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Abstract. We study the (D + 1) band Hubbard model on 
generalized D-dimensional perovskite structures. We 
show that in the limit of high dimensions the possible 
scaling behaviour is uniquely determined via the band- 
structure and that the model without direct oxygen-oxy- 
gen hopping necessarily scales to the cluster limit. A 1/di- 
mension expansion then leads to a t -  J like Hamiltonian 
and the Zhang-Ricc analysis becomes rigorous. The large 
dimension fixed point, in general, still remains the cluster 
model even when a hopping term between n.n. oxygen- 
sites is included. Only for a unique ratio of the oxygen 
onsite energies to the oxygen-oxygen hopping amplitude 
is a new fixed point possible, corresponding to a heavy- 
Fermion Hamiltonian. 

1. Introduction 

The description of the electronic structure of the Cu-O 
layers of the high-temperature superconductors in terms 
of simplified model Hamiltonians continues to attract 
considerable interest. Early on, Anderson [1] discussed 
the electronic properties of the Cu-oxide superconduc- 
tors in terms of an effective one-band, Hubbard-like Ha- 
miltonian. This picture has been substantiated on a mi- 
croscopic basis by Zhang and Rice [2], band structure 
calculations [3] and experimental NMR and NQR data 
[4] have been interpreted successfully [4] in terms of 
an effective one-band model with enhanced antiferro- 
magnetic correlations. 

Originally, Zhang and Rice [2] introduced the notion 
of oxygen holes bound to a central copper-spin (the so- 
called Zhang-Rice singlet) in order to describe the low 
lying excitations in terms of a one band t - J  Hamilton- 
ian, which they derived by expanding in terms of the 
copper-oxygen hopping matrix element, tdp. Although 
this transformation has been confirmed essentially by 
numerical studies [5], its success has remained puzzling 
up to now, since formally, the expansion parameter, tdp, 
is not small in actual calculations. 

On the other hand, it has been observed recently [6] 
that in the limit of large spacial dimensions, D, interest- 
ing statements can be made upon the properties of inter- 
acting Fermions and that the parameters of the specific 
model considered need, in general, to be taken as certain 
scaling functions of the dimension in order to obtain 
a meaningful and non-trivial model in the limit D ~ oo. 

Here we consider the possible allowed scalings with 
dimension, D, of the (D+l)-band Hubbard model on 
generalized D-dimensional perovskite lattices. We find 
that the scaling behaviour of the hopping amplitudes 
with dimension is uniquely determined by the band 
structure [7]. We show rigorously that the Hamiltonian 
scales to the cluster limit in infinite dimensions for the 
model with hopping only from copper to n.n. oxygen 
sites and also for the general model with a direct oxygen- 
oxygen hopping term included. The expansion around 
the cluster limit is in a dimensionless hopping amplitude 

1/(2D) and the Zhang-Rice picture becomes rigorous. 
We find, on the other hand, that for a specific ratio 

of the oxygen onsite energies to the direct oxygen-oxygen 
amplitude another fixed point Hamiltonian is possible 
in the limit of high dimensions, which we identify with 
a heavy Fermion Hamiltonian. 

2. Band structure 

We consider a D-dimensional perovskite lattice where 
the copper sites sit on a D-dimensional hypercubic lattice 
and the D oxygen sites per unit cell sit in between every 
two nearest neighbor (n.n.) copper sites. With the n.n. 
Cu-Cu distance set to unity, the D basis vectors, T, take 
the form (1, 0, 0, ...), (0, 1, 0 . . . .  ), ..., (0, 0, ..., 1) and the 
oxygens occupy the sites at T/2. 

The (D + 1)-band Hubbard Hamiltonian on this lat- 
tice takes the form 

H = H~ + Hp + Hpd 

= Z dt.o + v,Z 4 d., 4, d. 
R, a R 
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Hp = gp 2 t Pit + T/2, a PR + T/2, a 
It, T ,  a 

H a p =  - - tPd  2 * * (dit, ~ Pa + eT/2 ,  a -~- Pit + aT/2 ,  a dn. ~). 
It, g ,T ,  a 

(1) 

where e=  +1 and the * * _ dit, a ( P R  + eT/2 ,  a) are creation opera- 
tors for atomic copper (oxygen) orbitals on site 
R(R+cT/2)  with sp ina=T,  +. The ca/ev are the onsite 
energies of the d- and p-level on the copper and oxygen 
sites respectively, Ua is the onsite-repulsion on the copper 
sites and - t , a  the hopping matrix element between the 
copper and oxygen sites [-8]. We will discuss further be- 
low the effect of other matrix elements, like an onsite 
repulsion on oxygen sites, Up, a direct n.n. oxygen-oxy- 
gen hopping, - tv~,  and an intersite Coulomb matrix 
element, V~ v. 

We are interested in the behaviour of (1) in the limit 
of large dimensions, D ~ m. For this purpose the matrix 
elements occurring in (1) are allowed to be functions 
of the dimension, D. Depending on the scaling (function- 
al dependence) assumed, different fixed points may be 
obtained in the limit D ---, o~. It is reasonable to require 
[6, 7] that all the terms occurring in the Hamiltonian 
(1) should yield a nontrivial contribution to the ground- 
state energy in the limit of infinite dimensions. As an 
example, in the context of the standard one-band Hub- 
bard Hamiltonian, the onsite-repulsion, U, may be as- 
sumed to be independent of dimension, since its contri- 
bution is not directly dependent on the coordination 
number and therefore not strongly dependent on dimen- 
sion. We will discuss in Sect. 4 that also for the perovs- 
kite lattice, where the situation is more subtle, Ua turns 
out to be scale independent. 

The scaling behaviour of the hopping amplitude, - tap 
(and in general of all quadratic terms in (1)), is non-trivial 
and can b e  determined directly from an analysis of the 
band-structure [7]. For this, we solve the one-particle 
eigenvalue, problem H ~ ! , , ~ = 2 , ( k ) ~ * ~ , ,  with the An- 
satz: 

ek,T,  aPit+ T/2,a),  
It T 

(2) 

where e =  1 . . . .  , D +  1 denotes the D +  1 eigenstates per 
unit cell parametrized by ak, ~ and ek, T, ~" The stationary 
energies, 2~(k), are the solutions of the secular equations 

(2~ (k)-- ca) a k ,  e = - -  tap ~ (1 + e-  i k 'T ' )  e k  ' T', 
T'  

(2~(k)- cp) ek, T, ~ = - -  tar(1 + e ik'T'~ a : u,~, (3) 

which are solved by 

ca+~p ]/(ep--Cd)2/4+ 2t2p~.(l +cos(k.T)) 2t '2(k)= 2 -~ 
T 

23 ..... D+ 1(k) = cp. (4) 

Note that the interaction, Ua, acts only on the copper 
sites and that the D - 1  non-dispersing solutions, 
)~3 ..... D+ ~, are superpositions of p-orbitals only. There- 
fore they have zero spectral weight on the copper sites 
and factor out of the Hilbert-space. (We will discuss this 

issue in more detail at the end of this section.) With 

7(k) = 1/D ~ cos(k. T) 
T 

(5) 

we can rewrite the dispersion solutions as 

--~-C / 2 2t,2(k)=ed~ PV]/(ep--Cd) /4+2DtZap(l+7(k)). (6) 

The coefficients for the bonding orbital, ~!1.~, 
and anti-bonding orbital, ~P~, z, ~, are ak, j 

= [/(2~-(k) -- cp)/(2 2 j (k) -  (ep + ca)) and ek. T, j = -- t ak, j 
(1 +e~k'T)/(2j(k)--Cp), for j =  1, 2. It is possible to rewrite 
the Hamiltonian (1) exactly in terms of the one-particle 
eigenstates, 7Jkt, a...D+L~. Note, in fact, that in momen- 
tum space the creation operators acting on the copper 
sites, dk*~, are a linear superposition of the bonding, 
~!  ~,~, and antibonding orbitals, ~!  2,,, alone and that 
we can define generalized oxygen orbitals,/~k*. ~, orthogo- 
nal to the non-bonding orbitals, i.e. 

4 ,  = X 1 (k) + ( k ) -   2,2, 

(7) 

4 2 
with N =  V(%-ed) +8Dtd2p(l+y(k)) being the appro- 
piate normalization factor. We have then that the Bloch- 
state /3k*~ is the state orthogonal to the copper-orbital, 
dk*,~, in the bonding/anti-bonding subspace. We intro- 
duce the respective Wannier functions, ~*n,~=~d~ 

D - - i k ' R  ~'~ I/{E'~ -IdDk/(2~z) De-ik'R ~!e,. and (2 re) e Pk, ~ and R, a, o -  
rewrite the full Hamiltonian in real space as 

H=He+ Hp + Hd~,+ H, 

Ha = ed Z d*R,~ dR, o + Va Z d'R, r dR,, d~, + dR, + 
R, a R 

u p  = cp y .  o  it. 
It, a 

Hap= 2 tR-w(dt~,~Pw,~+PR,~dit', ~) 
It, It', cr 

D + I  

/4. = cp Z (8) 
R , d = 3 , a  

where 

d D k  / 2 
tit_., = f ~ V2 Dtap( 1 + y(k)) e ik(a-R') (9) 

is the (long-ranged) hopping amplitude in real space. 
Clearly, the dynamics of the (D - 1) non-bonding orbitals 
per unit cell described by H.  in (8) does not couple to 
the bonding and anti-bonding degrees of freedom. The 
Hamiltonian is block-diagonal and the non-bonding de- 
grees of freedom factor out of the Hilbert space. While 
this statement is rigorous for the above considered Ha- 
miltonian in all dimensions, a direct oxygen-oxygen hop- 
ping amplitude, - tpp,  would alter this picture, as we 



discuss in Appendix B, and the Hamiltonian would be- 
come block-diagonal only in the limit of large dimen- 
sions, D ~ c~. Other Coulomb matrix elements, like Up 
or V~p, would also destroy the block-structure of (8) and 
all the (D + 1) degrees of freedom per unit cell would 
have to be considered at the same time. 

3. Cluster expansion 

There are several ways of taking advantage of the simpli- 
fied structure of the Hamiltonian as given by (8). 

One possibility is to take the limit D ~ oo. We will 
show in the next section that in this limit the density 
of states reduces to g-functions and no propagation oc- 
curs, the problem reduces to that of uncoupled clusters 
with two orbitals (the bonding and the anti-bonding) 
per cluster (unit cell). 

Alternatively, one may show that for D ~ oo the Wan- 
nier orbital /3~,o becomes the local superposition, with 
equal amplitudes, of the 2D oxygen orbitals surrounding 
the central copper-site, R. This is exactly the combina- 
tion of oxygen orbitals considered by Zhang and Rice 
[2] in their analysis of the electronic structure of the 
Cu-oxide superconductors. 

Motivated by these findings we now consider Hamil- 
tonian (8) on a perovskite lattice in finite dimension, 
D, and take 1/(2D) as a formal expansion parameter. 

Technically, we start from the expression (9) for the 
hopping amplitudes in real space. We note that 
?(k)e [ - 1 ,  1] and that we may therefore expand 

(10) 

where we may write ?(k) as ~ (k )=~  (eik'T+ e-ikx)/2D). 
T 

Substitution of (10) into (9) yields 

t._.,= [&., ,  1 /1/2  
1 ) g<"'"'> 

1 1/2 , ,( +]  +(2DT s 2 ~6<R,(x~>,R'> ... 
(11) 

Here, the Kronecker b(~,lV> is different from zero only 
for R and R' being n.n. sites (on the hypercubic lattice 
formed by the copper atoms) and the symbol 
(R, (R1), R')  denotes sets of three lattice sites where 
both R and R' are n.n. of R1. 

We will show in the next section that it is correct 
to assume the scaling trip= "[dp/]~, with )'dp being inde- 
pendent of dimension, D. Then (11) clearly represents 
an expansion of the real-space hopping amplitudes, 
t•-R,, in powers of 1/(2/)). In lowest order in 1/(2D) 
only hopping between the bonding and the anti-bonding 
orbital centered on the same site of the hypercubic lattice 
is present and propagation occurs only at the order 
(1/2D) 1. 

In high enough dimensions the formal expansion pa- 
rameter occurring in (11), "s will inevitably become 
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much smaller than any parameter occurring otherwise 
in (8), like the charge transfer energy, A =ea+Ua-sp ,  
or Ud itself and the Zhang-Rice analysis [2] is then rigor- 
ous. 

4. Limit D --r 

Now we proceed to examine the structure of the Hamil- 
tonian, as given by (8), in the limit D ~ oo. The correct 
scaling for Ud is to assume it to be independent of dimen- 
sion. Note that this is true despite the fact that in the 
limit of infinite dimensions the single copper-site yields 
only a vanishingly small contribution, ~ l/D, to the 
ground-state energy per unit cell. Since the (D-1)  non- 
bonding orbitals factor out of the Hilbert-space, only 
the two active orbitals per unit cell, the bonding and 
the anti-bonding orbital, need to be included in the con- 
siderations upon scaling. 

We are particularly interested in the functional depen- 
dence of the hopping amplitude, -tdp, on dimension, 
D. As an illustration of the general procedure, we first 
review the simpler case of the standard one-band Hub- 
bard-model, where the result is kown [6, 7], 

The standard one-band Hubbard model has the dis- 
persion relation 2(k)= - 2  t D 7 (k), where ? (k) is given by 
(5). We derive in Appendix A (see also [7, 9]) that in 
the limit of asymptotically large dimensions the density 
of states takes the form 

1 1 _ (o2/(4Dt2).  
e 

(12) 

Clearly, if we assume [6, 7] 2 ] /~ t - - t ' t o  be independent 
of dimension, then the density of states takes the usual 

�9 ( 1 )  - - ( 0 2 / 2 i  2 gausslan form p (co)=e /~/2~t. To see what hap- 
(i) pens otherwise we consider p (co) as a distribution and 

integrate over a test-function, g(co): 

2Dr 

s dcop{x)(co)g(e))= 1 s dye_y: /2g(1 /~ ty) ,  
- 2 Dt ] ~  - l f 2D  

(13) 

we substituted co = ] / ~ t y .  Let's assume a general where 
scaling law, t = )'/(2D)% and observe from (13) that p(1)(co) 
reduces to 6(co) in the limit D ~ oo whenever c~> 1/2. 
For 0 < ~ <  1/2 (12) and (13) are not well defined in the 
limit D ~ o0 (and not valid for ~ < 0, see Appendix A). 
It is the critical value e = 1/2 which is considered in most 
studies of the Hubbard-model in infinite dimensions, 
since then the properties of the model stay non-trivial 
when the U-term is included. 

For the case of the Hubbard model on a D-dimen- 
sional perovskite lattice, formulas very similar to (12) 
and (13) are valid. They can be derived from a general 
expression which holds for any band-structure, 2(k), 
which depends on the momentum, k, only through 
?(k)-= v (compare (5) and (6)). Then, as we show in Ap- 
pendix A, 
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1 V'Z-O 
d ye- y:/2 g(2(y/l/~)). (14) _ ~ d cop(co) g(co)= ] / ~  - v ~  

We recover (13) by substituting in (14) the 2(v)= -2Dtv  
(at v =y/l/2D) appropiate for the one-band Hubbard  
model�9 In infinite dimensions the quantity 
lira 2 ( y / 2 ~ ) ,  needs to be a well defined function of 

D~o~ 

y and uniquely determines the functional form of the 
density of states. When this quantity is independent 
of the variable, y, then the density of states reduces 
to a 6-function in infinite dimensions�9 For the perov- 
skite lattice we have (see (6)) )~(V)=(ed--}-g.p)/2 
T-~/(ep--ea)2/4 + 2DtZp(1 + v) and the limiting value 

~ e d  -[- 8P - -  t Dlim l ~  + l/(ev-ed)z/4 + 2Dt2p(1 + Y/] /~)  (15) 

needs to be well defined for D ~ ~ .  If we assume that 
the relative energy scale of the oxygen to the copper 
onsite energies, ep-ee ,  does not change with dimension 
(we discuss the alternative case further below) then only 
for the scaling tap=t'ap/~/2D a well defined and non- 
trivial result is obtained for the density of states in infi- 
nite dimensions. Then the density of states becomes 

�9 _ ~ p  + ~ d  - -  2 1Qmp (~o)-5 ( ~ o - - ( ~  + V(%--ed) /4  + ~ p ) ) ( 1 6 ,  

for the bonding/anti-bonding band in infinite dimen- 
sions. In consequence, the Hubbard  Hamiltonian on a 
infinite-dimensional perovskite lattice reduces to a prob- 
lem of a hypercubic lattice with two orbitals (bonding/ 
anti-bonding) per unit cell. This problem is a simple ver- 
sion of the Hubbard-star  solved recently by Dongen 
et al. [10]. Note  that these clusters are exactly decoupled 
in infinite dimensions and that a spin-spin coupling will 
occur only when an expansion to finite order in 1/(2D) 
is considered (see Sect. 3). 

Now we consider the possibility of scaling the relative 
onsite energies, ep-ed,  with dimensions. In this case it 
is possible [11] to force the system to scale to a standard 
one-band Hubbard  Hamiltonian. To see this, assume 
that ed=~2-Dg a, e p = ~ g v  together with gp, gd'~0 and 
t d p = ' { d v = ~ .  Then (15) becomes 

2z(y/V ~ )  --, -- t* y (17) 

72 2 ."2 with t* = tdp/]/(gp- gd)/4 + tap. In this scenario the bond- 
ing band (and the ( D -  1) non-bonding bands) have been 
scaled away to the status of an inert core orbital. 
Dynamics takes place exclusively in the anti-bonding 
band with a gaussian density of states, P2(co) 
= e-~ The interaction is the Ua renormal- 
ized by the appropriate coherence factors (see (2) and 
paragraph following (6)). Formally, the scaling to both 
fixed points, (17) and (16) is allowed. Here in this paper 

we are specially interested in the consequences of the 
lattice effects on the fixed point Hamiltonian in infinite 
dimensions. Since the scaling to (17) scales away all lat- 
tice effects we did not consider it in the 1/(2D) expansion 
outlined in Sect. 3. 

5. Heavy fermion vs. t - J  fixed point 

We now include a hopping term between n.n. oxygen 
sites to the model (i) (see Appendix B for the detailed 
expression). The band structure is determined by a trans- 
cendental equation which cannot be solved analytically 
in finite dimensions and a block-diagonalization of the 
Hamiltonian, like (8), is not possible. But in infinite di- 
mension a simplification occurs, as we explain in Appen- 
dix B, and an analytic solution is again possible. In this 
limit the band structure is closely related to that of a 
model considered by Brandt and Giesekus [12], which 
may be solved exactly for certain values of the parame- 
ters, by the Gutzwiller wavefunction. In the limit of large 
dimensions the dispersion relation of the bonding/anti- 
bonding orbitals is (see Appendix B) 

2 t ,2(k)=ea2eP Dtvp(1 +~/(k)) 

~-]/[(ep-Sd)/2-Dt, p(l + 7(k))]2 + 2Dt~p(l + 7(k)) (18) 

where ?(k) is given by (5). The energies of the ( D - 1 )  
non-bonding orbitals remain at ;~3 ..... D + ~ (k)-- sp. Here 
- t p p  is the n.n. oxygen-oxygen hopping amplitude. 

We discuss first the case of no coupling between the 
oxygen and the copper sites�9 Then (18) becomes 

)ol (k)[tdp = o = ed 

22 (k)[tdp = o = ~p - 2 D tpp (1 + 7 (k)). (19) 

The anti-bonding solution, 22(k), depends on the mo- 
mentum, k, only via ]; (k) and we can use the same meth- 
od as in Sect. 4 (see (14)) to determine the possible scal- 
ings of t , ,  and ~,. From (14) we know that the quantity 

lira 2 2 ( y / ~ =  lira {ep-2Dtp,(1 + y / V ~ ) }  must be 
Dooo D-~co 

well defined. Two possibilities arise. 

(i) No scaling of the zero of energy, ~,, is considered. 
Then only tpp='{pp/(2D) is the allowed scaling and 
lira p (co)[t,p: o = 5 (co - (~, - t'pp)). 

D~oo 

(ii) The zero of energy scales like ~p=2Dt,~. Then it 
is possible to scale tp~ = ' { p p / ~  and the density of states 
becomes gaussian: lira p(a))l, , ,=o=exp[-o2/(2Tzpp)]/ 

D --+ ct) 

~/~t 'pp.  In this case the onsite energy diverges in the 
infinite-D limit like e, = ~/2Dt'p,. 

Note  that for (ii) not only the magnitude, but also the 
sign of ep is related to that of the hopping amplitude, 
tpp. Such a choice of ep effectively cancels the contribu- 
tion which arises from the hopping within the same unit- 
cell. Note  that in this case the contribution of the non- 



bonding orbitals to the ground-state energy, ~ep, di- 
verges too. 

Now we consider the case where both tdp and tpp 
are nonzero. It follows from (14) and (118) that 

2 ~, 2 ( y / ~ / ~ )  = [ep + ea - 2 D tpp-  y ~ / ~ t ~ ] / 2  

-T- [ / [ep-  ca-  2 Dtpp-  y ]//2D tp ,] 2/4 + 2 DtZee(1 + y / ] ~ )  
(20) 

needs to be well-defined for D ~ oo. Again we have two 
non-trivial choices for the scaling: 

(i) Consider ed,~p,'{vp,~dp general and fixed, tpp 
='{pp/(2 D) and tap = " { a p / V ~ ,  

(ii) Consider ed, tpp, t~p general and fixed, ep= l /~Tpp ,  
tpp:  t ' , p / ~  and t dp:  ~p/2]/~. 

For (i) the infinite-D Hamiltonian consists of indepen- 
dent copper-oxygen clusters on a hypercubic lattice with 
two orbitals (bonding/antibonding) per unit cell. A 1/ 
dimension expansion would then yield an effective, t - J  
like Hamiltonian, similar to the case for tpp=0 (see 
Sect. 3). 

The density of states for both the bonding and the 
antibonding band for case (ii) is given by the single func- 
tion 

(co-ea)2+~P exp[ I'co(co-ea)-~@ 2] 
P ( c o ) : ~ r p p ( c o - e a )  2 k -  ~ . ~ f  J (21) 

with coE[--oo, e j  for the (normalized) bonding band, 
gd  

p(co) dco=l,  and co~[ea, ~ for the anti-bonding 
- c o  

co 

band, ~ p(co)dco= 1. The anti-bonding band, which we 
gd  

may call the conduction electron band, in (21) is centered 
around co = 0 (note that the zero of energy is fixed) and 
becomes a pure gaussian in the limit t~ap ~ O. For co~ed 
the density of states is exponentially supressed (and ex- 
actly zero at co = ed) forming a pseudo-gap. For appro- 
plate parameters, like ea < - tpp,  is the anti-bonding band 
well separated from the bonding band. The bonding 
band, we may call it the band of the local level, consists 
of a sharp peak just below ea and goes to ~(co-ga) (see 
(19)) in the singular limit t-ap ~ 0  (despite the fact that 
p(co)-=0). Equation (21) describes the density of states 
for a periodic Anderson model in infinite dimensions. 
For appropiate values of the parameters involved, in 
particular the Coulomb-matrix element, Ud, and the den- 
sity of particles, a state with a large mass-enhancement 
may be described, corresponding to a mixed valence or 
a heavy Fermion state. 

6. Conclusions 

We have considered the (D + 1) band Hubbard Hamil- 
tonian on generalized D-dimensional perovskite lattices. 
In the limit D ~ oo the parametes entering the Hamilton- 
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ian need to be scaled as functions of dimension, D, and 
the functional form of the scaling law is uniquely defined 
by the one-particle band-structure. We have found that 
the perovskite structure necessarily scales to the cluster 
limit for general parameters of the model and that the 
Zhang-Rice [2] analysis in terms of a t - J  type effective 
Hamiltoninian becomes rigorous as a 1/dimension ex- 
pansion. 

Only for a special point in parameter space, when 
the onsite oxygen energies, ep, and the matrix element 
for hopping in between n.n. oxygen sites, tpp, fullfil the 
relation ep=2Dtpp a scaling to an itinerant fixed-point 
Hamiltonian is possible. The fixed-point Hamiltonian 
has then the form of the periodic Anderson model with 
well separated localized and conduction electron bands. 
For appropiate densities and onsite Coulomb repulsion, 
Ue, this Hamiltonian may describe a heavy-Fermion 
state. 

We would like to thank U. Brandt, F. Gebhard, P. Hirschfeld and 
D. Vollhardt for useful discussions. This work was supported by 
the Deutsche Forschungsgemeinschaft, by the Minister ftir Wissen- 
schaft und Forschung des Landes Nordrhein-Westfalen. 

Appendix A 

Here we calculate the density of states in the limit of 
infinite dimensions for the one-band Hubbard model and 
the Hubbard model on a hypercubic perovskite lattice 
with copper-oxygen hopping, - tap,  only. 

We observe that in both cases the dispersion relation 
depends on k only through 7(k)--=ve[-1, t] (compare 
(5)). For the one-band Hubbard model 2(k)= -2 tDT(k  ) 
and therefore 2 (v )= -2 t Dv .  For the anti-bonding orbi- 
tal of the perovskite lattice (see (6)) 2(v)=(ep+ee)/2 
+]/(ep-ea)z/4+2Dt2p(l+v).  The density of states is 
then 

p (co) = ~ dD k  (co- 
1 

= ~ dvc~(co-2(v))p~(v),(22) 
- 1  

where p~(v) is the density of states for the cosinus band, 

a s  is, r 
-~ _ c o ~ e  12o (23) 

3 o(z) is the zeroth-order Bessel-function, J0(z) 

=_ i ~ e i . . . .  ~ dk/2rc, and appears here through the Four- 

ier-representation of the 6-function in (23): 6(x) 

= S ei'Xds/(2rc). The factorization in the above equa- 
- c o  

tion is a consequence of the simple additative structure of 
7(k). In the limit D ~ oo we can substitute [7, 9, 13] the 
expansion Jo (z) = 1 - z2/2  2 -}- z4/(22 4 2) - - . . .  = exp [ - z2 /2  2 
+z4{1/(2z4Z)-- l / (2!24)}- . . . ]  in (23). In addition we 
substitute variables u=2(v)s [2 ( -1 ) ,  2(1)] in (22) and 
use (23) for p~(v): 
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X(1) 

0(0)) = 
2 ( -  1) 

6(0) -u )  S dSei~a-'(")e-~2/(4~ (24) 
du 12(2_ (u))1 - |  

Here 2' (2-1 (u)) = - 2 tD and 2 -  ~ (u) = u/(- 2 tD) for the 
one-band Hubbard  model and 

,v (u)) = 2 D G/ (2  u -  G + 

and 

1 ( u )  = [ ( ( 2  u - G + - - o G ) ]  - 1 

for the perovskite lattice. In (24) we retained only the 
lowest order exponent in the reexponentiated small argu- 
ment expansion of the zeroth order Bessel-function, Jo. 
This is only allowed when lira 2(v)/D=O for all 

D ~ e o  

v ~ [ -  1, 1]. 
We see from (24) that for all dimensions 

p ( 0 ) < 2 ( - 1 ) ) = 0  and p(0)>2(1))=0.  We can evaluate 
the u-integral and the s-integral and obtain 

1 ~ ds eis2_l(O))e_S2/(4D ) 
p (co) = 12 1 (co))l - 2  

- -  D ~  c _ D (  2 _ 1 (to)) 2 

- (;o-1 (0)))1 
(25) 

for 0 ) e [ 2 ( - 1 ) ,  2(1)]. Substitution of the 2(2-1(0))) and 
2-1 (0)) appropiate for the one-band Hubbard  model lat- 
tice yields (12). 

Often it is not so easy to determine directly from 
(25) the scaling behaviour of the parameters which occur 
in the expression for 2(v). One may then regard p(0)) 
as a distribution and integrate over a test function, g(0)). 
This leads to 

1 v-z-o 
d0)p(0) )g(0) )=~ ~ dye- '~ /2g(2(y /~) )  (26) 

with the help of the variable substitution, y2 
= 2D(2-1 (0)))2. This result is generally valid for all band- 
structures, 2(k), which depend on the momentum, k, only 
via 7 (k) (see (5)). 

2,(k), are the solutions of the secular equations 

(2~ ( k ) -  ed) ak, ~ = -- tap ~ (1 + e-ik 'T) %, r',~ 
T' 

(2~ (k) - ep) ek, r, ~ = -- trip(1 + e ik'T) % 

- - t p p ( l+e  ik'x) ~ ( l + e - i k T ' ~ e  ] k , T ' , e  " 
T' :I:T 

(28) 

Elimination of the amplitudes, ak, e and %,T, ~ leads to 

(2 + 2 cos (k. T))(t~p - tpp (2~ (k) - ed)) 
)~(k)--~a = T ~ ~ p _ ~ ~ ) .  (29) 

In general it is not possible to solve (29) analytically 
and all (D + 1) eigenva!ues, 2,(k), will be dispersing and 
no decomposition of the Hilbert-space into non-bonding 
and bonding/antibonding orbitals occurs. But in the 
asymptotic limit D ~ Go the denominator of the right- 
hand side of (29) simplifies due to the relation 

12~ ( k ) -  epl >> I tpp (2 + 2 cos (k. T))I (30) 

which holds in infinitc-D (see next paragraph). As a con- 
sequence, (D-- l )  non-bonding, non-dispersing eigen- 
values 23...D+ 1 (k)= ep solve (28) for D ~ oo and the bond- 
ing/anti-bonding bands are given by (18). The Hamilton- 
Jan (1) together with (27) becomes block-diagonal and 
a representation similar to (8) can be found. 

Equation (30) is consistent in particular with both 
the possible scalings discussed in the text, namely 

(i) 2~(k), ep~(2D) ~ and t~v~(2D)-1. 
(ii) 2~(k), ev~(2D)~/: and tpp~(2D)-1/2. 

The simplification (30) occurring in high dimensions can 
be understood easily. The term - tvv(2 + 2 cos(k. T)) in 
the denominator  of the right hand side of (29) is a direct 
consequence of the restriction eT ~ ___ e' T' of the matrix 
elements in (27) which leads to the restriction T ' +  T in 
the last sum in (28). But this restriction is of order 1/D 
and may be neglected in high dimensions. 
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