Terrestrial life for habitable oxygen worlds

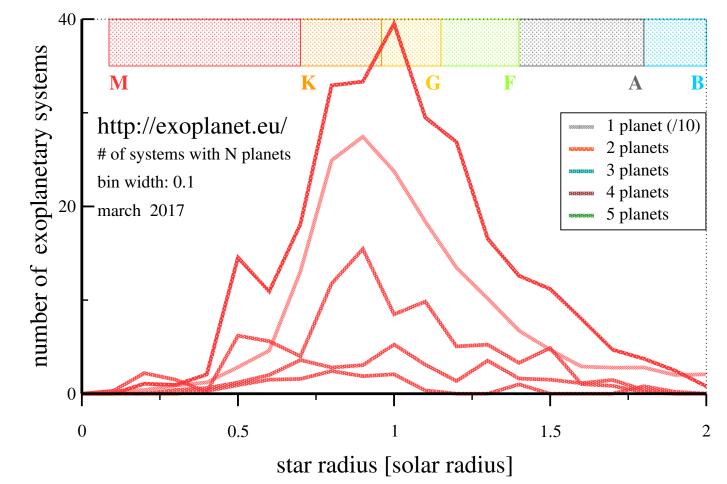
- a perspective

Claudius Gros

Institute for Theoretical Physics Goethe University Frankfurt, Germany

search for habitable planets _

why?


- (a) detect (and study) new forms of life
- (b) open alternative evolutionary pathways for terrestrial life

miniaturized interstellar missions technically feasible?

- * 50-100 years: passive acceleration/deceleration
- in situ synthesis of unicellular terrestrial organism
 - \implies establish precambrian ecospheres on
 - * transiently habitable planets
 - oxygen planets

Developing Ecospheres on Transiently Habitable Planets: The Genesis Project Gros; Astrophys. Space Sci. '16

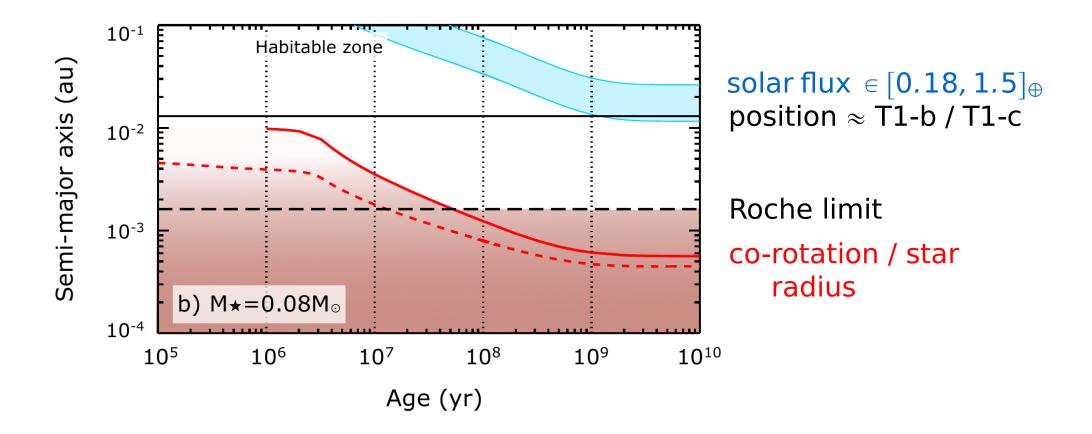
multi-planetary systems _

billions of M-dwarf systems expected

• 3/4 of all star

[Shields, Ballard, Johnson '16]

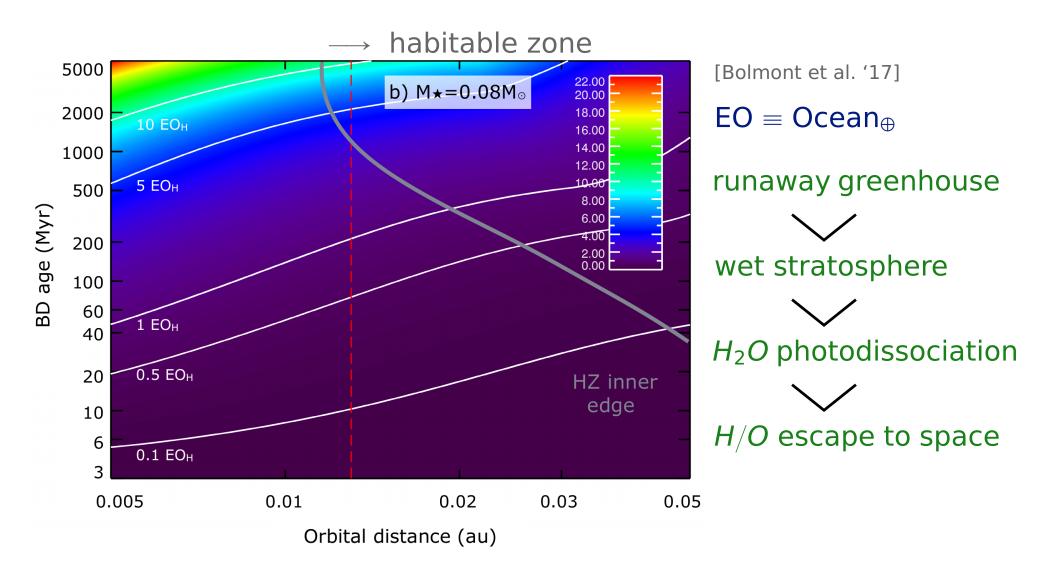
• TRAPPIST-1 (radius: 0.12, 40 ljr, 7 planets)


pre main-sequence M dwarfs are hot_

slow protostar \rightarrow main sequence Kelvin-Helmholtz contraction

habitable zone of M dwarfs moves inwards

TRAPPIST-1: $0.08M_{\odot}$, age > 500 Ma



Water loss from terrestrial planets orbiting ultracool dwarfs:

implications for the planets of TRAPPIST-1

Bolmont, Selsis, Owen, Ribas, Raymond, Leconte, Gillon; Mon. Notes R. Astron. Soc. '17

massive water loss of ultracold dwarfs.

depends on: FUV/XUV flux, planet mass/distance, pre-main-sequence phase, ...

massive O₂ buildup on M dwarfs _

O_2 pressure (atm)				
T1-b	Т1-с	T1-d	earth	
420	350	30-490	0.2	
		(orbit)		

[Bolmont et al. '17]

TRAPPIST-1: $0.08M_{\odot}$ reduced for $M \rightarrow M_{\odot}$

[Luger, Barnes; Astrobiology '15]

- O₂ removal: volcanic reduced gases, subduction, ...
- coldtrapping of *H*₂*O* with *O*₂ buildup?
- initial 100 bar *CO*₂?

atmosphere may however be lost

- stellar wind/flares/CME \rightarrow space
- tidal locking \rightarrow freeze-out

[Cohen et al. '14/15]

may life originate on oxygen planets? ____

abiogenesis in reducing environments

[Martin et al. '08]

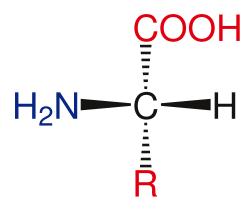
white smokers / lost city scenario

 $4H_2 \ + \ CO_2 \ \rightarrow \ CH_4 \ + \ 2H_2O$

 a local energy source (H₂) powering prebiotic organic chemistry in restricted geometries

> *are oxygen planets habitable but sterile?*

 lifetime of lost cities (Ma) enough for protocells to become O₂ resistent?


oxygen toxicity ___

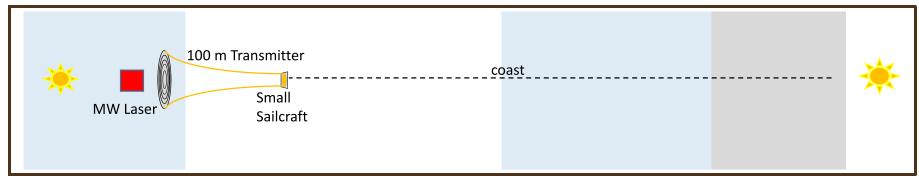
- humans: 0.4-0.6 bar (long-term)
- E. Coli, C-elegans \approx 100% oxygen

[Baez, Shiloach '14; Van Voorhies, Ward '00]

cultivation

terrestrial life tolerating 20-200 bars O₂?

reprogramming the genetic code?


optimal orthogonal translation \rightarrow non-canonical amino acids

[O'Donoghue, Ling, Wang, Söll '13]

quadruplets (instead of triplets) nucleotide code?

[Chin '12; Lajoie, Söll, Church '16]

interstellar microprobes_

Nasa projects DEEP-IN

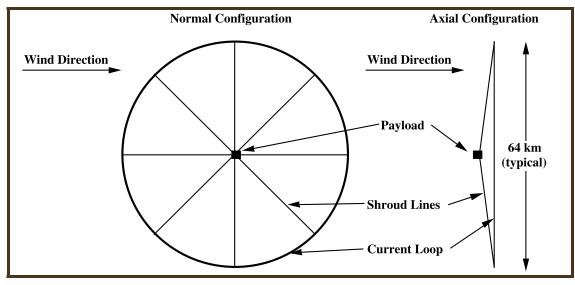
Directed Energy System for Interstellar Missions [Montgomery, Lubin]

Wafercraft Wafer Scale Spacecraft Development

Starshot breakthrough initiative

Yuri Milner, Stephen Hawking, Mark Zuckerberg . . . α Centauri flyby

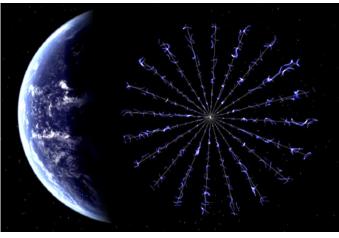
[Moon et al. '16]


surviving cosmic radiation damage

self-healing via thermal annealing of gate-all-around nanowire transistors

slowing down an interstellar craft_

solar sail


magnetic sail

[Zubrin '99]

[Heller, Hippke; ApJ Lett. '17]

[Nasa]

electric sail

miniaturized spacecraft

launch	laser	minutes
cruising	_	centuries
deceleration	magnetic sail	centuries
seeding	from orbit	centuries
evolution	on planet	Ma-Ga

on-board gen laboratory (in situ synthesis)

autotrophs \rightarrow heterotrophs (uni-cellullar)

pre-cambrian biosphere

evolution \rightarrow complex life

not for human benefit ____

millenia-long mission duration

- launch-and-forget
- no inter-generational contract

precondition for exoplanet seeding

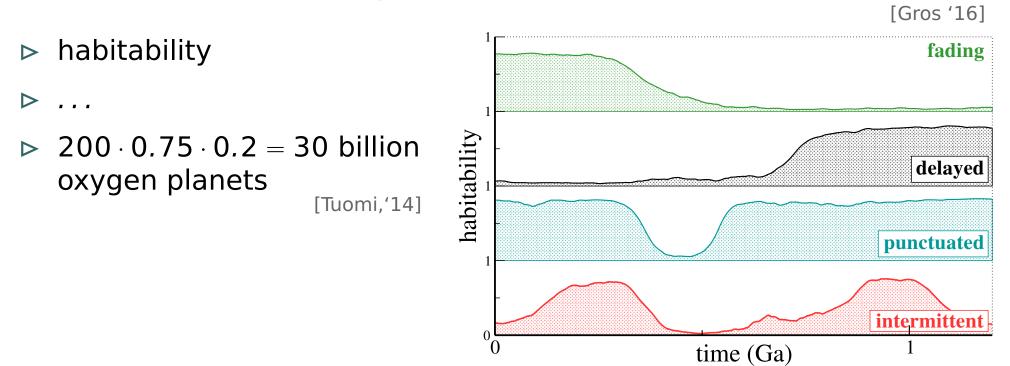
no benefit	\Rightarrow	<i>time is irrelevant passive deceleration</i>

Genesis project - cons _

moral imperative (?)

humanity as a species has to be egoistic

money spent needs to have a benefit


'playing' with creation not allowed (?)

• synthetic life is an active research field

planetary protection

- transiently habitable planets (brown dwarfs)
- sterile planets (oxygen planets)

outlook

exoplanets come in large varieties

transiently habitable / lifeless planets

» opportunities for terrestrial life?