Exercise Sheet #6

Fabian Schubert <fschubert@itp.uni-frankfurt.de>
Oren Neumann <neumann@itp.uni-frankfurt.de>

Problem 1 (Generalised Liénard System) 10 Pts

Consider the following prototype system:

\[\ddot{x} = f(V(x)) \dot{x} - \nabla V(x), \tag{1} \]

where \(f(V) \) is a generalised friction term, which depends explicitly on the mechanical potential function \(V(x) \).

(a) Analyse the stability of the fixpoints, considering \(V(x) = x^3/3 - x^2/2 \)
and \(f(V) = \mu - V \).

(b) Defining the total energy as \(E = y^2/2 + V(x) \), show that the energy uptake/dissipation can be controlled by the \(f(V) \) friction term.

(c) Show that the fixpoints of (1), corresponding to local extrema of any general potential function \(V(x) \), undergo a Hopf bifurcation when dissipation changes to antidissipation in their neighborhood. Hint: the real parts of the eigenvalues should change their sign.

Problem 2 (Triangle Map) 10 Pts

Consider the Map

\[f(x) = \begin{cases} \frac{rx}{2} & \text{if } 0 \leq x < 1/2 \\ r - rx & \text{if } 1/2 \leq x \leq 1 \end{cases}, \tag{2} \]

for \(0 \leq x \leq 1 \) and the parameter \(0 \leq r \leq 2 \).

(a) Plot the function.

(b) Look for fixed points and cycles (up to length 3).

(c) Derive the analytic expression for the maximal Lyapunov exponent, defined by

\[\lambda_{\text{max}} = \lim_{n \to \infty} \frac{1}{n} \log \left| \frac{d f^{(n)}(x)}{dx} \right|, \text{ where } f^{(n)}(x) = f \left(f^{(n-1)}(x) \right). \tag{3} \]

Hint: use the chain rule.

(d) For which range of \(r \) does the triangle map exhibit chaos?
Problem 3 \textit{(Sawtooth Map (Optional!))} \hspace{1cm} 0 \text{ Pts}

A slight variation to the triangle map is given by

\[
f(x) = \begin{cases}
2x & \text{if } 0 \leq x < 1/2 \\
2x - 1 & \text{if } 1/2 \leq x \leq 1
\end{cases},
\]

(4) for \(0 \leq x \leq 1 \).

(a) Derive the analytic expression for the maximal Lyapunov exponent.

(b) You should find a positive Lyapunov exponent, indicating that the map is chaotic. Implement the map in a programming language of your choice and run it for at least 50-100 iterations. What effect do you observe when you plot the evolution of \(x \)? Can you give an explanation?