Problem 1 \textit{(Generalised Liénard system)} \hspace{1cm} 10 Pts

Consider the following prototype system:

\[
\ddot{x} = f(V(x)) \dot{x} - \nabla V(x),
\]

where \(f(V) \) is a generalised friction term, which depends explicitly on the mechanical potential function \(V(x) \).

\begin{enumerate}[a)]
\item Analyse the stability of the fixpoints, considering the \(V(x) = x^3/3 - x^2/2 \) potential function and \(f(V) = \mu - V \) as the friction term.
\item Defining the systems total energy as \(E = x^2/2 + V(x) \), show that the energy uptake/dissipation can be controlled by the \(f(V) \) friction term.
\item Show that the fixpoints of (1), corresponding to local minima of any general potential function \(V(x) \) undergo a Hopf bifurcation when dissipation changes to antidissipation in their neighborhood.
\textit{Hint:} The real parts of the eigenvalues should change their sign.
\end{enumerate}

Problem 2 \textit{(Van der Pol Oscillator)} \hspace{1cm} 10 Pts

Consider the Van der Pol oscillator, governed by the equation

\[
\begin{align*}
\dot{x} &= y, \\
\dot{y} &= \varepsilon \left(1 - x^2\right) y - x.
\end{align*}
\]

Estimate the period of the limit cycle in the limit \(\varepsilon \gg 1 \).
To do this, follow the analysis made in the lecture using the Liénard variables. Then, use the identity for the length \(T \) of a limit cycle

\[
T = \int_0^T dt
\]

and approximate the differential \(dt \) by only taking into account the movement along the slow branches.
\textit{Hint:} Change \(dt \) to \(dx \) and integrate over \(x \). You need to find suitable limits for this.