
Chapter 6

Darwinian Evolution, Hypercycles and
Game Theory

Adaptation and evolution are quasi synonymous in popular language and
Darwinian evolution is a prime application of complex system theory. We
will see that adaptation does not happen automatically and discuss the con-
cept of “error catastrophe” as a possible root for the downfall of a species.
Venturing into the mysteries surrounding the origin of life, we will investi-
gate the possible advent of a “quasispecies” in terms of mutually supporting
hypercycles. The basic theory of evolution is furthermore closely related to
game theory, the mathematical theory of socially interacting agents, viz of
rationally acting economic persons.

We will learn in this chapter, on one hand, that every complex dynamical
system has its distinct characteristics to be considered. In the case of Dar-
winian evolution these are concepts like fitness, selection and mutation. These
area specific notions interplay deeply with general concepts from dynamical
and complex system theory, like the phenomenon of stochastic escape, which
is operative in the realm of Darwinian evolution. Evolutionary processes lead,
furthermore, to entire ecosystems with specific patterns of species abundances
and we will discuss in this context the neutral theory of macroecology.

6.1 Introduction

Microevolution The ecosystem of the earth is a complex and adaptive
system. It formed via Darwinian evolution through species differentiation
and adaptation to a changing environment. A set of inheritable traits, the
genome, is passed from parent to offspring and the reproduction success is
determined by the outcome of random mutations and natural selection – a
process denoted “microevolution”1

1 Note that the term “macroevolution”, coined to describe the evolution at the level of

organisms, is nowadays somewhat obsolete.

1
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Asexual Reproduction. One speaks of asexual reproduction when an individual

has a single parent.

Here we consider mostly models for asexual reproduction, though most
concepts can be easily generalized to the case of sexual reproduction.

Basic Terminology Let us introduce some basic variables needed to for-
mulate the approach.

– Population M : The number of individuals.
We assume here that M does not change with time, modeling the compe-
tition for a limited supply of resources.

– Genome N : Size of the genome.
We encode the inheritable traits by a set of N binary variables,

s = (s1, s2, . . . , sN ), si = ±1 .

N is considered fixed.
– Generations

We consider time sequences of non-overlapping generations, like in a wheat
field. The population present at time t is replaced by their offspring at
generation t+ 1.

In Table 6.1 some typical values for the size N of the genome are listed. Note
the three orders of magnitude between simple eucaryotic life forms and the
human genome.

State of the Population The state of the population at time t can be
described by specifying the genomes of all the individuals,

{sα(t)}, α = 1 . . .M, s = (s1, . . . , sN ) .

We define by

Xs(t),
∑
s

Xs(t) = M , (6.1)

Table 6.1 Genome size N and the spontaneous mutation rates µ, compare Eq. (6.3), per
base for two RNA-based bacteria and DNA-based eucaryotes (From Jain and Krug (2006)

and Drake et al. (1998))

Organism Genome size Rate per base Rate per genome

Bacteriophage Qβ 4.5× 103 1.4× 10−3 6.5

Bacteriophage λ 4.9× 104 7.7× 10−8 0.0038
E. Coli 4.6× 106 5.4× 10−10 0.0025

C. Elegans 8.0× 107 2.3× 10−10 0.018

Mouse 2.7× 109 1.8× 10−10 0.49
Human 3.2× 109 5.0× 10−11 0.16
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Gene A Gene B

Enzyme A Enzyme B

X Y Z
white brown black

Fig. 6.1 A simple form of epistatic interaction occurs when the influence of one gene

builds on the outcome of another. In this fictitious example black hair can only be realized
when the gene for brown hair is also present

the number of individuals with genome s for each of the 2N points s in the
genome space. Typically, most of these occupation numbers vanish; biological
populations are extremely sparse in genome space.

Combinatorial Genetics of Alleles Classical genetics focuses on the pres-
ence (or absence) of a few characteristic traits. These traits are determined
by specific sites, denoted “loci”, in the genome. The genetic realizations of
these specific loci are called “alleles”. Popular examples are alleles for blue,
brown and green eyes.

Combinatorial genetics deals with the frequency change of the appearance
of a given allele resulting from environmental changes during the evolutionary
process. Most visible evolutionary changes are due to a remixing of alleles,
as mutation induced changes in the genome are relatively rare; compare the
mutation rates listed in Table 6.1.

Beanbag Genetics Without Epistatic Interactions One calls “epista-
sis” the fact that the effect of the presence of a given allele in a given locus
may depend on which alleles are present in some other loci, as illustrated in
Fig. 6.1. Classical genetics neglects epistatic interactions. The resulting pic-
ture is often called “beanbag genetics”, as if the genome were nothing but a
bag carrying the different alleles within itself.

Genotype and Phenotype We note that the physical appearance of an
organism is not determined exclusively by gene expression. One distinguishes
between the genotype and the phenotype.

– The Genotype: The genotype of an organism is the class to which that
organism belongs as determined by the DNA that was passed to the organ-
ism by its parents at the organism’s conception.

– The Phenotype: The phenotype of an organism is the class to which that
organism belongs as determined by the physical and behavioral charac-
teristics of the organism, for example its size and shape, its metabolic
activities and its pattern of movement.
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Selection acts, strictly speaking, only upon phenotypes, but only the genotype
is bequeathed. The variations in phenotypes then act as a source of noise for
the selection process.

Speciation One denotes by “speciation” the process leading to the differ-
entiation of an initial species into two distinct species. Speciation occurs due
to adaptation to different ecological niches, often in distinct geographical
environments. We will not treat the various theories proposed for speciation
here.

6.2 Mutations and Fitness in a Static Environment

Constant Environment We consider here the environment to be static; an
assumption that is justified for the case of short-term evolution. This assump-
tion clearly breaks down for long time scales, as already discussed in Chap. ??
since the evolutionary change of one species might lead to repercussions all
over the ecosystem to which it appertains.

Independent Individuals An important issue in the theory of evolution
is the emergence of specific kinds of social behavior. Social behavior can only
arise if the individuals of the same population interact. We discuss some of
these issues in Sect. 6.7 in the context of game theory. Until then we assume
non-interacting individuals, which implies that the fitness of a given genetic
trait is independent of the frequency of this and of other alleles, apart from
the overall competition for resources.

Constant Mutation Rates We furthermore assume that the mutation
rates are

– Constant over time,
– Independent of the locus in the genome, and
– Not subject to genetic control.

Any other assumption would require a detailed microbiological modeling; a
subject beyond our scope.

Stochastic Evolution The evolutionary process can then be modeled as a
three-stage stochastic process:

1. Reproduction: The individual α at generation t is the offspring of an indi-
vidual α′ living at generation t− 1. Reproduction is thus represented as a
stochastic map

α −→ α′ = Gt(α) , (6.2)

where Gt(α) is the parent of the individual α, and is chosen at random
among the M individuals living at generation t− 1. For the reproduction
process illustrated in Fig. 6.2 one has Gt(1) = 1, Gt(2) = 3, and so on.
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Fig. 6.2 Illustration of a basic reproduction process proceeding from generation t− 1 to

t, with individuals 1, 3, 6 having 1, 3 and 2 descendents respectively

2. Mutation: The genomes of the offspring differ from the respective genomes
of their parents through random changes.

3. Selection: The number of surviving offspring of each individual depends
on its genome; it is proportional to its “fitness”, which is a functional of
the genome.

Point Mutations and Mutation Rate Here we consider mostly indepen-
dent point mutations, namely that every element of the genome is modified
independently of the other elements,

sαi (t) = −sGt(α)
i (t− 1) with probability µ , (6.3)

where the parameter µ∈[0,1/2] is the microscopic “mutation rate”. In real
organisms, more complex phenomena take place, like global rearrangements
of the genome, copies of some part of the genome, displacements of blocks
of elements from one location to another, and so on. The values for the real-
world mutation rates µ for various species listed in Table 6.1 are therefore to
be considered as effective mutation rates.

Fitness and Fitness Landscape The fitness W (s), also called “Wrightian
fitness”, of a genotype trait s is proportional to the average number of off-
spring an individual possessing the trait s has. It is strictly positive and can
therefore be written as

W (s) = ekF (s) ∝ average number of offspring of s. (6.4)

Selection acts in first place upon phenotypes, but we neglect here the dif-
ference, considering the variations in phenotypes as a source of noise, as
discussed above. The parameters in Eq. (6.4) are denoted:

– W (s): Wrightian fitness,
– F (s): fitness landscape,
– k: inverse selection temperature,2 and

2 The probability to find a state with energy E in a thermodynamic system with temper-

ature T is proportional to the Boltzmann factor exp(−β E). The inverse temperature is
β = 1/(kBT ), with kB being the Boltzmann constant.
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Fig. 6.3 Illustration of idealized (smooth) one-dimensional model fitness landscapes F (s).

Real-world fitness landscapes, however, contain discontinuities. Left : a fitness landscape
with peaks and valleys, metaphorically also called a “rugged landscape”. Right : a fitness

landscape containing a single smooth peak, as described by Eq. (6.24)

– w(s): Malthusian fitness, when rewriting Eq. (6.4) as W (s) = ew(s)∆t,
where ∆t is the generation time.

We will work here with discrete time, viz with non-overlapping generations,
and make use only of the Wrightian fitness W (s).

Fitness of Individuals Versus Fitness of Species We remark that this
notion of fitness is a concept defined at the level of individuals in a homoge-
neous population. The resulting fitness of a species or of a group of species
needs to be explicitly evaluated and is model-dependent.

Fitness Ratios The assumption of a constant population size makes the
reproductive success a relative notion. Only the ratios

W (s1)

W (s2)
=
ekF(s1)

ekF(s2)
= ek[F (s1)−F (s2)] (6.5)

are important. It follows that the quantity W (s) is defined up to a propor-
tionality constant and, accordingly, the fitness landscape F (s) only up to an
additive constant, much like the energy in physics.

The Fitness Landscape The graphical representation of the fitness func-
tion F (s) is not really possible for real-world fitness functions, due to the
high dimensional 2N of the genome space. It is nevertheless customary to
draw a fitness landscape, like the one shown in Fig. 6.3. However, one must
bear in mind that these illustrations are not to be taken at face value, apart
from model considerations.

The Fundamental Theorem of Natural Selection The so-called fun-
damental theorem of natural selection, first stated by Fisher in 1930, deals
with adaptation in the absence of mutations and in the thermodynamic limit
M →∞. An infinite population size allows one to neglect fluctuations.

The theorem states that the average fitness of the population cannot
decrease in time under these circumstances, and that the average fitness
becomes stationary only when all individuals in the population have the
maximal reproductive fitness.

The proof is straightforward. We define by
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〈W 〉t ≡
1

M

M∑
α=1

W (sα(t)) =
1

M

∑
s

W (s)Xs(t) , (6.6)

the average fitness of the population, with Xs being the number of individual
having the genome s. Note that the

∑
s in Eq. (6.6) contains 2N terms. The

evolution equations are given in the absence of mutations by

Xs(t+ 1) =
W (s)

〈W 〉t
Xs(t) , (6.7)

where W (s)/〈W 〉t is the relative reproductive success. The overall population
size remains constant,∑

s

Xs(t+ 1) =
1

〈W 〉t

∑
s

Xs(t)W (s) = M , (6.8)

where we have used Eq. (6.6) for 〈W 〉t. Then

〈W 〉t+1 =
1

M

∑
s

W (s)Xs(t+ 1) =
1
M

∑
sW

2(s)Xs(t)
1
M

∑
s′W (s′)Xs′(t)

=
〈W 2〉t
〈W 〉t

≥ 〈W 〉t , (6.9)

since 〈W 2〉t − 〈W 〉2t = 〈∆W 2〉t ≥ 0. The steady state

〈W 〉t+1 = 〈W 〉t, 〈W 2〉t = 〈W 〉2t ,

is only possible when all individuals 1 . . .M in the population have the same
fitness, viz the same genotype.

The Baldwin effect Variations in the phenotype may be induced not only
via stochastic influences of the environment, but also through adaption of
the phenotype itself to the environment, viz through learning. Learning can
actually speed up evolution whenever the underlying fitness landscape is very
rugged, by smoothing it out and providing a stable gradient towards to the
genotype with the maximal fitness. One speaks of the “Baldwin effect”.

6.3 Deterministic Evolution

Mutations are random events and the evolution process is therefore a stochas-
tic process. But stochastic fluctuations become irrelevant in the limit of infi-
nite population size M → ∞; they average out. In this limit the equations
governing evolution become deterministic and only the average transition
rates are relevant. One can then study in detail the condition necessary for
adaptation to occur for various mutation rates.
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6.3.1 Evolution Equations

The Mutation Matrix The mutation matrix

Qµ(s′ → s),
∑
s

Qµ(s′ → s) = 1 (6.10)

denotes the probabilities of obtaining a genotype s when attempting to
reproduce an individual with genotype s′. The mutation rates Qµ(s′ → s)
may depend on a parameter µ determining the overall mutation rate. The
mutation matrix includes the absence of any mutation, viz the transition
Qµ(s′ → s′). It is normalized.

Deterministic Evolution with Mutations We generalize Eq. (6.7),
which is valid in the absence of mutations, by including the effect of mutations
via the mutation matrix Qµ(s′ → s):

Xs(t+ 1)/M =

(∑
s′

Xs′(t)W (s′)Qµ(s′ → s)

)/(∑
s′

Ws′Xs′(t)

)
,

or

xs(t+ 1) =

∑
s′ xs′(t)W (s′)Qµ(s′ → s)

〈W 〉t
, 〈W 〉t =

∑
s′

Ws′xs′(t) ,

(6.11)
where we have introduced the normalized population variables

xs(t) =
Xs(t)

M
,

∑
s

xs(t) = 1 . (6.12)

The evolution dynamics equation (6.11) retains the overall size
∑

sXs(t) of
the population, due to the normalization of the mutation matrix Qµ(s′ → s),
Eq. (6.10).

The Hamming Distance The Hamming distance

dH(s, s′) =

N∑
i=1

(si − s′i)2

4
=
N

2
− 1

2

N∑
i=1

sis
′
i (6.13)

measures the number of units that are different in two genome configurations
s and s′, e.g. before and after the effect of a mutation event.

The Mutation Matrix for Point Mutations We consider the simplest
mutation pattern, viz the case of fixed genome length N and random tran-
scription errors afflicting only individual loci. For this case, namely point
mutations, the overall mutation probability

Qµ(s′ → s) = µdH(1− µ)N−dH (6.14)
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is the product of the independent mutation probabilities for all loci
i = 1, . . . , N , with dH denoting the Hamming distance dH(s, s′) given
by Eq. (6.13) and µ the mutation rate µ defined in Eq. (6.3). One has∑

s

Qµ(s′ → s) =
∑
dH

(
N

dH

)
(1− µ)N−dNµdN = (1− µ+ µ)N ≡ 1

and the mutation matrix defined by Eq. (6.14) is consequently normalized.
We rewrite the mutation matrix as

Qµ(s′ → s) ∝ exp
(

[log(µ)−log(1−µ)]dH

)
∝ exp

(
β
∑
i

sis
′
i

)
, (6.15)

where we denoted by β an effective inverse temperature, defined by

β =
1

2
log

(
1− µ
µ

)
. (6.16)

The relation of the evolution equation (6.15) to the partition function of a
thermodynamical system, hinted at by the terminology “inverse temperature”
will become evident below.

Evolution Equations for Point Mutations We now write the evolution
equation (6.11) using the exponential representations for both the fitness
W (s) = exp[kF (s)], see Eq. (6.4) and for the mutation matrix Qµ(s′ → s),

xs(t+ 1) =
1

Nt

∑
s′

xs′(t) exp

(
β
∑
i

sis
′
i + kF (s′)

)
(6.17)

in a form that is suggestive of a statistical mechanics analogy. The nor-
malization Nt in Eq. (6.17) takes care both of the average fitness 〈W 〉t
from Eq. (6.11) and of the normalization of the mutation matrix, compare
Eq. (6.15).

Evolution Equations in Linear Form The evolution equation (6.17) is
non-linear in the dynamical variables xs(t), due to the average fitness 〈W 〉t
entering the normalization Nt. A suitable change of variables does, however,
allow the evolution equation to be cast into a linear form.

For this purpose we introduce the un-normalized variables ys(t) via

xs(t) =
ys(t)∑
s′ ys′(t)

. (6.18)

Note that the normalization
∑

s′ ys′(t) can be chosen freely for every gener-
ation t = 1, 2, 3, . . .. The evolution equation (6.17) then becomes
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ys(t+ 1) = Zt
∑
s′

ys′(t) exp

(
β
∑
i

sis
′
i + kF (s′)

)
, (6.19)

where

Zt =
1

Nt

∑
s′ ys′(t+ 1)∑

s′ ys′(t)
.

Choosing a different normalization for ys(t) and for ys(t+ 1) we may achieve
Zt ≡ 1. Equation (6.19) is then linear in ys(t).

Statistical Mechanics of the Ising Model In the following we will make
use of analogies to notations commonly used in statistical mechanics. Readers
who are unfamiliar with the mathematics of the one-dimensional Ising model
may skip the mathematical details and concentrate on the interpretation of
the results.

We write the linear evolution equation (6.19) as

ys(t+ 1) =
∑
s′

eβH[s,s′] ys′(t), ys(t+1) =
∑
s(t)

eβH[s(t+1),s(t)] ys(t) ,

(6.20)

where we denote by H[s, s′] an effective Hamiltonian3

βH[s, s′] = β
∑
i

sis
′
i + kF (s′) , (6.21)

and where we renamed the variables s by s(t + 1) and s′ by s(t). Equa-
tion (6.20) can be solved iteratively,

ys(t+1) =
∑

s(t),...,s(0)

eβH[s(t+1),s(t)] · · · eβH[s(1),s(0)] ys(0) , (6.22)

with the two-dimensional Ising-type Hamiltonian4

βH = β
∑
i,t

si(t+ 1)si(t) + k
∑
t

F (s(t)) . (6.23)

It has a space dimension i = 1, . . . , N and a time dimension t.
3 The energy of a state depends in classical mechanics on the values of the available

degrees of freedom, like the position and the velocity of a particle. This function is denoted
Hamiltonian. In Eq. (6.21) the Hamiltonian is a function of the binary variables s and s′.
4 Any system of binary variables is equivalent to a system of interacting Ising spins, which

retains only the classical contribution to the energy of interacting quantum mechanical
spins (the magnetic moments).
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6.3.2 Beanbag Genetics: Evolutions Without Epistasis

The Fujiyama Landscape The fitness function

F (s) =

N∑
i=1

hisi, W (s) =

N∏
i=1

ekhisi , (6.24)

is denoted the “Fujiyama landscape” since it corresponds to a single smooth
peak as illustrated in Fig. 6.3. To see why, we consider the case hi > 0 and
rewrite Eq. (6.24) as

F (s) = s0 · s, s0 = (h1, h2, . . . , hN ) .

The fitness of a given genome s is directly proportional to the scalar product
with the master sequence s0, with a well defined gradient pointing towards
the master sequence.

The Fujiyama Hamiltonian No epistatic interactions are present in the
smooth peak landscape Eq. (6.24). In terms of the corresponding Hamilto-
nian, see Eq. (6.23), this fact expresses itself as

βH = β

N∑
i=1

Hi, Hi =
∑
t

si(t+ 1)si(t) +
khi
β

∑
t

si(t) . (6.25)

Every locus i corresponds exactly to the one-dimensional t = 1, 2, . . . Ising
model βHi in an effective uniform magnetic field khi/β.

The Transfer Matrix The Hamiltonian equation (6.25) does not contain
interactions between different loci of the genome; we can just consider a single
Hamiltonian Hi and a single gene locus i. We define with

y =
(
y+(t), y−(t)

)
, yT =

(
y+(t)
y−(t)

)
the un-normalized densities of individuals having si = + and si = − respec-
tively. Iterative solution Eq. (6.22) then has the form

y(t+ 1) =

(
t∏

t′=0

T

)
y(0) = T t+1 yT (0) , (6.26)

with the 2× 2 transfer matrix

T = eβHi[si(t+1),si(t)], T =

(
eβ+khi e−β

e−β eβ−khi

)
, (6.27)

where we have used s, s′ = ±1 and the symmetrized form
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βHi = β
∑
t

si(t+ 1)si(t) +
khi
2

∑
t

[
si(t+ 1) + si(t)

]
.

of the one-dimensional Ising model.

Eigenvalues of the Transfer Matrix For simplicity we take

hi ≡ 1, s0 = (1, 1, . . . , 1)

and evaluate the eigenvalues ω of the transfer matrix,

ω2 − 2ω eβ cosh(k) + e2β − e−2β = 0 .

The solutions are

ω1,2 = eβ cosh(k) ±
√
e2β cosh2(k)− e2β + e−2β .

In the following we consider with k > 0 non-trivial fitness landscapes. In
the absence of a fitness landscape, k = 0, the eigenvalues are eβ ± e−β . No
adaption takes place in this case, the eigenvectors y = (1,±1) of the transfer
matrix then weight all states in genome space with equal probabilities.

Dominance of the Largest Eigenvalue The genome distribution y is
determined by large powers of the transfer matrix, limt→∞ T t, via Eq. (6.26).
The difference between the two eigenvalues of transfer matrix is

∆ω = ω1 − ω2 = 2

√
e2β sinh2(k) + e−2β . (6.28)

and hence zero only if k = 0 and β → ∞. For ∆ω > 0 the larger eigenvalue
ω1 dominates in the limit t→∞ and y = (y+, y−) is given by the eigenvalue
of ω1, with y+ > y−.

Adaption in the Absence of Epistatic Interactions The sequence s0 =
(1, . . . , 1) is the state with maximal fitness. The probability to find individuals
with genome s at a Manhatten distance dH from s0 is proportional to

(y+)
N−dH (y−)

dH ∝
(
y−
y+

)dH
.

The entire population is hence within a finite distance of the optimal genome
sequence s0 whenever y−/y+ < 1, viz for ∆ω > 0. We recall that

β =
1

2
log

(
1− µ
µ

)
, W (s) = ekF(s) ,

where µ is the mutation rate for point mutations. Thus we see that there is
some degree of adaptation whenever the fitness landscape does not vanish
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(k > 0). This is the case even for a maximal mutation rate µ → 1/2, for
which β → 0.

6.3.3 Epistatic Interactions and the Error Catastrophe

The result of the previous Sect. 6.3.2, i.e. the occurrence of adaptation in a
smooth fitness landscape for any non-trivial model parameter, is due to the
absence of epistatic interactions in the smooth fitness landscape. Epistatic
interactions introduce a phase transition to a non-adapting regime once the
mutation rate becomes too high.

The Sharp Peak Landscape One possibility to study this phenomenon
is the limiting case of very strong epistatic interactions; in this case, a single
element of the genotype does not give any information on the value of the
fitness. This fitness is defined by the equation

W (s) =

{
1 if s = s0

1− σ otherwise
. (6.29)

It is also denoted a fitness landscape with a “tower”. In this case, all genome
sequences have the same fitness, which is lower than the one of the master
sequence s0. The corresponding landscape F (s), defined by W (s) = ekF(s) is
then equally discontinuous. This landscape has no gradient pointing towards
the master sequence of maximal fitness.

Relative Notation We define by xk the fraction of the population whose
genotype has a Hamming distance k from the preferred genotype,

xk(t) =
1

M

∑
s

δdH(s,s0),kXs(t) . (6.30)

The evolution equations can be formulated entirely in terms of these xk; they
correspond to the fraction of the population being k point mutations away
from the master sequence.

Infinite Genome Limit We take the N →∞ limit and scale the mutation
rate, see Eq. (6.3),

µ = u/N , (6.31)

for point mutations such that the average number of mutations

u = Nµ

occurring at every step remains finite.
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Fig. 6.4 The linear chain model for the tower landscape, Eq. (6.29), with k denoting the

number of point mutations necessary to reach the optimal genome. The population fraction
xk+1(t+ 1) is only influenced by the value of xk and its own value at time t

The Absence of Back Mutations We consider starting from the optimal
genome s0 and consider the effect of mutations. Any successful mutation
increases the distance k from the optimal genome s0. Assuming u � 1 in
Eq. (6.31) implies that

– Multiple mutations do not appear, and that
– One can neglect back mutations that reduce the value of k, since they have

a relative probability proportional to

k

N − k
� 1 .

The Linear Chain Model The model so defined consequently has the
structure of a linear chain. k = 0 being the starting point of the chain.

We have two parameters: u, which measures the mutation rate and σ,
which measures the strength of the selection. Remembering that the fitness
W (s) is proportional to the number of offspring, see Eq. (6.29), we then find

x0(t+ 1) =
1

〈W 〉

[
x0(t) (1− u)

]
, (6.32)

x1(t+ 1) =
1

〈W 〉

[
ux0(t) + (1− u) (1− σ)x1(t)

]
; (6.33)

xk(t+ 1) =
1

〈W 〉

[
uxk−1(t) + (1− u)xk(t)

]
(1− σ) , k > 1, (6.34)

where 〈W 〉 is the average fitness. These equations describe a linear chain
model as illustrated in Fig. 6.4. The population of individuals with the opti-
mal genome x0 constantly loses members due to mutations. But it also has a
higher number of offspring than all other populations due to its larger fitness.

Stationary Solution The average fitness of the population is given by

〈W 〉 = x0 + (1− σ)(1− x0) = 1− σ(1− x0) . (6.35)

We look for the stationary distribution {x∗k}. The equation for x∗0 does not
involve the x∗k with k > 0:

x∗0 =
x∗0(1− u)

1− σ(1− x∗0)
, 1− σ(1− x∗0) = 1− u .
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The solution is

x∗0 =

{
1− u/σ if u < σ

0 if u ≥ σ
, (6.36)

due to the normalization condition x∗0 ≤ 1. For u>σ the model becomes ill
defined. The stationary solutions for the x∗k are for k = 1

x∗1 =
u

1− σ(1− x∗0)− (1− u)(1− σ)
x∗0 ,

which follows directly from Eqs. (6.33) and (6.35), and for k > 1

x∗k =
(1− σ)u

1− σ(1− x∗0)− (1− u)(1− σ)
x∗k−1 , (6.37)

which follows from Eqs. (6.34) and (6.35).

Phase Transition and the Order Parameter We can thus distinguish
two regimes determined by the magnitude of the mutation rate µ = u/N
relative to the fitness parameter σ, with

u = σ

being the transition point. In physics language the epistatic interaction cor-
responds to many-body interactions and the occurrence of a phase transition
in the sharp peak model is due to the many-body interactions which were
absent in the smooth fitness landscape model considered in Sect. 6.3.2.

The Adaptive Regime and Quasispecies In the regime of small muta-
tion rates, u < σ, one has x∗0 > 0 and in fact the whole population lies a
finite distance away from the preferred genotype. To see why, we note that

σ(1− x∗0) = σ(1− 1 + u/σ) = u

and take a look at Eq. (6.37):

(1− σ)u

1− u− (1− u)(1− σ)
=

(
1− σ
1− u

)(u
σ

)
≤ 1, for u < σ .

The x∗k therefore form a geometric series,

x∗k ∼
(

1− σ
1− u

u

σ

)k
,

which is summable when u < σ. In this adaptive regime the population forms
what Manfred Eigen denoted a “quasispecies”, see Fig. 6.5.

Quasispecies. A quasispecies is a population of genetically close but not identical
individuals.
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Fig. 6.5 Quasispecies formation within the sharp peak fitness landscape, Eq. (6.29). The

stationary population densities x∗k, see Eq. (6.37), are peaked around the genome with
maximal fitness, k = 0. The population tends to spread out in genome space when the

overall mutation rate u approaches the critical point u→ σ

A quasispecies does not contain a dominant genome, in contrast to a
species. The distinction between a species and a quasispecies can be for-
mulated rigorously in the limit of large populations sizes M → ∞. For a
quasispecies all Xs are intensive, for a species there is at least one genome s0
for which Xs0 is extensive, viz it scales ∝ M .

The Wandering Regime and The Error Threshold In the regime of
a large mutation rate, u > σ, we have x∗k = 0, ∀k. In this case, a closer
look at the finite genome situation shows that the population is distributed
in an essentially uniform way over the whole genotype space. The infinite
genome limit therefore becomes inconsistent, since the whole population lies
an infinite number of mutations away from the preferred genotype. In this
wandering regime the effects of finite population size are prominent.

Error Catastrophe. The transition from the adaptive (quasispecies) regime to the

wandering regime is denoted the “error threshold” or “error catastrophe”.

The notion of error catastrophe is a quite generic feature of quasispecies
theory, independent of the exact nature of the fitness landscape containing
epistatic interactions. A quasispecies can no longer adapt, once its muta-
tion rate becomes too large. In the real world the error catastrophe implies
extinction.

6.4 Finite Populations and Stochastic Escape

Punctuated Equilibrium Evolution is not a steady process, there are
regimes of rapid increase of the fitness and phases of relative stasis. This
kind of overall dynamical behavior is denoted the “punctuated equilibrium”.
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In this context, adaptation can result either from local optimization of the
fitness of a single species or via coevolutionary avalanches, as discussed in
Chap. ??.

The Neutral Regime. The stage where evolution is essentially driven by random

mutations is called the neutral (or wandering) regime.

The quasispecies model is inconsistent in the neutral regime. In fact, the
population spreads out in genome space in the neutral regime and the infinite
population limit is no longer reachable. In this situation, the fluctuations of
the reproductive process in a finite population have to be taken into account.

Deterministic Versus Stochastic Evolution Evolution is driven by
stochastic processes, since mutations are random events. Nevertheless, ran-
domness averages out and the evolution process becomes deterministic in
the thermodynamic limit, as discussed in Sect. 6.3, when the number M of
individuals diverges, M →∞.

Evolutionary processes in populations with a finite number of individuals
differ from deterministic evolution quantitatively and sometimes also quali-
tatively, the later being our focus of interest here.

Stochastic Escape. Random mutations in a finite population might lead to a

decrease in the fitness and to a loss of the local maximum in the fitness landscape

with a resulting dispersion of the quasispecies.

We have given a general account of the theory of stochastic escape in
Chap. ??. Here we will discuss in some detail under which circumstances this
phenomenon is important in evolutionary processes of small populations.

6.4.1 Strong Selective Pressure and Adaptive Climbing

Adaptive Walks We consider a coarse-grained description of population
dynamics for finite populations. We assume that

(a) The population is finite,
(b) The selective pressure is very strong, and
(c) The mutation rate is small.

It follows from (b) that one can represent the population by a single point
in genome space; the genomes of all individuals are taken to be equal. The
evolutionary dynamics is then the following:

(A) At each time step, only one genome element of some individual in the
population mutates.

(B) If, because of this mutation, one obtains a genotype with higher fitness,
the new genotype spreads rapidly throughout the entire population, which
then moves altogether to the new position in genome space.
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Fig. 6.6 Local fitness optima in a one-dimensional random fitness distribution; the number

of neighbors is two. This simplified picture does not corresponds directly to the N = 2
random energy model, for which there are just 22 = 4 states in genome space. It shows,

however, that random distributions may exhibit an enormous number of local optima (filled

circles), which are characterized by lower fitness values both on the left-hand side as well
as on the right-hand side

(C) If the fitness of the new genotype is lower, the mutation is rejected and
the population remains at the old position.

Physicists would call this type of dynamics a Monte Carlo process at zero
temperature. As is well known, this algorithm does not lead to a global opti-
mum, but to a “typical” local optimum. Step (C) holds only for the infinite
population limit. We will relax this condition further below.

The Random Energy Model It is thus important to investigate the sta-
tistical properties of the local optima, which depend on the properties of the
fitness landscape. A suitable approach is to assume a random distribution of
the fitness.

The Random Energy Model. The fitness landscape F (s) is uniformly distributed
between 0 and 1.

The random energy model is illustrated in Fig. 6.6. It captures, as we will
see further below two ingredients expected for real-world fitness landscapes,
namely a large number of local fitness optima close to the global fitness
maximum.

Local Optima in the Random Energy Model Let us denote by N the
number of genome elements. The probability that a point with fitness F (s)
is a local optimum is simply given by

FN = FN (s) ,

since we have to impose that the N nearest neighbors

(s1, . . . ,−si, . . . , sN ), (i = 1, . . . , N), s = (s1, . . . , sN ) ,
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of the point have fitness less than F . The probability that a point in genome
space is a local optimum is given by

P {local optimum} =

∫ 1

0

FNdF =
1

N + 1
, (6.38)

since the fitness F is equally distributed in [0, 1]. There are therefore many
local optima, namely 2N/(N + 1). A schematic picture of the large number
of local optima in a random distribution is given in Fig. 6.6.

Average Fitness at a Local Optimum The typical fitness of a local
optimum is

Ftyp =
1

1/(N + 1)

∫ 1

0

F FNdF =
N + 1

N + 2
=

1 + 1/N

1 + 2/N
≈ 1− 1/N , (6.39)

viz very close the global optimum of 1, when the genome length N is large.
At every successful step of mutation and selection the distance from the top
is divided, on average, by a factor of 2.

Successful Mutations We now consider the adaptation process. Any muta-
tion results in a randomly distributed fitness of the offspring. A mutation is
successful whenever the fitness of the offspring is bigger than the fitness of
its parent. The typical fitness attained after ` successful steps is then of the
order of

1− 1

2`+1
,

when starting (l = 0) from an average initial fitness of 1/2. It follows that the
typical number of successful mutations after which an optimum is attained
is

Ftyp = 1− 1/N = 1− 1

2`typ+1
, `typ + 1 =

logN

log 2
, (6.40)

i.e. it is relatively small.

The Time Needed for One Successful Mutation Even though the num-
ber of successful mutations Eq. (6.40) needed to arrive at the local optimum
is small, the time to climb to the local peak can be very long; see Fig. 6.7 for
an illustration of the climbing process.

We define by

tF =
∑
n

nPn, n : number of generations

the average number of generations necessary for the population with fitness
F to achieve one successful mutation, with Pn being the probability that it
takes exactly n generations. We obtain:

tF = 1 (1− F ) + 2 (1− F )F + 3 (1− F )F 2 + 4 (1− F )F 3 + · · ·
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Fig. 6.7 Climbing process and stochastic escape. The higher the fitness, the more diffi-

cult it becomes to climb further. With an escape probability pesc the population jumps
somewhere else and escapes a local optimum

=
1− F
F

∞∑
n=0

nFn =
1− F
F

(
F
∂

∂F

∞∑
n=0

Fn

)
= (1− F )

∂

∂F

1

1− F

=
1

1− F
. (6.41)

The average number of generations necessary to further increase the fitness
by a successful mutation diverges close to the global optimum F → 1.

The Total Climbing Time Every successful mutation decreases the dis-
tance 1−F to the top by 1/2 and therefore increases the factor 1/(1−F ) on
the average by 2. The typical number `typ, see Eq. (6.40), of successful muta-
tions needed to arrive at a local optimum determines, via Eq. (6.41), the
expected total number of generations Topt to arrive at the local optimum. It
is therefore on the average

Topt = 1 tF + 2 tF + 22 tF + · · ·+ 2`typtF

= tF
1− 2`typ+1

1− 2
≈ tF 2`typ+1 = tF e

(`typ+1) log 2

≈ tF e
logN =

N

1− F
≈ 2N , (6.42)

where we have used Eq. (6.40) and F ≈ 1/2 for a typical starting fitness. The
time needed to climb to a local maximum in the random fitness landscape is
therefore proportional to the length of the genome.

6.4.2 Adaptive Climbing Versus Stochastic Escape

In Sect. 6.4.1 the average properties of adaptive climbing have been evaluated.
We now take the fluctuations in the reproductive process into account and
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compare the typical time scales for a stochastic escape with those for adaptive
climbing.

Escape Probability When a favorable mutation appears it spreads instan-
taneously into the whole population, under the condition of strong selection
limit, as assumed in our model.

We consider a population situated at a local optimum or very close to
a local optimum, having hence a fitness close to one. Mutations occur with
probability u per individuum and lead with probability F to descendents
having a lower fitness. The probability pesc for stochastic escape is then

pesc ∝ (Fu)M ≈ uM , F ≈ 1 ,

where M is the number of individuals in the population and u ∈ [0, 1] the
mutation rate per genome, per individuum and per generation, compare
Eq. (6.31). The escape can only happen when an adverse mutation occurs
in every member of the population within the same generation (see also
Fig. 6.7). If a single individual does not mutate it retains its higher fitness of
the present local optimum and all other mutations are discarded within the
model, assuming a strong selective pressure.

Stochastic Escape and Stasis We now consider a population climbing
towards a local optimum. The probability that the fitness of a given individual
increases is (1−F )u. It needs to mutate with a probability u and to achieve
a higher fitness, when mutating, with probability 1− F . We denote by

a = 1− (1− F )u

the probability that the fitness of an individual does not increase with respect
to the current fitness F of the population. The probability qbet that at least
one better genotype is found is then given by

qbet = 1− aM .

Considering a population close to a local optimum, a situation typical for real-
world ecosystems, we can then distinguish between two evolutionary regimes:

– Adaptive Walk: The escape probability pesc is much smaller than the
probability to increase the fitness, qbet � pesc. The population continu-
ously increases its fitness via small mutations.

– The Wandering Regime: Close to a local optimum the adaptive dynamics
slows down and the probability of stochastic escape pesc becomes compa-
rable to that of an adaptive process, pesc ≈ qbet. The population wanders
around in genome space, starting a new adaptive walk after every success-
ful escape.

Typical Escape Fitness During the adaptive walk regime the fitness F
increases steadily, until it reaches a certain typical fitness Fesc for which the
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probability of stochastic escape becomes substantial, i.e. when pesc ≈ qbet
and

pesc = uM = 1− [1− (1− Fesc)u]
M

= qbet

holds. As (1 − Fesc) is then small we can expand the above expression in
(1− Fesc),

uM ≈ 1− [1−M(1− Fesc)u] = M(1− Fesc)u ,

obtaining

1− Fesc = uM−1/M . (6.43)

The fitness Fesc necessary for the stochastic escape to become relevant is
exponentially close to the global optimum F = 1 for large populations M .

The Relevance of Stochastic Escape The stochastic escape occurs when
a local optimum is reached, or when we are close to a local optimum. We may
estimate the importance of the escape process relative to that of the adaptive
walk by comparing the typical fitness Ftyp of a local optimum achieved by a
typical climbing process with the typical fitness Fesc needed for the escape
process to become important:

Ftyp = 1− 1

N
≡ Fesc = 1− uM−1

M
,

1

N
=
uM−1

M
,

where we have used Eq. (6.39) for Ftyp. The last expression is now indepen-
dent of the details of the fitness landscape, containing only the measurable
parameters N, M and u. This condition can be fulfilled only when the num-
ber of individuals M is much smaller than the genome length N , as u < 1.
The phenomenon of stochastic escape occurs only for very small populations.

6.5 Prebiotic Evolution

Prebiotic evolution deals with the question of the origin of life. Is it possi-
ble to define chemical autocatalytic networks in the primordial soup having
properties akin to those of the metabolistic reaction networks going on con-
tinuously in every living cell?

The precursor of living organisms, which are defined by a boundary, the
cell membrane, between body and environment, could be, from this perspec-
tive, chemical regulation networks in a primordial soup of macromolecules
evolving into the protein regulation networks of living cells once enclosed by
a membrane.
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6.5.1 Quasispecies Theory

We have discussed in Sect. 6.3.3 the concept of a quasispecies as a community
of closely related genomes in which no single genotype is dominant. This
situation is presumably also typical for prebiotic evolutionary processes. In
this context Manfred Eigen formulated the quasispecies theory for a system of
information carrying macromolecules through a set of equations for chemical
kinetics,

d

dt
xi = ẋi = Wiixi +

∑
j 6=i

Wijxj − xiφ(t) , (6.44)

where the xi denote the concentrations of i = 1 . . . N molecules. Wii is the
(autocatalytic) self-replication rate and the off-diagonal terms Wi,j (i 6= j)
are the respective mutation rates.

We will use Eq. (6.44) in order to generalize the concept of a quasispecies to
a collection of macromolecules. In Sect. 6.5.2 we will then consider a somewhat
more realistic model for a network of chemical reactions, which might possibly
be regarded as the precursor of the protein regulation network of a living cell.

Mass Conservation We can choose the flux −xφ(t) in Eigen’s equa-
tions (6.44) for prebiotic evolution such that the total concentration C, viz
the total mass

C =
∑
i

xi

is conserved for long times. Summing Eq. (6.44) over i we obtain

Ċ =
∑
ij

Wijxj − C φ, φ(t) =
∑
ij

Wijxj(t) , (6.45)

for a suitable choice for the field φ(t), leading to

Ċ = φ (1− C),
d

dt
(C − 1) = −φ (C − 1) . (6.46)

The total concentration C(t) will therefore approach 1 for t→∞ for φ > 0,
which we assume to be the case here, implying total mass conservation. In this
case the autocatalytic rates Wii dominate with respect to the transmolecular
mutation rates Wij (i 6= j).

Quasispecies We can write the evolution equation (6.44) in matrix form

d

dt
x(t) = (W − 1φ)x(t), x =


x1
x1
· · ·
xN

 , (6.47)

where W is the matrix {Wij}. We assume here for simplicity a symmetric
mutation matrix Wij = Wji . The solutions of the linear differential equa-
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tion (6.47) are then given in terms of the eigenvectors ~eλ of W :

Weλ = λ eλ, x(t) =
∑
λ

aλ(t)eλ, ȧλ = [λ− φ(t)] aλ .

The eigenvector eλmax
with the largest eigenvalue λmax will dominate for

t → ∞, due to the overall mass conservation equation (6.46). The flux will
adapt to the largest eigenvalue,

lim
t→∞

(
λmax − φ(t)

)
→ 0 ,

leading to the stationary condition ẋi = 0 for the evolution equation (6.47)
in the long time limit.

If W is diagonal (no mutations) a single macromolecule will remain in
the primordial soup for t → ∞. For small but finite mutation rates Wij

(i 6= j), a quasispecies will emerge, made up of different but closely related
macromolecules.

The Error Catastrophe The mass conservation equation (6.46) cannot be
retained when the mutation rates become too big, viz when the eigenvectors
~eλ become extensive. In this case the flux φ(t) diverges, see Eq. (6.45), and
the quasispecies model consequently becomes inconsistent. This is the telltale
sign of the error catastrophe.

The quasispecies model Eq. (6.44) is equivalent to the random energy
model for microevolution studied in Sect. 6.4, with the autocatalytic rates
Wii corresponding to the fitness of the xi, which corresponds to the states in
genome space. The analysis carried through in Sect. 6.3.3 for the occurrence
of an error threshold is therefore also valid for Eigen’s prebiotic evolutionary
equations.

6.5.2 Hypercycles and Autocatalytic Networks

RNA World The macromolecular evolution equations (6.44) do not contain
terms describing the catalysis of molecule i by molecule j. This process is,
however, important both for the prebiotic evolution, as stressed by Manfred
Eigen, as well as for the protein reaction network in living cells.

Hypercycles. Two or more molecules may form a stable catalytic (hyper) cycle
when the respective intermolecular catalytic rates are large enough to mutually

support their respective synthesis.

An illustration of some hypercycles is given in Figs. 6.8 and 6.9. The most
likely chemical candidate for the constituent molecules is RNA, functioning
both enzymatically and as a precursor of the genetic material. One speaks
also of an “RNA world”.



6.5 Prebiotic Evolution 25

BA

Fig. 6.8 The simplest hypercycle. A and B are self-replicating molecules. A acts as a

catalyst for B, i.e. the replication rate of B increases with the concentration of A. Likewise
the presence of B favors the replication of A

Reaction Networks We disregard mutations in the following and consider
the catalytic reaction equations

ẋi = xi

λi +
∑
j

κijxj − φ

 (6.48)

φ =
∑
k

xk

λk +
∑
j

κkjxj

 , (6.49)

where xi are the respective concentrations, λi the autocatalytic growth rates
and κij the transmolecular catalytic rates. The field φ has been chosen,
Eq. (6.49), such that the total concentration C =

∑
i xi remains constant

Ċ =
∑
i

ẋi =
∑
i

xi

λi +
∑
j

κijxj

− C φ = (1− C)φ → 0

for C → 1.

The Homogeneous Network We consider the case of homogeneous “inter-
actions” κi 6=j and uniformly distributed autocatalytic growth rates:

κi6=j = κ, κii = 0, λi = α i , (6.50)

compare Fig. 6.10, leading to

ẋi = xi

λi + κ
∑
j 6=i

xj − φ

 = xi

(
λi + κ− κxi − φ

)
, (6.51)

where we have used
∑
i xi = 1. The fixed points x∗i of Eq. (6.51) are

x∗i =

{
(λi + κ− φ)/κ

0
λi = α, 2α, . . . , Nα , (6.52)

where the non-zero solution is valid for λi−κ−φ > 0. The flux φ in Eq. (6.52)
needs to obey Eq. (6.49), as the self-consistency condition.
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Fig. 6.9 A hypercycle of order n consists of n cyclically coupled self-replicating molecules,

with each molecule providing catalytic support for the subsequent molecule in the cycle.
Parasitic self-replicating molecules “par” receive catalytic support from the hypercycle

without contributing to it

The Stationary Solution The case of homogeneous interactions,
Eq. (6.50), can be solved analytically. Dynamically, the xi(t) with the largest
growth rates λi will dominate and obtain a non-zero steady-state concen-
tration x∗i . We may therefore assume that there exists an N∗ ∈ [1, N ] such
that

x∗i =

{
(λi + κ− φ)/κ N∗ ≤ i ≤ N

0 1 ≤ i < N∗
, (6.53)

compare Fig. 6.10, where N∗ and φ are determined by the normalization
condition

1 =

N∑
i=N∗

x∗i =

N∑
i=N∗

λi + κ− φ
κ

=
α

κ

N∑
i=N∗

i+

[
κ− φ
κ

](
N + 1−N∗

)
=

α

2κ

[
N(N + 1)−N∗(N∗ − 1)

]
+

[
κ− φ
κ

](
N + 1−N∗

)
(6.54)

and by the condition that x∗i = 0 for i = N∗ − 1:

0 =
λN∗−1 + κ− φ

κ
=
α(N∗ − 1)

κ
+
κ− φ
κ

. (6.55)

We eliminate (κ− φ)/κ from Eqs. (6.54) and (6.55) for large N , N∗:

2κ

α
' N2 − (N∗)

2 − 2N∗ (N −N∗)

= N2 − 2N∗N + (N∗)
2

= (N −N∗)2 .

The number of surviving species N −N∗ is therefore

N −N∗ '
√

2κ

α
, (6.56)
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Fig. 6.10 The autocatalytic growth rates λi (left axis), as in Eq. (6.50) with α = 1,

and the stationary solution x∗i (right axis) of the concentrations, Eq. (6.53), constituting
a prebiotic quasispecies, for various mean intercatalytic rates κ ≡ ω. The horizontal axis

i = 1, 2, . . . , 50 denotes the respective molecules

which is non-zero for a finite and positive inter-molecular catalytic rate κ. A
hypercycle of mutually supporting species (or molecules) has formed.

The Origin of Life The scientific discussions concerning the origin of life
are highly controversial to date and it is speculative whether hypercycles
have anything to do with it. Hypercycles describe closed systems of chemical
reactions which have to come to a stillstand eventually, as a consequence
of the continuous energy dissipation. In fact, a tellpoint sign of biological
activities is the buildup of local structures, resulting in a local reduction of
entropy, possible only at the expense of an overall increase of the environ-
mental entropy. Life, as we understand it today, is possible only as an open
system driven by a constant flux of energy.

Nevertheless it is interesting to point out that Eq. (6.56) implies a clear
division between molecules i = N∗, . . . , N which can be considered to form
a primordial “life form” separated by molecules i = 1, . . . , N∗ − 1 belonging
to the “environment”, since the concentrations of the latter are reduced to
zero. This clear separation between participating and non-participating sub-
stances is a result of the non-linearity of the reaction equation (6.48). The
linear evolution equation (6.44) would, on the other hand, result in a contin-
uous density distribution, as illustrated in Fig. 6.5 for the case of the sharp
peak fitness landscape. One could then conclude that life is possible only via
cooperation, resulting from non-linear evolution equations.

6.6 Macroecology and Species Competition

In Macroecology one disregards both the genetic basis of evolutionary pro-
cesses as well as specific species interdependencies. One is interested in for-
mulating general principles and models describing the overall properties of
large communities of species.
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Fig. 6.11 The abundance of trees in a 50 ha patch of tropical rainforest in Panama (Bars,

adapted from Volkov et al. (2003)), in comparison (filled circles) with results from neutral
theory, Eq. (6.60)

Neutral Theory A central topic in ecology is to explain the distribution
of species abundances, as illustrated in Fig. 6.11 for the count of trees in a
tropical rainforest plot. Most species have around 32 individual trees in the
patch examined, there are fewer species having more/less individuals. Similar
species abundance distributions are found in virtually all ecosystems studied.

The neutral theory, as formulated originally by Hubbel, proposes that very
simple and universal principles lead to the species abundance distribution
observed in nature and that, in particular, differences between the distinct
species involved are irrelevant (hence the term “neutral theory”). The two
central principles of the neutral theory, which can be implemented mathe-
matically in various fashions, involve the deterministic competition between
species on one side and the influence of stochastic events, which lead to ran-
dom fluctuations in populations sizes, on the other side.

Stochastic Walk Through Population Space We consider a species per-
forming a random walk in population space. The master equation for the
probability px(t) to observe x individuals of the species at time t is given by
simple birth and death events, proportional to bx and dx respectively:

ṗx(t) = bx−1 px−1(t) + dx+1 px+1(t)− [bx + dx] px(t) . (6.57)

The birth and death processes are per capita and contain both intensive terms
∝ (x)0 and extensive terms ∝ (x)1,

bx = b̃0 + b̃1x, dx = d̃0 + d̃1x , (6.58)

where the intensive contributions b̃0 (d̃0) model the cumulative effects of
immigration (emigration) and speciation (extinction) respectively.

Fokker–Planck Equation of Macroecology We may treat, for large
populations, x as a continuous variable and approximate the difference
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dx+1px+1 − dxpx occurring on the right hand side of Eq. (6.57) through a
Taylor expansion,

dx+1 px+1 − dx px '
∂

∂x

(
dx px

)
+

1

2

∂2

∂x2
(
dx px

)
+ . . . ,

and analogously for the birth processes. We hence obtain for p(x, t) = px(t)
with

∂p(x, t)

∂t
=

∂

∂x

(
dx − bx

)
p(x, t) +

1

2

∂2

∂x2
(
dx + bx

)
p(x, t)

the “Fokker–Planck equation of macroecology” (compare Sect. ??), which we
rewrite as

∂p(x, t)

∂t
=

∂

∂x

(x
τ
− b
)
p(x, t) +D

∂2

∂x2
(
x p(x, t)

)
, (6.59)

with

τ =
(
d̃1 − b̃1

)−1
> 0, b = b̃0 − d̃0 = 2b̃0 > 0, D =

b̃1 + d̃1
2

,

when restricting to the case b0 = −d0 > 0.

Competition vs. Diffusion The parameters introduced in (6.59) have then
the following interpretations:

– D induces fluctuations of the order
√
x in the populations x.

– b corresponds to the net influx, caused either by immigration or by speci-
ation.

– τ is a measure of the strength of interaction effects in the ecosystem and
of the time scale the system needs to react to perturbations.

In order to understand the effect of τ in more detail we consider the case
b = 0 = D. The Fokker–Planck equation (6.59) then reduces to

τ ṗ = p+ xp′, p ∼ e−t/Txβ , −τ/T = 1 + β .

The distribution is normalizable for β < −1 and hence T > 0. The ecosystem
would slowly die out on time scale T , as consequence of the competition
between the species, when not counterbalanced by the diffusion D and the
external source b. Note, that τ > 0 implies that d̃1 > b̃1 and that there are,
on the average, more deaths that births for all species, independent of the
size of their population.

Solution of the Fokker–Planck Equation The steady-state solution
ṗ(x, t) = 0 of (6.59) is the “Gamma distribution”

p0(x) = Axb/D−1 e−x/(Dτ) , (6.60)
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where A is a normalization constant. For a verification note that the popula-
tion current J , defined via the continuity equation ṗ(x, t) = −∇J , vanishes
in the steady state, J = 0, and hence

0 =
(x
τ
− b
)
p0(x) +D

∂

∂x

(
xp0(x)

)
=
(x
τ

+D − b
)
p0(x) +Dxp′0(x) ,

which is satisfied by the solution (6.60). The steady state solution (6.60) fits
the real-world data quite well, see Fig. 6.11.

Microscopic Models The master equation (6.57) of macroevolution can be
derived from specific microscopic models. Any microscopic update rule will
then lead to explicit expressions for the dependence of the birth and death
rates bx and dx on population size (and other microscopic parameters), which
will in general be similar, but not identical, to the relations postulated in
Eq. (6.58).

As an example of a microscopic model consider a population of S species
containing an overall number of N individuals. The relation between the
species is defined pairwise. For every pair one of the species dominates with
probability ρ the other species, with probability 1−ρ their relation is neutral.

At every time step a pair of individuals belonging to two different species
S and S′ is considered.

– Stochastic process: With probability µ the number of individuals in species
S (S′) is increased by one (decreased by one).

– Competition: With probability 1 − µ the number of individuals in the
dominating (inferior) species is increased by one (reduced by one). No
update is performed if their relation is neutral.

These update rules are conserving in the total number of individuals. The
steady-state distribution obtained by this model is similar to the one obtained
for the neutral model defined by the birth and death rates (6.58), shown
in Fig. 6.11, with the functional form of their respective species abundancy
distributions differing in details.

6.7 Coevolution and Game Theory

The average number of offsprings, viz the fitness, is the single relevant reward
function within Darwinian evolution. There is hence a direct connection
between evolutionary processes, ecology and game theory, which deals with
interacting agents trying to maximize a single reward function denoted util-
ity. Several types of games may be considered in this context, namely games
of interacting species giving rise to coevolutionary phenomena or games of
interacting members of the same species, pursuing distinct behavioral strate-
gies.
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Fig. 6.12 Top: An evolutionary process of a single (quasi) species in a fixed fitness land-

scape (fixed ecosystem), here with tower-like structures, see Eq. (6.29) will in general lead
to a reorganization of the density of individuals x(S) in genome space. Bottom: A coevo-

lutionary process might be regarded as changing the respective fitness landscapes F (S)

Coevolution The larger part of this chapter has been devoted to the dis-
cussion of the evolution of a single species, in Sect. 6.5.2, the stabilization of
an “ecosystem” made of a hypercycle of mutually supporting species and in
Sect. 6.6 general macroecological principles. We now go back to the level of a
few interdependent species.

Coevolution. When two or more species form an interdependent ecosystem the

evolutionary progress of part of the ecosystem will generally induce coevolutionary
changes also in the other species.

One can view the coevolutionary process also as a change in the respective
fitness landscapes, see Fig. 6.12. A prominent example of phenomena arising
from coevolution is the “red queen” phenomenon.

The Red Queen Phenomenon. When two or more species are interdependent then
“It takes all the running, to stay in place” (from Lewis Carroll’s children’s book

“Through the Looking Glass”).

A well-known example of the red queen phenomenon is the “arms race”
between predator and prey commonly observed in real-world ecosystems.

The Green World Hypothesis Plants abound in real-world ecosystems,
geology and climate permitting, they are rich and green. Naively one may
expect that herbivores should proliferate when food is plenty, keeping vegeta-
tion constantly down. This doesn’t seem to happen in the world, as a result of
coevolutionary interdependencies. Hairston, Smith and Slobodkin proposed
that coevolution gives rise to a trophic cascade, where predators keep the
herbivores substantially below the support level of the bioproductivity of the
plants. This “green world hypothesis” arises naturally in evolutionary models,
but it has been difficult to verify it in field studies.
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Avalanches and Punctuated Equilibrium In Chap. ?? we discussed the
Bak and Sneppen model of coevolution. It may explain the occurrence of
coevolutionary avalanches within a state of punctuated equilibrium.

Punctuated Equilibrium. Most of the time the ecosystem is in equilibrium, in the
neutral phase. Due to rare stochastic processes periods of rapid coevolutionary pro-

cesses are induced.

The term punctuated equilibrium was proposed by Gould and Eldredge
in 1972 to describe a characteristic feature of the evolution of simple traits
observed in fossil records. In contrast to the gradualistic view of evolutionary
changes, these traits typically show long periods of stasis interrupted by very
rapid changes.

The random events leading to an increase in genome optimization might
be a rare mutation bringing one or more individuals to a different peak in
the fitness landscape (microevolution) or a coevolutionary avalanche.

Strategies and Game Theory One is often interested, in contrast to the
stochastic considerations discussed so far, in the evolutionary processes giv-
ing rise to very specific survival strategies. These questions can be addressed
within game theory, which deals with strategically interacting agents in eco-
nomics and beyond. When an animal meets another animal it has to decide,
to give an example, whether confrontation, cooperation or defection is the
best strategy. The basic elements of game theory are:

– Utility: Every participant, also called an agent, plays for himself, trying
to maximize its own utility.

– Strategy: Every participant follows a set of rules of what to do when
encountering an opponent; the strategy.

– Adaptive Games: In adaptive games the participants change their strategy
in order to maximize future return. This change can be either deterministic
or stochastic.

– Zero-Sum Games: When the sum of utilities is constant, you can only win
what the others lose.

– Nash Equilibrium: Any strategy change by a participant leads to a reduc-
tion of his utility.

Hawks and Doves This simple evolutionary game tries to model com-
petition in terms of expected utilities between aggressive behavior (by the
“hawk”) and peaceful (by the “dove”) demeanor. The rules are:

Dove meets Dove ADD = V/2 They divide the territory
Hawk meets Dove AHD = V , ADH = 0 The Hawk gets all the territory, the

Dove retreats and gets nothing
Hawk meets Hawk AHH = (V − C)/2 They fight, get injured, and win half

the territory

The expected returns, the utilities, can be cast in matrix form,
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A =

(
AHH AHD

ADH ADD

)
=

(
1
2 (V − C) V

0 V
2

)
.

A is denoted the “payoff” matrix. The question is then, under which condi-
tions it pays to be peaceful or aggressive.

Adaptation by Evolution The introduction of reproductive capabilities
for the participants turns the hawks-and-doves game into an evolutionary
game. In this context one considers the behavioral strategies to result from
the expression of distinct alleles.

The average number of offspring of a player is proportional to its fitness,
which in turn is assumed to be given by its expected utility,

ẋH =
(
AHHxH +AHDxD − φ(t)

)
xH

ẋD =
(
ADHxH +ADDxD − φ(t)

)
xD

, (6.61)

where xD and xH are the density of doves and hawks, respectively, and where
the flux

φ(t) = xHAHHxH + xHAHDxD + xDADHxH + xDADDxD

ensures an overall constant population, xH + xD = 1.

The Steady State Solution We are interested in the steady-state solution
of equation (6.61), with ẋD = 0 = ẋH . Setting

xH = x, xD = 1− x ,

we find

φ(t) =
x2

2
(V − C) + V x(1− x) +

V

2
(1− x)2 =

V

2
− C

2
x2

and

ẋ =

(
V − C

2
x+ V (1− x)− φ(t)

)
x =

(
V

2
− V

2
x+

C

2

(
x2 − x

))
x

=
C

2
x

(
x2 − C + V

C
x+

V

C

)
=

C

2
x (x− 1) (x− V/C)

= − d

dx
V (x) ,

with

V (x) = −x
2

4
V +

x3

6
(V + C)− x4

8
C .
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The steady state solution is given by

V ′(x) = 0, x = V/C ,

apart from the trivial solution x = 0 (no hawks) and x = 1 (only hawks). For
V > C there will be no doves left in the population, but for V < C there will
be an equilibrium with x = V/C hawks and 1 − V/C doves. A population
consisting exclusively of cooperating doves (x = 0) is unstable against the
intrusion of hawks.

The Prisoner’s Dilemma The payoff matrix of the prisoner’s dilemma is
given by

A =

(
R S
T P

)
T > R > P > S

2R > S + T
cooperator =̂ dove

defector =̂ hawk
. (6.62)

Here “cooperation” between the two prisoners is implied and not cooperation
between a suspect and the police. The prisoners are best off if both keep silent.
The standard values are

T = 5, R = 3, P = 1, S = 0 .

The maximal global utility NR is obtained when everybody cooperates, but
in a situation where agents interact randomly, the only stable Nash equilib-
rium is when everybody defects, with a global utility NP :

reward for cooperators = Rc =
[
RN c + S(N −Nc)

]
/N ,

reward for defectors = Rd =
[
TN c + P (N −Nc)

]
/N ,

where Nc is the number of cooperators and N the total number of agents.
The difference is

Rc −Rd ∼ (R− T )Nc + (S − P )(N −Nc) < 0 ,

as R − T < 0 and S − P < 0. The reward for cooperation is always smaller
than that for defecting.

Evolutionary Games on a Lattice The adaptive dynamics of evolution-
ary games can change completely when the individual agents are placed on
a regular lattice and when they adapt their strategies based on past obser-
vations. A possible simple rule is the following:

– At each generation (time step) every agent evaluates its own payoff when
interacting with its four neighbors, as well as the payoff of its neighbors.

– The individual agent then compares his own payoff one-by-one with the
payoffs obtained by his four neighbors.
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✭�✁ ✭✂✁ ✭✄☎✁ ✭✆☎✁

✭☎✁ ✭✄✁ ✭✆✁ ✭✝✁

Fig. 6.13 Time series of the spatial distribution of cooperators (gray) and defectors

(black) on a lattice of size N = 40 × 40. The time is given by the numbers of genera-
tions in brackets. Initial condition: equal number of defectors and cooperators, randomly

distributed. Parameters for the payoff matrix, {T ;R;P ;S} = {3.5; 3.0; 0.5; 0.0} (From

Schweitzer et al. (2002))

– The agent then switches his strategy (to cooperate or to defect) to the
strategy of his neighbor if the neighbor received a higher payoff.

This simple rule can lead to complex real-space patterns of defectors intruding
in a background of cooperators, see Fig. 6.13. The details depend on the value
chosen for the payoff matrix.

Nash Equilibria and Coevolutionary Avalanches Coevolutionary
games on a lattice eventually lead to an equilibrium state, which by defi-
nition has to be a Nash equilibrium. If such a state is perturbed from the
outside, a self-critical coevolutionary avalanche may follow, in close relation
to the sandpile model discussed in Chap. ??.

Game Theory and Memory Standard game theory deals with an anony-
mous society of agents, with agents having no memory of previous encounters.
Generalizing this standard setup it is possible to empower the agents with a
memory of their own past strategies and achieved utilities. Considering addi-
tionally individualized societies, this memory may then include the names
of the opponents encountered previously, and this kind of games provides
the basis for studying the emergence of sophisticated survival strategies, like
altruism, via evolutionary processes.

Opinion Dynamics Agents in classical game theory aim to maximize their
respective utilities. Many social interactions between interacting agents how-
ever do not need explicitly the concept of rewards or utilities in order to
describe interesting phenomena.

Examples of reward-free games are opinion dynamics models. In a simple
model for continuous opinion dynamics i = 1, . . . , N agents have continuous
opinions xi = xi(t). When two agents interact they change their respective
opinions according to
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xi(t+ 1) =

{
[xi(t) + xj(t)]/2 |xi(t)− xj(t)| < θ

xi(t) |xi(t)− xj(t)| ≥ θ
, (6.63)

where θ is the confidence interval. Consensus can be reached step by step
only when the initial opinions are not too contrarian. For large confidence
intervals θ, relative to the initial scatter of opinions, global consensus will be
reached, clusters of opinions emerge on the other side for a small confidence
interval.

Further Reading

A comprehensive account of the earth’s biosphere can be found in Smil (2002);
a review article on the statistical approach to Darwinian evolution in Peliti
(1997) and Drossel (2001). Further general textbooks on evolution, game-
theory and hypercycles are Nowak (2006), Kimura (1983), Eigen (1971),
Eigen and Schuster (1979), and Schuster (2001). For a review article on evo-
lution and speciation see Drossel (2001), for an assessment of punctuated
equilibrium Gould and Eldredge (2000).

The relation between life and self-organization is further discussed by
Kauffman (1993), a review of the prebiotic RNA world can be found in Orgel
(1998) and critical discussions of alternative scenarios for the origin of life in
Orgel (1998) and Pereto (2005).

The original formulation of the fundamental theorem of natural selection
was given by Fisher (1930). For a review of the neutral theory of macroevolu-
tion you may consult Alonso et al. (2006), for the formulation of the neutral
theory discussed in Sect. 6.6 Volkov et al. (2003).

For the reader interested in coevolutionary games we refer to Ebel and
Bornholdt (2002); for an interesting application of game theory to world
politics as an evolving complex system see Cederman (1997) and for a field
study on the green world hypothesis Terborgh et al. (2006).
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