Superconductivity in correlated wave functions

Claudius Gros
Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich-Hönggerberg.
CH-8093 Zürich, Switzerland

(Received 13 October 1987; revised manuscript received 8 February 1988)

We describe a new method to numerically evaluate the properties of correlated superconducting wave functions. We have applied it to the resonating-valence-bond (RVB) wave function for the Hubbard model on the square lattice. For the half-filled case we find that the d-wave RVB state and the antiferromagnetic ordered state have the same energy within numerical accuracy. At 10% doping we find d-wave superconductivity, consistent with previous studies. We show that the superconducting order parameter is proportional to the number of holes, for small hole concentrations.

Soon after the discovery of high-T_c superconductivity by Bednorz and Müller,1 Anderson2 proposed that the two-dimensional (2D) Hubbard Hamiltonian in the limit of large on-site repulsion U, transformed to an effective Hamiltonian, should be appropriate for modeling these compounds. Recent calculations by Zhang and Rice3 give additional support to this proposal. Anderson furthermore suggested2 that a resonating-valence-bond (RVB)-type state may be the ground state, leading to superconductivity (SC) for finite doping and to performed pairs in the half-filled case.

The question whether the 2D Hubbard model has SC ground state is highly controversial. Several mean-field theories have been proposed4 and indicate various kinds of SC, especially the d and extended (ext) s wave. But the approximations used up to now for the decoupling are not yet under control and therefore the validity of these theories is unclear.

Recently, Lin, Hirsch, and Scalapino5 exactly diagonalized small systems and Hirsch and Lin6 and Imada6 have done quantum Monte Carlo (MC) simulations on finite lattices at quite high temperatures. Their results indicate no tendency towards SC.

In contrast with these results, Gros, Joynt, and Rice7 examined the two-hole Cooper problem within the Gutzwiller formalism and found a d-wave pairing instability. As an extension of their work, we develop in this paper a new method which makes it possible to evaluate numerically the properties of RVB wave functions for general parameters. The results for the 2D square lattice confirm the qualitative findings of the previous work.7 Furthermore, these new quantitative results establish the d-wave RVB state as a candidate for the ground state of the antiferromagnetic Heisenberg Hamiltonian in the half-filled case.

Independently, Shiba and Yokoyama8 have developed a different approach to numerically evaluate RVB wave functions. They use a mixed-band representation for the RVB wave function. Bouchard and Lhuiller9a,b have examined, in connection with liquid 3He, a triplet Jastrow-BCS (Bardeen-Cooper-Schrieffer) wave function with equal-spin pairing. They find9b that for this special case the amplitudes are given by the square root of determinants.

We define the RVB wave function as

$$|RVB\rangle = \text{const} \times \prod_{\mathbf{k}} (1 + v_k c_{\mathbf{k}}^\dagger c_{-\mathbf{k}}^\dagger) |0\rangle. \quad (1)$$

Here $|0\rangle$ is the vacuum. The N-particle component of $|RVB\rangle$ has the following form:2

$$|N\rangle = \text{const} \times P_N |RVB\rangle$$

$$= \text{const} \times \prod_{\mathbf{k}} (1 + a^{\dagger}(\mathbf{k}) c_{\mathbf{k}}^\dagger c_{-\mathbf{k}}^\dagger)^{N/2} |0\rangle,$$

with $a^{\dagger}(\mathbf{k}) = v_k / u_k$. P_N projects onto the subspace of N particles. With $a(\mathbf{r}) = i/L \sum_{\mathbf{k}} a(\mathbf{k}) \exp(ikr)$, L being the number of lattice sites, $|N\rangle$ takes the following form:

$$|N\rangle = \text{const} \times \prod_{\mathbf{k}} (\sum_{\mathbf{k}} a(\mathbf{r}_i - \mathbf{r}_j') c_{\mathbf{k}_i}^\dagger c_{-\mathbf{k}_j}^\dagger)^{N/2} |0\rangle,$$

where $|\mathbf{r}_i\rangle$ and $|\mathbf{r}_j\rangle$ denote the positions of the up (down) spins. For singlet (triplet) pairing $a(-\mathbf{r}) = \pm a(\mathbf{r})$. Note that in the half-filled case $|N = L\rangle = |RVB\rangle$. Furthermore, in the thermodynamic limit, one can work either with $|RVB\rangle$ or with $|N\rangle$.

The key quantity for a numerical evaluation of (3) is the amplitude of a given spin configuration $|\mathbf{r}_i\rangle$, $|\mathbf{r}_j\rangle$. By careful inspection of (3), one can show that this amplitude, apart from a normalization factor, is given by a $N_u \times N_d$ determinant (N_u is the number of up and down spins, assumed to be equal) with elements $a(\mathbf{r}_i - \mathbf{r}_j')$. Therefore $|N\rangle$ has the same functional form as the Gutzwiller wave function (GWF), but with different elements in the determinants. For the numerical evaluation of $|N\rangle$ for finite systems, one can then use the same techniques as for the GWF, as described in Refs. 10 and 11. Note that it is possible to work either with fixed particle number or with a fixed phase, since the amplitudes are known for all spin configurations and particle numbers.

The results we present in this paper will be mostly for
wave functions with fixed particle number.

Furthermore, this method is not restricted to lattices and the operator \(P_d = \sigma \). It is straightforward to go to the continuum limit and replace \(P_d = \sigma \) by a Jastrow weighting factor. Equation (1) becomes then a generalized Jastrow trial wave function for the ground state of superfluid \(^3\text{He}\) or nuclei (see, e.g., Ref. 9).

In the limit of large on site repulsion \(U \), the Hubbard Hamiltonian transforms\(^\text{12}\) into the following effective Hamiltonian, valid in the subspace of no doubly occupied sites \((n = N/L \leq 1) \):

\[
H_{\text{eff}} = T + H_{\text{eff}}^{(2)} + H_{\text{eff}}^{(3)},
\]

\[
T = -t \sum_{\langle i,j \rangle, \sigma} a_{i \sigma}^\dagger a_{j \sigma} + \text{H.c.},
\]

\[
H_{\text{eff}}^{(2)} = 4t^2/U \sum_{\langle i,j \rangle} (S_i \cdot S_j - n_n/4),
\]

\[
H_{\text{eff}}^{(3)} = -i^2/U \sum_{i,\tau} (a_{i \tau \sigma}^\dagger a_{i \tau \sigma} - \sigma a_{i \tau} - \sigma a_{i \tau} + a_{i \tau \sigma})
\]

Here \(S_i \) are the spin operators on site \(i \), \(a_{i \sigma}^\dagger = (1 - n_{i \sigma})c_{i \sigma}^\dagger \) with \(n_i = n_{i \uparrow} + n_{i \downarrow} \), \(n_{i \sigma} = c_{i \sigma}^\dagger c_{i \sigma} \). \(\langle i,j \rangle \) are pairs of nearest-neighbor (NN) sites and \(i + \tau \) denotes a NN site of \(i \). \(T \) is the kinetic energy of the holes and \(H_{\text{eff}}^{(2)} \) the two- and three-site contributions, respectively. In the half-filled case, \(H_{\text{eff}} \) reduces to the antiferromagnetic Heisenberg Hamiltonian.

To examine the ground state, we have investigated a set of trial wave functions of the form of (2). The normal state is the GWF and has \(a(\xi_k < 0) = 1, a(\xi_k > 0) = 0 \), with \(\xi_k = -2r[\cos(k_x) + \cos(k_y)] - \mu \). Here \(\mu \) is the chemical potential.

For the SC state we used the standard BCS parametrization:

\[
a(k) = \Delta(k) \sqrt{\xi_k + \sqrt{\xi_k^2 + \Delta^2(k)}}
\]

with

\[
\Delta(k) \equiv \Delta \text{ (s wave)}
\]

\[
\Delta(k) = \Delta[\cos(k_x) - \cos(k_y)] \text{ (d wave)}
\]

\[
\Delta(k) = \Delta[\cos(k_x) + \cos(k_y)] - \mu \text{ (ext s wave)}
\]

Note that \(\Delta \) is a variation parameter and not the order parameter. The true SC order parameter vanishes like \(1 - n \), as \(n \to 1 \), as will be discussed below.

For the half-filled case, the extended \(s \) wave is identical with the GWF, since then \(\Delta(k) = \xi_k \) and the two functions \(a(k) \) are equivalent by means of a linear transformation. Similar arguments can be used to show that the \(d \) wave for \(n = 1 \) approaches asymptotically the GWF as \(\Delta \to \infty \).

We discuss first the results for the half-filled case. We find that the \(s \) wave has its energy minimum at \(\Delta = 0 \) which is\(^\text{13}\) \((S_i \cdot S_j)_{\Delta = 0} = -0.267 \pm 0.003 \). The \(d \) wave gains about 20% with respect to the value at \(\Delta = 0 \). It has a broad minimum between \(0.3t < \Delta < 3.0t \), \((S_i \cdot S_j) \) is practically size independent. For \(\Delta = 0 \) its value is \(-0.319 \pm 0.01 \) [see Fig. 1(a)]. For the antiferromagnetically ordered Gutzwiller state Yokoyama and Shiba\(^\text{1} \) obtained \(-0.321 \pm 0.001 \). By diagonalization of small systems and extrapolation to the thermodynamic limit, Oitmaa and Betts\(^\text{14}\) estimated for the ground state of the antiferromagnetic Heisenberg Hamiltonian \(-0.328 \pm 0.003 \), within the numerical accuracy of our result. We therefore conclude that further numerical work is required to definitively establish the nature of the ground state of the model.

We have examined the size dependence of the staggered magnetization\(^\text{14}\) squared \(\langle N^2 \rangle = \langle (1/L) \sum_j \epsilon_j^2 \rangle^2 \) and found that it scales with \((1/L)^{2/3} \). Figure 1(b) shows that \(\langle N^2 \rangle \) extrapolates to zero in the thermodynamic limit. We conclude therefore that this RVB state has no long-range magnetic order.

We also did calculations for \(n = 0.9, L = 82 \), and \(N_0 = L - N = 8 \) holes. The results for the \(s \) and \(d \) waves are shown in Fig. 2. We show all contributions to \(\langle H_{\text{eff}} \rangle \) separately in units appropriate to their physical significance. We do not show the results for the extended \(s \) waves, which lie in between that of the \(s \) and the \(d \) waves. In particular, we find no energy gain for \(\langle S_i \cdot S_j \rangle \) or for \(\langle H_{\text{eff}} \rangle \) for the extended \(s \) wave.

We choose a reasonable value, for the high-\(T_c \) compounds, of \(U/t = 16 \), to show that for the \(d \) wave, the gain in \(\langle S_i \cdot S_j \rangle \) [Fig. 2(c)] is enough to overcome the loss in kinetic energy [Fig. 2(b)]. The total energy [Fig. 2(a)] shows a clear minimum at \(\Delta = 0.55t \). To show that this is the case, despite the large error bars of Fig. 2(a), we have calculated for \(\Delta = 0, \Delta = 0.55t \), and \(d \)-wave pairing, \(\langle H_{\text{eff}} \rangle \) with higher accuracy. The results \(\langle H_{\text{eff}} \rangle_{\Delta = 0} = -0.484 \pm 0.002t \) and \(\langle H_{\text{eff}} \rangle_{\Delta = 0.55} = -0.494 \pm 0.006t \) show clearly that the energy minimum is at finite \(\Delta \).

In Fig. 2(e) we see that the \(s \) wave gains from the three-site contributions, but this gain does not compensate the loss in kinetic energy [Fig. 2(b)] since \(\langle H_{\text{eff}} \rangle \sim (1 - n)t^2/U \) and is therefore one order of magnitude smaller than \((T - (1 - n)t) \).

In Fig. 2(d) the NN hole-hole correlation is plotted.
TABLE I. The x component of the SC order-parameter for
d-wave pairing. Shown are the values for $(1 - n/2)/(1 - n)$
$\times \langle c_{i,\sigma}^\dagger c_{i,\sigma} \rangle_{\text{Gutzwiller}}$ and the statistical errors.
$\langle c_{i,\sigma}^\dagger c_{i,\sigma} \rangle_{\text{BCS}}$ are given
with parentheses. The wave functions have, on the average, one
hole on L sites [i.e., $(1 - n) = 1/L$]. Δ is in units of t.

<table>
<thead>
<tr>
<th>L</th>
<th>Δ</th>
<th>Δ_{eff}</th>
<th>Δ_{BCS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0.179</td>
<td>± 0.029</td>
<td>(0.139)</td>
</tr>
<tr>
<td>36</td>
<td>0.186</td>
<td>± 0.031</td>
<td>(0.144)</td>
</tr>
<tr>
<td>64</td>
<td>0.101</td>
<td>± 0.041</td>
<td>± 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.058)</td>
<td>(0.097)</td>
</tr>
</tbody>
</table>

Consistent with previous findings\(^7\) at the optimal value of
$\Delta = 0.55t$, it is not greatly enhanced for this lattice size
with respect to $\Delta = 0$.

We now discuss the SC order parameter, as defined
in the recent mean-field calculations:\(^4\)
$\Delta_{\text{eff}} = 1/L \sum_i
\langle c_{i,\sigma}^\dagger c_{i,\sigma} \rangle_{+\sigma}$,
where $i + \tau$ are NN sites. The general-
ized Gutzwiller approximation\(^1\) yields

\[\Delta_{\text{eff}} = (1 - n) \Delta_{\text{BCS}}/(1 - n/2). \]

To show that (6) holds for small $1 - n$ we have calculated
for wave functions with, on the average, one hole [i.e.,
$1 - n = 1/L$]. In Table I the x component of
$(1 - n/2)/(1 - n)\Delta_{\text{eff}}$ is given for
d-wave pairing. The y component has the opposite sign. Also shown
in parentheses are the corresponding BCS values. We see
that Eq. (6) is qualitatively well fulfilled for a wide range of
Δ and hole densities. Therefore Δ_1 is truly a SC order
parameter, since it vanishes for a Fermi liquid, which is a
coherent superposition of states with different particle
numbers, in a grand canonical ensemble.

In summary, we have developed a new algorithm to evaluate
numerically RVB and generalized Jastrow wave
functions. It is very fast and not restricted to a special
choice of parameters. We applied this algorithm to the
RVB wave function on the 2D square lattice. Our result
support Anderson's suggestion\(^2\) that even for the half-filled
case an RVB-type wave function might be the
ground state or very close in energy to the ground state,
since we find that the energy for a d-wave RVB wave
function agrees within numerical accuracy with the other
estimates for the ground-state energy of the 2D antiferro-
magnetic Heisenberg model. We also showed that this
RVB state has no magnetic long-range order in the
thermodynamic limit. For finite doping we find d-wave
superconductivity in agreement with previous results.\(^7\) We
have shown that the superconducting order parameter is
proportional to $1 - n$ as n approaches 1.

I would like to thank T. M. Rice, R. Joynt, and
C. Bruder for support and friendly collaboration; D. J.
Scalapino, J. R. Schrieffer, and P. W. Anderson for
stimulating discussions; and P. Horsch for communication
of unpublished data. The support of the Swiss National-
fond is gratefully acknowledged.

FIG. 2. Data for $L = 82$ sites and $N_h = 8$ holes, for
the d wave (squares) and the s waves (circles), as a function of Δ in units of t.
Typical error bars are shown, all points have been calculated
with the same accuracy. In (a) the total energy per site for
$U = 16t$ is shown, in (b) the kinetic energy per hole, in (c) the
nNN spin-spin correlation, in (d) the NN hole-hole correlation
green line (in units of t) for $U = 16t$ and $N_h = 8$.
and in (e) the three-site contribution per hole. Note that the d wave gains
about 35% in (S_x, S_y) for $\Delta = 0$. About 3×10^3 MC steps per site
have been used.
4See, for example, G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun. 63, 973 (1987); A. E. Ruckenstein, P. J. Hirschfield, and J. Appel, Phys. Rev. B 36, 857 (1987); G. Kotliar (unpublished); we apologize that we do not cite more of the many proposed mean-field theories.
9(a) J. P. Bouchaud and C. Lhuillier, Europhys. Lett. 3, 1273 (1987); (b) C. Lhuillier (personal communication).
12This transformation has a long history, see, e.g., K. A. Chao, J. Spalek, and A. M. Oles, J. Phys. C 10, L271 (1977).