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Abstract

Simple examples about the di¤erences between classical and quantum theories. The Bell in-
equalities are discussed in a particular but signi�cant context involving photons. The GHZM
experiment is presented.

1 Gedankenexperiment with photons

1.1 Quantum and classical correlations

Two photons are emitted back to back along the x-axis. The �rst photon goes to the left (x < 0), the
second to the right (x > 0). Let us consider the following polarization:

jSi =
r
1

2
(jHHi+ jV V i) (1)

where H stands for horizontal (i.e. the y-axis) and V for vertical (i.e. the z-axis).
What happen if on both sides we put a polarizer in the H direction?
The answer is easy: in the 50% of cases both photons go through (jHHi) and in the 50% of cases

they are absorbed (jV V i).
According to the Copenhagen interpretation, after that -say- both photons go through, the wave

function collapses instantaneously to jHHi :

jSi ! jHHi : (2)

Note that we can imagine that both photons are very far apart when they are "measured" by the
polarizers. If, however, HH or V V is realized, is decided only in the act of the measurement and not
before. Interestingly, this collapse happens instantaneously even if the two photons are now space-like
separated. This is the "spooky action at distance" that Einstein referred to. It is however important
to stress that this instantaneous collapses does NOT allow to send information. The speed of light
remains the upper limit for that. In this sense we can say that QM and special relativity coexist
peacefully.
One can think that all this is crazy. In fact, one may argue as follows: the photons, in the moment

of their creation, already come out as jHHi in the 50% of cases, and jV V i in the other 50% 1 Then,

1One could imagine the following situation: in the source there is a chaotic pendulum oscillating. At each second
the two photons are emitted as HH if the pendulum-ball is on the left side, V V otherwise. This system is perfectly
deterministic, although it is practically impossible to predict the polarizations because of the chaotic nature of the
system. This hypothetical chaotic pendulum plays the role of the �hidden variable� in this context. As we shall see,
Nature is not like that: there is no secrete �chaotic pendulum�or something of that kind in the photon source.
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Figure 1: Schematic setup of the experiment. One can chose how to rotate each polarizer.

when we measure H on the left, we know also that the other photon is H, but no "collapse" of the
wave function took place. This kind of correlation is a classical correlation of the type of Bertlmann
socks: Mr. Bertlmann puts on every morning a couple of red socks or a couple of green socks. The
choice happens randomly, but when we see "i.e. measure" that on the left foot he carries a red sock,
we also know that on the right foot there is also a red sock.
Can we distinguish between the quantum and the classical correlations? At this level we cannot.

These two pictures explain equally well the 50% HH and the 50% V V; which we measure with the
polarizers. In order to �nd a di¤erence we have to perform di¤erent kind of measurements on the left
and on the right photons. We thus tilt the left polarizer of an angle �1 with respect to the horizontal
(y) direction, and similarly we tilt the right polarizers of an angle �2: In order to properly understand
what is going on we �rst discuss the change of basis connected with the rotation of the polarizer.
For references see [1, 2, 3] and refs. therein.

1.2 Tilting the polarizers

Let us forget for a moment about the two entangled photons We consider a single photon which is
H-polarized and travels along the x-axis to the left polarizer. Now, we rotate this polarizer by an
angle �1 (D1 direction). Does it go through or not? Well, we can calculate probabilities. To this end
we have to perform a change of basis. We can express jHi and jV i in term of the polarization along
the D1 and the D0

1 directions, where D
0
1 is orthogonal to D1.

Mathematically: �
jHi
jV i

�
=

�
c1 �s1
s1 c1

��
jD1i
jD0

1i

�
: (3)

where c1 = cos �1 and s1 = sin �1:
That is:

jHi = c1 jD1i � s1 jD0
1i : (4)

Now, the probability that the H-polarized photon goes through the polarizers set in the D1 direction
is p = cos2 �1 (Malus law). Vice-versa, if we have a vertically polarized photons travelling into the
polarizer, we would have a probability sin2 �1 that it goes through.
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Similarly, we now consider a single photon travelling along the x-axis to the right. it is measured
by a polarizer set in the D2 direction, tilted by an angle �2 with respect to the horizontal (y) axis.
Everything as before. We express also jHi and jV i along the D2 and D0

2 basis, where D
0
2 is orthogonal

to D2 : �
jHi
jV i

�
=

�
c2 �s2
s2 c2

��
jD2i
jD0

2i

�
: (5)

where c2 = cos �2 and s2 = sin �2: That is, if the photon is horizontally polarized, we have a c22 = cos
2 �2

probability that it goes through.

1.3 Classical result without entanglement

We come back to our experiment. Now, the left polarizers is along the D1 direction and the right
polarizer is along the D2 direction.
Let us follow the classical thinking: This stu¤ of entanglement and wave-function collapse through

the spooky action is crazy. There is no state like jSi =
q

1
2 (jHHi+ jV V i) : The photons already

come out 50% of times as HH and 50% of times as V V: Then, which is the probability that they both
are transmitted? Easy:

PT;kl =
1

2
c21c

2
2 +

1

2
s21s

2
2: (6)

Similarly, the probability that they are both absorbed is

PA;kl =
1

2
s21s

2
2 +

1

2
c21c

2
2: (7)

Summarizing, the probability that both photons show the same behavior (i.e. both through or both
stopped) is:

Kkl = PT;kl + PA;kl = c
2
1c
2
2 + s

2
1s
2
2 (8)

In the interesting case in which �2 = ��1 = �� we get

Kkl = cos
4 � + sin4 � = 1� 2 sin2 � cos2 �: (9)

Well, this is a clear and testable result. What does QM say?

1.4 QM result with entanglement

We take QM seriously. Our state is jSi =
q

1
2 (jHHi+ jV V i) : In order to calculate the probabilities

of transmission and absorption we �rst have to rewrite it in the appropriate basis. The �rst (left)
photon is rewritten in terms of the D1; D0

1 basis, while the second (right) photon is rewritten in the
D2; D

0
2 basis. We obtain the following state:

jSi =
r
1

2
(jHHi+ jV V i) = (10)

=

r
1

2
[(c1 jD1i � s1 jD0

1i) (c2 jD2i � s2 jD0
2i) + (s1 jD1i+ c1 jD0

1i) (s2 jD2i+ c2 jD0
2i)] (11)

By a simple evaluation:

jSi =
r
1

2
(c1c2 jD1D2i+ s1s2 jD0

1D
0
2i � c1s2 jD1D0

2i � s1c2 jD0
1D2i)

+

r
1

2
(s1s2 jD1D2i+ c1c2 jD0

1D
0
2i+ s1c2 jD1D0

2i+ c1s2 jD0
1D2i) : (12)

3



Now, the (quantum) probability that they are both transmitted is given by

PT;qm =
1

2
(c1c2 + s1s2)

2 (13)

while the prob. that they are both absorbed is

PA;qm =
1

2
(c1c2 + s1s2)

2
: (14)

Thus, the coincidence (both absorbed or both through) is given by

Kqm = (c1c2 + s1s2)
2
: (15)

In the particular case of �2 = ��1 = �� we get

Kqm = cos
2 2�: (16)

1.5 Comparison

When both polarizers are in the same direction we could not distinguish among the classical and the
quantum cases. Now we have obtained two predictable and di¤erent result, which we can compare and
test. In Fig. 2 the plot is shown.

Figure 2: Classical vs quantum coincidences.

Note, they coincide (by construction) for � = 0: But then, they do not for other values of �. Needless
to say, QM has been veri�ed and the here presented naive classical model rejected.

1.6 Is a classical model possible?

We may think: ok, the here presented classical model was too naive. Maybe we could conceive a
better model which gives the same prediction of the quantum result for each value of �1 and �2 of
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the inclinations of the two polarizers. The important point is that this is not possible. Whatever is
our classical model of production of photons (such as the already cited chaotic pendulum), it is not
possible that it reproduces the result of quantum mechanics. In other words, no classical model (based
on local realism) can predict the quantum result of Eq. (15).
In fact, each theory based on local realism needs to ful�ll the following bound:

Kkl �
��1� 2 sin2 ��� (17)

This is an example of a Bell inequality.
In order to prove it, we suppose that there is indeed a classical theory which reproduces all the

quantum results. That is, the coincidence rate must coincide with the quantum result:

Kqm(�1; �2) = (c1c2 + s1s2)
2
: (18)

In a local theory we have the following situation. The photons are emitted by the source and they
"already" know "what to do" when a polarization is measured. That is, for each left photon there
is an unknown function of the type L(�); where L(�) = 1 for some values of � and �1 for the other
values. If we perform a measure of the polarization of the left photon along the direction �; we are
actually measuring the function L(�): If L(�) = 1 the photon goes through, if L(�) = �1 the photon
is absorbed. For the right photon there is an analogous function R(�):
Now, when the photon pair is emitted, the left photon carries the function L(�) while the right

photon carries the function R(�): However, we should not forget that we are repeating the experiment
many times. That is, when the k-pair is emitted, the left photon carries the function Lk(�) while the
right photon carries the function Rk(�): Now, if all these functions were known (and we suppose that
there is some unknown way to calculate them) it would be perfectly possible to predict what it will
happen at each measurement. (Note, the functions Rk(�) and Lk(�), but whatever complicated they
might be, they are in principle deterministic. One could imagine to have a chaotic pendulum for each
� inside a the source, i.e. an in�nity of that. Already this picture is rather crazy, but the very point
is that is can be falsi�ed).
Now, let us suppose that we measure �1 = �2 = 0: In this case the quantum result is K = 1: That

means, if for our hypothetical left photon we have:

LP (� = 0) = fL1(� = 0); L2(� = 0); :::g = f1;�1; 1; 1;�1; 1;�1; :::g (19)

then the right photon must be equal

RP (� = 0) = fR1(� = 0); R2(� = 0); :::g = f1;�1; 1; 1;�1; 1;�1; :::g: (20)

In this way the perfect coincidence is also classically explained.
Then, let us consider �1 = �; �2 = 0: The quantum coincidence is K = cos2 �: That is, a sin2 �

fraction of Lk(�) changed sign and thus do not coincide with the original string Rk(0) = Lk(0) any
longer. (One de�nes the mismatch as M = 1�K = sin2 �:)
If we consider �1 = 0; �2 = �� the quantum coincidence is still K = cos2 �: Also here a sin2 �

fraction of Rk(��) changed sign and thus do not coincide with Lk(0) = Rk(0) any longer. (The
mismatch is also here equal to M = 1�K = sin2 �:)
Now, what happens if we consider �1 = �; �2 = ��? We realize that the mismatch cannot exceed

sin2 � + sin2 � = 2 sin2 �: In fact
M = 2 sin2 � � k (21)

where k is the fraction of numbers of the lists fLk(�)g and fRk(��)g which have changed sign in the
same place with respect to Lk(0) = Rk(0) and thus coincide again. That is we can conclude that,
whatever is our local classical theory, we get:

M � 2 sin2 �: (22)
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(This equality takes place when k = 0; that is when the change of sign in one list is never accompanied
by the change of sign in the other list). That is

Kkl � 1� 2 sin2 �: (23)

The result is actually meaningful only for � � �=4: It could have also been been obtained by noticing
that at least 2(cos2 � � 1

2 ) must coincide. Kkl � 2 cos2 � � 1:
When � � �=4 a similar reasoning leads us to conclude that Kkl � 2 cos2 �� 1: The results can be

summarized in the Bell inequalities

Kkl �
��1� 2 sin2 ��� = KBell (24)

In Fig. 3 the Bell-inequalities is also depicted. While it is evident that the previously calculated
classical result is above the Bell bound (as it must) the QM result is actually always below! No classical
local theory can reproduce this quantum result, no matter how crazy and complicated the functions
Lk(�) and Rk(�) might be.

Figure 3: Comparsion of classical and qm coincidences in relation to the Bell-bound.

1.7 Formal Proof of the Bell inequalities

For simplicity we refer to the here analyzed case of photons. Let � be a �hidden�parameter, whose
knowledge would specify if the left photon goes through a polarizer in the �1 direction and the right
photon through a polarizer in the �2 direction. We have thus the functions L(�; �) and R(�; �), which
are perfectly known if � is given.
As before, the functions L and R are either +1 or �1; according to the values of � (at a speci�ed

value of �).
Now, when the photons are emitted there must be some chaotic system which speci�es the value

of �: We do not know exactly how this chaotic system looks like, but there must be a probability
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distribution p(�): The quantity p(�)d� is thus the probability that -for a given back-to-back photon
emission- a value of � between � and �+ d� is realized. Be for simplicity 0 � � � 1:
The coincidence function K(�1; �2) can be expressed in the following way:

K(�1; �2) =

Z 1

0

d�L(�1; �)R(�2; �)p(�): (25)

Now, when �1 = �2 = � it must be that

R(�; �) = L(�; �): (26)

This is necessary in order that our classical local theory reproduces the quantum result Kqm(�1; �2) =

(c1c2 + s1s2)
2 for �1 = �2; for which Kqm = 1:

In fact, the condition R(�; �) = L(�; �) implies that, as desired,

K(�1 = �; �2 = �) =

Z 1

0

d�L2(�; �)p(�) =

Z 1

0

d�p(�) = 1 (27)

where the property L2(�; �) = 1 has been used.
Let us know consider

K(�1; �2) +K(�1; �3) =

Z 1

0

d�L(�1; �) [R(�2; �) +R(�3; �)] p(�): (28)

It holds that
L(�1; �) [R(�2; �) +R(�3; �)] � L(�2; �) [R(�2; �) +R(�3; �)] :

This is easy to prove, because

L(�2; �) [R(�2; �) +R(�3; �)] = 1 + L(�2; �)R(�3; �) (29)

This means
K(�1; �2) +K(�1; �3) � 1 +K(�2; �3) (30)

2 Gedankenexperiment with spin (GHZM)

2.1 Set-up of the experiment

We now dicuss the Gedankenexperiment of GHZM [4], which shows clearly a con�ict between QM and
claccial local theopries.
There is one sender and three receivers, see Fig. 4.
The sender send 3 "objects": �rst object to receiver 1, second object to receiver 2, third object

to receiver 3. Each receiver has a measuring device. He can chose to measure the property A or the
property B of the object (but not both at the same time). The result of A can be +1 or �1; the same
holds for B:
Important: the receivers receive their object at the same time. They are supposed to be far away

from each other. They are also not connected in a causal way (space-like separation). So, there is no
way to in�uence each other measurement.
Let us make a classical example of what the signals could be. The sender sends a small piece of

paper to each receiver. One side is yellow, the other blue. On both sides of piece of paper he writes a
number: either 1 or �1: For instance, in the �rst experiment he sends the following three piece of paper
(the �rst to receiver 1, the second to receiver 2, the third to receiver 3) with the following numbers:

1-st time:
�
1
1

�
;

�
�1
�1

�
;

�
�1
�1

�
(31)
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Figure 4: GHZM setup.

The property A is the number on the yellow side (upper number), the property B is the number on
the blue side (lower number). The, the sender prepares three other 3 piece of papers with the following
numbers

2-nd time:
�

1
�1

�
;

�
1
�1

�
;

�
1
�1

�
(32)

and sends them to the receivers.
The third time in a similar way:

3-rd time:
�
�1
1

�
;

�
�1
1

�
;

�
1
�1

�
(33)

And so on and so forth. The experiment is repeated many times. Each receiver makes a list of the
chosen property (A or B) and the obtained result. After the experiment is over, they meet somewhere
and prepare a table.

Table 1: Results of the experiment
1 2 3
A1 = +1 B2 = �1 B3 = �1
A1 = +1 B2 = �1 A3 = 1
B1 = +1 A2 = �1 B3 = �1
... ... ...

The three experimenters agree on the following fact: every time one A and 2 B were measured, the
product was +1: In formula they can summarize these results as:

A1B2B3 = 1 (34)

A2B1B3 = 1 (35)

A3B1B2 = 1 (36)
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Well, they are very happy about this result and they immediately realize that they can make a further
clear-cut prediction about their sender (and the way the "objects", whatever they are, are prepared).
They all agree that when all three experimenters have measured A the product should be +1

A1A2A3 = 1 (37)

The proof of this expectation is very simple:

1 = A1B2B3 �A2B1B3 �A3B1B2 = A1A2A3B21B22B23 = A1A2A3: (38)

Well, it really seems that whatever the sender is sending, this basic property must be satis�ed. It was
proven only out of simple logical considerations.
The three experimenters can check if the property A1A2A3 = 1 holds or not. It is enough that they

check in their table all the cases in which all three have chosen to measure A: They would actually
be extremely surprised if they would, instead, �nd out that -contrary to their basic expectations- they
�nd

A1A2A3 = �1!!! (39)

Well, if the sender decided to use electrons whose spin is prepared in a certain way this amazing
and counter-intuitive result is actually realizable. And not only one time by chance, but all the time
with probability 1. In order to see how this is possible a small digression on spin is needed.

2.2 Recall of the properties of the spin

We start from the basis in the z-direction: j+i and j�i : We introduce the operator �z such that

�z j+i = j+i ; �z j�i = � j�i : (40)

(The spin operator Sz = }
2�z: j+i represents a state with spin up in the z direction, j�i with spin

down.)
In the given basis

�z = (j+i ; j�i)
�
1 0
0 �1

��
h+j
h�j

�
: (41)

Now, how to express the spin in a direction which is not the z-axis?
A state with positive spin in the x-direction reads

jx;+i =
r
1

2
(j+i+ j�i) (42)

while the negative one

jx;�i =
r
1

2
(j+i � j�i) : (43)

The corresponding operator �x is de�ned as

�x = (j+i ; j�i)
�
0 1
1 0

��
h+j
h�j

�
: (44)

In this way:

�x j+i = j�i (45)

�x j�i = j+i (46)
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This means that �x interchange j+i with j�i : In virtue of this property the states jx;+i and jx;�i
are eigenstates of �x :

�x jx;+i = jx;+i (47)

�x jx;�i = � jx;�i : (48)

We can also invert the latter and get:

j+i =
r
1

2
(jx;+i+ jx;�i) (49)

j�i =
r
1

2
(jx;+i � jx;�i) (50)

The spin in the positive and negative y direction is constructed as follows:

jy;+i =
r
1

2
(j+i+ i j�i) (51)

jy;�i =
r
1

2
(j+i � i j�i) : (52)

Inverting:

j+i =
r
1

2
(jy;+i+ jy;�i) (53)

j�i = 1

i

r
1

2
(jx;+i � jx;�i) (54)

The operator �y is de�ned as

�y = (j+i ; j�i)
�
0 �i
i 0

��
h+j
h�j

�
: (55)

That means

�y j+i = �i j�i (56)

�x j�i = i j+i (57)

In this way the states jy;+i and jy;�i are eigenstates of �y:

�y jy;+i = jy;+i (58)

�y jy;�i = � jy;�i : (59)

2.3 Sender sending electrons

The sender is not sending classical objects, but is sending three electrons. The three electrons are in
the following entangled quantum state:

jSi =
r
1

2
(j+++i � j� � �i) (60)

Now, the measurements A and B correspond indeed to �x and �y;

A � �x; B � �y: (61)
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In the case in which the �rst receiver measure A and the other 2 B we have the following property:

�(1)x �(2)y �(3)y jSi = jSi : (62)

jSi is an eigenstate of this operator. That means, the product A1B2B3 = 1: Always, with no exceptions.
Similarly:

�(1)y �(2)x �(3)y jSi = jSi (63)

�(1)y �(2)y �(3)x jSi = jSi : (64)

This means:

A2B1B3 = 1 (65)

A3B1B2 = 1 (66)

But now let us turn to the cases in which all 3 receivers decide to measure A: Also in this case jSi
is an eigenstate, but:

�(1)x �(2)x �(3)x jSi = � jSi ! (67)

That is:
A1A2A3 = �1 . (68)

The classically completely unexpected result has appeared.
Note, just as in the Bell case, no classical local real theory can generate this result. But, there is an

advantage in this case: the classical and the quantum cases predict the opposite results. A1A2A3 = +1
classically, A1A2A3 = �1 quantistically. Utterly opposite. No way to make them coincide. This
example is also pretty easy to remember.
(How to calculate these results explicitly? One can of course also perform an explicit calculation.

In the case when ABB is measured, we have to rewrite the �rst electron in the jx;+i jx;�i basis and
the second and the third electron in the jy;+i and jy;�i basis. One can then see that in all possible
combinations the result A1B2B3 = 1 holds, as it must because the state is an eigenstate. The same
for the other cases. It is a bit tedious but straightforward calculation.)
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