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We present numerical evidence in support of a conjecture concerning the hierarchy of incompres-
sible states that are responsible for the fractional quantum Hall effect (FQHE). We propose that for
filling factors in the range —,

' ~ v~ —,', the FQHE occurs only when v=v„=n/(2n +1) (or when

v= 1 —v„) and at no other fractional 511ing factors with odd denominators. If correct, this conjec-
ture would imply that important qualitative features of the hierarchy physics of the FQHE are not
understood.

I. INTRODUCTION

The quantum Hall effect occurs in a two-dimensional
electron gas (2D EG) whenever a discontinuity occurs in
the chemical potential (i.e., whenever the system becomes
incompressible) at a magnetic-field-dependent density. '

Quantization of the kinetic energy of a cyclotron orbit
leads to incompressibilities at integer values of the
Landau-level filling factor, v—:2m. l n, and hence to the in-
teger quantum Hall effect. [1—= (Pic/eB)', and n is the
electron areal density. ] The fractional quantum Hall
effect (FQHE) occurs at fractional values of v and is due
to the interactions between electrons that share the same
quantized value of the kinetic energy, i.e., are in the same
Landau level.

Our understanding of the physics responsible for the
incompressibilities which lead to the FQHE grew from
the observation by Laughlin that simple Jastrow-type
many-body wave functions could be constructed for elec-
trons in the lowest Landau level only when v=1/q,
where q is an odd integer. Laughlin's wave functions are
nondegenerate exact zero-energy eigenstates of the
many-electron Hamiltonian for short-ranged repulsive in-

teractions in which electrons interact only if their relative
angular momentum is less than q

—1. For v ( 1/q, there
are many zero-energy eigenstates of such a Hamiltonian,
and electrons can be added to the system without any
pair of electrons ever occupying a state of relative angu-
lar momentum less than q

—1. For v&1/q, this is no
longer possible, ' so that the chemical potential jumps
when the filling factor crosses 1/q. The realistic
effective interaction between electrons in a 2D EG is
sufficiently similar to the hard-core models, for which the
Laughlin wave functions become exact, that the chemical
potential jumps, and hence the FQHE, still occurs when
v= 1/q.

The physical origin of the FQHE at v= 1/q, and (by
invoking the exact particle-hole symmetry which exists
within a single Landau level) at v= 1 —1/q, is thus clearly
understood. However, the FQHE occurs at a large num-
ber of additional fractional filling factors. To explain
these observations, an intuitive hierarchy picture' '" was
developed in which the additional filling factors were as-
sociated with Laughlin states formed by the fractionally

charged quasiparticles of the primary Laughlin states.
This picture can accommodate a FQHE at any rational
filling factor with an odd denominator. While it has not
been possible to provide a convincing mathematical
justification of the hierarchy picture, there is considerable
evidence' that it captures much of the physics responsi-
ble for the occurrence of the FQHE at additional filling
factors. It explains the odd denom-inator rule (Th. e
FQHE does occur only at fractional filling factors with
odd denominators, provided that there is complete spin
polarization. '

) The coinposite nature of the hierarchy's
incompressible ground states is shared with various pro-
posed' microscopic incompressible many-body wave
functions. In addition, many aspects of the hierarchy
picture are supported by small-system exact-
diagonalization studies. ' However, the hierarchy pic-
ture has not been extremely successful in predicting the
filling factors at which strong FQHE's will occur. For
example, it has long' ' been recognized that the hierar-
chy picture does not capture the fact that excited states
that do not occupy pair states of unit relative angular
momentum are available for the quasiholes of the v= —,

'

state but not for the quasiparticles. Moreover, for
—,
' &v& —'„ the FQHE has been observed only' when

v=1 —v„. The FQHE does not occur at many other
values of v, where the qualitative hierarchy picture would
suggest equally strong or stronger effects. In this paper
we report on an exact-diagonalization study of the FQHE
for electrons on the surface of a sphere. ' Most of our
calculations are based on a hard-core model in which
electrons repel each other only when they have unit rela-
tive angular momentum. As explained above, this is the
ideal model for the v= —,

' and —', FQHE's, which are well

understood. We find convincing numerical evidence in
support of the conjecture that for this model the FQHE
occurs only at the filling factors where it is observed ex-
perimentally, namely, at v=v„, and at v= 1 —v„. Fur-
ther calculations with more realistic interaction models
give similar results and suggest that the FQHE will occur
only at these filling fractions for any physically realistic
interaction.

Our paper is organized as follows. In Sec. II we dis-
cuss the construction of the usual hierarchy picture for
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electrons on the surface of a sphere. We emphasize the
finite-size corrections to the filling factor, at which a
hierarchy state is expected to occur, and point out the as-

pect of this construction whose validity is most uncertain.
In Secs. III and IV we report on our results for the
ground-state energy and the chemical-potential discon-
tinuities, respectively, for the hard-core model. We ex-
pect that this model will exhibit the FICHE physics most
clearly for —,

' ~v~ —', as explained above. In addition, it
has the advantage that the thermodynamic limit of both
these quantities can be evaluated analytically for this
model for v outside the range —,

' & v ~ —', . This fact is help-
ful in accessing the importance of finite-size corrections
to our results. The filling-factor dependence of the chem-
ical potential itself is discussed in Sec. V.

By using particle-hole symmetry, we are able to derive
an exact expression for lim, ,p(v) which is valid for any
effective electron-electron interaction. This result is used
to place a limit of the size of the chemical potential
jumps, which is consistent with the system having ther-
rnodynamic stability at all filling factors. As discussed in
Sec. VI, our numerical results for the hard-core model
show that the chemical-potential jump at v= v„decreases
slowly with n, and that the chemical potential must de-
crease with increasing density between incompressible
filling factors. We conclude that phase separation into
regions with filling factors v„+, and v„will occur for
v„&v&v„+, in the hard-core model. In Sec. VII we
compare our numerical results for the hard-core model
with the results for the Coulomb model. We show that,
when expressed in appropriate units, the finite-size esti-
mates of chemical-potential jumps are very similar for the
two cases, and argue that the qualitative conclusions that
we draw from our study of the hard-core model apply for

Haldane's' hierarchical classification of states for elec-
trons on the surface of a sphere predicts incompressible
ground states when the number of single-particle states in
the lowest Landau level, NL, is related to the number of
electrons N, and the filling factor v by

NL —=v 'N, +K(v),
where v=p/q is a fraction with an odd denominator, N,
is a multiple of p, and K(v) is not necessarily an integer
independent of X„which can be viewed as a finite-size
correction [k(v= 1)=0]. Table I shows the values of Nz
at which incompressible states are expected for various
values of X, . To construct' this "magic" table, we need
three rules.

(i) Starting from any family of finite-size states obeying
Eq. (1), another family exists, where for each N, we get

NL =NL+2(N, —1)=(v '+2)N, +K(v) —2

—:(v') 'N, +K(v') . (2)

This rule corresponds to excluding an angular momen-
tum channel and is the process which generates the
Laughlin states, starting from a full Landau level. In
terms of wave functions, this process is equivalent to mul-

tiplication by a Jastrow factor P, , (z; —z ) .

(ii) Particle-hole symmetry guarantees that, for any
family of states obeying Eq. (1), another family exists
with X, replaced by EL —X,', so that

any physically realistic interaction. In Sec. VIII we con-
clude by suggesting a new direction for attempts in un-
derstanding the physics of the fractional Hall hierarchy.

II. HALDANE'8 MAGIC TABLE

TABLE I. (Magic Table). This table lists the values NL of Landau-level degeneracy, at which an in-
compressible state at filling v is predicted by the hierarchy scheme for a given number of particles N,
Only a selected range of X,, and fillings v are listed. The best way to read this table is from the top
down. For a fixed v =p /q, an entry occurs at e very p'th value of N... and the increment in NL is given
by q. Note the "twins" of filling factors, e.g. , the state at N,, =4 and NL =10 can be viewed either as a
v= —,

' or as a v= —, state. Details are discussed in the text.
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NL =(1 v—) 'N,' v—K(v)/(1 —v)

=(1—v) 'N,'+K(1 —v) . (3)

I

NL = N, +K—(v) +,N, +K(1—v')

(iii) The last rule is the magic one, which allows the
iterative construction of the full hierarchy. It can be
motivated in several superficially different ways. ' ""
For example, we can see from Eq. (3) that the incompres-
sible state at filling factor 1 —v' can be formed by
adding v'N, /(1 v')—+K(1—v') holes to the full
Landau level, where K ( 1 —v' ) is given by
Eq. (3): NL =(1—v') 'N, +K(1 v') =—N, +v'N, /
(1 v')+—K(1—v'). This state can be viewed as the v' in-
compressible state of NL

—N, holes in the full Landau
level. This suggests' that the same number of quasiholes
added to a family at v would form a v' incompressible
state in these quasiholes. More generally, we may define,
for a given family of states at v and v', another family at

with v=1 —v„and v=v„are the same at N, =(n'+l)n .
Thus, as N, increases, finite-size approximations to
v„&—, are twinned with finite-size approximations to
states at ever-deeper levels of the hierarchy. This se-
quence of "twin"-filling factors approaches —,

' from above.

III. GROUND-STATE ENERGIES
FOR THE HARD-CORE MODEL

We have used a Lanczos method to examine the hard-
core model on the sphere. In this model, two particles re-
pel each other only if they are in a state of relative angu-
lar momentum 1. The strength of this hard-core repul-
sion is V&. We have computed the ground-state energy as
a function of NL for all even values of N, from N, =4 to
12, and in each case up to the largest values of NL for
which we were able to perform the calculation. The
ground-state energy is zero whenever NL exceeds
3N, —2; just as in the thermodynamic limit, the ground-
state energy per electron, eo, is zero for v& —,'. Using
particle-hole symmetry, we are readily shown that

—+, N, + [K(v)+K(1—v')]1 v'

v 1 —v'
E0=2V&(2v —1)/v (5)

=(v") 'N, +K(v") . (4)

In the hierarchy picture, " these states are v' in-
compressible states formed by the quasiholes (+) or
quasiparticles (

—
) of the v incompressible state. Rule (ii)

is exact, and compelling arguments can be advanced in
favor of rule (i). But rule (iii), up to the present, has a
more intuitive justification. The full hierarchy can be
generated by iterating these rules.

The strong fractions, v„=n /(2n + 1) defined above,
are obtained by our starting from a Laughlin state at
v= —,, using (ii) and only quasiparticle states in (iii). Note
that these states correspond to deeper and deeper hierar-
chy levels. Naively, one might expect that the energy
scales for the low-energy excitations would decrease
quickly with increasing n. Instead, as we will show in
this paper, we find that the size of the chemical-potential
jumps decreases slowly with n.

It is interesting to consider what happens if one mixes
different "hierarchy trees. " For example, let us consider
what is, in the hierarchy language, a —, state of quasiparti-
cles in a —,

' state. The hierarchy rules give a family with

NI =(11/4)N, —3. This is the —,', state. In the hierarchy
scheme, it is at the same level depth as the —', state.
Naively, one might have expected that it should then be
seen experimentally more or less as strongly as the —',
state. Instead, it has not yet been observed with certain-
ty. ' We will show that this family is not stabilized by
short-range interactions, and that it is probably not stabi-
lized by any realistic interaction.

Table I is best read from the top down. For v=p jq,
an entry occurs at every pth X„and NL incrernented by
q. At a given N, , each NL would appear twice in the
table if all fractions were listed. For example, the NL

values associated with v=v„and with v=1 —v„are the
same at N, =n'(n+1). Similarly, the values associated

for —', ~v 1. Thus the hard-core model can only yield
chemical-potential jumps for —,

' ~ v& —', (the chemical po-
tential is zero for v (—,

' and 4V, for v) —', .)

A physical state is said to be incompressible if a jump
in the chemical potential occurs at the density for which
it is the ground state. (For a fixed magnetic field, the
density can be parametrized by the Landau-level filling
factor. ) For the energy, as a function of density, a
chemical-potential jump produces a kink. In Fig. (1) we
have plotted the ground-state energy, Eo, in units of V, ,
as a function of the Landau-level degeneracy, NI, for a
fixed-particle number, N, =4, 6, 8, 10, and 12. A striking
feature of Fig. (1) is the apparent regularity of the curves.

20

g 10

10 20
N„: Landau —level degeneracy

FIG. 1. The ground-state energy, in units of the strength Vi
of the hard-core model on the sphere for various number of par-
ticles, N, , the Landau-level degeneracy, NI . The number of flux
quanta through the sphere is NL —1. The squares denote the
fillings for which an incompressible state is expected according
to the magic table. There is clear evidence for a kink in the
slope of energy versus NL for v= —, and —,but not for v= —„.
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(Physically, this might be a consequence of having only
one energy scale, V, .) This regularity gives us some
confidence in the interpretation of Fig. (1). We find that
for all but one fraction listed in Table I, a well-
pronounced kink shows up in Ep (note that the —', state is

very pronounced, too). All the kinks are associated with
fractions of the form v„=nl(2n+ I), or v=1 —v„, as
discussed above. In particular, no kink appears for the
v=

—,', family. According to Table I, finite-size realiza-

tions of this family occur within the range of NI values
we studied for N, =4 and 8.

IV. CHEMICAL-POTENTIAL DISCONTINUITIES

2/3 I &—2/5
3/7 x

/3

B(vep)p= Ep = (N, ep) =ep+
e e Bv

(6)

To estimate p for a finite system, the derivatives in the
above formula are replaced by finite differences. The
jurnp in the chemical potential is given by

'

a(ve )

P+ P—
v

a(ve, )

Bv

The chemical potential is defined as the derivative of
the total ground-state energy, with respect to the particle
number:

0.0
1/N,

0.2 0.3

FIG. 2. The chemical-potential discontinuity, p+ —p, Eq.
(7), as a function of inverse particle number N, '. For v=

3

=', , and =,', the chemical-potential discontinuity estimates are

similar and extrapolate to a finite value —Vl as N, ,
' goes to

zero. For —', & v & 1, p —p extrapolates quadratically to zero,

indicating a state with infinite compressibility. For v= —„,
p+ —p is negative and small. The plot indicates a linear extra-

polation to zero as a function of N, This would be indicative

of state unstable against phase separation.

= (NL 1 ) (eNp) INL ep(NL 1 )

NLep(N—L + I )+(NL +1)ep(NL )

N[te (N —+1) 2e (N )+—e (N —I)] .

We have used Eq. (7) to estimate the jumps in the chemi-
cal potential. The results are shown in Fig. 2 as a func-
tion of inverse particle number, and the numerical values
are listed in Table II. The greatest number of data points
are available for v= —', . The results behave smoothly, as a
function of system size; an extrapolation to the thermo-
dynamic limit can be done with an accuracy of about
10%. This smooth behavior for v= —', gives us some
confidence in the extrapolation of the data for the other
fractions, where fewer data points are available. The
chemical-potential jump for the —,

' state differs from that

of the —', state because of a finite-size correction, but closes
in with increasing N, . In the thermodynamic limit, they
must be identical, because of particle-hole symmetry.

We can observe the —', state for three system sizes. The
corresponding chemical-potential jumps are so close to
those of the —,

' state, that they are practically indistin-

guishable on the scale we have used. The same would
have been true for the =,

' state, which we did not include
in Fig. 2 in order to avoid overcrowding (See Table II).
Most remarkably, p+ —p is also very large for the-
state; indeed, it is of the same order as the chemical-
potential jumps for the —,

' and =,
' states. We will explore

further the consequences of this result below.
Before we discuss our results for v=

—,', , we comment
on our results for v & —';. As mentioned previously, it fol-

lows from Eq. (5) that, in the thermodynamic limit,

TABLE II. The jump in the chemical potential, p, —p in units of Vl, calculated according to Eq.
(7) for all the fractions predicted by Table I. Note that all the positive entries are roughly of the same

magnitude and only weakly dependent on the particle number, V, This is in contrast to the data for the

state, which are negative and strongly decreasing in magnitude for the larger system. Note, also,

that for N,, =12, the jump in chemical potential is actually slightly larger for the —,
' state than for the —,

'

state, although the latter occurs at an earlier level in the hierarchy scheme.

N,

4
6
8

10
12

+ 1.792
+ 1.623
+ 1.538

—0.151

—0.064
+ 1.614
+ 1.504
+ 1.397

+ 1.238 + 1.260

+ 1.818
+ 1.722
+ 1.602
+ 1.536
+ 1.482

4
6
8

10
12
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—
1 2dp

dn
(9)

For v) =', , p=4V, is independent of density, and K '=0.
The infinite compressibility for v) =, in this model is ex-

pected and is associated with the macroscopic ground-
state degeneracy. For v )—', , we see in Fig. 2 that our
finite-size estimate for p+ —p decreases as N, , rather
than N, ', because K '=0. For v=

—,', , on the other
hand, we see in Fig. 2 that the finite-size estimate for

p+ —p appears to decrease linearly towards zero with

N, ', as we would expect from Eq. (8) whenever a ' is
finite. The apparent negative compressibility at v=

—,',

implies that the hard-core-model system is thermo-
dynamically unstable at this filling factor.

V. EXCITATION GAPS AND A SUM RULE

In Fig. 3 we have plotted finite-size estimates (N, =8
and 12) for the chemical potential itself, calculated ac-
cording to Eq. (6). In the thermodynamic limit, for large
N„ it will go from 4 V, , for —', & v ( 1, to zero, for
0(v( —,'. [This follows from Eq. (5) and (6).] Figures 3

shows that this limiting behavior is being approached
outside the filling-factor range of primary interest,(v 4

3
In Fig. 3 the chemical-potential estimates have

been plotted at Nt +0.5, if e'0(NL ) and eo(NL+1) have

p=4V& for any v) =', . If the chemical potential is well

defined (does not have a jump) at some filling factor in the
thermodynamic limit, then, from Eq. (7), the finite-size
estimate of p+ —p reduces at large N, to

p+ p —VK /nNe

where n is the areal density, and the inverse compressibil-
ity is

been used to make the estimates. The dashed lines join
two estimates, at NL +0.5 and —0.5, whenever an in-
compressible state is expected at NL, according to the
magic table. In fact, we easily recognize the large jumps
associated with v= —,', —', , —,—,', and —', . (Note, that p+ is at
NL +0.5, since the filling factor decreases with increasing
NL. )

We see in Fig. 3 that (for the hard-core model) the
large chemical-potential jumps at incompressible filling
factors require the chemical potential to fall with increas-
ing filling factor between jumps to avoid exceeding 4V,
for v) —', . The large gaps require regions of filling factor
that are thermodynamically unstable and would lead to
phase separation. This result is a specific example of a
general relationship between gap sizes and thermodynam-
ic stability, which has some profound consequences.

It follows, from making a particle-hole transformation
within the lowest Landau level, ' that

(1—v)eo(1 —v) =veo(v)+( I —2v)eo(v= 1), (10)

and hence, whenever the chemical potential is defined,
that

p(1 —v)+p(v) =2@0(v= 1 )

d2r y (r)( I e
—r l2I1

~l2

In particular, for any reasonable electron-electron in-
teraction, V„(r),p(v) must vanish in the low-density lim-
it (v~0), so that p(v= 1)=2@0(v=1). It follows from
integrating Eq. (9) that (at fixed field)

N N v, 2~(2
b, , =2EO(v= 1)—g 1 dv

2
x' '(v), (12)

i=1

where vo=0, and vN+, =1. The chemical potential is al-
lowed to have jump discontinuity at v, for i =1,2, . . . , N
and b, ,

=p(v,+ )
—p(v; ). If the system is thermodynami-

cally stable at all densities (b, , ~0, i~
' ~0), then

v=2/3 (13)

3/5

v=2/3
3/7

2/5

10 20
N„. Landau —level degeneracy

FIG. 3. The finite-size estimates for the chemical potential,
calculated according to Eq. {6). For systems with 8 and 12 par-
ticles, p is given in units of V, as a function of Xi. Note the
large drops in p across an X, , where an incompressible fraction
is predicted by Table I. The only notable exception occurs for
eight particles and X~ =19, where the v= —„would have been

predicted to occur.

In particular, the hard-core model is conjectured to have
a denumerably infinite set of incompressible filling factors
(in the above notation, N ~ m ). In order to avoid insta-
bility, g„b,(v„) must converge, and therefore h(v„) must
decrease faster than n '. We find no indication of such a
rapid decrease in our numerical results, and, in fact,
b, ( v3) —b, ( v, ). We expect that thermodynamic instabili-
ties occur in the hard-core model.

In the light of the above, it is interesting to consider
the possibility that uniform Quid states may be unstable
even with long-ranged Coulomb interaction between the
particles (this point was discussed some time ago, by
Trugman and Kivelson ). If we follow the argu-
ment ' "that the quasiparticles of the hierarchy picture
carry charge 1/q in a v=p /q state, and that they interact
like charged particles, their interaction energy should
scale like q . This quasiparticle interaction energy pro-
vides the scale for the quasiparticle excitation gap of the

incompressible state. The latter should equal
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[(p, + —p, )~ z ]/q, since we need q quasiparticle to
add one real particle. This would imply that the
chemical-potential discontinuities decrease approximate-
ly as 1/q and would not sum to a finite value. For a
Coulomb system, this does not necessarily imply instabili-
ty, since e0(v=1) has an infinite contribution from the
Hartree energy. The remaining "exchange-correlation"
contribution to the energy is given at v=1 by

2&„,(v= I )=, d r e
—1 2 2

ml'
(14)

where s„, (q), the exchange-correlation contribution is
calculated neglecting the Hartree energy. For ql &&1,
s„,'(q) approaches n dp„, /dn =n d /dn [ne„,(n )].
Equations (14) and (12) then show that x.„,'(q~O) will
tend to be negative for most values of filling factors. This
negativity will not lead to phase separation, however,
since the Hartree term in Eq. (15) is large and positive as
q ~0. If, however, dp„,/dn is suSciently large, that

2me Pxc

q* dn

for q*l ((1, the uniform system is unstable, and we can
expect inhomogeneities on a length scale (v=2vrnl ) of

2m dPxc e~

q* dv el

Thus, when —dp„, /dv is much larger than (e /el ) for
filling factors that lie between two incompressible values,
we may expect that the system will separate into domains
of size L » I, which have one of the incompressible filling
factors. Our numerical results for the Coulomb case (see
below) suggest that this condition can be satisfied for
filling factors near —,'. This spontaneously generated inho-

mogeneity may be responsible for the transport anomalies
which have been found near these filling factors. '

VI. TWO SCENARIOS

In view of the above-stated sum rule, we want to exam-
ine in more detail the surprising fact that the estimated
chemical-potential discontinuities are large and decrease
slowly with n for v„=n /(2n+1) =—', , —', , —,', . . . . Two pos-
sible interpretations arise.

First, the finite-size corrections are very large, and the

p+ —p of the thermodynamic limit might have little to
do with the finite-system estimates presented thus far.
One might draw support for this scenario from Fig. 3.
For the case of eight particles, the chemical potential is
—25% off the thermodynamic value of 4V] for —', (v(1.
This difference is still -20% for 12 particles. One might,
therefore, argue that the finite-size corrections for
p+ —p could be even larger, and that the sum rule
might be satisfied without any thermodynamic instabili-
ties.

If we include the Hartree contribution, the (wave-vector
dependent) compressibility is given by

2 2&e'(q ) =n +a„,'(q ),

Second, p+ —p might, indeed, decrease very slowly
or even be constant, as one goes down the hierarchy.
Note that a similar behavior has been observed for the
Coulomb model. '-' (We will present some data on the
Coulomb potential model in Sec. VII.) One might also
draw support for this scenario from Fig. 3. If we com-
pare the plots for the systems with eight and twelve parti-
cles, we find that the chemical potential increases more
and more steeply with decreasing filling factor in between
incompressible fractions, as X, increases. This would im-

ply that, for v„(v & v„+„the ground state of the hard-
core model becomes more and more unstable against
phase separation into two phases with filling factor v„
and v„+„respectively, as n increases. While we favor
this later interpretation, we want to emphasize that firm
conclusions cannot be made on the basis of these or other
finite-size calculations.

VII. RELATION TO THE COULOMB
POTENTIAL MODEL

It is well established that the FQHE is a very robust
effect, in that its occurrence is quite insensitive to the pre-
cise nature of the interactions. ' Indeed, the hard-core
model, which is the ideal model for which the Laughlin
state becomes exact at v= —,', is quite different from realis-
tic interactions. The robustness of the FQHE, at least at
v= —,', results from the fact that its occurrence depends
only on the repulsion strength being greater for relative
angular momentum 1 (which cannot be avoided for v) —,')
than for relative angular momentum 3. The simplest
realistic model is the Coulomb model, in which the finite
thickness of the 2D EG layer is neglected and the elec-
trons interact with a I/r interaction. We have repeated
some of the above calculations for this model in order to
check that the conclusions drawn above are also sensitive
to the detailed nature of the interactions.

The Coulomb-potential model has a series of closely
spaced energy scales, one for each angular momentum
channel. This slows down the convergence of the Lanc-
zos method and limits the maximum system size we are
able to evaluate. (For the hard-core model, the Lanczos
convergence is very fast, since only one energy scale is
present. ) In Table III we report the chemical-potential
discontinuities [p+ —p, as defined by Eq. (7)] for some
of the fractions predicted by the magic table, in units of
V, —V3. [In the thermodynamic limit,
V&

—V3=—&7r( —,
' —

—,", ). The values for V& and Vz, which

we have used for the estimates given in Table III, are
corrected for the finite curvature of the spheres. ] We be-
lieve that these units best express the physics of the in-
compressible states. Indeed, in these units, the difFerence
between the estimates from the hard-core and Coulomb
model is less than 10%. Again, as for the hard-core mod-
el, the magnitude of the chemical-potential discontinuity
is very similar for the —,', —', , and —', states. (We have not
been able to calculate the —', state. )

Again, as we found for the hard-core model, the
chemical-potential discontinuities for the v= —,', state are
negative and a factor 30—50 smaller than those for the
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TABLE III. The jump in the chemical potential for the Coulomb-potential model, p+ —p in units
of Vl V3 calculated according to Eq. (7) for some of the fractions predicted by Table I. Note that all
the positive entries are roughly of the same magnitude and only weakly dependent on the particle num-

ber N, This is in contrast to the data for the —„state, which are negative and strongly decreasing in

magnitude for the larger system. These results for the Coulomb-potential model are very similar to
those obtained for the hard-core model presented in Table II.

N, ,

4
6
8

10
12

+ 1.651
+ 1.607
+ 1.607

4
11

—0.050

—0.030
+ 1.539
+ 1.457

+ 1.523
+ 1.637
+ 1.484
+ 1.621
+ 1.540

N,,

4
6
8

10
12

v
3 3

and —', states . Furthermore, p + —p decreases
strongly (for v= —,', ) in magnitude between the cluster
with four and that with eight particles. All of this is in
complete agreement with the results for the hard-core
model, and substantiates the conjecture that interactions
in the higher angular momentum channels just renormal-
ize quantitatively the properties of the ground state (and
the energy gap) for —,

' ~ v~ —,'. The effect of the higher an-

gular momentum channels on the ground-state properties
in this range of filling factors is very weak indeed. Furth-
ermore, the data presented in Table III support our hy-
potheses that the —,', state may not be stabilized by any
physical interaction and, more generally, that
chemical-potential jumps appear only at v=v„, or at
v= 1 v~.

VIII. CONCLUSIONS

We believe that these results provide convincing evi-
dence in support of the conjecture that, for —,

' v ~ —', and
complete spin polarization, the hard-core model produces
a FQHE only when v=v„, or when v= 1 —v„. Since the
strongest FQHE's must be associated with the lowest rel-
ative angular momenta (i.e., the channel with the strong-
est repulsion), this conjecture would explain why only
these fractions are seen experimentally. Whether or not
other FQHE's occur for realistic electron-electron in-
teractions is less certain, but we believe that none do. In
particular, our results suggest that the FQHE at v=~4
does not occur for the 1/r interaction. More important-
ly, we believe that our results suggest another point of
view from which may prove it possible to obtain a clearer
understanding of the "hierarchy" states. One interpreta-

tion of our results for the hard-core model is that, in
many-body states representing isotropic fluids, the
minimum possible probability of finding electron pairs in
a state of unit (m =1) relative angular momentum has a
cusp when v crosses v„and not at any other filling factor.
For n = 1 ( v= —,

' ), this statement can be established with

some rigor as a mathematical property of the analytic
wave functions for the lowest-Landau-level electrons. '

%'e believe that this is also true for n ) 1, and that this is
the essence of the FQHE at v=v„, although we have at-
tempted, without success, to construct a rigorous proof.

In this connection, it is worth noting that the analog of
the simple Laughlin state for an n-component fermion
system occurs at v= v„, i.e., v„ is the highest filling factor
at which zero-energy states occur for hard-core models.
It is this fact that motivates the microscopic trial wave
functions of Ref. 14 for the ground state at v=v„, which
involves separating the electrons into n components (e.g. ,
spin flavors in the proposal by Yoshioka, MacDonald,
and Girvin, ' and n orbital Landau levels in the work by
Jain' ). Our numerical results suggest that in the process
of projecting from n orbital Landau levels to one (or re-
quiring antisymmetry when the n spin flavors become in-
distinguishable), the Laughlin-type cusp on an n-

component system is not entirely lost.
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