Contents

1 Network Theory ... 1
 1.1 Properties of Real-World Networks 1
 1.1.1 The Small World Effect 1
 1.1.2 Basic Graph-Theoretical Concepts 4
 1.1.3 Network Degree Distribution 9
 1.2 Spectral Properties ... 11
 1.2.1 Graph Laplacian .. 14
 1.3 Percolation in Generalized Random Graphs 17
 1.3.1 Graphs with Arbitrary Degree Distributions 17
 1.3.2 Probability Generating Function Formalism 23
 1.3.3 Distribution of Component Sizes 25
 1.4 Robustness of Random Networks 29
 1.5 Small-World Models .. 34
 1.6 Scale-Free Graphs .. 36
 Exercises .. 41
 Further Reading ... 43
 References .. 43

2 Bifurcations and Chaos in Dynamical Systems 45
 2.1 Basic Concepts of Dynamical Systems Theory 45
 2.2 Fixpoints, Bifurcations and Stability 52
 2.2.1 Fixpoints Classification and Jacobian 53
 2.2.2 Bifurcations and Normal Forms 56
 2.2.3 Hopf Bifurcations and Limit Cycles 59
 2.3 Global Bifurcations ... 62
 2.3.1 Infinite Period Bifurcation 64
 2.3.2 Catastrophe Theory 65
 2.3.3 Rate Induced Tipping 69
 2.4 Logistic Map and Deterministic Chaos 71
 2.4.1 Colliding Attractors 77
 2.5 Dynamical Systems with Time Delays 78
 2.5.1 Distributed Time Delays 81
3 Dissipation, Noise and Adaptive Systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Chaos in Dissipative Systems</td>
<td>87</td>
</tr>
<tr>
<td>3.1.1 Phase Space Contraction and Expansion</td>
<td>87</td>
</tr>
<tr>
<td>3.1.2 Strange Attractors and Dissipative Chaos</td>
<td>91</td>
</tr>
<tr>
<td>3.1.3 Partially Predictable Chaos</td>
<td>94</td>
</tr>
<tr>
<td>3.2 Adaptive Systems</td>
<td>97</td>
</tr>
<tr>
<td>3.2.1 Conserving Adaptive Systems</td>
<td>102</td>
</tr>
<tr>
<td>3.3 Diffusion and Transport</td>
<td>106</td>
</tr>
<tr>
<td>3.3.1 Random Walks, Diffusion and Lévy Flights</td>
<td>106</td>
</tr>
<tr>
<td>3.3.2 Markov Chains</td>
<td>110</td>
</tr>
<tr>
<td>3.4 Stochastic Systems</td>
<td>113</td>
</tr>
<tr>
<td>3.4.1 Langevin Equation</td>
<td>113</td>
</tr>
<tr>
<td>3.4.2 Stochastic Calculus</td>
<td>116</td>
</tr>
<tr>
<td>3.5 Noise-Controlled Dynamics</td>
<td>117</td>
</tr>
<tr>
<td>3.5.1 Fokker–Planck Equation</td>
<td>117</td>
</tr>
<tr>
<td>3.5.2 Stochastic Escape</td>
<td>119</td>
</tr>
<tr>
<td>3.5.3 Stochastic Resonance</td>
<td>121</td>
</tr>
<tr>
<td>Exercises</td>
<td>125</td>
</tr>
</tbody>
</table>

4 Self Organization

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Interplay Between Diffusion and Reaction</td>
<td>129</td>
</tr>
<tr>
<td>4.1.1 Travelling Wavefronts in the Fisher Equation</td>
<td>131</td>
</tr>
<tr>
<td>4.1.2 Sum Rule for the Shape of the Wavefront</td>
<td>135</td>
</tr>
<tr>
<td>4.1.3 Self-Stabilization of Travelling Wavefronts</td>
<td>136</td>
</tr>
<tr>
<td>4.2 Interplay Between Activation and Inhibition</td>
<td>138</td>
</tr>
<tr>
<td>4.2.1 Turing Instability</td>
<td>139</td>
</tr>
<tr>
<td>4.2.2 Pattern Formation</td>
<td>140</td>
</tr>
<tr>
<td>4.2.3 Gray–Scott Reaction Diffusion System</td>
<td>142</td>
</tr>
<tr>
<td>4.3 Collective Phenomena and Swarm Intelligence</td>
<td>147</td>
</tr>
<tr>
<td>4.3.1 Phase Transitions in Social Systems</td>
<td>147</td>
</tr>
<tr>
<td>4.3.2 Collective Decision Making and Stigmergy</td>
<td>149</td>
</tr>
<tr>
<td>4.3.3 Collective Behavior and Swarms</td>
<td>152</td>
</tr>
<tr>
<td>4.3.4 Opinion Dynamics</td>
<td>154</td>
</tr>
<tr>
<td>4.4 Car Following Models</td>
<td>156</td>
</tr>
<tr>
<td>4.4.1 Linear Flow and Carrying Capacity</td>
<td>157</td>
</tr>
<tr>
<td>4.4.2 Self-Organized Traffic Congestions</td>
<td>158</td>
</tr>
<tr>
<td>Exercises</td>
<td>160</td>
</tr>
</tbody>
</table>

Further Reading: 162

References: 162
5 Information Theory of Complex Systems ... 163
 5.1 Probability Distribution Functions ... 163
 5.1.1 Law of Large Numbers ... 167
 5.1.2 Bayesian Statistics .. 169
 5.1.3 Statistical Binning .. 171
 5.1.4 Time Series Characterization 173
 5.2 Entropy and Information .. 177
 5.2.1 Maximal Entropy Distributions 182
 5.2.2 Minimal Entropy Principle ... 183
 5.2.3 Mutual Information ... 185
 5.2.4 Kullback-Leibler Divergence 190
 5.3 Complexity Measures ... 193
 5.3.1 Complexity and Predictability 195
 5.3.2 Algorithmic and Generative Complexity 198
Exercises .. 200
Further Reading ... 202
References ... 202

6 Self-Organized Criticality .. 203
 6.1 Landau Theory of Phase Transitions 203
 6.2 Criticality in Dynamical Systems ... 209
 6.2.1 1/f Noise ... 213
 6.3 Cellular Automata ... 214
 6.3.1 Conway’s Game of Life ... 215
 6.3.2 Forest Fire Model ... 216
 6.4 Sandpile Model and Self-Organized Criticality 218
 6.4.1 Absorbing Phase Transitions 221
 6.5 Random Branching Theory .. 222
 6.5.1 Branching Theory of Self-Organized Criticality 222
 6.5.2 Galton–Watson Processes ... 228
 6.6 Application to Long-Term Evolution 230
Exercises .. 237
Further Reading ... 238
References ... 239

7 Random Boolean Networks ... 241
 7.1 Introduction ... 241
 7.2 Random Variables and Networks ... 243
 7.2.1 Boolean Variables and Graph Topologies 243
 7.2.2 Coupling Functions ... 246
 7.2.3 Dynamics .. 248
 7.3 Dynamics of Boolean Networks .. 249
 7.3.1 Flow of Information Through a Network 250
 7.3.2 Mean-Field Phase Diagram .. 252
 7.3.3 Bifurcation Phase Diagram ... 254
 7.3.4 Scale-Free Boolean Networks 258
7.4 Cycles and Attractors .. 260
 7.4.1 Quenched Boolean Dynamics 261
 7.4.2 K = 1 Kauffman Network 264
 7.4.3 K = 2 Kauffman Network 266
 7.4.4 K = N Kauffman Network 267
7.5 Applications ... 270
 7.5.1 Living at the Edge of Chaos 270
 7.5.2 Yeast Cell Cycle .. 271
 7.5.3 Application to Neural Networks 274
Exercises ... 276
Further Reading ... 277
References ... 278

8 Darwinian Evolution, Hypercycles and Game Theory 279
 8.1 Introduction ... 279
 8.2 Mutations and Fitness in a Static Environment 282
 8.3 Deterministic Evolution .. 286
 8.3.1 Evolution Equations .. 287
 8.3.2 Beanbag Genetics: Evolution Without Epistasis 290
 8.3.3 Epistatic Interactions and the Error Catastrophe 292
 8.4 Finite Populations and Stochastic Escape 297
 8.4.1 Adaptive Climbing Under Strong Selective Pressure ... 298
 8.4.2 Adaptive Climbing vs. Stochastic Escape 302
 8.5 Prebiotic Evolution ... 304
 8.5.1 Quasispecies Theory .. 304
 8.5.2 Hypercycles and Autocatalytic Networks 306
 8.6 Macroeconomy and Species Competition 310
 8.7 Coevolution and Game Theory 313
 8.7.1 Tragedy of the Commons 320
Exercises ... 322
Further Reading ... 324
References ... 324

9 Synchronization Phenomena .. 327
 9.1 Frequency Locking ... 327
 9.2 Coupled Oscillators and the Kuramoto Model 329
 9.3 Synchronization in the Presence of Time Delays 337
 9.4 Synchronization Mechanisms 339
 9.4.1 Aggregate Averaging 340
 9.4.2 Causal Signaling .. 344
 9.5 Piecewise Linear Dynamical Systems 348
 9.6 Synchronization Phenomena in Epidemics 351
 9.6.1 Continuous Time SIRS Model 356
Exercises ... 357
Further Reading ... 359
References ... 359
10 Complexity of Machine Learning

10.1 Computation Units
 10.1.1 Structured Units
 10.1.2 The XOR Problem

10.2 Recurrent Neural Networks
 10.2.1 Random Matrix Theory
 10.2.2 Criticality in Recurrent Networks

10.3 Neural Differential Equations
 10.3.1 Residual Nets

10.4 Gaussian Processes
 10.4.1 Multivariate Gaussians
 10.4.2 Correlated Stochastic Functions
 10.4.3 Machine Learning with Neural Tangent Kernels

10.5 Attention Induced Information Routing
 10.5.1 Transformer

Exercises
Further Reading
References

11 Solutions

11.1 Solutions to the Exercises of Chap. 1
11.2 Solutions to the Exercises of Chap. 2
11.3 Solutions to the Exercises of Chap. 3
11.4 Solutions to the Exercises of Chap. 4
11.5 Solutions to the Exercises of Chap. 5
11.6 Solutions to the Exercises of Chap. 6
11.7 Solutions to the Exercises of Chap. 7
11.8 Solutions to the Exercises of Chap. 8
11.9 Solutions to the Exercises of Chap. 9
11.10 Solutions to the Exercises of Chap. 10

References

Index