an effective threshold.

Interneural Interaction The interneural interaction is given for the
LEGION network by

Si =
∑
l∈N(i)

Til Θ(xl − xc)−WzΘ(z − zc) , (1.42)

where Θ(z) is the Heaviside step function. The parameters have the following
meaning:

Til > 0 : Interneural excitatory couplings.
N(i) : Neighborhood of neuron i.
xc : Threshold determining the active phase.
z : Variable for the global inhibitor.

−Wz < 0: Coupling to the global inhibitor z.
zc : Threshold for the global inhibitor.

Global Inhibition Global inhibition is a quite generic strategy for neural
networks with selective gating capabilities. A long-range or global inhibition
term assures that only one or only a few of the local computational units
are active coinstantaneously. In the context of the Terman–Wang LEGION
network it is assumed to have the dynamics

ż = (σz − z)φ, φ > 0 , (1.43)

where the binary variable σz is determined by the following rule:

σz = 1if at least one oscillator is active.
σz = 0if all oscillators are silent or in the excitable state.
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This rule is very non-biological, the LEGION network is just a proof of
the principle for object definition via fast synchronization. When at least one
oscillator is in its active phase the global inhibitor is activated, z → 1, and
inhibition is turned off whenever the network is completely inactive.

Simulation of the LEGION Network A simulation of a 20×20 LEGION
network is presented in Fig. 1.11. We observe the following:

– The network is able to discriminate between different input objects.
– Objects are characterized by the coherent activity of the corresponding

neurons, while neurons not belonging to the active object are in the
excitable state.

– Individual input objects pop up randomly one after the other.

Working Principles of the LEGION Network The working principles
of the LEGION network are the following:

– When the stimulus begins there will be a single oscillator k, which will
jump first into the active phase, activating the global inhibitor, Eq. (1.43),
via σz → 1. The noise term ∼ρ in Eq. (1.41) determines the first active unit
randomly from the set of all units receiving an input signal ∼Ii, whenever
all input signals have the same strength.

– The global inhibitor then suppresses the activity of all other oscillators,
apart from the stimulated neighbors of k, which also jump into the active
phase, having set the parameters such that

I + Tik −Wz > 0, I : stimulus

is valid. The additional condition

I −Wz < 0

assures, that units receiving an input, but not being topologically con-
nected to the cluster of active units, are suppressed. No two distinct objects
can then be activated coinstantaneously.

– This process continues until all oscillators representing the stimulated pat-
tern are active. As this process is very fast, all active oscillators fire nearly
simultaneously, compare also Fig. 1.10.

– When all oscillators in a pattern oscillate in phase, they also jump back to
the silent state simultaneously. At that point the global inhibitor is turned
off: σz → 0 in Eq. (1.43) and the game starts again with a different pattern.

Discussion Even though the network nicely performs its task of object
recognition via coherent oscillatory firing, there are a few aspects worth not-
ing:

– The functioning of the network depends on the global inhibitor triggered
by the specific oscillator that jumps first. This might be difficult to realize
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in biological networks, like the visual cortex, which do not have well defined
boundaries.

– The first active oscillator sequentially recruits all other oscillators belong-
ing to its pattern. This happens very fast via the mechanism of rapid
threshold modulation. The synchronization is therefore not a collective
process in which the input data is processed in parallel; a property assumed
to be important for biological networks.
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Fig. 1.12 Observation of the number of infected persons in a study on illnesses. Top:

Weekly cases of measle cases in Birmingham (red line) and Newcastle (blue line). Bottom:
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Fig. 1.13 Example of the course of an individual infection within the SIRS model with

an infection time τI = 1 and a recovery time τR = 3. The number of individuals recovering

at time t is just the sum of infected individuals at times t − 1, t − 2 and t − 3, compare
Eq. (1.44)

– The recognized pattern remains active for exactly one cycle and no longer.

We notice, however, that the design of neural networks capable of fast syn-
chronization via a collective process remains a challenge, since collective
processes have an inherent tendency towards slowness, due to the need to
exchange information, e.g. via molecular fields. Without reciprocal informa-
tion exchange, a true collective state, as an emergent property of the con-
stituent dynamical units, is not possible.

1.6 Synchronization Phenomena in Epidemics

There are illnesses, like measles, that come and go recurrently. Looking at
the local statistics of measle outbreaks, see Fig. 1.12, one can observe that
outbreaks occur in quite regular time intervals within a given city. Interest-
ingly though, these outbreaks can be either in phase (synchronized) or out
of phase between different cities.

The oscillations in the number of infected persons are definitely not har-
monic, they share many characteristics with relaxation oscillations, which
typically have silent and active phases, compare Sect. 1.4.2.



24 1 Synchronization Phenomena

The SIRS Model A standard approach to model the dynamics of infectious
diseases is the SIRS model. At any time an individual can belong to one of
the three classes:

S : susceptible,
I : infected,
R : recovered.

The dynamics is governed by the following rules:

(a) Susceptibles pass to the infected state, with a certain probability, after
coming into contact with one infected individual.

(b) Infected individuals pass to the recovered state after a fixed period of time
τI .

(c) Recovered individuals return to the susceptible state after a recovery time
τR, when immunity is lost, and the S→ I→ R→ S cycle is complete.

When τR →∞ (lifelong immunity) the model reduces to the SIR-model.

The Discrete Time Model We consider a discrete time SIRS model with
t = 1, 2, 3, . . . and τI = 1: The infected phase is normally short and we can
use it to set the unit of time. The recovery time τR is then a multiple of
τI = 1.
We define with

xt the fraction of infected individuals at time t,
st the percentage of susceptible individuals at time t,

which obey

st = 1− xt −
τR∑
k=1

xt−k = 1−
τR∑
k=0

xt−k , (1.44)

as the fraction of susceptible individuals is just 1 minus the number of infected
individuals minus the number of individuals in the recovery state, compare
Fig. 1.13.

The Recursion Relation We denote with a the rate of transmitting an
infection when there is a contact between an infected individual and a sus-
ceptible individual:

xt+1 = ax tst = ax t

(
1−

τR∑
k=0

xt−k

)
. (1.45)

Relation to the Logistic Map For τR = 0 the discrete time SIRS model
(1.45) reduces to the logistic map

xt+1 = ax t (1− xt) ,

which we studied in Chap. ??. For a < 1 it has only the trivial fixpoint xt ≡ 0,
the illness dies out. The non-trivial steady state is

x(1) = 1− 1

a
, for 1 < a < 3 .
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Fig. 1.14 Example of a solution to the SIRS model, Eq. (1.45), for τR = 6. The number

of infected individuals might drop to very low values during the silent phase in between
two outbreaks as most of the population is first infected and then immunized during an

outbreak

For a = 3 there is a Hopf bifurcation and for a > 3 the system oscillates
with a period of 2. Equation (1.45) has a similar behavior, but the resulting
oscillations may depend on the initial condition and for τR � τI ≡ 1 show
features characteristic of relaxation oscillators, see Fig. 1.14.

Two Coupled Epidemic Centers We consider now two epidemic centers
with variables

s
(1,2)
t , x

(1,2)
t ,

denoting the fraction of susceptible/infected individuals in the respective
cities. Different dynamical couplings are conceivable, via exchange or visits
of susceptible or infected individuals. We consider with

x
(1)
t+1 = a

(
x
(1)
t + e x

(2)
t

)
s
(1)
t , x

(2)
t+1 = a

(
x
(2)
t + e x

(1)
t

)
s
(2)
t (1.46)

the visit of a small fraction e of infected individuals to the other center.
Equation (1.46) determines the time evolution of the epidemics together with
Eq. (1.44), generalized to both centers. For e = 1 there is no distinction
between the two centers anymore and their dynamics can be merged via

xt = x
(1)
t + x

(2)
t and st = s

(1)
t + s

(2)
t to the one of a single center.

In Phase Versus Out of Phase Synchronization We have seen in
Sect. 1.2 that a strong coupling of relaxation oscillators during their active
phase leads in a quite natural way to a fast synchronization. Here the active
phase corresponds to an outbreak of the illness and Eq. (1.46) indeed imple-
ments a coupling equivalent to the fast threshold modulation discussed in
Sect. 1.4.2, since the coupling is proportional to the fraction of infected indi-
viduals.

In Fig. ?? we present the results from a numerical simulation of the cou-
pled model, illustrating the typical behavior. We see that the outbreaks of
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epidemics in the SIRS model indeed occur in phase for a moderate to large
coupling constant e. For very small coupling e between the two centers of
epidemics on the other hand, the synchronization becomes antiphase, as is
sometimes observed in reality, see Fig. 1.12.

Time Scale Separation The reason for the occurrence of out of phase
synchronization is the emergence of two separate time scales in the limit
tR � 1 and e � 1. A small seed ∼eax(1)s(2) of infections in the second city
needs substantial time to induce a full-scale outbreak, even via exponential
growth, when e is too small. But in order to remain in phase with the current
outbreak in the first city the outbreak occurring in the second city may not
lag too far behind. When the dynamics is symmetric under exchange 1 ↔ 2
the system then settles in antiphase cycles.
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