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1. Introduction

“If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed
on to the next generation of creatures, what statement would contain the most information in the
fewest words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it)
that all things are made of atoms — little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being squeezed into one another. In
that one sentence, you will see, there is an enormous amount of information about the world, if just
a little imagination and thinking are applied.”

Richard Feynman, “The Feynman Lectures on Physics” (1964)

Nowadays, thousands of years after Democritus and Leucippus came up with the idea of “atoms”, mil-
lenniums of using imagination and thinking (and experimenting), physicists have found that atoms are
made of smaller ingredients: quarks and leptons. Using the so-called Standard Model of Elementary
Particle Physics with six quarks (called up, down, strange, charm, bottom, top), six leptons (called
electron, electron neutrino, muon, muon neutrino, tau, tau neutrino) plus their corresponding twelve
antiparticles and some symmetries (first and foremost the gauge symmetries to generate the three1 fun-
damental interactions: U(1) (electromagnetism), SU(3) (quantum chromodynamics (QCD)), SU(2)
(weak interaction)), we are theoretically able to describe all matter around us - more we do not need.
But, unfortunately, we are not able to analytically calculate every process. For that reason, we use
approximations, such as perturbation theory or effective theories and models. For example in low-
energy QCD an effective model has no longer the same degrees of freedom as QCD itself, but it is
based on the same symmetries and breakings of (some of) them.
For the work presented in this thesis we use an effective model which is called extended linear sigma
model (eLSM, e.g. refs. [1, 2, 3, 4]). Our aim is to enlarge this model by including baryons and their
chiral partners. For two flavors this has already been done in ref. [3, 4] where the chiral partner was
incorporated in the so-called mirror assignment (refs. [3, 4, 6, 7, 8]). Here we want to analyse the case
where three flavors are present. To this end we study chiral transformations of these baryon fields and
construct a chirally invariant Lagrangian. In a second step we reduce this Lagrangian to two flavors
and fix the parameters by using experimental data for the masses of the nucleons N(939), N(1440),
the chiral partners N(1535), N(1650), and five available decay widths.
In this introductory chapter we will present a short review of the basic features of the underlying
theory of quarks and gluons, QCD.

1We ignore gravity here since it is negligibly small in the realm of microscopic physics.
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1. Introduction

1.1. Quantum Chromodynamics: Lagrangian, Symmetries, and
their Breaking

Quantum chromodynamics (QCD) is a non-abelian gauge field theory with a local SU(3) color symme-
try. It describes the interaction between quarks (fermions) and gluons (gauge bosons). Its Lagrangian
has the following form [9, 10]:

LQCD =
∑

f

q̄f (iγµDµ −mf ) qf −
1

2
Tr [GµνGµν ] , f = u, d, s, c, t, b, (1.1)

with

Dµ = ∂µ − igAµ,

Gµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ] ,

Aµ = AaµTa , a = 1, ..., N2
c − 1 = 8, (1.2)

and T a being the generators of SU(3). The first terms describe the bare masses of the quarks qf
(with flavor f) and their interaction with the gluon field Aµ. The last term contains the field-strength
tensor Gµν , which provides the kinematics and self interactions of the gluon field.

The Lagrangian (1.1) follows from the Lagrangian of a free Dirac field,

LDirac = Ψ̄ (iγµ∂µ −m) Ψ, (1.3)

by the claim that it should be invariant under local SU(3) color symmetry. The general solution of
the related Dirac equation is given by a 4-spinor in Fourier space:

Ψ(x) =

∫
d3p

(2π)3
√

2Ep

2∑

s=1

(
aspu

s(p)e−ipx + bs?p v
s(p)eipx

)
, (1.4)

where s labels the spin states. The field is complex-valued. Implying that the Fourier amplitudes asp
and bs?p are independent. Furthermore, we distinguish between Dirac spinors for positive and negative
energy. The former ones are named us and the latter vs. They read in Dirac representation

us(p) =
√
Ep +m


 12×2χ

s

p·σ̄
Ep+mχ

s


 and vs(p) =

√
Ep +m




p·σ̄
Ep+mη

−s

12×2η
−s


 , (1.5)

where χ+1/2 = (1, 0)T , χ−1/2 = (0, 1)T , η−1/2 = (0, 1)T , and η+1/2 = (−1, 0)T . For later calculations
we also give them in Weyl representation:

us(p) =



√
p · σξs
√
p · σ̄ξs


 and vs(p) =



√
p · σξs

−√p · σ̄ξs


 , (1.6)

8



1.1. Quantum Chromodynamics: Lagrangian, Symmetries, and their Breaking

where the 2-spinors ξs are usually chosen to be ξ+1/2 = (1, 0)T and ξ−1/2 = (0, 1)T . The 4-“vectors”
σµ and σ̄µ are defined by σµ = (1,σ) and σ̄µ = (1,−σ) with σ = (σ1, σ2, σ3). So they contain the
three Pauli matrices,

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 . (1.7)

In quantum field theory the fields Ψ in eq. (1.4) has to be quantized. So asp and bs?p become ladder

operators âsp and b̂s†p which create or annihilate a particle (âs†p |...〉) or an antiparticle (b̂s†p |...〉) with spin
s and momentum p. They obey certain anticommutation relations, so that they describe fermions.
The non-trivial ones are

{
âsp, â

s′†
p′

}
=
{
b̂sp, b̂

s′†
p′

}
= 2Epδs,s′(2π)3δ(3)(p− p′), (1.8)

(for more details see e.g. [9, 10]). In the following we will omit the hats over operators, since we work
solely in quantised theories and there is no danger of confusion.
The QCD Lagrangian has many symmetries. In addition to continuous Lorentz symmetry and the
discrete charge conjugation, parity, and time reversal (briefly CPT symmetries), it has a local (gauge)
SU(3) color symmetry (by construction), in the chiral limit (mf = 0) of massless quarks an exact
global U(Nf )R × U(Nf )L chiral symmetry (apart from the chiral anomaly), and also the classical
dilatation (or scale) symmetry.

1.1.1. Lorentz and Poincaré Symmetry

A Lagrangian describing elementary particles has to be invariant under Lorentz transformations.
Mathematically, such a transformation of a Lorentz vector is given by

xµ −→ Λµνx
ν , (1.9)

where

gµνΛµρΛνσ = gρσ. (1.10)

We consider only proper (orthochrone and orientation-true) transformations with det(Λ) = +1 and
Λ0

0 > 0. These are combinations of rotations and boosts. If we perform a rotation or a boost of the
reference frame, then the transformed fields in the new reference frame satisfy the same equations.
We speak of a Poincaré transformation if we additionally have translations. In general, all inertial
systems which are connected by proper Lorentz transformations (with det(Λ) = +1 and Λ0

0 > 0)
and/or translations are equivalent for what concerns the physics of the standard model. Examining
the invariance under continuous Lorentz transformations of a field theory is quite simple when working
in the Lagrangian formulation. As an immediate consequence of the principle of least action, we only
have to check that the Lagrangian is a Lorentz scalar. By determining the transformation behaviour of
Ψ and Aµ it can be shown that the QCD Lagrangian (1.1) is a Lorentz scalar and the theory exhibits
proper Lorentz symmetry. Since these specific transformations are not very relevant for this thesis,
we refer to ref. [9, 10] for more details.
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1. Introduction

1.1.2. Discrete Symmetries (CPT )

Besides the continuous transformations there are three discrete symmetries. Two of them are spacetime
operations (which are improper Lorentz transformations): parity, denoted by P , reverses the space:
(t,x) → (t,−x); and time reversal, denoted by T , inverts the time: (t,x) → (−t,x). The third
(non-spacetime) operation is charge conjugation, denoted by C. These symmetries are particularly
important for this work, thus we present them in detail in the following:

• Parity:
A parity operation P transforms (t,x)→ (t,−x) and thus must also reverse the momentum of
a particle. Mathematically, we want P to generate the transitions, which are implemented by a
unitary operator UP as follows

asp
P−−−−→ UPa

s
pU
†
P = ηaa

s
−p and bsp

P−−−−→ UP b
s
pU
†
P = ηbb

s
−p (1.11)

where ηa and ηb are phases. Namely, since a second application of the parity operator should
yield the original state, the square of the phase factors should be equal to plus or minus one,
|ηa/b|2 = ±1. To find the transformation of a (quark) spinor Ψ and to fix the phase factors
we consider the transformed expression pf eq. (1.4). Using the transformation of the ladder
operators (1.11) we have

Ψ(x)
P−−−−→ UPΨ(x)U †P = ΨP (x) =

=

∫
d3p

(2π)3

1√
2Ep

2∑

s=1

(
ηaa

s
−pu

s(p)e−ipx + η?b b
s†
−pv

s(p)eipx
)
,

(1.12)

where the unitary operators UP act only on the creation and annihilation operators.
For simplicity the following calculation is performed in the Weyl representation, but can also
be done in any other representation. Substituting the variable p to p̃ = (p0,−p) we can rearrange
the two 4-spinors (1.6) to

us(p) =



√
p · σξs
√
p · σ̄ξs


 =



√
p̃ · σ̄ξs
√
p̃ · σξs


 = γ0us(p̃)

vs(p) =



√
p · σξs

−√p · σ̄ξs


 =



√
p̃ · σ̄ξs

−√p̃ · σξs


 = −γ0vs(p̃). (1.13)

Therewith eq. (1.12) becomes

ΨP (x) =

∫
d3p̃

(2π)3

1√
2Ep̃

2∑

s=1

(
ηaa

s
p̃γ

0us(p̃)e−ip̃(t,−x) − η?b bs†p̃ γ0vs(p̃)eip̃(t,−x)
)
. (1.14)

Since the parity transformation reverses only the space, ΨP (x) should be proportional to Ψ(t,−x).
This is possible if η?b = −ηa which implies ηaηb = −ηaη?a = −1 and therefore |ηa|2 = 1. Conse-
quently the final form of the parity transformation of the spinor is

10



1.1. Quantum Chromodynamics: Lagrangian, Symmetries, and their Breaking

Ψ
P−−−−→ ΨP (x) = ηaγ

0Ψ(t,−x). (1.15)

This result is valid in general (i.e. for all representations).
Note, one can show that the transformations of fermion bilinears are independent of the phase
ηa and therefore there is no loss of generality in setting ηa = −ηb = 1 from the beginning (for
more details see e.g. [10]). Since we will compute parity transformations in the framework of
effective models in detail later on in the text, we now only remark that the QCD Lagrangian is
invariant under parity transformations.

• Charge Conjugation:
Another discrete symmetry of the QCD Langrangian is the particle-antiparticle symmetry im-
plemented by the charge conjugation which transforms a fermion with given momentum and
spin into an antifermion with the same momentum and spin. Thus, a Lagrangian which is in-
variant under charge conjugation should have an analogous form of the equation of motion for
an antiparticle as for the particle. As an example, the Dirac equation of an electron Ψ (with
charge −e) in an electromagnetic field Aµ is

[iγµ (∂µ + ieAµ)−m] Ψ = 0. (1.16)

Then the Dirac equation of the positron ΨC (with charge +e) should have the same form:

[iγµ (∂µ − ieAµ)−m] ΨC = 0. (1.17)

In order to find a relation between Ψ and the charge-conjugate ΨC we take the Dirac adjoint of
the Dirac equation for the electron (1.16),

−i∂µΨ̄γµ − eΨ̄Aµγµ −mΨ̄ = 0, (1.18)

where we have used that (γµ)†γ0 = γ0γµ and that the gauge field Aµ is hermitian2. Transposing
it yields

−i (γµ)T ∂µΨ̄T − e (γµ)T AµΨ̄T −mΨ̄T = 0. (1.19)

If we introduce a matrix C which fulfils the relations

C(γµ)TC−1 = −γµ (1.20)

and

2This is obvious for the case of the electromagnetic field Aµ, which is a real quantity. In general the gauge field Aµ is
a combination of the generators T a of the unitary group SU(N) and various real coefficients, Aµ = AaµT

a. For the
generators T a holds that T a† = T a, because the elements of the unitary group has to fulfil U†U ' 1 + iεT − iεT ≡ 1.
Hence Aµ is hermitian.

11



1. Introduction

C−1 = C† = CT = −C, (1.21)

we find that

[iγµ (∂µ − ieAµ)−m]CΨ̄T = 0. (1.22)

When we compare this with the Dirac equation for the positron (1.17), we can read off the final
expression of the charge-conjugate spinor:

Ψ
C−−−−→ ΨC = CΨ̄T . (1.23)

In the Dirac representation the charge conjugation matrix is given by

C = iγ2γ0. (1.24)

As can be shown, the QCD Lagrangian is invariant under charge conjugation.

• Time Reversal and CPT theorem:
If a Lagrangian has to be invariant under C, P , and T separately it suffices to check only two of
these three transformations, because it is generally true that one cannot build a Lorentz-invariant
quantum field theory with a hermitian Hamiltonian that violates the combined symmetry CPT .
This fact is called CPT theorem (see e.g. ref. [15]).

1.1.3. Chiral Symmetry

In the limit of Nf massless quarks the QCD Lagrangian is symmetric under global U(Nf )L×U(Nf )R
transformations. This is also a particularly important symmetry for this work. In order to see how a
quark spinor qi transforms under this group, we decompose it into a left-handed component PLqi = qi,L
and right-handed component PRqi = qi,R by making use of the two chiral projectors,

PL =
1− γ5

2
and PR =

1 + γ5

2
, (1.25)

such that qi = qi,L + qi,R. Under chiral transformations the components behave as

12



1.1. Quantum Chromodynamics: Lagrangian, Symmetries, and their Breaking

qi,L −→ q′i,L = exp



−i

N2
f−1∑

a=0

θaLT
a
ij



 qj,L = UL,ijqj,L with UL ∈ U(Nf )L,

qi,R −→ q′i,R = exp



−i

N2
f−1∑

a=0

θaRT
a
ij



 qj,R = UR,ijqj,R with UR ∈ U(Nf )R, (1.26)

where T a (with a = 1, ..., N2
f − 1) are the generators of SU(Nf ), T 0 = 1Nf /

√
2Nf and θaR/L are the

parameters of the transformation. An invariance under these transformations is referred to as chiral
symmetry. The QCD Lagrangian is invariant under such transformations only in the chiral limit,
mf → 0. in order to show this, we use the chiral projection operators (1.25) and their properties

P 2
R/L = PR/L and PRPL = PLPR = 0, (1.27)

to rearrange the QCD Lagrangian (1.1) (omitting the gluon self-interaction term) into:

LqA = q̄f (iγµDµ −mf ) qf = q̄f,Riγ
µDµqf,R + q̄f,Liγ

µDµqf,L − q̄f,Rmfqf,L − q̄f,Lmfqf,R, (1.28)

which is obviously symmetric under U(Nf )R×U(Nf )L only for vanishing quark masses since the mass
terms mix left- and right-handed quark components.
One commonly works with the currents Aµ and V µ, because they have definitive parity instead of Lµ

and Rµ. They are related by

V µ =
Rµ + Lµ

2
and A =

Rµ − Lµ
2

. (1.29)

The chiral group U(Nf )R × U(Nf )L is isomorphic to U(Nf )V × U(Nf )A. Hence with the properties
of a unitary group the relation

U(Nf )L × U(Nf )R ≡ U(1)V × SU(Nf )V × U(1)A × SU(Nf )A (1.30)

holds. It should be noted that SU(Nf )A is a set of transformations, but not a group, since it is not
closed. The transformation elements can be expressed as:

U(1)V 3 U1V = e−iθ
0
V T

0
with θ0

V /2 = θ0
R = θ0

L, i.e., U1V = UL = UR,

SU(Nf )V 3 UV = e−iθ
i
V T

i
with θiV /2 = θiR = θiL, i.e., UV = UL = UR,

U(1)A 3 U1A = e−iθ
0
Aγ

5T 0
with θ0

A/2 = θ0
R = −θ0

L, i.e., U1A = UR = U †L ,

SU(Nf )A 3 UA = e−iθ
i
Aγ

5T i with θiA/2 = −θ0
R = θ0

L, i.e., UA = UL = U †R ,

(1.31)

with i = 1, 2, ..., N2
f − 1. In the following we will give a short overview of the features and conditions

of validity of these symmetry transformations concerning the QCD Lagrangian (1.1).
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1. Introduction

• U(1)V symmetry:
This transformation corresponds to a multiplication of a phase for the quark field and it is clear
that the QCD Lagrangian is symmetric under this transformation. According to the Noether
theorem [16] the conserved current is

V µ
0 = q̄fγ

µqf and ∂µV
µ

0 = 0, (1.32)

and the conserved charge obtained by the integration over the zero component,

Q =

∫
d3xq̄fγ

0qf , (1.33)

corresponds to the baryon number.

• SU(Nf)V symmetry:
Transforming the quark fields qf in the Dirac Lagrangian yields to first order in θiV

LDirac = q̄f (iγµ∂µ −mf ) qf
SU(Nf )V−−−−−−→ · · · = q̄f (iγµ∂µ −mf ) qf − iθiV q̄f

[
T i,mf

]
qf . (1.34)

Hence the symmetry is only realized if the quark masses of all flavors are degenerate m1 =
m2 = ... = mNf , because only then the mass matrix is proportional to the identity matrix.
In nature quark masses are only roughly equal. This means that there is just an approximate
SU(2)V isospin symmetry for mup ≈ mdown or an approximate SU(3)V flavor symmetry for
mup ≈ mdown ≈ mstrange, although the breaking of the latter is sizeable in comparison to the
first two. The corresponding conserved vector currents and their divergences (according to the
Noether theorem [16]) are:

V µi = q̄fγ
µT iqf and ∂µV

µi = iq̄f
[
T i,mf

]
qf . (1.35)

The divergences vanish only for degenerate quark masses, as expected.

• U(1)A symmetry and anomaly:
In classical field theory this symmetry is fulfilled in the chiral limit, but is explicitly broken
by quantum fluctuations [17]. Due to this fact it is a chiral U(1)A anomaly which has to be
considered also in the construction of an effective chiral model. Furthermore, since no quark
mass is zero, the axial symmetry is also broken at the classical level.

• SU(Nf)A symmetry:
In the chiral representation for massless quarks, SU(Nf )A corresponds to an opposed rotation
of left- and right-handed Weyl spinors, qR and qL, because of the γ5 = diag(1, 1,−1,−1) ma-
trix occurring in the transformation matrix. But a mass term mixes left- and right-handed
components

mq̄q = m(q†LqR + q†RqL), (1.36)

and thus breaks the SU(Nf )A symmetry. We can see this fact also by computing the transformed
Dirac Lagrangian to first order in θiA

LDirac = q̄f (iγµ∂µ −mf ) qf
SU(Nf )V−−−−−−→ · · · = q̄f (iγµ∂µ −mf ) qf + iθiAq̄f

{
T i,mf

}
γ5qf (1.37)

14



1.1. Quantum Chromodynamics: Lagrangian, Symmetries, and their Breaking

or the corresponding axial-vector currents and their divergences

Aµi = q̄fγ
µγ5T iqf and ∂µA

µi = −iq̄f
{
T i,mf

}
qf . (1.38)

We recognize that the axial-vector currents are only conserved if all quark masses are zero.

1.1.4. Explicit Symmetry Breaking

For non-vanishing quark masses, mf 6= 0, i.e., the mass term in the QCD Lagrangian of the form

Lmass =

Nf∑

f=1

mf q̄fqf (1.39)

with m1 6= m2 6= · · · 6= mNf 6= 0 explicitly breaks several of the above listed symmetries, as mentioned.

1.1.5. Spontaneous Breaking and Goldstone Theorem

We have seen that chiral symmetry is explicitly broken, if the quark masses are non-zero. However, even
in the chiral limit mf → 0 the symmetry undergoes the phenomenon of spontaneous symmetry break-
ing. In general, a symmetry is called spontaneously broken if the ground state has a lower symmetry
than the Lagrangian. Goldstone’s theorem predicts that for each continuous global symmetry which
is spontaneously broken a massless particle emerges. These particles are called (Nambu-)Goldstone
bosons (see chapter 1.3 for an example). Namely, in QCD the vacuum is not invariant under SU(Nf )A
transformations and therefore this symmetry is spontaneously broken,

SU(Nf )L × SU(Nf )R = SU(Nf )V × SU(Nf )A −→ SU(Nf )V in the ground state. (1.40)

To see why this is the case, we assume SU(Nf )A to be not spontaneously broken. Then we would
obtain ground-state multiplets containing particles with opposed parity but with the same mass and
same quantum numbers. Since such partners are not observed in nature, SU(Nf )A must be sponta-
neously broken. As a consequence massless Goldstone bosons arise: the pions. (Note that they are
not exactly massless because of explicit symmetry breaking.) Furthermore, spontaneous symmetry
breaking generates mass differences between the multiplets.

1.1.6. Dilatation Symmetry and Scale Anomaly

The dilation (or scale) transformation of a contravariant space-time vector is given by

xµ −→ λ−1xµ, (1.41)

where λ is the scale parameter. If the quark and gauge field in eq. (1.1) transform as

qf −→ λ
3
2 qf and Aaµ(x) −→ λAaµ(x) (1.42)

for massless quarks, mf = 0, the QCD Lagrangian obtains a factor of λ4:

LQCD,mf=0 = q̄f iγ
µDµqf −

1

4
GaµνG

µν
a −→ λ4LQCD,mf=0. (1.43)
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1. Introduction

Hence, the action which is the space-time integral over the Lagrangian is invariant under this trans-
formation. This invariance is called dilatation or trace symmetry. The corresponding scale current is
a product of the space-time vector and the energy-momentum tensor:

Jµ = xνT
µν with Tµν =

∂LQCD

∂(∂µAaρ)
∂νAaρ − gµνLQCD. (1.44)

Computing the divergence of this current,

∂µJ
µ = T µ

µ , (1.45)

we see that the trace of the energy-momentum tensor has to be zero in order to have a conserved
current and therefore a symmetry of the system. That is why dilatation symmetry is also called trace
symmetry. As we have seen in eq. (1.43) QCD is (classically) scale symmetric in the limit mf → 0,
but for mf 6= 0 the symmetry is explicitly broken, because

Lmass =

Nf∑

f=1

mf q̄fqf −→ λ3Lmass 6= λ4Lmass and ∂µJ
µ = 4

Nf∑

f=1

mf q̄fqf 6= 0. (1.46)

Due to the light quark masses the breaking is small, but the symmetry is also broken on the quantum
level when considering gluon loops (quantum fluctuations). Upon renormalisation of QCD this leads
to a dependence of the strong coupling “constant” g on an energy scale µ (e.g. center-of-mass energy)
[18], for more details see section 1.2.. This fact yields a non-vanishing divergence of the scale current.
With a one-loop perturbative calculation one obtains:

∂µJ
µ = T µ

µ =
β(g)

4g
GaµνG

µν
a

Nf∑

f=1

mf q̄fqf 6= 0 with β(g) = µ
∂g

∂µ
. (1.47)

Therefore, even for mf = 0 the scale symmetry is broken at the quantum level and we have another
anomaly: the so-called scale or trace anomaly. As shown in ref. [19], at the composite level one can
parametrize this anomaly by introducing a scalar dilaton (glueball) field G which is described by the
Lagrangian

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2

(
1

2
G4 ln

G2

Λ2
− G2

4

)
, (1.48)

where the dilatation symmetry is explicitly broken by the scale factor Λ. For the construction of an
effective QCD model this dilatation symmetry is an important point. Since the dilatation symmetry
should be explicitly broken only in the potential of the dilaton field of eq. (1.48) all other terms in the
Lagrangian have to be dilatation invariant. This means that only terms with dimensionless coupling
constant are allowed, which is a very restrictive requirement that is fulfilled only by a finite number
of terms in our effective model [20]. The parameter Λ of eq. (1.48) is proportional to the so-called
Yang-Mills scale ΛYM.
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1.2. Running Coupling and Effective Theories

Studying QCD at the quantum level (i.e., including gluon loops) [18] implies that the coupling constant
g of QCD is actually not constant - it is a function of the energy scale µ where the coupling is
determined (e.g. the center-of-mass energy). For QCD with Nc colors and Nf approximately massless
quarks one gets:

g2(µ) =
1

b log(µ/ΛYM)
with b =

11Nc − 2Nf

48π2
, (1.49)

where ΛYM ≈ 200 MeV is the Landau or the Yang-Mills scale. The coupling constant is called running
coupling constant. For high energies (µ much larger than ΛYM) the QCD coupling constant becomes
small (asymptotic freedom) and perturbation theory is a good approximation. On the contrary, for low
energies (µ is comparable or smaller ΛYM) the QCD coupling constant is large and perturbation theory
cannot be applied. Therefore, effective theories were developed, which contain no longer quarks and
gluons but colorless hadrons as degrees of freedom. We thus use only appropriate degrees of freedom
for our chosen energy scale (or length) scale, and ignore the substructure and degrees of freedom at
shorter distances. However, effective theories have the same symmetries as QCD. One example of an
effective theory is the linear sigma model which was suggested by Gell-Mann and Lévy in 1960 [1] and
recently extended in ref. [2, 3, 4].

1.3. (Extended) Linear Sigma Model and Spontaneous Symmetry
Breaking

In 1960 Gell-Mann and Lévy [1] constructed the linear sigma model (LSM) to study chiral symmetry
and its spontaneous breaking in pion-nucleon interactions. Recently it was extended (eLSM) by the
inclusion of vector and axial-vector mesons, e.g. [2, 3, 4, 11, 12]. Nuclear matter ground state has
also been calculated as well as the chiral phase transition at nonzero density [3, 4] and the emergence
of inhomogeneous chiral condensation [13].
The Lagrangian of (a simple version of) the linear sigma model is given by:

LLSM =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 − µ2

2

(
σ2 + π2

)
− λ

4!

(
σ2 + π2

)2
+ Ψ̄iγµ∂µΨ + igΨ̄γ5τ · πΨ + gΨ̄σΨ,

(1.50)

where the scalar isosinglet field σ and the pseudoscalar isotriplet field π = (π1, π2, π3) are present
and interact with massless isodoublet nucleon fields Ψ through Yukawa couplings. The mass of the
nucleons is generated by spontaneous symmetry breaking from O(4) → O(3) of the ground state.
To see how it works, we should have a closer look at the potential of the Lagrangian. Setting Φ ≡
(Φ1,Φ2,Φ3,Φ4) = (σ,π), we can rewrite the potential as3

V (Φ) =
µ2

2
Φ2 +

λ

4!
Φ4. (1.51)

3This is equivalent to the potential of Φ4 theory.

17
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In order to find the ground state of the system, we need to find the minimum. If the mass term µ2 is
negative it is given by the relation

Φ2 = −µ
2

λ
≡ ϕ2 or |Φ| =

√
−µ2

λ
= ϕ. (1.52)

This defines a 3-dimensional subspace in the 4-dimensional scalar space. Every point on this sphere is
invariant under O(3) rotations. Choosing only one point of the ground state (none of them is favoured
most), the symmetry is spontaneously broken from O(4) to O(3). In Fig. 1.1 we show the potential
along the Φ1,Φ2 directions by setting Φ3 = Φ4 = 0. It is the so-called Mexican-hat potential with the
subspace being the brim of the hat.
In order to apply perturbation theory, we have to choose a minimum and expand around it. We pick

- 2

- 1

0

1

2
- 2

- 1

0

1

2

- 4

- 3

- 2

- 1

0

Figure 1.1.: The mexican-hat potential

for example the point ϕ = (ϕ, 0, 0, 0), i.e., the vacuum expectation values (VEVs) of σ and π are

〈σ〉 = ϕ and 〈π〉 = 0. (1.53)

Carrying out the coordinate transformation σ → σ+ϕ the structure of the Lagrangian LLSM changes
as:

LLSM =
1

2
(∂µσ)2 +

1

2
(∂µπ)2 + µ2σ2 − λϕ

6
σ
(
σ2 + π2

)
− λ

4!

(
σ2 + π2

)2
+

+ Ψ̄iγµ∂µΨ + gϕΨ̄Ψ + igΨ̄γ5τ · πΨ + gΨ̄σΨ, (1.54)

First we observe (as a consequence of the Goldstone theorem) that the σ meson has mass (m2
σ =

−2µ2 > 0) while the pion π is a massless Goldstone boson. Another important point is that the
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1.3. (Extended) Linear Sigma Model and Spontaneous Symmetry Breaking

condensation of σ generates a mass term for the nucleon Ψ proportional to its vacuum expectation
value.
Since in reality the pion is not massless we add a term to the Lagrangian (1.54), which explicitly
breaks the chiral symmetry SU(2)R × SU(2)L:

LLSM −→ LLSM + εσ. (1.55)

This shifts the minimum of the potential (to first order in ε) to

ϕ =

√
−6µ

λ
+

ε

2µ2
. (1.56)

As a result the pion also acquires a mass of m2
π = ε/ϕ 6= 0.

In the following we will use a linear sigma model which contains, in addition to scalar and pseudoscalar
mesons and baryons, also vector and axial-vector mesons.
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2. A Short General Introduction to
Perturbation Theory for Interacting Fields

The Lagrangians which we will apply do not describe free particles. There are interaction terms which
include scattering and decay processes. In this chapter we show how to compute, in the framework of
perturbation theory, the effects of interactions (such as decay widths) from an arbitrary Lagrangian
which is made of a free part (indicated with “0”) and an interaction part (indicated with “int”),

L = L0 + Lint. (2.1)

The decay widths resulting from such Lagrangians can subsequently be compared with experimental
results. The presentation in this chapter is based on ref. [10].

2.1. Correlation Functions, Wick’s Theorem, and Feynman
Diagrams

A very important quantity to calculate transition amplitudes and therewith measurable quantities,
such as decay rates or cross sections, is the n-point correlation function or n-point Green’s function,

〈Ω|T
{
φ(x1)φ(x2)...φ(xn)

}
|Ω〉 , (2.2)

where T is the time-ordering operator. We introduced the notation |Ω〉 to denote the ground state
of the interacting theory, which is different from the ground state of the free theory |0〉. Later we
will see that the two-point correlation function, e.g. 〈Ω|Tφ(x)φ(y) |Ω〉, can be interpreted physically
as the amplitude for a particle (resp. excitation) to propagate from y to x. The calculation of such
vacuum expectation values in an interacting theory is not trivial, since we cannot use the creation
and annihilation operators of the free theory straight-forwardly. That is because the field equation is
non-linear and a general solution by linear superposition is not possible. Hence, in order to enable
calculations we rewrite eq. (2.2) using only fields and states of the free theory1:

〈Ω|T
{
φ(x1)φ(x2)...φ(xn)

}
|Ω〉 =

〈0|T
{
φI(x1)φI(x2)...φI(xn) exp

{
−i
∫ T
−T dt Hint(t)

}}
|0〉

〈0| exp
{
−i
∫ T
−T dt Hint(t)

}
|0〉

, (2.3)

where φI indicates a field in the interaction picture, which evolves like a free field and Hint = −Lint is
the interacting part of the Hamiltonian of the corresponding theory. Before we evaluate this in more
detail, we need to evaluate two-point correlation functions of the free theory.

1For the explicit calculation see e.g. [10].
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2.1.1. Two-Point Correlation Function of the Free Theory: Feynman Propagators

We start with the two-point correlation function of the free theory for scalar fields. This quantity is
also called Feynman propagator for scalar fields,

∆F (x− y) = 〈0|T
{

Φ(x)Φ(y)
}
|0〉 , (2.4)

and for y0 > x0 describes the amplitude for a free (Klein-Gordon) scalar field produced at the time
y0 at the place y to be found at the time x0 at x. If x0 > y0 it is the other way round. This aspect
can be seen by simplifying the notation. We split the Klein-Gordon field Φ into two parts

Φ = Φ+ + Φ− with Φ+(x) :=

∫
d3p

(2π)3
√

2Ep
ape
−ipx

and Φ−(x) :=

∫
d3p

(2π)3
√

2Ep
a†pe

ipx, (2.5)

such that Φ+ |0〉 ∼ a |0〉 = 0 and 〈0|Φ− ∼ 〈0|a† = 0. The time-ordered product reads

T
{

Φ(x)Φ(y)
}

= : Φ(x)Φ(y) : + θ(x0 − y0)
[
Φ+(x),Φ−(y)

]
+ θ(y0 − x0)

[
Φ+(y),Φ−(x)

]
(2.6)

with : ... : denoting the normal-ordered product (all creation operators a† ∼ Φ− at the left and all
annihilation operators a ∼ Φ+ at the right side). Using the commutator the non-trivial commutator
of creation and annihilation operators for scalar fields,

[
ap, a

†
p′

]
= 2Ep(2π)3δ(3)(p− p′), (2.7)

and the fact that 〈0| : ... : |0〉 = 0 we obtain for the Feynman propagator:

∆F (x− y) = 〈0|T
{

Φ(x)Φ(y)
}
|0〉 =

= 〈0|θ(x0 − y0)
[
Φ+(x),Φ−(y)

]
+ θ(y0 − x0)

[
Φ+(y),Φ−(x)

]
|0〉 =

=

∫
d3p

(2π)3

(
θ(x0 − y0)e−ip(x−y) + θ(y0 − x0)e−ip(y−x)

)
=

= . . . see eq. (2.9) and (2.10) · · · =

∆F (x− y) =

∫
d4p

(2π)4
eip(x−y) i

p2 −m2 + iε
, (2.8)

where ε is a infinitesimal real number. Here we can see why ∆F (x− y) corresponds to the amplitude
of the propagation of a scalar particle Φ from the space-time point x to y or the other way round
depending on the time ordering. In the first line the term

〈0|
[
Φ+(x),Φ−(y)

]
|0〉 = 〈0|Φ+(x),Φ−(y) |0〉
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(which exists only if x0 > y0) corresponds to the amplitude of a particle at x in the final bra-state and
a particle at y in the initial ket-state and therefore the amplitude for the propagation of the particle
Φ from y to x. The validity of the last step can be shown by complex integration:

∆F (x− y) =

∫
d3p

(2π)3
eip(x−y)

∫ ∞

−∞

dp0

2π
e−ip

0(x0−y0) i

(p0)2 − (p2 +m2 − iε) =

= −
∫

d3p

(2π)3
eip(x−y)

∫ ∞

−∞

dp0

2πi

e−ip
0(x0−y0)

(
p0 −

√
E2
p − iε

)(
p0 +

√
E2
p − iε

) =

= ... (2.9)

where we have used p2 +m2 = E2
p. Extending to the complex plane (see fig. 2.1) and using the residue

Figure 2.1.: Extending the integration to the complex plane. For y0 < x0 we have to close the inte-
gration path at infinity of the upper half plane, because only there the integrand vanishes
for |p0| → ∞, and vice versa for x0 > y0.

theorem we obtain

∆F (x− y) =





−
∫ d3p

(2π)3 e
ip(x−y)

(
− exp{−iEp(x0−y0)}

2Ep

)
if x0 > y0

−
∫ d3p

(2π)3 e
−ip(x−y)

(
exp{iEp(x0−y0)}

−2Ep

)
if y0 > x0

(2.10)

which is exactly the same as eq. (2.8) - q.e.d.. Note that in the first line, we paid attention to the
clockwise integration by adding a minus sign. In the second line we made use of the fact that the
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integration of p goes over the whole R3 space and we can substitute p by −p under the integral.
In momentum space the Feynman propagator for scalar fields reads

∆̃F (p) =

∫
d4x eip(x−y)∆F (x− y) =

i

p2 −m2 + iε
(2.11)

In complete analogy the Feynman propagator of fermions in momentum space can be calculated as

S̃F (p) =

∫
d4x eip(x−y)〈0|T

{
ΨA(x)Ψ̄b(y)

}
|0〉 =

i (γµpµ +m)

p2 −m2 + iε
. (2.12)

Having these results, it is easy to go one step further and evaluate n-point correlation functions of
the free theory by using Wick’s theorem.

2.1.2. Wick’s Theorem and n-Point Correlation Functions of the Free Theory

Wick’s Theorem tells us that a time-ordered product of a set of operators can be decomposed into
the sum of all corresponding contracted normal-ordered products. Thereby all possible contractions
of operators occur. Wick’s Theorem reads as follows:

T
{
φ(x1)φ(x2)...φ(xn)

}
= : φ(x1)φ(x2)...φ(xn) : +

+ all combinations of normal-ordered elements and contractions.
(2.13)

Here, contraction means the replacement of two fields with the corresponding Feynman propagator,
e.g. for scalar fields Φ(xi)Φ(xk) → ∆F (xi − xk). More precisely, a contraction of two fields φ(xi)
and φ(xj) indicated by a (over- or under-)line joining them is defined by

φ(xi)φ(xj) :=





[φ+(xi), φ
−(xj)] for x0 > y0

[φ+(xj), φ
−(xi)] for y0 > x0

(2.14)

which corresponds exactly to the propagator of the field Φ. Hence Wick’s theorem is nothing else
than the generalization2 of the results we obtained in the last section for the case of two scalar fields
by using the splitting Φ = Φ+ + Φ−. It is easy to compute (for example) the four-point correlation

2A proof of this theorem can e.g. be found in [21].
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function for scalar fields. Using Wick’s theorem,

T
{

Φ(x1)Φ(x2)Φ(x3)Φ(x4)
}

= : Φ(x1)Φ(x2)Φ(x3)Φ(x4) : +

+ : Φ(x1)Φ(x2) : ∆F (x3 − x4)+ : Φ(x1)Φ(x3) : ∆F (x2 − x4)+

+ : Φ(x1)Φ(x4) : ∆F (x2 − x3)+ : Φ(x2)Φ(x3) : ∆F (x1 − x4)+

+ : Φ(x2)Φ(x4) : ∆F (x1 − x3)+ : Φ(x3)Φ(x4) : ∆F (x1 − x2)+

+ ∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)+

+ ∆F (x1 − x4)∆F (x2 − x3), (2.15)

and the fact that 〈0| : ... : |0〉 = 0, the four-point correlation function for free scalar fields reads

〈0|T
{

Φ(x1)Φ(x2)Φ(x3)Φ(x4)
}
|0〉 = ∆F (x1 − x2)∆F (x3 − x4) + ∆F (x1 − x3)∆F (x2 − x4)+

+ ∆F (x1 − x4)∆F (x2 − x3). (2.16)

Consequently, in the most general sense Wick’s theorem allows us to rewrite any n-point correlation
function for free fields in terms of a sum of products of Feynman propagators. On that account it is
possible to find a diagrammatic representation, called Feynman Diagrams.

2.1.3. Feynman Diagrams for Free Fields

Considering eq. (2.16) we realize that 〈0|T
{

Φ(x1)Φ(x2)Φ(x3)Φ(x4)
}
|0〉 represents a sum of different

propagations of two Φ particles:

〈0|TΦ(x1)Φ(x2)Φ(x3)Φ(x4) |0〉 = “x1 ←→ x2 and x3 ←→ x4”+

+“x1 ←→ x3 and x2 ←→ x4”+

+“x1 ←→ x4 and x2 ←→ x3”. (2.17)

This means that there are three possibilities for particles to be created at two spacetime points, each
propagating to one of the other points, and then they are annihilated. If we now represent each point
xi with a dot indicated with xi and each propagation respectively each factor ∆F (xi−xj), by a dashed
line joining xi and xj , we can express this in terms of diagrams. The VEV (2.17) of the four Φ fields
is therefore a sum of three so-called Feynman diagrams:

〈0|T
{

Φ(x1)Φ(x2)Φ(x3)Φ(x4)
}
|0〉 = �

x3

x1

x4

x2

+ �
x3

x1

x4

x2

+ �
x3

x1

x4

x2

Each (external) space-time point is denoted by a dot and each propagation between two space-time
points by a line joining them. This line has different shapes depending on the type of particle which
propagates. The most common ones are dashed lines for scalar particles, solid lines for fermions,
wiggly lines for photons or bosons, and curly lines for gluons.
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2.1.4. n-Point Correlation Function of Interaction Theory and Feynman Rules

Things get more interesting when we consider interactions. This means that the VEV contains more
than one field at the same space-time point. The n-point correlation function is then given by eq. (2.3):

〈Ω|T
{
φ(x1)φ(x2)...φ(xn)

}
|Ω〉 =

〈0|T
{
φI(x1)φI(x2)...φI(xn) exp

{
−i
∫ T
−T dt Hint(t)

}}
|0〉

〈0| exp
{
−i
∫ T
−T dt Hint(t)

}
|0〉

In order to evaluate this kind of calculations we follow ref. [10] and start with the evaluation of the
two-point correlation function

〈Ω|T
{

Φ(x)Φ(y)
}
|Ω〉 =

〈0|T
{

ΦI(x)ΦI(y) exp
{
−i
∫ T
−T dt Hint(t)

}}
|0〉

〈0| exp
{
−i
∫ T
−T dt Hint(t)

}
|0〉

(2.18)

of the Φ4 theory, where the interaction part of the Hamiltonian reads

Hint =

∫
d3z

λ

4!
Φ4. (2.19)

Here we used eq. (2.3) to find the expression containing only free fields and states of the interaction-
picture. From here on we will omit the subscript I since we work solely with these (free) interaction-
picture fields. In particular, contractions contain always these fields.
Initially we will ignore the denominator. The numerator can be expanded as a power series,

〈0|T
{

Φ(x)Φ(y) + Φ(x)Φ(y)

[
−i
∫

dt Hint(t)

]
+ ...

}
|0〉 . (2.20)

The first term is the free-field result as given in eq. (2.8). The second term (in Φ4 theory) is equal to

〈0|T
{

Φ(x)Φ(y)

[
−i
∫

dt

∫
d3z

λ

4!
Φ4(z)

]}
|0〉 =

= 〈0|T
{

Φ(x)Φ(y)

(−iλ
4!

)∫
d4z Φ(z)Φ(z)Φ(z)Φ(z)

}
|0〉 . (2.21)

Making use of Wick’s theorem and considering that all terms which are not fully contracted (meaning
terms which are proportional to any normal-ordered product of field) vanish between 〈0| and |0〉, we
can rewrite this as

〈0|T
{

Φ(x)Φ(y)

[
−i
∫

dt

∫
d3z

λ

4!
Φ4(z)

]}
|0〉 =

= 3

(−iλ
4!

)
∆F (x− y)

∫
d4z ∆F (z − z)∆F (z − z)+

+ 12

(−iλ
4!

)∫
d4z ∆F (x− z)∆F (y − z)∆F (z − z). (2.22)
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2.1. Correlation Functions, Wick’s Theorem, and Feynman Diagrams

The factors 3 and 12 in front of the terms are of combinatorial nature. They arise because there are
three ways to contract the Φ(z) fields among each other and for the second term four possibilities
to contract the Φ(x) field with one Φ(z) times three possibilities for the contraction of Φ(y) and one
Φ(z). The above result again can be expressed by Feynman diagrams. Again, each space-time point
is represented by a dot and each Feynman propagator ∆F by a dashed line. Ignoring all factors and
the integration

∫
d4z we obtain:

〈0|T
{

Φ(x)Φ(y)

[
−i
∫

dt

∫
d3z

λ

4!
Φ4(z)

]}
|0〉 = �x y z

+ �x yz

In these diagrams we now have to distinguish between external points x and y and an internal point
z. Each internal point is associated with a factor and integration of (−iλ)

∫
d4z (see eq. (2.22)). We

will keep this fact in mind until we discuss the so-called Feynman rules. Internal points where four
lines meet are called vertices.
Of course it is possible to proceed to higher orders in λ. For instance the λ3 term of the expansion of
the correlation function with three internal points z, w, and u reads

〈0|T
{

Φ(x)Φ(y)
1

3!

(−iλ
4!

)3 ∫
d4z Φ4(z)

∫
d4w Φ4(w)

∫
d4u Φ4(u)

}
|0〉 . (2.23)

Using Wick’s Theorem, we find again a sum of products of Feynman propagators. One possible fully
contracted term is

〈0|Φ(x)Φ(y)
1

3!

(−iλ
4!

)3 ∫
d4z ΦΦΦΦ

∫
d4w ΦΦΦΦ

∫
d4u ΦΦΦΦ |0〉 =

=
1

3!

(−iλ
4!

)3 ∫
d4z d4w d4u ∆F (x− z)∆F (z − z)∆F (z − w)∆F (w − y)∆2

F (w − u)∆F (u− u),

(2.24)

which can be represented by the following Feynman diagram, sometimes called “cactus” diagram:

�x y

u

z w

Actually this diagram represents not only one contraction of eq. (2.23) but 10,368 contractions. Again
this number is a factor of combinatorial nature (as the 3 and the 12 in eq. (2.22)) and occurs because

27



2. A Short General Introduction to Perturbation Theory for Interacting Fields

some contractions lead to the same form of diagrams. It arises from

3!︸︷︷︸
interchange of vertices

× 4 · 3︸︷︷︸
placement of contraction into z vertex

× 4 · 3 · 2︸ ︷︷ ︸
placement of contraction into w vertex

×

× 4 · 3︸︷︷︸
placement of contraction into u vertex

× 1/2︸︷︷︸
interchange of w-u contractions

.

Finally, the calculation of the numerator of eq. (2.20) yields

〈0|T
{

Φ(x)Φ(y) exp

{
−i
∫ T

−T
dt Hint(t)

}}
|0〉 =


 sum of all possible Feynman diagrams

with two external points


 , (2.25)

where each diagram is built from propagators, vertices, and external points. This corresponds in a way
to the superposition principle of quantum mechanics: We add up all possible ways the propagation
can take place. It can propagate directly =̂〈0|T

{
Φ(x)Φ(y)

}
|0〉 or it can emit and absorb in the way

some particles at any arbitrary (
∫

d4z . . . ) vertex z, where (−ig) then corresponds to the amplitude
for the emission, respectively absorption, of a particle at a vertex.
In practice one starts not with the calculation of an n-point correlation function, but rather with
drawing all possible diagrams (or most likely all diagrams up to the order in the coupling constant one
is interested in) first. These diagrams are then mnemonic devices for writing down the corresponding
analytic expressions. In order to do this in Φ4 theory one makes use of the following Feynman rules.

Position-Space Feynman Rules of Φ4 Theory:

1. For each line between x and y insert a Feynman propagator.

�

x y =̂ ∆F (x− y)

2. Integrate over each vertex z.

�z =̂ (−iλ)
∫

d4z,

3. For each external line insert a factor 1.

4. Multiply by the symmetry factor (=̂ number of contractions which lead to the same diagram).

These are the space-time Feynman rules since they are written in terms of space-time points. Often
it is useful to work in the momentum space. Therefore, in the Feynman diagrams we assign to each
line a momentum by drawing arrows instead of lines. The direction of the arrow3, respectively the
momentum, is arbitrary for scalar fields since ∆F (x− y) = ∆(y−x). The momentum-space Feynman
rules have then the following form:

3For fermions the arrows show the direction of charge flow.
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2.1. Correlation Functions, Wick’s Theorem, and Feynman Diagrams

Momentum-Space Feynman Rules of Φ4 Theory:

1. For each line, respectively arrow, insert the corresponding the Feynman propagator in momen-
tum space.

�
p

x y =̂ ∆̃F (p)

2. For each vertex z

�z =̂ (−iλ),

3. For each external point

�

p
x =̂ e−ipx,

4. Impose momentum conservation at each vertex: δ(
∑
pin −

∑
pout)

5. Integrate over each undetermined momentum:
∫ d4p

(2π)4

6. Multiply by the symmetry factor (=̂ number of contractions which lead to the same diagram).

It should now be clear now how to evaluate also the denominator of eq. (2.18), and our discussion
about the two-point correlation function of Φ4 theory is completed. In the same manner, it is possible
to evaluate any n-point correlation function. However, the explicit computation of some diagrams or
pieces of diagrams will cause troubles. Namely the pieces which are not connected to any external
point yield infinities. For example take the following diagram evaluated with the Feynman rules in
momentum and position space:

�p1

p2

z
∼ δ(4)(0) in momentum space
∼
∫

d4z (const) ∼ 2T · V in position space

which yields infinity, because in momentum space it is proportional to the delta distribution of zero,
δ(4)(0), and in position space such a diagram will result in an integral of a constant over d4z. Such
diagrams are called “disconnected” diagrams or vacuum bubbles. In the next section we will have a
closer look at their contribution to the n-point correlation function.

2.1.5. The Exponentiation of Disconnected Diagrams/Vacuum Bubbles

In this section we will consider the exponentiation of the disconnected diagrams to understand the
contribution of vacuum bubbles to the n-point correlation function. We follow the explanation given
in ref. [10]. We introduce a set of all various possible disconnected pieces and label the elements Vi.
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2. A Short General Introduction to Perturbation Theory for Interacting Fields

Then an arbitrary Feynman diagram has (additionally to the connected diagram) ni pieces of the form
Vi for each i. If the value of the piece Vi is also denoted by Vi, the value of the diagram is

(value of an arbitrary diagram) = (value of connected diagram) ·
∏

i

1

ni!
(Vi)

ni (2.26)

where 1/ni! is coming from the interchange of the ni copies of Vi. In the last section we found that
the numerator of the two-point (the same holds for the n-point) correlation function is given by the
sum of all possible diagrams with two (n) external points. Hence, factoring out the connected pieces,
the value of the numerator reads

(value of numerator) =
(∑

connected
)
·
∑

all {ni}

(∏

i

1

ni!
(Vi)

ni

)
. (2.27)

Here (
∑

connected) represents the sum of values of all connected pieces of diagrams and the sum of
“all {ni}” means that we have to sum over all the sets {n1, n2, ...} for each diagram. This expression
can be further rearranged to

. . . =
(∑

connected
)
·
∏

i

(∑

ni

1

ni!
(Vi)

ni

)
=

=
(∑

connected
)
·
∏

i

exp (Vi) =

=
(∑

connected
)
· exp

(∑

i

Vi

)
(2.28)

This means that the value of the numerator of the n-point correlation function can be written as a
product of the sum of all values of connected pieces times the exponential of the sum of all values
of the disconnected pieces. This is the so-called “exponentiation of the disconnected diagrams” and
the interesting point is getting clear when we take also the denominator into account: With the same
arguments one can express the value of the denominator as

(value of denominator) = exp

(∑

i

Vi

)
, (2.29)

which cancels exactly with the exponential in the numerator. Therefore as a final result we conclude
that the n-point correlation function is given by

〈Ω|T
{
φ(x1)φ(x2)...φ(xn)

}
|Ω〉 =


 sum of all connected diagrams

with n external points


 . (2.30)

All disconnected pieces cancelled out and we got rid of the upper mentioned infinities. Note that
with “disconnected” we denoted pieces of diagrams which are “disconnected to ALL external points”,
so-called vacuum bubbles.
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2.2. S-Matrix and Decay Width in Dependence of the Invariant Matrix Element M

2.2. S-Matrix and Decay Width in Dependence of the Invariant
Matrix Element M

In this section we will determine an expression to calculate the decay width of any particle decaying
into an arbitrary number of particles. To this end, we require the overlap between the initial and final
states, which can be expressed by use of the scattering or S-matrix,

out〈φB|φA〉in ≡ 〈φB|S |φA〉 , (2.31)

for an arbitrary initial state φA and final state φB. If the considered particles do not interact the
S-matrix is simply the identity operator. If the theory contains interactions, then there also will be
a chance that the particles do not interact. Therefore we can define the T matrix which isolates the
interesting (interaction) part of the S-matrix4

S = 1 + iT. (2.32)

Furthermore the S- or T .matrix should reflect the 4-momentum conservation by containing a factor
δ(4)(

∑
pinitial −

∑
pfinal). Extracting this factor we define the invariant matrix element M by

〈φB|iT |φA〉 = (2π)4δ(4)
(∑

pi −
∑

pf

)
· iM({pinitial} → {pfinal}). (2.33)

Now we are ready to calculate the decay width of any particle A decaying into n particles B1, B2, ..., Bn.
We assume that the particle A is at rest (kA = 0) and the momenta of the B-particles is given by pf
for Bf and f ∈ {1, 2, ..., n}. The probability of such a decay after a long time (tf − ti → ∞) can be
expressed with the T -matrix. We take the sum of the square of the absolute value of the transition
amplitude over all final momenta of B-particles:

P (A→ B1...Bn) =


∏

f

∑

pf



∣∣∣ 1〈B(p1)...B(pn)|iT |A(kA = 0)〉1

∣∣∣
2

=

=


∏

f

V

(2π)3

∫
d3pf



∣∣∣ 1〈B(p1)...B(pn)|iT |A(kA = 0)〉1

∣∣∣
2

(2.34)

The subscript 1 at the state indicates that it is very important to use normalised states to obtain
the right probability. Furthermore, in the second line we replaced the sum with an integral in the
following way

∑

pf

=
1

∆p3

∑

pf

∆p3 −→ V

(2π)3

∫
d3pf (2.35)

4One can get this result also by evaluating the so-called Born series.
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2. A Short General Introduction to Perturbation Theory for Interacting Fields

with (2π)3

V being the smallest possible ∆p3 in a discrete box with volume V . If we use the general
solutions of the Klein-Gordon and Dirac equation with the following choice of conventions,

Φ(x) =

∫
d3p

(2π)3
√

2Ep

(
ape
−ipx + a†pe

ipx
)

Ψ(x) =

∫
d3p

(2π)3
√

2Ep

∑

s

(
aspu

s(p)e−ipx + bs†p v
s(p)eipx

)
, (2.36)

the states are not normalized:

for scalars:

〈p|k〉 = 〈0|apa†k |0〉 = 〈0|
[
ap, a

†
k

]
− a†kap |0〉 = 2Ep(2π)3δ(3)(p− k) (2.37)

or for fermions:

〈p|k〉 = 〈0|apb†k |0〉 = 〈0|
{
ap, b

†
k

}
− b†kap |0〉 = 2Ep(2π)3δ(3)(p− k) (2.38)

where we have used the commutator (2.7) for scalar fields and the anti-commutator (1.8) for fermions.
Since actually we want them to be normalized, we make a correction by multiplying the factor

[
(2π)32Epδ(0)

]− 1
2 =

[
(2π)32Ep

1

(2π)3

∫
d3r ei(p=0)·r

]− 1
2

=
1√

2EpV
(2.39)

to each state/particle with momentum p. Making use of this, the probability assumes the following
form

P (A→ B1...Bn) =


∏

f

V

(2π)3

∫
d3pf

2EpfV


 1

2mAV

∣∣∣〈B(p1)...B(pn)|iT |A(kA = 0)〉
∣∣∣
2
. (2.40)

where EkA = mA since A is at rest. With eq. (2.33) and using the so called Fermi trick to calculate
the square of the delta distribution,

(2π)8
[
δ(4)

(
kA −

∑
pf

)]2
= (2π)4δ(4)

(
kA −

∑
pf

)∫
d4x ei(kA−

∑
pf )x =

= (2π)4δ(4)
(
kA −

∑
pf

)∫
d3r

∫
dt = (2π)4δ(4)(kA −

∑
pf )V t

(2.41)

the probability reads

P (A→ B1...Bn) =


∏

f

V

(2π)3

∫
d3pf

2EpfV


 1

2mAV
(2π)4δ(4)

(
kA −

∑
pf

)
V t |iM|2 . (2.42)

Since the decay width or decay rate is the probability per time, Γ = P
t we obtain
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Γ =
1

2mA


∏

f

1

(2π)3

∫
d3pf
2Epf


 |iM|2 (2π)4δ(4)(kA −

∑
pf ). (2.43)

Now we have a formula for the decay width in terms of the invariant matrix element M. In the next
section we will show a way of computing M for arbitrary processes in arbitrary interacting theories.

2.3. LSZ Reduction Formula and Computing S-Matrix Elements
from Feynman Diagrams

Since we know how to compute n-point correlation functions, a general relation between S-matrix
element and n-point correlation functions would be interesting. Exactly such a formula was first ob-
tained by Lehmann, Symanzik, and Zimmermann [22] and is known as LSZ reduction formula.
For the Φ4-theory it reads

n∏

i=1

∫
d4xi e

ipixi

m∏

j=1

∫
d4yje

ikjyj 〈Ω|T
{

Φ(x1) . . .Φ(xn)Φ(y1) . . .Φ(ym)
}
|Ω〉

∼
(

n∏

i=1

√
Zi

p2
i −m2 + iε

)


n∏

j=1

√
Zi

k2
j −m2 + iε


 〈p1...pn|S |k1...km〉 (2.44)

Here |p1...pn〉 and |k1...km〉 are n-/m-particle states with definite momenta and for all i ∈ {1, 2, ...n}
and j ∈ {1, 2...m} one has pi 6= kj ; meaning no particle is not interacting. We want to relate the transi-
tion amplitude 〈p1...pn|S |k1...km〉 to the (n+m)-point correlation function, 〈Ω|T{Φ(x1) . . .Φ(xn)Φ(y1)
. . . Φ(ym)} |Ω〉. The factor Z is a re-normalisation factor (wave-function renormalisation) which is
proportional to 1 for low orders in the coupling constant λ: Z = 1 + O(λ2). Furthermore, the “∼”
instead of an equivalent sign means that the left- and right-hand side are only identical in the vicinity
of the multi-poles p0

i → Epi and k0
j → Ekj . Away from the poles they differ by weakly divergent terms

or finite terms.
Hence, in order to calculate the S- or T -matrix element we have to compute the Fourier transform of
the (n+m)-point correlation function in the vicinity of the multi-poles and read off the corresponding
coefficients.
A more handy way to calculate S-/T -matrix elements, or directly the invariant matrix element M
respectively, is by using Feynman diagrams. In order find such a relation and corresponding Feynman
rules we have to take a closer look at

〈p1....pn|iT |k1...km〉 =

(
0〈p1....pn|T

{
exp

[
−i
∫

dt HI(t)

]}
|k1...km〉0

)

connected and amputated

,

(2.45)
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2. A Short General Introduction to Perturbation Theory for Interacting Fields

where the T on the left-hand side is the T -matrix element and must not be confused with the T on
the right-hand side, which is the time-ordering operator! The states indexed with 0 are the free states
of the unperturbed theory, which are eigenstates of the free Hamiltonian. The validity of this formula
can be shown by the use of the LSZ reduction formula (for more details see e.g. ref. [10]). The phrase
fully connected means that all external legs of the diagram are connected to each other and that
the diagram contains no vacuum bubbles. Furthermore, we define a diagram to be amputated if all
interactions of external legs, separated from the rest of the diagram only by a single propagator, are
cut off. Evaluating this formula order by order yields

iM · (2π)4δ(4)
(∑

pi −
∑

pf

)
=


 sum of all fully connected, amputated Feynman

diagrams with pi incoming and pf outgoing


 (2.46)

with a kind of “new” Feynman rules listed later. The usage of Feynman diagrams is now a bit different
from the above introduced diagrams. For two particles in the final and the initial state the 0th order
contribution of eq. (2.45) reads

0〈p1p2|k1k2〉0 =
√

2Ep1
2Ep2

2Ek12Ek2〈0|ap1
ap2

a†k1
a†k2
|0〉 =

= 2Ek12Ek2(2π)6
[
δ(3) (k1 − p1) δ(3) (k2 − p2) + δ(3) (k1 − p2) δ(3) (k2 − p1)

]
. (2.47)

The delta functions force the final state to be identical to the initial state and we can represent it
diagrammatically as

� + � .

Now, in contrast to the evaluation of the VEV, for higher orders, not fully contracted terms do not
necessarily vanish after using Wick’s theorem . E.g.:

Φ+
I |p〉0 =

∫
d3k

(2π)3

1√
2Ek

ake
−ikx√2Epa

†
p |0〉 =

=

∫
d3k

(2π)3

1√
2Ek

e−ikx
√

2Ep(2π)3δ(3)(k − p) |0〉 = e−ipx |0〉 , (2.48)

and therefore we introduce a contraction between fields and states as follows - which will be diagram-
matically the external lines:

ΦI(x) |p〉 = e−ipx |0〉 . (2.49)

But since iM· (2π)4δ(4)(
∑
pi−

∑
pf ) is the part of the S-matrix, which contains only the interactions

we are not interested in processes with identical final and initial states containing not more interactions
than vacuum bubbles. Hence, to obtain interactions we have to contract all fields of the initial and
final states with one field of the Hamiltonian. Therefore, the diagrams we are interested in have to be
fully contracted. Moreover, corrections of the external legs by interactions like
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2.3. LSZ Reduction Formula and Computing S-Matrix Elements from Feynman Diagrams

� + � + � + . . .

represent the evolution of the free |p〉0 into the interacting |p〉, in analogy to the difference between
|Ω〉 and |0〉. These corrections have nothing to do with the scattering and can therefore be neglected in
the computation of M. Cutting these interactions of external legs we obtain amputated diagrams as
defined above. Finally, we have to represent the Feynman rules to compute invariant matrix elements
M with eq. (2.46). In the following we will give the rules for fermions and scalars in a Yukawa Theory,

H = HDirac +HKlein-Gordon + g

∫
d3r Ψ̄ΨΦ (2.50)

in momentum space as they are also given in ref. [10].

Momentum-Space Feynman Rules for Computing iM with eq. (2.46) for
Fermions and Bosons in Yukawa Theory:

1. Propagators:

Φ(x)Φ(y) =
�

= ∆̃F (q)

Ψ(x)Ψ(y) =
�

= S̃F (p)

2. Vertices:

� = − ig,

3. External leg contractions:

Φ |q〉 = � = 1, 〈q| Φ =� = 1

Ψ |p, s〉 =� = us(p), 〈p, s|Ψ =� = ūs(p)

Ψ̄ |k, s〉 =� = v̄s(k), 〈k, s| Ψ̄ =� = vs(k)

where |p, s〉 denotes a fermion and |k, s〉 denotes an antifermion. Note that in the diagrams with
antifermions the vector points in the opposite direction than k. For both, fermions and boson,
hold: The direction of momentum is always ingoing for initial-state particles and outgoing for
final-state particles.
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4. Impose momentum conservation at each vertex.

5. Integrate over each undetermined loop momentum.

6. Figure out the overall sign of the diagram. (It can be demonstrated that the sign of a diagram
involving fermions is equal to (−1)n, where n is the number of times that fermion contraction
lines intersect.)

Symmetry factors never occur in diagrams of Yukawa theory, since the interaction part of the Hamil-
tonian contains only three different fields which cannot substituted for one another in contractions
and the 1/n! factor of the Taylor series always cancels with the factor n! from interchanging vertices
to obtain the same diagrams.
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3. Mesonic Component of the Lagrangian for
Nf = 3 Flavors

The aim of this work is to study baryons. However, since spontaneous symmetry breaking in the
meson sector affects also the baryon part, we will first construct a three-flavor linear sigma model
with vector and axial-vector mesons as it has been done in [2]. This effective model based on QCD
should of course contain all properties of the QCD Lagrangian:

• Exact SU(3)c color symmetry.

• Exact U(Nf )R × U(Nf )L chiral symmetry in the limit of massless quarks.

• Spontaneous breaking of chiral symmetry.

• Chiral U(1)A anomaly.

• Explicit breaking of chiral symmetry.

• Poincaré and CP symmetry.

The meson Lagrangian which we will introduce is basically the same as in ref. [2] with the difference
that the dilaton field is neglected here. In fact, the mesonic Lagrangian Lmeson (3.12) we will construct,
is actually valid for an arbitrary number of colors Nc and flavors Nf .

3.1. Construction of a Chiral Lagrangian for Mesons in the eLSM

Since we construct an effective model, our degrees of freedom are hadrons which are color neutral
because of the confinement hypothesis. This means that the SU(3)c color symmetry will be imple-
mented per construction. Furthermore, we have to fulfil chiral symmetry. To this end, we define a
meson matrix Φ which has the quantum numbers and the transformation properties of an appropri-
ately chosen quark-antiquark correlator:

Φij ≡
√

2q̄j,Rqi,L =
1√
2

(
q̄jqi + iq̄jiγ

5qi
)
≡ Sij + iPij , (3.1)

In the last step we used the chiral projection operators (1.25) and recognised Sij ≡ 1√
2
q̄jqi to be the

scalar quark-antiquark current and Pij ≡ 1√
2
q̄jiγ

5qi the pseudoscalar quark-antiquark current1.

1Namely, S |0〉 represents a scalar meson and P |0〉 a pseudoscalar meson.
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3. Mesonic Component of the Lagrangian for Nf = 3 Flavors

With the chiral transformation behaviour of the left- and right-handed quarks, eq. (1.26), we find
that the meson matrix transforms under chiral transformations as

Φij −→
√

2q̄k,RU
†
kj,RUil,Lql,L = Uil,LΦlkU

†
kj,R.

Ergo:

Φ −→ ULΦU †R. (3.2)

First we consider the chiral limit mi → 0 for all i ∈ {u, d, s}; i.e., when all quark masses vanish. Using
only chirally invariant terms in powers of Φ yields:

Lsym = Tr
{

(∂µΦ)†∂µΦ
}
−m2

0 Tr
{

Φ†Φ
}
− λ1

[
Tr
{

Φ†Φ
}]2
− λ2 Tr

{
Φ†Φ

}2
. (3.3)

This Lagrangian contains only scalar and pseudoscalar degrees of freedom and corresponds to the
original form of the linear sigma model. Since an effective theory is not valid up to arbitrarily high
energy scales, but only up to the energy of the heaviest resonance incorporated into the model, our
Lagrangian does not have to preserve renormalisability. Therefore, one might think that higher-order
chirally invariant terms as for instance α[Tr{Φ†Φ}]6 should be possible. However, we make use of
an additional criterion by taking the dilatation invariance into account. After we have included the
dilaton field G, only dimensionless coupling constants are allowed. Hence, we see that for instance the
coupling constant α of the term α[Tr{Φ†Φ}]6 has dimension [E−2]. Trying to render it dimensionless
by α

G2 [Tr{Φ†Φ}]6 will lead to a singularity for G → 0, we consider terms up to the order four in Φ
only. For details see e.g. ref. [2, 14].
As a next step we include vector and axial-vector degrees of freedom. To this end we define a right-
handed matrix Rµ and a left-handed matrix Lµ as

Rµij ≡
√

2q̄j,Rγ
µqi,R =

1√
2

(
q̄jγ

µqi − q̄jγ5γµqi
)
≡ V µ

ij +Aµij , (3.4)

and

Lµij ≡
√

2q̄j,Lγ
µqi,L =

1√
2

(
q̄jγ

µqi + q̄jγ
5γµqi

)
≡ V µ

ij −A
µ
ij , (3.5)

with V µ representing the vector and Aµ the axial-vector currents, eq. (1.35 and (1.38). With eq. (1.26)
the right- and left-handed fields transform under chiral transformations as

Rµ −→ URR
µU †R and Lµ −→ ULL

µU †L. (3.6)
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3.1. Construction of a Chiral Lagrangian for Mesons in the eLSM

Finally, we define the right- left-handed field-strength tensor Rµν and Lµν as

Rµν = ∂µRν − ∂νRµ and Lµν = ∂µLν − ∂νLµ. (3.7)

Considering the chiral transformations of Φ, Rµ, and Lµ we can construct further terms to include
vector and axial-vector degrees of freedom in our Lagrangian:

Lsym,(ax)vec =− 1

4
Tr {LµνLµν +RµνR

µν}+ Tr

{
m2

1

2
(LµL

µ +RµR
µ)

}
+

+ i
g2

2
(Tr {Lµν [Lµ, Lν ]}+ Tr {Rµν [Rµ, Rν ]}) +

+
h1

2
Tr
{

Φ†Φ
}

Tr {LµLµ +RµR
µ}+

h2

2
Tr
{

(LµΦ)†(LµΦ) + (RµΦ)†(RµΦ)
}

+

+ 2h3 Tr
{

ΦRµΦ†Lµ
}

+ g3 (Tr {LµLνLµLν}+ Tr {RµRνRµRν}) +

+ g4 (Tr {LµLµLνLν}+ Tr {RµRµRνRν}) + g5 Tr {LµLµ}Tr {RνRν}+

+ g6 (Tr {LµLµ}Tr {LνLν}+ Tr {RµRµ}Tr {RνRν}) . (3.8)

Another feature of QCD we have to implement is the explicit chiral symmetry breaking. We do this
by adding in the (pseudo)scalar sector the term

LESB,scalar = Tr
{
H
(

Φ + Φ†
)}

(3.9)

and in the (axial)vector sector

LESB,vector = Tr {∆ (LµL
µ +RµR

µ)} , (3.10)

whereH = diag(hu0 , h
d
0, h

s
0, ...) ∼ diag(mu,md,ms, ...) and ∆ = diag(δu, δd, δs, ...) ∼ diag(m2

u,m
2
d,m

2
s, ...).

In order to describe the chiral anomaly in our model we add

Lanomaly = c
(

det Φ− det Φ†
)2
, (3.11)

because the determinant is invariant under SU(Nf )L × SU(Nf )R but not under U(1)A. This can be
seen by using det(ABC) = detAdetB detC and the fact that the determinant of a SU(N) matrix is
equal to one.
Finally, we have the following mesonic Lagrangian:

39



3. Mesonic Component of the Lagrangian for Nf = 3 Flavors

Lmeson =Lsym + Lsym,(ax)vec + LESB,scalar + LESB,vector + Lanomaly =

= Tr
{

(DµΦ)†DµΦ)
}
−m2

0 Tr
{

Φ†Φ
}
− λ1

[
Tr
{

Φ†Φ
}]2
− λ2 Tr

{
Φ†Φ

}2
+

− 1

4
Tr {LµνLµν +RµνR

µν}+ Tr
{(m1

2
+ ∆

)
(LµL

µ +RµR
µ)
}

+

+ Tr
{
H
(

Φ + Φ†
)}

+ c
(

det Φ− det Φ†
)2

+

+ i
g2

2
(Tr {Lµν [Lµ, Lν ]}+ Tr {Rµν [Rµ, Rν ]}) +

+
h1

2
Tr
{

Φ†Φ
}

Tr {LµLµ +RµR
µ}+

h2

2
Tr
{

(LµΦ)†(LµΦ) + (RµΦ)†(RµΦ)
}

+

+ 2h3 Tr
{

ΦRµΦ†Lµ
}

+ g3 (Tr {LµLνLµLν}+ Tr {RµRνRµRν}) +

+ g4 (Tr {LµLµLνLν}+ Tr {RµRµRνRν}) + g5 Tr {LµLµ}Tr {RνRν}+

+ g6 (Tr {LµLµ}Tr {LνLν}+ Tr {RµRµ}Tr {RνRν}) (3.12)

with

DµΦ = ∂µΦ− ig1 (LµΦ− ΦRµ) . (3.13)

3.2. Discrete Symmetries of the eLSM

Last but not least we should check if the Lagrangian is invariant under charge conjugation, parity,
and time reversal. Quarks being fermions transform as shown in eq. (1.15) and eq. (1.23):

q(t,x)
P−−−−→ qP (t,x) = γ0q(t,−x)

q
C−−−−→ qC = Cq̄T = iγ2q? with C = iγ2γ0. (3.14)

The transformation behaviour of Φ, Rµ, and Lµ can be computed by using proper features of the
gamma matrices γµ, eq. (B.1) and (B.4), the charge conjugation matrix C, eq. (1.20) and (1.21), and
the chiral projection operators, eq. (1.25). Furthermore, we always have to add a minus sign when
we interchange two equal fermions. (For instance when we transpose an object with fermions in it.)

3.2.1. Parity Transformations:

For Φij =
√

2q̄j,Rqi,L =2
√

2q†jPRγ
0PLqi we get:

Φij(t,x)
P−−−−→

√
2
[
γ0qj(t,−x)

]†
PRγ

0PLγ
0 qi(t,−x) =

√
2q†jγ

0PRγ
0PLγ

0qi = . . . ,

2Since γ5† = γ5 and therefore P †L/R = PL/R.
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3.2. Discrete Symmetries of the eLSM

since (γ0)† = γ0. Using γ5† = γ5 we can identify q†jPL with q†j,L and get:

· · · =
√

2q†jPLγ
0PRqi =

√
2q†jγ

0PRqi =
√

2q̄jPRqi = . . . ,

where we have used γ0, γ5 = 0 to exchange the projection operator with γ0 and then applied that
PRPR = PR. Writing out the projection operator, eq. (1.25), yields

· · · = 1√
2
q̄jqi −

1√
2
q̄jγ

5qi =
1√
2
q̄jqi − i

1√
2
q̄jiγ

5qi = Sij − iPij . . . .

Since the scalar and pseudoscalar currents are hermitian that is identical to

Φij(t,x)
P−−−−→ S†ij − iP

†
ij ≡ Φ†ij . (3.15)

The calculations for the transformations of the fields Rµij =
√

2q̄j,Rγ
µqi,R =

√
2q†j,Rγ

0γµqi,R and

Lµij =
√

2q̄j,Lγ
µqi,L =

√
2q†j,Lγ

0γµqi,L look quite similar. Using the same relations we find:

Rµij(t,x)
P−−−−→

√
2q†j(t,−x)γ0PRγ

0γµPRγ
0qi(t,−x) =

√
2q†j,L(t,−x)γµγ0qi,L(t,−x) =

=





√
2q†j,L(t,−x)γ0γµqi,L(t,−x) for µ = 0,

−
√

2q†j,L(t,−x)γ0γµqi,L(t,−x) for µ = 1, 2, 3,

=





Lµij(t,−x) for µ = 0

−Lµij(t,−x) for µ = 1, 2, 3



 = gµνLν,ij(t,−x),

Lµij(t,x)
P−−−−→





Rµij(t,−x) for µ = 0

−Rµij(t,−x) for µ = 1, 2, 3



 = gµνRν,ij(t,−x).

(3.16)

3.2.2. Charge Conjugations:

For Φij =
√

2(PRqj)
†γ0PLqi =3

√
2q†jPRγ

0PLqi we get:

Φij
C−−−−→

√
2
(
Cq̄Tj

)†
PRγ

0PLCq̄
T
i =
√

2qTj γ
0?C†PRγ0PLCq̄

T
i = . . . .

Inserting ones by 14×4 = C−1C we get:

· · · =
√

2qTj γ
0?(C−1PRC)(C−1γ0C)(C−1PLC)q̄Ti =

√
2qTj γ

0?P TR (−γ0)TP TL q̄
T
i = . . . ,

where we used eq. (1.20) and (1.21) and the fact that the following relation holds:

C−1γ5C = γ5T ⇒ C−1PR/LC = P TR/L, (3.17)

3Since γ5† = γ5 and therefore P †L/R = PL/R.
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3. Mesonic Component of the Lagrangian for Nf = 3 Flavors

which can be shown by writing out the γ5 as iγ0γ1γ2γ3. The above expression can be further rear-
ranged by using {γ5, γ0} = 0 and γ0?γ0T = (γ0γ†)T = (γ0γ0)T = 1

T
4×4 = 14×4:

· · · = −
√

2qTj γ
0?γ0TP TL P

T
L q̄

T
i = −

√
2qTj P

T
L P

T
L q̄

T
i = −

√
2qTj,Lγ

0T (q†i,R)T = . . . .

As a next step we write our the spinor indices (α and β) and use the fact that for u being an (1×N)-
vector, M being an (N ×N)-matrix and v being a (N × 1)-vector the equation

uMv = (uMv)T , (3.18)

holds, since the product is a number. Therewith we get

· · · = −
√

2
[
qTj,L

]
α

[
γ0T
]
αβ

[
(q†i,R)T

]
β

=
√

2
{[
qTj,L

]
α

[
γ0T
]
αβ

[
(q†i,R)T

]
β

}T

=
√

2
[
qTj,Lγ

0T (q†i,R)T
]T

= . . . . (3.19)

Furthermore we regarded the fact that the transposition interchanges two fermions which yields a
minus sign. Finally we perform the transposition in spinor space(!) and at the end include a
transposition in flavor space(!). The result is:

Φij
C−−−−→

√
2q†i,Rγ

0qj,L =
√

2q̄i,Rqj,L = Φji = ΦT
ij . (3.20)

For Rµij =
√

2q̄j,Rγ
µqi,R =

√
2q†j,Rγ

0γµqi,R and Lµij =
√

2q̄j,Lγ
µqi,L =

√
2q†j,Lγ

0γµqi,L we get:

Rµij
C−−−−→ qTj γ

0C†PRγ0γµPRCq̄
T
i = qTj γ

0C−1PRCC
−1γ0CC−1γµCC−1PRCq̄

T
i =

= qTj γ
0PR(−γ0)(−γµ)TPRq̄

T
i

3.18
= −q̄iPRγµPLqj = −(Lµij)

T

Lµij
C−−−−→

√
2 [q̄i,R (−γµ) qj,R]T = −(Rµij)

T . (3.21)

For reasons of clarity and comprehensibility we will summarize the results again:

Φ Rµ Lµ

P Φ†





Lµ(t,−x) for µ = 0

−Lµ(t,−x) for µ = 1, 2, 3





Rµ(t,−x) for µ = 0

−Rµ(t,−x) for µ = 1, 2, 3

C ΦT − (Lµ)T − (Rµ)T

(3.22)

It can be shown that the mesonic Lagrangian (3.12) is invariant under charge conjugation and parity
transformations (using Tr{MT } = Tr{M}).
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3.3. Explicit Form of the eLSM for Nf = 3

3.2.3. Time Reversal:

As a consequence of the CPT theorem the symmetry under time reversal is then automatically fulfilled.

3.3. Explicit Form of the eLSM for Nf = 3

In the last section we already constructed a meson Lagrangian Lmeson which is also globally chirally
invariant for the special case of Nf = 3. The matrix Φ containing scalar and pseudoscalar degrees of
freedom reads for three flavors

Φ = S + iP =
1√
2




(σN+a0
0)+i(ηN+π0)√

2
a+

0 + iπ+ K+
S + iK+

a−0 + iπ− (σN−a0
0)+i(ηN−π0)√

2
K0
S + iK0

K−S + iK− K̄0
S + iK̄0 σS + iηS


 . (3.23)

The left- and right-handed matrices Lµ and Rµ are combinations of vector V µ and axial-vector Aµ

degrees of freedom, eq. (3.24) and (3.25),

Rµ = V µ −Aµ =
1√
2




ωµN+ρµ0

√
2
− fµ1N+aµ0

1√
2

ρµ+ − aµ+
1 K∗µ+ −Kµ+

1

ρµ− − aµ−1
ωµN−ρµ0

√
2
− fµ1N−a

µ0
1√

2
K∗µ0 −Kµ0

1

K∗µ− −Kµ−
1 K̄∗µ0 − K̄µ0

1 ωµS − f
µ
1S


 (3.24)

and

Lµ = V µ +Aµ =
1√
2




ωµN+ρµ0

√
2

+
fµ1N+aµ0

1√
2

ρµ+ + aµ+
1 K∗µ+ +Kµ+

1

ρµ− + aµ−1
ωµN−ρµ0

√
2

+
fµ1N−a

µ0
1√

2
K∗µ0 +Kµ0

1

K∗µ− +Kµ−
1 K̄∗µ0 + K̄µ0

1 ωµS + fµ1S


 . (3.25)

Thus, our model describes four resonances for scalars (σN , σS ,a0,KS), pseudoscalars (ηN , ηS ,π,K),
vectors (ωµN , ω

µ
S ,ρ

µ,K∗µ), and axial-vectors (fµ1N , f
µ
1S ,a

µ
1 ,K1). We assign the fields in the following

way:

σN =̂ f0(1370),

σS =̂ f(1500),

a0 =̂ a0(980) or a0(1450),

KS =̂ K?
S(1430),
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3. Mesonic Component of the Lagrangian for Nf = 3 Flavors

ηN =̂ the SU(2) counterpart of the η meson ≡ ūu+d̄d√
2
,

ηS =̂ strange contribution to η and η′ ≡ s̄s,
π =̂ pion,

K =̂ kaons,

ωN =̂ ω(782),

ωS =̂ Φ(1020),

ρ =̂ ρ(770),

K∗ =̂ K∗(892),

f1N =̂ f1(1285),

f1S =̂ f1(1420),

a1 =̂ a1(1260),

K1 =̂ K1(1270),

G =̂ f0(1710).

Note that a mixing phenomena in the scalar-nonscalar sector occur, see ref. [14], but they will not be
important for our work.
The matrices H and ∆ in the explicit symmetry breaking terms are given by

H =




h0N
2 0 0

0 h0N
2 0

0 0 h0S√
2


 , ∆ =




δN 0 0

0 δN 0

0 0 δS


 . (3.26)

If m2
0 < 0, spontaneous symmetry breaking takes place and the two scalar-isosinglet fields σN and σS

assume non-zero vacuum expectation values ϕN and ϕS . As a consequence, mixing terms between
(axial-)vector and (pseudo)scalar fields occur. In order to discuss this issue we first consider the term
Tr{(DµΦ)†(DµΦ)} in Lmeson (3.12). If we write it out we get:

Tr
{

(DµΦ)†(DµΦ)
}

= Tr
{

[∂µΦ− ig1(LµΦ− ΦRµ)]† [∂µΦ− ig1(LµΦ− ΦRµ)]
}

=

= Tr
{[
∂µΦ† + ig1(Φ†L†µ −R†µΦ†)

]
[∂µΦ− ig1(LµΦ− ΦRµ)]

}
=

= . . .

Simply plugging in the matrices Φ, eq. (3.23), Rµ, eq. (3.24) and Lµ, eq. (3.25) and expanding
would lead to a lot of terms. At the moment we are interested only in some terms and we are able
to simplify the calculation. We are looking for mixing terms of (pseudo)scalar and axial-vector states
after condensation. Therefore, only the terms

−ig1(∂µΦ†)(LµΦ− ΦRµ) and + ig1(Φ†L†µ −R†µΦ†)(∂µΦ) (3.27)
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are interesting. We are searching for terms which are proportional to ϕN and ϕS after condensation.
Hence, without loss of generality we can set all scalar and pseudoscalar fields in LµΦ − ΦRµ and
Φ†L†µ −R†µΦ† to zero:

LµΦ− ΦRµ −→ LµΦ′ − Φ′Rµ

Φ†L†µ −R†µΦ† −→ Φ′†L†µ −R†µΦ′† (3.28)

with Φ′ =
1

2




ϕN 0 0

0 ϕN 0

0 0
√

2ϕS


 ≡ Φ′†. (3.29)

Using L†µ = Lµ and R†µ = Rµ the Tr
{

(DµΦ)†(DµΦ)
}

term yields us the following mixing terms:

− g1ϕNf
µ
1N∂µηN −

√
2g1ϕSf

µ
1S∂µηS − g1ϕNa

µ
1 · (∂µπ)+

− ig1

(
ϕN
2
− ϕS√

2

)[
K−µ1 (∂µK

+) + K̄0µ
1 (∂µK

0) +K+µ
1 (∂µK

−) +K0µ
1 (∂µK̄0)

]
+

− ig1

(
ϕN
2
− ϕS√

2

)[
K̄0µ

1 (∂µK
0
2 ) +K∗−µ(∂µK

−
S )−K∗+µ(∂µK

−
S )−K∗0µ(∂µK̄0

S)
]
. (3.30)

These mixing terms indicate that the (axial-)vector and (pseudo)scalar fields do not yet correspond
to physical resonances. We perform a shift of the (axial-)vectors as follows:

fµ1N −→ fµ1N + wf1N
∂µηN ,

fµ1S −→ fµ1S + wf1S
∂µηS ,

aµ1 −→ aµ1 + wa1∂
µπ,

Kµ0
1 −→ Kµ0

1 + wK1∂
µK̄0 (and h.c.),

Kµ+
1 −→ Kµ+

1 + wK1∂
µK+ (and h.c.),

K∗µ0
1 −→ K∗µ0

1 + wK∗∂
µK0

S (and h.c.),

K∗µ+
1 −→ K∗µ+

1 + wK∗∂
µK+

S (and h.c.).

(3.31)

The w parameters have to be determined by imposing that no mixing terms, eq. (3.30), remain. For
instance to find wf1N

we have to extract all terms of the full Lagrangian (3.12) which describe tran-
sitions between (pseudo)scalar and (axial)vector fields after the condensation of the scalar isosinglets.
First we have the mixing term in eq. (3.30):

−g1ϕNf
µ
1N∂µηN . (3.32)
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3. Mesonic Component of the Lagrangian for Nf = 3 Flavors

But also terms which originally were proportional to f1Nµf
µ
1N yield a mixing between fµ1N and ηN

after the shift (6.11).
For example, the Tr{g2

1 (LµΦ′ − Φ′Rµ)† (LµΦ′ − Φ′Rµ)} part of Tr{(DµΦ)†(DµΦ)} contains the term

1

2
g2

1ϕ
2
Nf1Nµf

µ
1N

shift−−→ 1

2
g2

1ϕ
2
N

(
fµ1N + wf1N

∂µηN
)2

. (3.33)

Thus this yields the non-physical transition

g2
1ϕ

2
Nwf1N

fµ1N∂µηN . (3.34)

Going through the whole Lagrangian we finally find the vertex of the transition fµ1N (∂µηN ) to be

[
−g1ϕN + g2

1ϕ
2
Nwf1N

+
1

2
(h1 + h2 − h3)ϕ2

Nwf1N
+
h1

2
ϕ2
Swf1N

+
(
m2

1 + 2δN
)
wf1N

]
!

= 0. (3.35)

which of course should be zero for all mixing terms to vanish. That results in

wf1N
=

g1ϕN

g2
1ϕ

2 + 1
2(h1 + h2 − h3)ϕ2

N + 1
2h1ϕ2

S +m2
1 + 2δN

≡ g1ϕN
m2
f1N

, (3.36)

where mf1N
is the mass of f1N and could be read off the Lagrangian. It is the square root of the

coefficient of the 1
2fµ1Nf

µ
1N -term:

mf1N
=

√
g2

1ϕ
2
N +

1

2
(h1 + h2 − h3)ϕ2

N +
1

2
h1ϕ2

S +m2
1 + 2δN . (3.37)

In analogy one finds all the other w parameters and (axial)vector masses:
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=
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1ϕ

2 + 1
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2h1ϕ2

S +m2
1 + 2δN

≡ g1ϕN
m2
a1

with ma1 = mf1N
,
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√
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(3.38)

All in all, with the shift we eliminated the non-physical mixing terms, but the kinetic terms of the
(pseudo)scalar mesons are no longer properly normalized. Considering for instance the kinetic term
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3.3. Explicit Form of the eLSM for Nf = 3

of the ηN field: Because of the shift fµ1N → fµ1N + wf1N
∂µηN the term Tr

{
(DµΦ)†(DµΦ)

}
yields not

only the contribution 1
2(∂µηN )2, but additionally, from the former mixing terms −g1ϕNbf1N∂µηN and

from the term proportional to fµ1Nf
µ
1N the shift yields the terms −g1ϕNwf1N

(∂µηN )2 and
1
2g

2
1ϕ

2
Nw

2
f1N

(∂µηN )2. In the same way, from all the other terms proportional to fµ1Nf
µ
1N in the whole

Lagrangian, after the shift we obtain terms which are proportional to (∂µηN )2. Altogether we find for
the kinetic term of ηN :
(

1

2
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+
1

2
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4
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2
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(3.39)

To renormalise this to 1
2(∂µηN )2 we introduce the parameter ZηN so that the transformation

ηN −→ ZηN ηN (3.40)

yields the correctly normalised kinetic term. In this way we find that ZηN is given by

Z2
ηN

=
ma2

1

m2
a1
− g2

1ϕ
2
N

. (3.41)

In an analogous way, we obtain the renormalisation of the following fields:

π −→ Zππ,

K −→ ZKK,

ηS −→ ZηSηS ,

KS −→ ZKSKS , (3.42)

with

Z2
π = Z2
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=
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1
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1ϕ
2
N

. (3.43)

and
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K =

4m2
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4m2
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− g2
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2ϕS)2
,

Z2
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=
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2
S

,

Z2
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=
4m2
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4m2
K∗ − g2

1(ϕN −
√

2ϕS)2
. (3.44)
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3. Mesonic Component of the Lagrangian for Nf = 3 Flavors

Summarizing, we have seen that spontaneous symmetry breaking in the meson sector leads to shifts
of all axial-vector and some vector fields by the corresponding (pseudo)scalars, because the original
ones were not physical. As a consequence, we have to renormalise the (pseudo)scalars.
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4. Features Concerning Baryons and Diquarks

Before we construct a Lagrangian for baryons we will have a closer look at their properties and the
inner structure. To this end, also diquarks will be discussed.

4.1. Baryons: qqq States

Baryons are strongly interacting fermions with baryon number B = 1. Since quarks have baryon
number B = 1/3 and antiquarks have baryon number B = −1/3, baryons are composed (in the most
general case) of three valence quarks (plus an arbitrary number of quark-antiquark and gluon pairs).
As far as it is known [23], all established baryons can be understood as formed by three constituent
quarks, where a constituent quark is a valence quark dressed a cloud of gluons and quark-antoquark
pairs.

4.2. Baryon Flavor Multiplets with Nf = 3

In comparison with the typical hadronic mass scale, Mh ∼ 1 GeV, the masses of up, down, and strange
quarks are small1 and approximately equal. In table 4.1 the properties of all quark flavors are listed.

flavor spin mass [MeV] quark quantum numbers

Q T3 S C B T B

u 1/2 2.3+0.1
−0.5 2/3 1/2 0 0 0 0 1/3

d 1/2 4.8+0.5
−0.3 -1/3 -1/2 0 0 0 0 1/3

s 1/2 95± 5 -1/3 0 -1 0 0 0 1/3

c 1/2 (1.275± 0.025) · 103 2/3 0 0 1 0 0 1/3

b 1/2 (4.18± 0.03) · 103 -1/3 0 0 0 -1 0 1/3

t 1/2 (173.07± 1.14) · 103 2/3 0 0 0 0 1 1/3

Table 4.1.: Properties of the quark flavors. The quark quantum numbers are electrical charge Q, z-
component of the isospin T3, strangeness S, charm C, bottom charge B, top charge T, and
baryon number B.

1This condition is well verified for light quarks u and d, but can also be extended to the s-quark, although in the latter
case the breaking is larger.
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4. Features Concerning Baryons and Diquarks

Thus, if we consider only the lightest three flavors an approximate SU(3) flavor symmetry exists. If
we assume the SU(3) flavor symmetry to be exact the three quarks form a SU(3) triplet. It is the
fundamental representation of the SU(3) group from which all other multiplets can be built. Figure 4.1
illustrates this triplet and also the antiquark triplet in which the signs of additive quantum numbers
are reversed. In order to distinguish the states of the mulitplets we use the two quantum numbers Y
and T3. Here Y = 2/

√
3T8 = B+S denotes the hypercharge, T8 and T3 are the two SU(3) generators

which form a Cartan subalgebra and B and S are the baryon number and strangeness, listed in table
4.1.

Figure 4.1.: SU(3) quark and antiquark multiplets, Y = 2/
√

3T8 = B + S.

As mentioned the baryon is built from three quarks. Thus, we have to combine three quark triplets
to obtain all 27 possible combinations sorted into multiplets. We start with the combination of two
quarks, which yields

[3]⊗ [3] = [6]⊕ [3̄], (4.1)

This means that the combination of the two quark triplets results in a (symmetric) sextet and an
(anti-symmetric) antiquark triplet. The graphical form of this coupling is shown in Fig. 4.2, in which
the quark flavor content is indicated, for the moment without taking care of the symmetry.

Figure 4.2.: The qq SU(3) multiplets, [3]⊗ [3] = [6]⊕ [3̄].

In order to find the correct symmetry of the flavor content we consider separately the SU(2) I-spin,
SU(2) U -spin and SU(2) V -spin doublets, (u, d), (d, s), and (s, u). Figure 4.3 shows the three SU(2)
doublets.
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4.2. Baryon Flavor Multiplets with Nf = 3

Figure 4.3.: SU(2) I-spin, SU(2) U-spin and SU(2) V -spin doublets.

Following the rules for the addition of the angular momentum the possible combinations of two spin-
1/2 states are constructed. Indeed, since SU(2) underlies also the description of ordinary spin, the
isospin is mathematically a carbon copy of the spin and we get the combination of two SU(2)-isospin
doublets (u, d) in utter analogy. Fig. 4.4 displays the results.

with the Clebsch-Gordan coefficients (NOTE: A square-root sign is to be understood over every coefficient.):
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.
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Figure 34.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974). The coefficients
here have been calculated using computer programs written independently by Cohen and at LBNL.

Figure 4.4.: The combination of two isospin doublets, [2]⊗ [2] = [3]⊕ [1], and the respective Clebsch-
Gordan coefficients.

Since the mathematics of I, U , and V spin are identical (all are based on the SU(2) group) the quark
content of the other states in figure 4.2 is found in the same way. In fact, we will see that almost all
of the SU(3) structure that we require can be obtained by successive application of SU(2). Figure 4.5
outlines the resulting multiplets, now with the symmetry content of quark flavor.

Figure 4.5.: The qq SU(3) multiplets with quark content, [3]⊗ [3] = [6]⊕ [3̄].
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4. Features Concerning Baryons and Diquarks

In order to get the qqq baryon SU(3) multiplets we have to add a further quark triplet. The fi-
nal decomposition,

[3]⊗ [3]⊗ [3] = ([6]⊗ [3])⊕ ([3̄]⊗ [3]) = [10]⊕ [8]⊕ [8]⊕ [1], (4.2)

is shown in figure 4.6. In order to get the quark contents we separately combine the I, U , and V

Figure 4.6.: The qqq SU(3) multiplets, [3]⊗ [3]⊗ [3] = [10]⊕ [8]⊕ [8]⊕ [1]

multiplets. For example in the nonstrange sector we combine the triplet (dd, 1/
√

2(ud+ du), uu) with
the doublet (d, u) and add the combination of the singlet (1/

√
2(ud− du)) and the doublet (d, u). Of

course, we have to use the proper Clebsch-Gordan coefficients again. To get the quark contents of the
“uds” states we should have a closer look at the symmetry of the multiplets. Close inspection reveals
that the decuplet is totally symmetric under the exchange of two quarks. Both octets have a mixed
symmetry; meaning one is symmetric and the other antisymmetric under exchange of the first two
quarks only. Consequently the singlet is totally antisymmetric under the exchange of two arbitrary
quarks. Regarding this and using orthogonality we constructed the “uds” quark contents denoted in
figure 4.6.

4.3. Spin-Flavor Wave Function of Baryons in the Ground State

In the ground state it is quite easy to find the spins of the baryon. Since baryons contain three quarks,
each carrying spin 1/2, we only have to add three spin 1/2 angular momenta. The combination gives

[2]⊗ [2]⊗ [2] = [4]⊕ [2]⊕ [2], (4.3)
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with the following spin state contents:

[4]





∣∣S = 3
2 ,m = −3

2

〉
= ↓↓↓

∣∣S = 3
2 ,m = −1

2

〉
= 1√

3
[↓↑↓ + ↑↓↓ + ↓↓↑]

∣∣S = 3
2 ,m = +1

2

〉
= 1√

3
[↓↑↑ + ↑↓↑ + ↑↑↓]

∣∣S = 3
2 ,m = +3

2

〉
= ↑↑↑

[2]





∣∣S = 1
2 ,m = −1

2

〉
= 1√

6
[↑↓↓ + ↓↑↓ −2 ↓↓↑]

∣∣S = 1
2 ,m = +1

2

〉
= 1√

6
[↑↓↑ + ↓↑↑ −2 ↑↑↓]

[2]





∣∣S = 1
2 ,m = −1

2

〉
= 1√

2
[↑↓↓ − ↓↑↓]

∣∣S = 1
2 ,m = +1

2

〉
= 1√

2
[↑↓↑ − ↓↑↑].

(4.4)

On closer examination one can recognize that the quartet states are total symmetric under exchange
of two quarks, but the doublets have a mixed symmetry, meaning that they are symmetric under
the interchange of the first two quarks only. For that reason we indicate the multiplets with S for
symmetric, MS for mixed symmetry with symmetry only in the first two quarks, and MA for mixed
symmetry with antisymmetry only in the first two quarks. Finally we have the following spin mulitplets
for baryons indexed with the symmetry properties in the ground state:

[4]S ⊕ [2]MS
⊕ [2]MA

. (4.5)

In order to obtain the spin-flavor wave function we have to combine the SU(3)-flavor2 and the SU(2)-
spin multiplets,

SU(3)-flavor︷ ︸︸ ︷
([10]S ⊕ [8]MS

⊕ [8]MA
⊕ [1]A) ,

SU(2)-spin︷ ︸︸ ︷
([4]S ⊕ [2]MS

⊕ [2]MA
) , (4.6)

where we have indicated the flavor multiplets with the additional indices in the same manner as the
spin multiplets. Then also the resulting spin-flavor state can have only one of the four symmetry
types S, MS , MA, or A. With the notation “(SU(3), SU(2))” the following products appear sorted
by symmetry:

S: ([10]S , [4]S) + ([8], [2])

MS : ([10]S , [2]MS
) + ([8]MS

, [4]S) + ([8]MS
, [2]MS

) + ([1]A, [2]MA
)

MA: ([10]S , [2]MA
) + ([8]MA

, [4]S) + ([8]MA
, [2]MA

) + ([1]A, [2]MS
)

A: ([1]A, [4]S) + ([8], [2]).

(4.7)

The totally symmetric spin-flavor wave function of a (flavor) octet baryon is determined by the com-
bination

S : ([8], [2]) ≡ 1√
2

[([8]MS
, [2]MS

)⊕ ([8]MA
, [2]MA

)] (4.8)

2See last subsection.
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4. Features Concerning Baryons and Diquarks

and the totally antisymmetric spin-flavor wave function of the octet baryon is

A : ([8], [2]) ≡ 1√
2

[([8]MS
, [2]MA

)⊕ ([8]MA
, [2]MS

)] , (4.9)

which can easily be shown by an explicit calculation. As an example we will consider the proton
spin-up wave function in the next section.

4.4. Complete Wave Function of Baryons and Particle Assignment
to Multiplets

The ground state (l = 0) wave function of any baryon is the combination of space, color, flavor, and
spin states. We may write it in the following way:

|baryon〉 = |space〉l=0 × |flavor-spin〉 × |color〉 . (4.10)

Since quarks are fermions, the state |baryon〉 has to be antisymmetric under the exchange of any
two quarks. The confinement hypothesis makes sure that the color state is a singlet of SU(3)c and
therefore completely antisymmetric3. In analogy to the SU(3)f singlet it has the following form

|color〉 =
1√
6

(RGB + BRG + GBR - RBG - BGR - GRB) . (4.11)

For l = 0 (ground state) the space state is symmetric and we can write the state function of the
baryon with the following symmetry properties (S: sym., A: antisym.) under the interchange of two
arbitrary quarks as

|baryon〉A = |space〉l=0,S × |flavor-spin〉S × |color〉A . (4.12)

Just, in order to achieve the antisymmetry of the |baryon〉-state we need a symmetric flavor-spin state.
In the last section we have seen that the flavor decuplet with spin 3/2, eq. (4.7), and a combination
of the flavor octets with spin 1/2, eq. (4.8), are totally symmetric. As a consequence the flavor singlet
is forbidden by Fermi statistics in the ground state.
As an example we will give the exact flavor-spin state function for a proton with spin-up. The proton
with I(JP ) = 1

2(1
2)+ and the flavor content “uud” fit into the totally symmetric octet state of eq.

(4.8).

|flavor-spin〉proton↑ =
1√
2

(
|uud〉MS

|↑〉MS
+ |uud〉MA

|↑〉MA

)
=

=
1√
2

[
1√
6

(udu + duu - 2uud)
1√
6

(↑↓↑ + ↓↑↑ −2 ↑↑↓)

+
1√
2

(udu - duu)
1√
2

(↑↓↑ − ↓↑↑)
]

=

=
1√
18

(
u↓d
↑u↑ + u↑d↑u↓ − 2u↑d↓u

↑ + permutations
)
. (4.13)

Finally, in the same manner we assign all symmetric states of the spin 3/2 decuplet ([10], [4]) and the
spin 1/2 octet with the lowest-mass ground state baryons as shown in fig. 4.7.

3Compare it to the singlet state of SU(3) flavor in the section “Baryon flavor multiplets with Nf = 3”.
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Figure 4.7.: Ground state baryons: ([8], [2]) + ([10], [4])

4.5. Including Baryons - Naive and Mirror Assignment

Our goal is to add baryon interactions to the meson Lagrangian in the eLSM, introduced in chapter
3. Since we take three flavors into account and restrict ourselves to spin 1/2, the occurring baryons
are the eight octet baryons, as shown in the last section. Since parity is not fixed there are baryons
with I(JP ) = 1

2(1
2

+
) and the (more massive) chiral partners which have the same quantum numbers

except for parity, i.e., I(JP ) = 1
2(1

2

−
), and G-parity.

There are two ways to include baryons and their chiral partners in a chiral model: Either in the so-
called naive assignment [6, 24] or in the so-called mirror assignment [3, 4, 6, 7, 8]. The main difference
between these two possibilities is that in the naive assignment the left- and right-handed components of
the baryon and its chiral partner transform identically, while in the mirror assignment they transform
in a “mirror way”, see below. For example, in a model with two flavors we have two spinors, one for
the nucleon Ψ1 = Ψ1R + Ψ1L and another one representing the chiral partner Ψ2 = Ψ2R + Ψ2L. In the
naive assignment they transform as

Ψ1R → URΨ1R, Ψ1L → ULΨ1L,

Ψ2R → URΨ2R, Ψ2L → ULΨ2L. (4.14)

In comparison, in the mirror assignment they transform as

Ψ1R → URΨ1R, Ψ1L → ULΨ1L,

Ψ2R → ULΨ2R, Ψ2L → URΨ2L. (4.15)

In order to decide which assignment we choose, we have to know how the baryon fields transform in
the three-flavor case. Therefore we consider the mathematical structure of baryons in the next section.
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4.6. Diquarks

In order to describe baryons we use the so-called quark-diquark model (see e.g. [26]), in which baryons
are bound states of a quark and a diquark, where a diquark is a hypothetical4 bound state of two
quarks. We can distinguish scalar diquarks which are antisymmetric in flavor- and color-space,

|qq〉l=s=0 = |space〉l=0 |spin〉s=0 |color〉Nc=3 |flavor〉Nf with JP = 0+ (4.16)

and pseudoscalar diquarks

|qq〉l=s=1 = |space〉l=1 |spin〉s=1 |color〉Nc=3 |flavor〉Nf with JP = 0−, (4.17)

where the color- and flavor-wave functions are also antisymmetric. In the following subsections we
will examine their mathematical structure and behaviour under certain transformations.

4.6.1. Scalar Diquarks

For Nf = 3 there are exactly three such scalar diquarks D,

1√
2

[d, s] , − 1√
2

[u, s] , and
1√
2

[u, d] , (4.18)

where the anticommutator represents the antisymmetry in isospin space. They have the following
mathematical structure:

Dij =
1√
2

(
qTj Cγ

5qi − qTi Cγ5qj
)
≡

1
2
Nf (Nf−1)=3∑

k=1

Dk(A
k)ij , (4.19)

where the scalar diquark current Dk which occurs in the decomposition of D in the basis of antisym-
metric Nf ×Nf matrices (Ak)ij is

Dk =
1√
2
εklmq

T
mCγ

5ql, (4.20)

and in the case of Nf = 3 flavors (Akij) = εijk. The color indices which are formally identical to the
flavor indices are suppressed here. The charge-conjugation matrix C has to be included in order to get
the required behaviour under charge conjugation. The γ5 is needed to preserve the requested parity.
With the parity transformation of the quark, eq. (3.14), we can compute the behaviour of the scalar
diquark current:

Di =
1√
2
εklmq

T
mCγ

5ql
P−−−−→ 1√

2
εklmq

T
m(t,−x)γ0Cγ5γ0ql(t,−x) =

=
1√
2
εklmq

T
m(t,−x)Cγ5ql(t,−x) ≡ Di(t,−x), (4.21)

4Since it is not colorless it is not a physical hadron.
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4.6. Diquarks

where we have used {γµ, γν} = 2gµν1 and (γ0)2 = 1. With the charge conjugation of the quark, eq.
(3.14), we find the charge conjugation of the scalar diquark current:

Di =
1√
2
εklmq

T
mCγ

5ql
C−−−−→ 1√

2
εklmq

†
mγ

0CTCγ5Cγ0q?l = . . . .

With eq. (1.21) and {γ0, γ5} = 0 we get:

· · · = 1√
2
εklmq

†
mγ

0γ5Cγ0q?l =
1√
2
εklmq

†
m

(
−γ5

)
γ0Cγ0q?l = . . . .

Including a one by 14×4 = CC−1 between γ5 and γ0 and making use of eq. (1.20) and γ0γ0 = 14×4

we find:

· · · = − 1√
2
εklmq

†
mγ

5C
(
C−1γ0C

)
γ0q?l = − 1√

2
εklmq

†
mγ

5C(−γ0)γ0q?l =
1√
2
εklmq

†
mγ

5Cq?l = . . . .

We use eq. (3.18) and then interchange the indices l and m, where we have to regard the antisymmetry
of the ε-tensor, εklm = −εkml:

· · · = − 1√
2
εklmq

?
l Cγ

5q†m =
1√
2
εkmlq

?
l Cγ

5q†m = . . . .

Finally, hermitian conjugation (note that Di is a scalar in flavor space, C† = C, eq. (1.21), and
γ5† = γ5) yields:

Di =
1√
2
εklmq

T
mCγ

5ql
C−−−−→ D?

i ≡ D†i . (4.22)

Using the SU(3)V transformation of the quark, q → UV q, the calculation for the diquark transforma-
tion is straightforward.
Summarizing, the scalar diquark current has the following properties under parity, charge conjugation
and SU(Nf )V transformations:

Di = 1√
2
εijkq

T
k Cγ

5qj
P−−−−−−→ DP

i = Di(t,−x),

Di = 1√
2
εijkq

T
k Cγ

5qj
C−−−−−−→ DC

i = D†i ,

Di = 1√
2
εijkq

T
k Cγ

5qj
SU(Nf )V−−−−−−→ D′i = 1√

2
εijkU

jj′

V Ukk
′

V qTk′Cγ
5qj′ .

(4.23)

In our case, Nf = 3, the expression for the SU(Nf = 3)V transformed scalar diquark current can be
rearranged further. Therefore, we consider the following expression with U ∈ SU(3)V

εa
′b′c′εabcUaa′Ubb′Ucc′ = εa

′b′c′ (U1a′U2b′U3c′ + U3a′U1b′U2c′ + U2a′U3b′U1c′ +

− U1a′U3b′U2c′ − U2a′U1b′U3c′ − U3a′U2b′U1c′) =

= . . .

using detU = εabcU1aU2bU3c ≡ 1

. . . = 3 detU − (−3 detU) = 6 detU = 6.
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With εa
′b′c′εa′b′c′ =

∑
b′c′ (δb′b′δc′c′ − δb′c′δc′b′) =

∑
b′c′ δb′b′δc′c′ −

∑
c′ δc′c′ = 6 this is identical to

εa
′b′c′εabcUaa′Ubb′Ucc′ = εa

′b′c′εa′b′c′ .

Therefore we find that the following relation holds:

εabcUaa′Ubb′Ucc′ = εa′b′c′

εabcUbb′Ucc′ = εa′b′c′U
†
a′a, (4.24)

where in the last step we have multiplied the equation from the right-hand side with U †a′a. Using this
relation the SU(3)V transformation of the Di can be expressed as

Di
SU(3)V−−−−−→ D′i = DkU

†
V,ki. (4.25)

Hence, the scalar diquark current transforms under SU(3)V exactly like an antiquark, q̄i → q̄kU
†
V,ki.

Consequently, it is possible to find a correspondence between the scalar-diquark current and the
antiquark:

D1 ∼ 1√
2

[d, s] ←→ ū,

D2 ∼ − 1√
2

[u, s] ←→ d̄,

D3 ∼ 1√
2

[u, d] ←→ s̄,

(4.26)

where“↔” refers to the same transformation under flavor transformations. Having this connection in
mind one can understand the idea of the quark-diquark model: the construction of the baryon matrix
conforms to the construction of the meson matrix in which a quark and an antiquark are combined
Φij ∼ q̄j,Rqi,L. Later on, we will say more about the matrix form of our baryon fields.

4.6.2. Pseudoscalar Diquarks

Furthermore, we also can define a pseudoscalar diquark matrix D̃ by the mathematical expression

D̃ij =
1√
2

(
qTj Cqi − qTi Cqj

)
≡

1
2
Nf (Nf−1)=3∑

k=1

D̃k(A
k)ij (4.27)

with

D̃k =
1√
2
εklmq

T
mCql. (4.28)

The definitions of the previous subsection about scalar diquarks hold also in this case. Computing the
transformations of the pseudoscalar diquark current in analogy to the scalar diquark current one finds

D̃i = 1√
2
εijkq

T
k Cqj

P−−−−−−→ D̃P
i = −D̃i(t,−x),

D̃i = 1√
2
εijkq

T
k Cqj

C−−−−−−→ D̃C
i = −D̃†i ,

D̃i = 1√
2
εijkq

T
k Cqj

SU(3)V−−−−−−→ D̃′i = D̃kU
†
V,ki.

(4.29)
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Note that the minus sign in the parity transformation and charge conjugation in contrast to the
transformation of the scalar diquark current (eq. 4.21 and 4.22) occurs because of the missing γ5

matrix.

4.6.3. Left- and Right-Handed Diquarks

Since our goal is the construction of a chirally invariant Lagrangian, we would like to have left- and
right-handed objects with simple behaviour under chiral transformation. Therefore, we define two
new matrices DR and DL as linear combinations of D and D̃:

DR :=
1√
2

(
D̃ +D

)
=

3∑

i=1

DR
i A

i with DR
i ≡

1√
2

(
D̃i +Di

)
,

DL :=
1√
2

(
D̃ − D

)
=

3∑

i=1

DL
i A

i with DL
i ≡

1√
2

(
D̃i −Di

)
. (4.30)

In order to determine the transformation behaviour of the currents DR
i and DL

i under chiral trans-
formations U(3)R × U(3)L we rearrange the currents using the properties of the chiral projection
operators PL and PR, eq. (1.25), as follows

DR
i =

1√
2

(
D̃i +Di

)
=

1

2
εijk

(
qTk Cγ

5qj + qTk Cqj
)

=

= εijkq
T
k C

[
1

2
(γ5 + 1)

]
qj = εijkq

T
k CPRqj =

= εijkq
T
k CPRPRqj = εijkq

T
R,kCqR,j

and in analogy:

DL
i = . . . = εijkq

T
L,kCqL,j . (4.31)

We observe that the two diquark currents DR and DL behave under chiral transformations as (see eq.
(4.24))

DR
i

U(3)R×U(3)L−−−−−−−−−→ DR′
i = DR

k U
†
R,ki with UR ∈ U(3)R,

DL
i

U(3)R×U(3)L−−−−−−−−−→ DL′
i = DL

kU
†
L,ki with UL ∈ U(3)L, (4.32)

and therefore DR
i transforms like a right-handed and DL

i like a left-handed antiquark. In order to
compute the behaviour under parity transformation and charge conjugation we proceed as in eq. (4.21)
and eq. (4.22). We solely have to pay attention to the additional chiral projection operators and the
missing γ5 matrix. Eventually, the mathematical properties of DR and DL are
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DR/L
P−−−−−−−−→ DP

R/L = −DL/R(t,−x),

DR/L
C−−−−−−−−→ DC

R/L = −D†L/R,
DR/L

SU(3)V−−−−−−−−→ D′R/L = DR/LU
†
V ,

DR/L
U(3)R×U(3)L−−−−−−−−−→ D′R/L = DR/LU

†
R/L.

(4.33)

Thus, parity and charge conjugation exchange left- and right-handed diquark currents.

4.7. Baryons as Bound States of a Quark and a Diquark

With the results of the last subsections we are now able to construct baryons as quark-diquark states.
Since two different diquarks, DR and DL, are available, we can construct at least two baryon fields.
The simplest combinations are

N (RR) =̂ N
(RR)
ij = DR,jqi =

1√
2

(
D̃j +Dj

)
qi

N (LL) =̂ N
(LL)
ij = DL,jqi =

1√
2

(
D̃j −Dj

)
qi (4.34)

The label N is chosen because these two fields transform in a naive way (as will be shown in the fol-
lowing). The indices (RR) and (LL) refer to the included left- or right-handed (quark content of the)
diquark. Note that N (RR) is not right-handed and N (LL) is not left-handed - both are the full fields.

Thus N (RR) = N
(RR)
R +N

(RR)
L and N (LL) = N

(LL)
R +N

(LL)
L .

Two somewhat more complicated combinations are given by

M (RR) =̂ M
(RR)
ij = DR

j γ
µ∂µqi =

1√
2

(
D̃j +Dj

)
γµ∂µqi

M (LL) =̂ M
(LL)
ij = DL

j γ
µ∂µqi =

1√
2

(
D̃j −Dj

)
γµ∂µqi, (4.35)

where the letter M refers to the mirror assignment. In comparison to N (RR) and N (LL) we will see
that M (RR) and M (LL) transform in a mirror way. The reason for this is the additional gamma matrix.
Summarized, by looking at the microscopic decomposition we have found that four multiplets exist:
positive-parity and negative-parity naive-transforming baryons and positive-parity and negative-parity
mirror-transforming baryons. The presence of four multiplets was postulated in ref. [3] at the com-
posite level of hadrons and can be justified with an study of the of the microscopic currents of the
baryonic fields.
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4.7.1. Behaviour under Chiral Transformations

Making use of the chiral projection operators PL and PR, eq. (1.25), we can determine the left- and
right-handed components of N (RR) and N (LL):

N
(RR)
R,ij = PRN

(RR)
ij = DR

j PRqi = DR
j qR,i

N
(RR)
L,ij = . . . = DR

j qL,i

N
(LL)
R,ij = . . . = DL

j qR,i

N
(LL)
L,ij = . . . = DL

j qL,i.

(4.36)

The chiral projectors act only on the quark q, because only the quark carries a spinor index. With
the transformation behaviour of the diquarks, eq. (4.33), we immediately find the transformation of
the two baryon fields under chiral transformation to be

N
(RR)
R

U(3)R×U(3)L−−−−−−−−−→ URN
(RR)
R U †R , N̄

(RR)
R

U(3)R×U(3)L−−−−−−−−−→ URN̄
(RR)
R U †R

N
(RR)
L

U(3)R×U(3)L−−−−−−−−−→ ULN
(RR)
L U †R , N̄

(RR)
L

U(3)R×U(3)L−−−−−−−−−→ URN̄
(RR)
L U †L

N
(LL)
R

U(3)R×U(3)L−−−−−−−−−→ URN
(LL)
R U †L , N̄

(LL)
R

U(3)R×U(3)L−−−−−−−−−→ ULN̄
(LL)
R U †R

N
(LL)
L

U(3)R×U(3)L−−−−−−−−−→ ULN
(LL)
L U †L , N̄

(LL)
L

U(3)R×U(3)L−−−−−−−−−→ ULN̄
(LL)
L U †L.

(4.37)

Considering only the chiral transformation matrix UR/L on the left of the right-hand sides of the equa-
tions (e.g. the two boxed parts), the left- and right-handed part of the two baryon fields transform in
the same way, as it is characteristic for the naive assignment.
In the same manner we find for the fields M (RR) and M (LL) the left- and right-handed components
to be

M
(RR)
R = PRM

(RR) = DRγµ∂µPLq = DRγµ∂µqL,

M
(RR)
L = . . . = DRγµ∂µqR,

M
(LL)
R = . . . = DLγµ∂µqL,

M
(LL)
L = . . . = DLγµ∂µqR,

where we have used that the chiral operators switch when commuting them with a gamma matrix,
since {γ5, γµ} = 0. The behaviour under chiral transformations is then
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M
(RR)
R

U(3)L×U(3)R−−−−−−−−−→ ULM
(RR)
R U †R , M̄

(RR)
R

U(3)L×U(3)R−−−−−−−−−→ URM̄
(RR)
R U †L,

M
(RR)
L

U(3)L×U(3)R−−−−−−−−−→ URM
(RR)
L U †R , M̄

(RR)
L

U(3)L×U(3)R−−−−−−−−−→ URM̄
(RR)
L U †R,

M
(LL)
R

U(3)L×U(3)R−−−−−−−−−→ ULM
(LL)
R U †L , M̄

(LL)
R

U(3)L×U(3)R−−−−−−−−−→ ULM̄
(LL)
R U †L,

M
(LL)
L

U(3)L×U(3)R−−−−−−−−−→ URM
(LL)
L U †L , M̄

(LL)
L

U(3)L×U(3)R−−−−−−−−−→ ULM̄
(LL)
L U †R.

(4.38)

Considering only the chiral transformation matrix UR/L on the left of the right-hand sides of the equa-

tions (e.g. the boxed parts), M (RR) and M (LL) transform for themselves also in a naive way. But
compared to the N (RR) and N (LL) fields, eq. (4.37), they transform in a mirror way.

4.7.2. Parity Transformation

The parity transformation of the quark is given in eq. (3.14) and that of diquarks in eq. (4.33). Hence
the baryon fields N (RR) and N (LL) behave under parity transformation as

N
(RR)
R = DRqR

P−−−−→ −PRDLγ0q = −γ0DLPLq = −γ0N
(LL)
L (t,−x),

N
(RR)
L = . . .

P−−−−→ . . . = −γ0N
(LL)
R (t,−x),

N
(LL)
R = . . .

P−−−−→ . . . = −γ0N
(RR)
L (t,−x),

N
(LL)
L = . . .

P−−−−→ . . . = −γ0N
(RR)
R (t,−x).

(4.39)

Paying attention to the fact that the sign of the spatial derivatives changes (−∂i → ∂i) under parity
transformations, we find for M (RR) and M (LL)

M
(RR)
R = DRγµ∂µqL

P−−−−→ −PRDL
(
γ0∂0 + γi∂i

)
γ0q = −γ0DLγµ∂µqR = −γ0M

(LL)
L (t,−x),

M
(RR)
L = . . .

P−−−−→ . . . = −γ0M
(LL)
R (t,−x),

M
(LL)
R = . . .

P−−−−→ . . . = −γ0M
(RR)
L (t,−x),

M
(LL)
L = . . .

P−−−−→ . . . = −γ0M
(RR)
R (t,−x).

(4.40)

Thus the parity transformation of M (RR) and M (LL) is identical to that of N (RR) and N (LL)
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4.7.3. Charge Conjugation

The charge conjugation of the quark is given in eq. (3.14) and that of diquarks in eq. (4.33). We
compute the transformation behaviour of N (RR) and N (LL) under charge conjugation to be

N
(RR)
R = DRqR

C−−−−→ −PR(DL)†Cq̄T = −Cγ0(DL)?q?L = −iγ2
(
N

(LL)
L

)?

N
(RR)
L = . . .

C−−−−→ . . . = −iγ2
(
N

(LL)
R

)?

N
(LL)
R = . . .

C−−−−→ . . . = −iγ2
(
N

(RR)
L

)?

N
(LL)
L = . . .

C−−−−→ . . . = −iγ2
(
N

(RR)
R

)?
,

(4.41)

where we used the fact that the diquark current is a scalar in spinor space and therefore commutes
with the charge-conjugation matrix. In the last step we wrote the charge conjugation matrix in Dirac
representation, C = iγ2γ0. For M (RR) and M (LL) we get in Dirac representation:

M
(RR)
R = DRγµ∂µqL

C−−−−→ −PR(DL)†γµ∂µCq̄T =

= −iγ2(DL)?(−γ0∂0 + γ1∂1 − γ2∂2 + γ3∂3)q?R = iγ2
(
M

(LL)
L

)?
,

M
(RR)
L = . . .

C−−−−→ . . . = iγ2
(
M

(LL)
R

)?
,

M
(LL)
R = . . .

C−−−−→ . . . = iγ2
(
M

(RR)
L

)?
,

M
(LL)
L = . . .

C−−−−→ . . . = iγ2
(
M

(RR)
R

)?
,

(4.42)

where we paid attention to {γµ, γν} = 2gµν14×4 and the behaviour of the gamma matrices under
complex conjugation: (γ0,1,3,5)∗ = γ0,1,3,5 and (γ2)∗ = −γ2.
In the following we will compute the charge conjugation always in Dirac representation.
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5. Baryon Lagrangian for Nf = 3

As mentioned earlier, when constructing a Lagrangian containing the baryon and its chiral partner we
have two possibilities to introduce the chiral partner: the so-called naive and the mirror assignment. In
the naive assignment alone a mass term of the baryon and its chiral parter is not chirally invariant and
thus only the spontaneous symmetry breaking generates a mass. In contrast, in the mirror assignment
the construction of a chirally invariant mass term is possible. Of course, the effective Lagrangian has
to exhibit all properties of the QCD Lagrangian.
In our model we have four baryonic fields, N (RR) and N (LL), eq. (4.34), and M (RR) and M (LL), eq.
(4.35). Each of the N and M fields transform in the naive way, but compared to each other they
transform in a mirror way. This fact is clarified in table 5.1:

N (RR) M (RR) ←− mirror

N (LL) M (LL) ←− mirror

↑ ↑
naive naive

Table 5.1.: Clarification of the naive and mirror transformation of the N and M fields of our model.

Therefore the Lagrangian that we will construct is a composite of two naive parts (one for the N and
one for M fields) and a term which mixes N and M fields:

L = Lnaive,N + Lnaive,M + Lmirror,NM . (5.1)

Since our effective model will contain colorless hadrons as degrees of freedom, color symmetry is ful-
filled by default. In order to obtain the Lagrangian we work in the chiral limit, in which all quark
masses are zero and chiral symmetry is exact. Explicit breaking of chiral symmetry and chiral U(1)A
anomaly is included in the mesonic Lagrangian of chapter 3.

5.1. Baryonic Lagrangian for the Naive-Transforming Fields

The part of the Lagrangian (5.1) in the naive assignment will contain two baryonic fields which are
combinations of the physical fields. The left- and the right-handed components of these two fields
are assumed to behave in the same way under chiral transformations. Therefore, either the two fields
N (RR) and N (LL), eq. (4.34), or M (RR) and M (LL), eq. (4.35), are suitable (but not all four together).
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In this section we will present the naive parts Lnaive,N and Lnaive,M . We start with Lnaive,N which
contains the two fields N (RR) and N (LL) only.
Furthermore, in order to describe baryon-meson interactions, we use the meson field Φ, eq. (3.1)
and the left- and right-handed fields Rµ and Lµ, eqs. (3.24), (3.25). The behaviour under chiral
transformation of these fields is summarized (see eq. (3.2), (3.6) and (4.37)) in table 5.2:

current chiral transformation

N
(RR)
R URN

(RR)
R U †R

N
(RR)
L ULN

(RR)
L U †R

N
(LL)
R URN

(LL)
R U †L

N
(LL)
L ULN

(LL)
L U †L

Φ ULΦU †R

Rµ URR
µU †R

Lµ ULL
µU †L

Table 5.2.: Behaviour of the fields under chiral transformations.

With these fields we are able to construct a chirally invariant hermitian Lagrangian for baryons
interacting with (pseudo)scalar and (axial-)vector mesons:

Lnaive, N = Tr
{
N̄

(RR)
R iγµD

µ
1RN

(RR)
R + N̄

(RR)
L iγµD

µ
2LN

(RR)
L +

+ N̄
(LL)
R iγµD

µ
3RN

(LL)
R + N̄

(LL)
L iγµD

µ
4LN

(LL)
L

}
+

− g1 Tr
{
N̄

(RR)
L ΦN

(RR)
R + N̄

(RR)
R Φ†N (RR)

L

}
+

− g2 Tr
{
N̄

(LL)
L ΦN

(LL)
R + N̄

(LL)
R Φ†N (LL)

L

}
+ Lmeson, (5.2)

with the covariant derivatives

Dµ
kR = ∂µ − ickRµ , Dµ

kL = ∂µ − ickLµ, with k ∈ {1, 2, 3, 4}, (5.3)

where ck, k ∈ {1, 2, 3, 4}, are the baryon-(axial-)vector coupling constants and the coupling of baryons
and (pseudo)scalar mesons is parametrized by g1 and g2. Lmeson is given in eq. (3.12). As mentioned
earlier it is not possible to construct a chirally invariant mass term in the naive assignment. For
instance

Tr(N̄
(RR)
R N

(RR)
R ) = Tr(N̄ (RR)PLPRN

(RR))

is admittedly chirally invariant, but since PRPL = 0, terms of this form vanish. Furthermore, one
should note that it is not possible to construct mixing terms of N (RR) and N (LL), because they are
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not chirally invariant or elicit a coupling constant which is not dimensionless1 and therefore will break
dilatation symmetry. This absence of mixing terms is in contrast to the case of two flavors studied in
ref. [3] and, as we will see later, leads to degenerate masses.
The Lagrangian given in eq. (5.2) is hermitian and chirally invariant, but it is not yet invariant under
parity transformations. We have to constrain the parameters to achieve this invariance. The parity
transformation of the covariant derivatives is given by

Dµ
kR = ∂µ − ickRµ P−−−−→ (Dµ

kR)′ = (∂0, ∂i)T + ick(−L0, Li)T ,

Dµ
kL = ∂µ − ickLµ P−−−−→ (Dµ

kL)′ = (∂0, ∂i)T + ick(−R0, Ri)T , (5.4)

where we used (−∂i) P→ ∂i and the transformation of the left- and right-handed fields Lµ and Rµ,
given in eq. (3.22). An exemplary one of the kinetic terms with covariant derivative in the Lagrangian
(5.2) has the following form after parity transformation:

Lkin
naive, N = N̄

(RR)
L iγµD1LN

(RR)
L

P−−−−→ Lkin,P
naive, N = Tr

{
−N̄ (LL)

L γ0iγµ

[(
∂0, ∂i

)T − ic1

(
L0,−Li

)T ] (−γ0N
(LL)
L

)}

= Tr
{
N̄

(LL)
L iγµD1LN

(LL)
L

}
, (5.5)

where we have used that {γµ, γν} = 2gµν1 and (γ0)2 = 1. The remaining kinetic terms with covariant
derivatives transform in the same manner. Comparing the transformed and original kinetic and
baryon-(axial-)vector-interaction Lagrangian we realize that the constants c1 and c4 and the constants
c2 and c3 have to be equal. The parity transformation of the remaining part of the Lagrangian (5.2),
the baryon-(pseudo)vector interaction, is also easy to compute. For example the transformation of
one of those terms reads

LNΦN
naive, N = −g1 Tr

{
N̄

(RR)
R Φ†N (RR)

L

}

P−−−−→ LNΦN,P
naive, N =− g1 Tr

{
−N̄ (LL)

R γ0Φ†
(
−γ0N

(LL)
L

)}
=

=− g1 Tr
{
N̄

(LL)
R Φ†N (LL)

L

}
. (5.6)

In analogy we find the transformation of the remaining parts and finally determine that the constants
g1 and g2 also have to be equal. Thus, we set

c4 = c1 , c3 = c2 and g1 = g2 ≡ g, (5.7)

so that the Lagrangian (5.2) is invariant under parity transformations. As a consequence the La-

1See also the discussion of trace anomaly and of the construction of the meson Lagrangian.
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grangian simplifies:

Lnaive, N = Tr
{
N̄

(RR)
R iγµD

µ
1RN

(RR)
R + +N̄

(RR)
L iγµD

µ
2LN

(RR)
L +

+ N̄
(LL)
R iγµD

µ
2RN

(LL)
R + N̄

(LL)
L iγµD

µ
1LN

(LL)
L

}
+

− gTr
{
N̄

(RR)
L ΦN

(RR)
R + N̄

(RR)
R Φ†N (RR)

L + N̄
(LL)
L ΦN

(LL)
R + N̄

(LL)
R Φ†N (LL)

L

}
+ Lmeson.

(5.8)

Hence we found a baryonic Lagrangian which is hermitian and invariant under chiral and parity
transformations.
As a next step, we verify the invariance under charge conjugation. In order to show this we compute
the charge conjugation of eq. (5.8) by plugging into it the charge conjugation of the fields N (RR)

and N (LL), making use of the fact that the trace of a transposed matrix is the same as the trace of
the matrix itself. Furthermore, one has to pay attention to the fact that interchanging two identical
fermions via transposition yields a minus sign, because of Pauli-Dirac statistics. In the following we
show as an example the transformation of one kinetic term:

Lkin
naive, N = Tr

{
N̄

(RR)
R iγµD

µ
1RN

(RR)
R

}
= Tr

{
N̄

(RR)
R iγµ [∂µ − ic1R

µ)]N
(RR)
R

}

C−→ Lkin,C
naive, N = Tr

{
−i(N (LL)

L )Tγ2γ0iγµ
[
∂µ + ic1(Lµ)T

]
(−iγ2)(N

(LL)
L )? + . . .

}
=

= Tr
{
−(N

(LL)
L )T iCγµC

−1
[
∂µ + ic1(Lµ)T

]
γ0(N

(LL)
L )?

}
=

= Tr
{
−(N

(LL)
L )T i(−γµ)T

[
∂µ + ic1(Lµ)T

]
γ0(N

(LL)
L )?

}
=

= Tr
{

(N
(LL)
L )T (iγµ)Tγ0∂µ(N

(LL)
L )? + (N

(LL)
L )T (iγµ)T ic1(Lµ)Tγ0(N

(LL)
L )?

}
=

= Tr
{[

(N
(LL)
L )T (iγµ)Tγ0∂µ(N

(LL)
L )?

]T
+
[
(N

(LL)
L )T (iγµ)T ic1(Lµ)Tγ0(N

(LL)
L )?

]T}
=

= Tr
{
−
(
∂µN̄

(LL)
L

)
iγµN

(LL)
L − N̄ (LL)

L iγµic1L
µN

(LL)
L

}
=

= Tr
{
N̄

(LL)
L iγµ∂µN

(LL)
L − N̄ (LL)

L iγµic1L
µN

(LL)
L

}
=

= Tr
{
N̄

(LL)
L iγµD

µ
1LN

(LL)
L

}
, (5.9)

where we performed an integration by parts in the second last line. One of the interaction terms of
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the Lagrangian transforms as

LNΦN
naive, N = −gTr

{
N̄

(RR)
L ΦN

(RR)
R

}

C−−−−→ LNΦN,C
naive, N =− gTr

{
−i(N (LL)

R )Tγ2γ0ΦT (−iγ2)(N
(LL)
L )? + . . .

}
=

=− gTr
{
−(N

(LL)
R )T (−γ0)ΦTγ2γ2(N

(LL)
L )?

}
=

=− gTr
{
−(N

(LL)
R )TΦTγ0(N

(LL)
L )?

}
=

=− gTr
{[
−(N

(LL)
R )TΦTγ0(N

(LL)
L )?

]T}
=

=− gTr
{
N̄

(LL)
L ΦN

(LL)
R

}
. (5.10)

Since the resulting terms exist exactly in this form in the original Lagrangian (5.8) and the same holds
for the remaining terms, it is shown that the Lagrangian is invariant under charge conjugation also.
For that reason we have found eq. (5.8) to be the final Lagrangian. Making use of the chiral projection
operators, eq. (1.25), we rearrange it to

Lnaive, N = Tr
{
N̄ (RR)iγµ

1

2

[
Dµ

1R +Dµ
2L + γ5

(
Dµ

1R −D
µ
2L

)]
N (RR)+

+ N̄ (LL)iγµ
1

2

[
Dµ

2R +Dµ
1L + γ5

(
Dµ

2R −D
µ
1L

)]
N (LL)

}
+

− gTr
{
N̄ (RR) 1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
N (RR)+

+ N̄ (LL) 1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
N (LL)

}
+ Lmeson. (5.11)

This is the final Lagrangian including baryons in naive assignment expressed by the “full” fields (and
not by the left- and right-handed components).
When assigning the included fields with the experimentally observed particles, we observe a prob-
lem. We take a closer look at the parity transformation, eq. (4.39), of the baryon fields N (RR) and
N (LL): They transform into each other under parity and therefore they do not have a well-defined
parity, so that we are not able to identify them with physical states. For that reason we will define
new fields as linear combinations of the old ones, N (RR) and N (LL). We use the fact that Dq has
positive parity (since the scalar diquark has positive parity and the quark has also (by convention)
positive parity (eq. 3.14)), and that D̃q has negative parity (since the pseudoscalar diquark has neg-
ative parity). Furthermore we know that (N (RR) − N (LL)) ∼ Dq and (N (RR) + N (LL)) ∼ D̃q and
that adding a γ5 to any term inverses its parity. Therefore we can construct a field with positive parity,

BN =
N (RR) −N (LL)

√
2

≡ Dq, (5.12)

which describes baryons with JP = 1
2

+
, and a field with negative parity,
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BN? =
N (RR) +N (LL)

√
2

≡ D̃q, (5.13)

which describes the excited baryons with JP = 1
2

−
. Note that one could also construct linear combi-

nations with arbitrary mixing angle:

BN = cosϑ

=Dq (pos. parity)︷ ︸︸ ︷
1√
2

(
N (RR) −N (LL)

)
+ sinϑ

parity switch︷︸︸︷
γ5

=D̃q (neg. parity)︷ ︸︸ ︷
1√
2

(
N (RR) +N (LL)

)
, (5.14)

and

BN? = − sinϑ

parity switch︷︸︸︷
γ5

=Dq (pos. parity)︷ ︸︸ ︷
1√
2

(
N (RR) −N (LL)

)
+ cosϑ

=D̃q (neg. parity)︷ ︸︸ ︷
1√
2

(
N (RR) +N (LL)

)
, (5.15)

but that would only complicate the following calculations. Remember that BN and BN? are still “bare
fields” which will mix later on.
Inverting the two equations (5.12) and (5.13) yields

N (RR) =
BN? +BN√

2
and N (LL) =

BN? −BN√
2

. (5.16)

Plugging this into eq. (5.11) gives the naive baryonic Lagrangian for BN and BN?:

Lnaive,N =
1

2
Tr
{
B̄N iγµ

[
Dµ
R +Dµ

L + γ5
(
Dµ
R −D

µ
L

)]
BN + B̄N?iγµ

[
Dµ
R +Dµ

L + γ5
(
Dµ
R −D

µ
L

)]
BN?

}
+

+
cA
2

Tr
{
B̄Nγ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN? + B̄N?γ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN

}
+

− g

2
Tr
{
B̄N

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN + B̄N?

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN?

}
, (5.17)

with the covariant derivatives

Dµ
R = ∂µ − icRµ and Dµ

L = ∂µ − icLµ , c := c1 + c2, (5.18)

and

cA := c1 − c2. (5.19)

With eqs. (5.12) and (5.13) we can find a matrix structure of the two baryon fields in analogy to the
construction of the meson matrix (3.23). We can make use of the fact that diquarks correspond to
antiquarks (as mentioned in eq. (4.26)):

D and D̃ ∼ ([d, s],−[u, s], [u, d])↔ (ū, d̄, s̄). (5.20)
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Therefore the (not symmetrized) quark flavor content of the baryon matrices reads

BN ∼




[d, s]

− [u, s]

[u, d]


 (u, d, s) ≡




u[d, s] −u[u, s] u[u, d]

d[d, s] −d[u, s] d[u, d]

s[d, s] −s[u, s] s[u, d]


 =̂




uds uus uud

dds uds udd

dss uss uds


 . (5.21)

For example the (1 3)-element corresponds to the proton and the (2 3)-element to the neutron. So
the whole matrix can be assigned as follows:

BN ≡




Λ√
6

+ Σ0√
2

Σ+ p

Σ− Λ√
6
− Σ0√

2
n

Ξ− Ξ0 − 2Λ√
6


 . (5.22)

5.2. Baryonic Lagrangian for the Mirror-Transforming Fields

We repeat the same steps to reveal the Lagrangian for the fields M (RR) and M (LL). Fulfilling chi-
ral symmetry, parity, and charge conjugation (and therefore because of the CPT-theorem also time
reversal) it reads:

Lnaive, M = Tr
{
M̄

(RR)
R iγµD

µ
1ML

M
(RR)
R + +M̄

(RR)
L iγµD

µ
2MR

M
(RR)
L +

+ M̄
(LL)
R iγµD

µ
2ML

M
(LL)
R + M̄

(LL)
L iγµD

µ
1MR

M
(LL)
L

}
+

− gM Tr
{
M̄

(RR)
L Φ†M (RR)

R + M̄
(RR)
R ΦM

(RR)
L + M̄

(LL)
L Φ†M (LL)

R + M̄
(LL)
R ΦM

(LL)
L

}

= Tr
{
M̄ (RR)iγµ

1

2

[
Dµ

1R +Dµ
2L − γ5

(
Dµ

1R −D
µ
2L

)]
M (RR)+

+ M̄ (LL)iγµ
1

2

[
Dµ

2R +Dµ
1L − γ5

(
Dµ

2R −D
µ
1L

)]
M (LL)

}
+

− gM Tr
{
M̄ (RR) 1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
M (RR)+

+ M̄ (LL) 1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
M (LL)

}
. (5.23)

The covariant derivatives are Dµ
kMR

= ∂µ − ickMR
µ and Dµ

kML
= ∂µ − ickML

µ for kM ∈ {1, 2} .
ckM are the baryon-(axial-)vector coupling constants and the coupling of baryons and (pseudo)scalar
mesons is parametrized by gM . The only difference to the Lagrangian containing N (RR) and N (LL),
eq. (5.11), is a minus sign in front of the γ5 terms which occurs to achieve chiral invariance for the
combinations of the (now mirror-transforming) M fields. Also in this case we introduce fields with
well-defined parity:
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BM :=
M (RR) −M (LL)

√
2

and BM,? :=
M (RR) +M (LL)

√
2

. (5.24)

Again, these fields are not yet physical, because of the remaining term Lmirror,NM in eq. (5.1), which
generates a mixing.
Therefore the final expression for the Lagrangian for the mirror-transforming fields, which contains
now the two physical fields BM and BM? reads:

Lnaive,M =
1

2
Tr
{
B̄M iγµ

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
BM+

+ B̄M?iγµ
[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
BM?

}
+

+
cAM

2
Tr
{
B̄Mγ

µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
BM?+

+ B̄M?γ
µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
BM

}
+

− g

2
Tr
{
B̄M

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
BM + B̄M?

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
BM?

}
. (5.25)

with the covariant derivatives

Dµ
MR = ∂µ − icMRµ and Dµ

ML = ∂µ − icMLµ, (5.26)

where

cM := c1M + c2M and cAM := c1M − c2M . (5.27)

Finally we have a closer look at the resulting baryonic Lagrangians, eqs. (5.17) and (5.25). As it is
characteristic for the naive assignment, the mass of the particles is solely generated by spontaneous
symmetry breaking (SSB). This means that the mass terms arise after the condensation of the sigma
fields (σN → σN + ϕN and σS → σS + ϕS) included in the (pseudo)scalar meson matrix Φ.
Comparing now the two terms in the Lagrangian (5.17), which contribute to the mass of BN and BN?
after SSB,

g

2
Tr
{
B̄N

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN

}
and

g

2
Tr
{
B̄N?

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN?

}
,

(5.28)

we realize that both terms are identical. As a consequence, the masses of BN and BN? will be de-
generate. This is a problem, because experiments show that the exited JP = (1/2)− baryons have a
larger mass than the JP = (1/2)+ baryons. Of course our Lagrangian should cope with this fact. As
a consequence, the Lagrangian of the above form in naive assignment cannot be correct on its own.
We need further terms which generate a mass shift. In Lmirror,NM of eq. (5.1) terms are included,
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which mix N and M fields. But, as we will see in chapter 5.4, these terms will not be sufficient to
generate a mass splitting.

5.3. Additional λ-Terms

In order to generate a mass shift, we add the following chirally invariant terms to our naive Lagrangian
(5.17):

Lmix
naive,N = −λ1 Tr

{
N̄

(LL)
L ΦN

(RR)
R Φ† + N̄

(RR)
R Φ†N (LL)

L Φ
}

+

− λ2 Tr
{
N̄

(LL)
R Φ†N (RR)

L Φ† + N̄
(RR)
L ΦN

(LL)
R Φ

}
+

− λ̃1

(
Tr
{
N̄

(LL)
L Φ

}
Tr
{
N

(RR)
R Φ†

}
+ Tr

{
N̄

(RR)
R Φ†

}
Tr
{
N

(LL)
L Φ

})
+

− λ̃2

(
Tr
{
N̄

(LL)
R Φ†

}
Tr
{
N

(RR)
L Φ†

}
+ Tr

{
N̄

(RR)
L Φ

}
Tr
{
N

(LL)
R Φ

})
. (5.29)

They produce a mixing of N (RR) and N (LL) after spontaneous symmetry breaking. Besides chiral in-
variance, these terms are naturally Lorentz scalars and CP-invariant. However, the constants λ1, λ2,
λ̃1 and λ̃2 have dimension [E−1] and therefore break dilatation symmetry. Lmix represents a coupling
of the form

�
N

Φ

N

Φ

which is not dilatation invariant. But such terms (may) arise due to the fact that we have not included
heavier baryons (as for instance baryons with spin J = 3/2). Namely, the upper diagram might be a
“squashed” version of the following diagram

�
N

Φ

N

Φ

which is dilatation invariant. (The field denoted by the double line refers to a heavier baryonic field
which is not included in the present version of the model.)
Thus, we will use Lmix

naive,N as a mixing term for the Lagrangian in the naive assignment. After replacing

N (RR) and N (LL) with the field BN and BN?, eqs. (5.12) and (5.13), and adding these term to eq.
(5.17), we find
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Lnaive,N+λ = Lnaive,N + Lmix
naive,N =

=
1

2
Tr
{
B̄N iγµ

[
Dµ
R +Dµ

L + γ5
(
Dµ
R −D

µ
L

)]
BN + B̄N?iγµ

[
Dµ
R +Dµ

L + γ5
(
Dµ
R −D

µ
L

)]
BN?

}
+

+
cAN

2
Tr
{
B̄N iγ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN? + B̄N?iγ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN

}
+

− g

2
Tr
{
B̄N

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN + B̄N?

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN?

}
+

− λ1

2
Tr
{
B̄N?ΦPRBN?Φ

† + B̄N?ΦPRBNΦ† − B̄NΦPRBN?Φ
† − B̄NΦPRBNΦ† +

+B̄N?Φ
†PLBN?Φ− B̄N?Φ†PLBNΦ + B̄NΦ†PLBN?Φ− B̄NΦ†PLBNΦ

}
+

− λ2

2
Tr
{
B̄N?Φ

†PLBN?Φ† + B̄N?Φ
†PLBNΦ† − B̄NΦ†PLBN?Φ† − B̄NΦ†PLBNΦ†+

+ B̄N?ΦPRBN?Φ− B̄N?ΦPRBNΦ + B̄NΦPRBN?Φ− B̄NΦPRBNΦ
}

+

+ Lλ̃1,2
(BN , BN?). (5.30)

where we have shortened the Lagrangian (5.30) by abbreviating the terms proportional to λ̃1 and λ̃2

with

Lλ̃1,2
(BN , BN?) :=− λ̃1

2

(
Tr
{
B̄N?Φ

}
PR Tr

{
BN?Φ

†}+ Tr
{
B̄N?Φ

}
PR Tr

{
BNΦ†

}
+

− Tr
{
B̄NΦ

}
PR Tr

{
BN?Φ

†}− Tr
{
B̄NΦ

}
PR Tr

{
BNΦ†

}
+

+ Tr
{
B̄N?Φ

†}PL Tr
{
BN?Φ

}
− Tr

{
B̄N?Φ

†}PL Tr
{
BNΦ

}
+

+ Tr
{
B̄NΦ†

}
PL Tr

{
BN?Φ

}
− Tr

{
B̄NΦ†

}
PL Tr

{
BNΦ

})
+

− λ̃2

2

(
Tr
{
B̄N?Φ

†}PL Tr
{
BN?Φ

†}+ Tr
{
B̄N?Φ

†}PL Tr
{
BNΦ†

}
+

− Tr
{
B̄NΦ†

}
PL Tr

{
BN?Φ

†}− Tr
{
B̄NΦ†

}
PL Tr

{
BNΦ†

}
+

+ Tr
{
B̄N?Φ

}
PR Tr

{
BN?Φ

}
− Tr

{
B̄N?Φ

}
PR Tr

{
BNΦ

}
+

+ Tr
{
B̄NΦ

}
PR Tr

{
BN?Φ

}
− Tr

{
B̄NΦ

}
PR Tr

{
BNΦ

})
, (5.31)

since the terms are easily reconstructed by comparing it with the terms proportional to λ1 and λ2

and in the limit of two flavors these terms will vanish anyway. PL and PR are the chiral projection
operators, eq. (1.25).
After condensation, Φ→ Φ + φ, where φ = 1/2 diag(ϕN , ϕN ,

√
2ϕS), the mass terms are

Lmass
naive,N+λ = −gN Tr

{
B̄NφBN + B̄N?φBN?

}
+

− λ1 Tr
{
B̄N?φBN?φ− B̄NφBNφ+ B̄N?φγ

5BNφ− B̄Nφγ5BN?φ
}

+
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− λ2 Tr
{
B̄N?φBN?φ− B̄NφBNφ− B̄N?φγ5BNφ+ B̄Nφγ

5BN?φ
}

+

− λ̃1

(
Tr
{
B̄N?φ

}
Tr
{
BN?φ

}
− Tr

{
B̄Nφ

}
Tr
{
BNφ

}
+ Tr

{
B̄N?φ

}
γ5 Tr

{
BNφ

}
+

− Tr
{
B̄Nφ

}
γ5 Tr

{
BN?φ

})
+

− λ̃2

(
Tr
{
B̄N?φ

}
Tr
{
BN?φ

}
− Tr

{
B̄Nφ

}
Tr
{
BNφ

}
− Tr

{
B̄N?φ

}
γ5 Tr

{
BNφ

}
+

+ Tr
{
B̄Nφ

}
γ5 Tr

{
BN?φ

})
≈

≈ −Tr
{[
gNφ− (λ1 + λ2)φ2

]
B̄NBN +

[
gNφ+ (λ1 + λ2)φ2

]
B̄N?BN?+

+
[
(λ1 − λ2)φ2

] (
−B̄N?γ5BN + B̄Nγ

5BN?
)}

+

−
[
(λ̃1 + λ̃2)φ2

] (
−Tr

{
B̄N
}

Tr
{
BN
}

+ Tr
{
B̄N?

}
Tr
{
BN?

})
+

−
[
(λ̃1 − λ̃2)φ2

] (
−Tr

{
B̄N?

}
γ5 Tr

{
BN
}

+ Tr
{
B̄N
}
γ5 Tr

{
BN?

})
, (5.32)

where we assumed at the approximately-equal sign, that φ ≈ ϕ13×3, so that we can get an impression
of the elements of the mass matrix. Now off-diagonal terms appear, which correspond to the mixture
of the fields and therefore ensure the splitting of masses in the naive assignment.

The construction of the Lagrangian for the M fields with isomorphic λi terms proceeds in complete
analogy.

5.4. The Full Baryonic Lagrangian

As mentioned in eq. (5.1), the “full” baryonic Lagrangian containing all four fields will be a sum of
the naive Lagrangians and a mixing term:

L =Lnaive, N(+λ) + Lnaive, M(+λ) + Lmirror,NM . (5.33)

In this section we include the last term. In order to be hermitian and invariant under parity and
charge conjugation it must have the form:

Lmirror,NM = −m0,1 Tr
{
M̄

(RR)
R N

(RR)
L + M̄

(LL)
L N

(LL)
R + h.c.

}
+

−m0,2 Tr
{
M̄

(RR)
L N

(RR)
R + M̄

(LL)
R N

(LL)
L + h.c.

}
=

= −m0,1 +m0,2

2
Tr
{
B̄MBN + B̄M?BN? + B̄NBM + B̄N?BM?

}
+

− m0,2 −m0,1

2
Tr
{
B̄Mγ

5BN? + B̄M?γ
5BN − B̄N?γ5BM − B̄Nγ5BM?

}
. (5.34)

where we replaced N (RR), N (LL), M (RR), and M (LL) with the fields BN , BN?, BM , and BM?, defined
in eqs. (5.12), (5.13) and (5.24).
In the last section we introduced two types of naive Lagrangians: one without the λi-terms , eqs.
(5.17 and (5.25) and one with them, eq. (5.30). We study them separately in the following sections
and chapters in order to understand, why the additional λi-terms are necessary:
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1) Without the λi-terms:

We plug the naive Lagrangians without λi-terms, which we have found in the last section for the two
N and M fields, eqs. (5.8)and (5.23), into the Lagrangian (5.33). That yields in terms of the fields
with definite parity:

L =Lnaive, N + Lnaive, M + Lmirror,NM

= Tr
{
B̄N iγµ

1

2

[
Dµ
NR +Dµ

NL + γ5
(
Dµ
NR −D

µ
NL

)]
BN+

+ B̄N?iγµ
1

2

[
Dµ
NR +Dµ

NL + γ5
(
Dµ
NR −D

µ
NL

)]
BN?

}
+

+ Tr
{
B̄M iγµ

1

2

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
BM+

+ B̄M,?iγµ
1

2

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
BM,?

}
+

+
cAN

2
Tr
{
B̄Nγ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN?+

+ B̄N?γ
µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN

}
+

+
cAM

2
Tr
{
B̄Mγ

µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
BM?+

+ B̄M?γ
µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
BM

}
+

− gN Tr
{
B̄N

1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN+

+ B̄N?
1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN?

}
+

− gM Tr
{
B̄M

1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
BM+

+ B̄M,?
1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
BM,?

}
+

− m0,1 +m0,2

2
Tr
{
B̄MBN + B̄M?BN? + B̄NBM + B̄N?BM?

}
+

− m0,2 −m0,1

2
Tr
{
B̄Mγ

5BN? + B̄M?γ
5BN − B̄N?γ5BM − B̄Nγ5BM?

}
. (5.35)

In the last subsection about the naive assignment we found that the masses of the B? are identical
to the masses of the particles B (without λi-terms). In order to avoid these problem, a first try was
the construction of the above Lagrangian in mirror assignment, which now also contains mass terms.
These additional terms mix the four fields and might cause a splitting of the masses. In order to
check if the model can indeed reveals the splitting, we have to evaluate the masses by diagonalising
the Lagrangian, i.e., we have to calculate the eigenvalues of the so-called mass matrix. But instead
of analysing the (36 × 36)-mass matrix of the Nf = 3 case, we will reduce the above Lagrangian to
Nf = 2 in the next chapter and analyse the (4× 4)-mass matrix in this case.
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2) With the λi-terms:

When including the λi-terms the “full” baryonic Lagrangian takes the form:

L =Lnaive, N+λ + Lnaive, M+λ + Lmirror,NM

= Tr
{
B̄N iγµ

1

2

[
Dµ
NR +Dµ

NL + γ5
(
Dµ
NR −D

µ
NL

)]
BN+

+ B̄N?iγµ
1

2

[
Dµ
NR +Dµ

NL + γ5
(
Dµ
NR −D

µ
NL

)]
BN?

}
+

+ Tr
{
B̄M iγµ

1

2

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
BM+

+ B̄M,?iγµ
1

2

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
BM,?

}
+

+
cAN

2
Tr
{
B̄N iγ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN?+

+ B̄N?iγ
µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
BN

}
+

+
cAM

2
Tr
{
B̄M iγ

µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
BM?+

+ B̄M?iγ
µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
BM

}
+

− gN Tr
{
B̄N

1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN + B̄N?

1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
BN?

}
+

− gM Tr
{
B̄M

1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
BM + B̄M,?

1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
BM,?

}
+

− λ1

2
Tr
{
B̄N?ΦPRBN?Φ

† + B̄N?ΦPRBNΦ† − B̄NΦPRBN?Φ
† − B̄NΦPRBNΦ† +

+B̄N?Φ
†PLBN?Φ− B̄N?Φ†PLBNΦ + B̄NΦ†PLBN?Φ− B̄NΦ†PLBNΦ

}
+

− λ2

2
Tr
{
B̄N?Φ

†PLBN?Φ† + B̄N?Φ
†PLBNΦ† − B̄NΦ†PLBN?Φ† − B̄NΦ†PLBNΦ†+

+ B̄N?ΦPRBN?Φ− B̄N?ΦPRBNΦ + B̄NΦPRBN?Φ− B̄NΦPRBNΦ
}

+

− λ3

2
Tr
{
B̄M?Φ

†PRBM?Φ
† + B̄M?Φ

†PRBMΦ† − B̄MΦ†PRBM?Φ
† − B̄MΦ†PRBMΦ†+

+ B̄M?ΦPLBM?Φ− B̄M?ΦPLBMΦ + B̄MΦPLBM?Φ− B̄MΦPLBMΦ
}

+

− λ4

2
Tr
{
B̄M?Φ

†PLBM?Φ + B̄M?Φ
†PLBMΦ− B̄MΦ†PLBM?Φ− B̄MΦ†PLBMΦ+

+ B̄M?ΦPRBM?Φ
† − B̄M?ΦPRBMΦ† + B̄MΦPRBM?Φ

† − B̄MΦPRBMΦ†
}

+

− m0,1 +m0,2

2
Tr
{
B̄MBN + B̄M?BN? + B̄NBM + B̄N?BM?

}
+

− m0,2 −m0,1

2
Tr
{
B̄Mγ

5BN? + B̄M?γ
5BN − B̄N?γ5BM − B̄Nγ5BM?

}
+

+ Lλ̃1,2
(BN , BN?) + Lλ̃3,4

(BM , BM?). (5.36)
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5. Baryon Lagrangian for Nf = 3

This is indeed the most general Lagrangian of our work which contains all other cases as subcases.
As we will see in the next chapter, with this Lagrangian it will be possible to describe the masses of
the particles correctly.
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6. The Baryonic Lagrangian for Two Flavors

In this chapter and for the following calculations of this work, we reduce our model eqs. (5.35) and
(5.36), to two flavors.

6.1. Reduction of the Baryon Lagrangian to the Nf = 2 Case

In order to achieve the reduction, we set all quark fields with strangeness to zero. With eq. (5.21) we
realize that only the (1 3)- and (2 3)-elements of the baryon matrices are nonzero,

B
s=0−−→




0 0 Ψ1,1

0 0 Ψ1,2

0 0 0


 , B?

s=0−−→




0 0 Ψ2,1

0 0 Ψ2,2

0 0 0


 , (6.1)

BM
s=0−−→




0 0 Ψ3,1

0 0 Ψ3,2

0 0 0


 , BM,?

s=0−−→




0 0 Ψ4,1

0 0 Ψ4,2

0 0 0


 , (6.2)

where Ψij are fields with quark content Ψi1=̂uud and Ψi2=̂udd. Applying the same to the meson
matrix eq. (3.23) and to the left- and right-handed (axial-)vector fields eqs. (3.24) and (3.25) we
obtain

Φ
S=0−−→ 1√

2




(σN+ϕN+a0
0)+i(ηN+π0)√
2

a+
0 + iπ+ 0

a−0 + iπ− (σN+ϕN−a0
0)+i(ηN−π0)√
2

0

0 0
√

2ϕS


 =




(
ΦNf=2

) 0

0

0 0
√

2ϕS


 ,

(6.3)

Rµ
S=0−−→ 1√

2




ωµN+ρµ0

√
2
− fµ1N+aµ0

1√
2

ρµ+ − aµ+
1 0

ρµ− − aµ−1
ωµN−ρµ0

√
2
− fµ1N−a

µ0
1√

2
0

0 0 0


 =




(
RµNf=2

) 0

0

0 0 0


 , (6.4)

Lµ
S=0−−→ 1√

2




ωµN+ρµ0

√
2

+
fµ1N+aµ0

1√
2

ρµ+ + aµ+
1 0

ρµ− + aµ−1
ωµN−ρµ0

√
2

+
fµ1N−a

µ0
1√

2
0

0 0 0


 =




(
LµNf=2

) 0

0

0 0 0


 . (6.5)
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6. The Baryonic Lagrangian for Two Flavors

Note that it is crucial to first include the condensation of the sigma mesons in ΦNf=3 and only then
set the mesons with s quarks to zero, because otherwise one would loose the vacuum expectation value
ϕS of σS . In this chapter strange mesons will not contribute to the Lagrangian, but in later chapters
it will be very important to take them into account.
For the Nf = 2 case it is common to write the (2× 2) meson matrix ΦNf=2 in the basis of the three
SU(2)f generators T = τ/2, where τ are the Pauli matrices, and T 0 = 12x2/2:

ΦNf=2 =
3∑

a=0

ΦaT
a = (σN + ϕN + iηN )T 0 + (a0 + iπ) · T . (6.6)

Similarly the left- and right-handed fields can be expressed as

LµNf=2 = (ωµ + fµ1 )T 0 + (ρµ + aµ1 ) · T , (6.7)

RµNf=2 = (ωµ − fµ1 )T 0 + (ρµ − aµ1 ) · T . (6.8)

As in the last chapter, we separate the following study into the two parts: first the case without λi
terms and after that the case with the λi terms included.

1) Without λi-terms:

When we plug these non-strange fields into the mirror Lagrangian (5.35), it reduces to

LNf=2 = Ψ̄1iγµ
1

2

[
Dµ
N,R +Dµ

N,L + γ5
(
Dµ
N,R −D

µ
N,L

)]
Ψ1+

+ Ψ̄2iγµ
1

2

[
Dµ
N,R +Dµ

N,L + γ5
(
Dµ
N,R −D

µ
N,L

)]
Ψ2+

+ Ψ̄3iγµ
1

2

[
Dµ
M,R +Dµ

M,L − γ5
(
Dµ
M,R −D

µ
M,L

)]
Ψ3+

+ Ψ̄4iγµ
1

2

[
Dµ
M,R +Dµ

M,L − γ5
(
Dµ
M,R −D

µ
M,L

)]
Ψ4+

+
cAN

2

{
Ψ̄1γµ

[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
Ψ2 + Ψ̄2γµ

[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
Ψ1

}
+

+
cAM

2

{
Ψ̄3γµ

[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
Ψ4 + Ψ̄4γµ

[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
Ψ3

}
+

− gN
(

Ψ̄1
1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
Ψ1 + Ψ̄2

1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
Ψ2

)
+

− gM
(

Ψ̄3
1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
Ψ3 + Ψ̄4

1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
Ψ4

)
+

− m0,1 +m0,2

2

(
Ψ̄4Ψ2 + Ψ̄3Ψ1 + Ψ̄2Ψ4 + Ψ̄1Ψ3

)
+
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6.1. Reduction of the Baryon Lagrangian to the Nf = 2 Case

− m0,2 −m0,1

2

(
Ψ̄4γ

5Ψ1 + Ψ̄3γ
5Ψ2 − Ψ̄1γ

5Ψ4 − Ψ̄2γ
5Ψ3

)
+ LNF=2

meson =

= Ψ̄1RiγµD
µ
NRΨ1R + Ψ̄1LiγµD

µ
NLΨ1L + Ψ̄2RiγµD

µ
NRΨ2R + Ψ̄2LiγµD

µ
NLΨ2L+

+ Ψ̄3RiγµD
µ
MLΨ3R + Ψ̄3LiγµD

µ
MRΨ3L + Ψ̄4RiγµD

µ
MLΨ4R + Ψ̄4LiγµD

µ
MRΨ4L+

+ cAN
(
Ψ̄1RiγµR

µΨ2R − Ψ̄1LγµL
µΨ2L + Ψ̄2RiγµR

µΨ1R − Ψ̄2LγµL
µΨ1L

)
+

+ cAM
(
Ψ̄3LiγµR

µΨ4L − Ψ̄3RγµL
µΨ4R + Ψ̄4LiγµR

µΨ3L − Ψ̄4RγµL
µΨ3R

)
+

− gN
(
Ψ̄1LΦΨ1R + Ψ̄1RΦ†Ψ1L + Ψ̄2LΦΨ2R + Ψ̄2RΦ†Ψ2L

)
+

− gM
(
Ψ̄3LΦ†Ψ3R + Ψ̄3RΦΨ3L + Ψ̄4LΦ†Ψ4R + Ψ̄4RΦΨ4L

)
+

− m0,1 +m0,2

2

(
Ψ̄4RΨ2L + Ψ̄4LΨ2R + Ψ̄3RΨ1L + Ψ̄3LΨ1R + h.c.

)
+

− m0,1 −m0,2

2

(
Ψ̄4RΨ1L − Ψ̄4LΨ1R + Ψ̄3RΨ2L − Ψ̄3LΨ2R − h.c.

)
+ LNF=2

meson , (6.9)

where we dropped the indices “Nf=2” and some of “N ,” since ϕN does no longer appear. Furthermore,
we have defined Ψi := (Ψi,1,Ψi,2).

2) With λi terms:

Analogously, with the Lagrangian (5.36) we find :

LNf=2 =Ψ̄1iγµ
1

2

[
Dµ
NR +Dµ

NL + γ5
(
Dµ
NR −D

µ
NL

)]
Ψ1+

+ Ψ̄2iγµ
1

2

[
Dµ
NR +Dµ

NL + γ5
(
Dµ
NR −D

µ
NL

)]
Ψ2+

+ Ψ̄3iγµ
1

2

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
Ψ3+

+ Ψ̄4iγµ
1

2

[
Dµ
MR +Dµ

ML − γ5
(
Dµ
MR −D

µ
ML

)]
Ψ4+

+
cAN

2

{
Ψ̄1γ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
Ψ2 + Ψ̄2γ

µ
[
Rµ − Lµ + γ5 (Rµ + Lµ)

]
Ψ1

}
+

+
cAM

2

{
Ψ̄3γ

µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
Ψ4 + Ψ̄4γ

µ
[
Rµ − Lµ − γ5 (Rµ + Lµ)

]
Ψ3

}
+

− gN
{

Ψ̄1
1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
Ψ1 + Ψ̄2

1

2

[
Φ + Φ† + γ5

(
Φ− Φ†

)]
Ψ2

}
+

− gM
{

Ψ̄3
1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
Ψ3 + Ψ̄4

1

2

[
Φ + Φ† − γ5

(
Φ− Φ†

)]
Ψ4

}
+

− λ1√
2
ϕS

(
Ψ̄2ΦPRΨ2 + Ψ̄2ΦPRΨ1 − Ψ̄1ΦPRΨ2 − Ψ̄1ΦPRΨ1 + Ψ̄2Φ†PLΨ2+

− Ψ̄2Φ†PLΨ1 + Ψ̄1Φ†PLΨ2 − Ψ̄1Φ†PLΨ1

)
+

− λ2√
2
ϕS

(
Ψ̄2Φ†PLΨ2 + Ψ̄2Φ†PLΨ1 − Ψ̄1Φ†PLΨ2 − Ψ̄1Φ†PLΨ1 + Ψ̄2ΦPRΨ2+

− Ψ̄2ΦPRΨ1 + Ψ̄1ΦPRΨ2 − Ψ̄1ΦPRΨ1

)
+
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6. The Baryonic Lagrangian for Two Flavors

− λ3√
2
ϕS

(
Ψ̄4Φ†PRΨ4 + Ψ̄4Φ†PRΨ3 − Ψ̄3Φ†PRΨ4 − Ψ̄3Φ†PRΨ3 + Ψ̄4ΦPLΨ4+

− Ψ̄4ΦPLΨ3 + Ψ̄3ΦPLΨ4 − Ψ̄3ΦPLΨ3

)
+

− λ4√
2
ϕS

(
Ψ̄3Φ†PLΨ4 + Ψ̄4Φ†PLΨ3 − Ψ̄3Φ†PLΨ4 − Ψ̄3Φ†PLΨ3 + Ψ̄4ΦPRΨ4+

− Ψ̄4ΦPRΨ3 + Ψ̄3ΦPRΨ4 − Ψ̄3ΦPRΨ3

)
+

− m0,1 +m0,2

2

(
Ψ̄3Ψ1 + Ψ̄4Ψ2 + Ψ̄1Ψ3 + Ψ̄2Ψ4

)
+

− m0,2 −m0,1

2

(
Ψ̄3γ

5Ψ2 + Ψ̄4γ
5Ψ1 − Ψ̄2γ

5Ψ3 − Ψ̄1γ
5Ψ4

)
+ Lmeson.

(6.10)

The second Φ(†) matrix in the λi terms contributes only with the vacuum expectation value ϕS of σS
and the terms proportional to λ̃i vanish.

6.2. Effects of the Spontaneous Symmetry Breaking in the Meson
Sector on the Baryon Sector

As explained in section 3.3 spontaneous symmetry breaking in the mesonic sector leads to the con-
densation of the sigma meson σ → σ+ϕ and a shift of axial-vector fields. For the two-flavor case one
has

fµ1 −→ fµ1 + Zw∂µηN and aµ1 −→ aµ1 + Zw∂µπ, (6.11)

with

w = g1ϕ/m
2
f1
, (6.12)

where mf1 corresponding to mf1N
given in eq. (3.37) and

Z2 = mf1
2/(mf1

2 − g1
2ϕ2). (6.13)

In order to simplify the following expressions we renamed:

ϕN ≡ ϕ. (6.14)

1) Without λi-terms:

With eq. (6.11) the Lagrangian (6.9) reads after the condensation σ → σ + ϕ

LNf=2
mirror =Ψ̄1iγµ∂

µΨ1 + Ψ̄2iγµ∂
µΨ2 + Ψ̄3iγµ∂

µΨ3 + Ψ̄4iγµ∂
µΨ4+

+ cN Ψ̄1γµ
{[
ωµ − γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ − γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ1+

+ cN Ψ̄2γµ
{[
ωµ − γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ − γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ2+

+ cM Ψ̄3γµ
{[
ωµ + γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ + γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ3+

+ cM Ψ̄4γµ
{[
ωµ + γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ + γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ4+
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6.2. Effects of the Spontaneous Symmetry Breaking in the Meson Sector on the Baryon Sector

− cAN Ψ̄1γµ
[(
fµ1 + Zw∂µηN − γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ − γ5ρµ

)
· T
]

Ψ2+

− cAN Ψ̄2γµ
[(
fµ1 + Zw∂µηN − γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ − γ5ρµ

)
· T
]

Ψ1+

− cAM Ψ̄3γµ
[(
fµ1 + Zw∂µηN + γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ + γ5ρµ

)
· T
]

Ψ4+

− cAM Ψ̄4γµ
[(
fµ1 + Zw∂µηN + γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ + γ5ρµ

)
· T
]

Ψ3+

− gN Ψ̄1

[(
σ + ϕ+ iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ1+

− gN Ψ̄2

[(
σ + ϕ+ iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ2+

− gM Ψ̄3

[(
σ + ϕ− iγ5ZηN

)
T 0 +

(
a0 − iγ5Zπ

)
· T
]

Ψ3+

− gM Ψ̄4

[(
σ + ϕ− iγ5ZηN

)
T 0 +

(
a0 − iγ5Zπ

)
· T
]

Ψ4+

− m0,1 +m0,2

2

(
Ψ̄4Ψ2 + Ψ̄3Ψ1 + Ψ̄2Ψ4 + Ψ̄1Ψ3

)
+

− m0,2 −m0,1

2

(
Ψ̄4γ

5Ψ1 + Ψ̄3γ
5Ψ2 − Ψ̄1γ

5Ψ4 − Ψ̄2γ
5Ψ3

)
+ LNF=2

meson . (6.15)

2) With λi-terms:

When including the λi-terms, one gets:

LNf=2 =Ψ̄1iγ
µ∂µΨ1 + Ψ̄2iγ

µ∂µΨ2 + Ψ̄3iγ
µ∂µΨ3 + Ψ̄4iγ

µ∂µΨ4+

+ cN Ψ̄1γµ
{[
ωµ − γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ − γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ1+

+ cN Ψ̄2γµ
{[
ωµ − γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ − γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ2+

+ cM Ψ̄3γµ
{[
ωµ + γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ + γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ3+

+ cM Ψ̄4γµ
{[
ωµ + γ5 (fµ1 + Zw∂µηN )

]
T 0 +

[
ρµ + γ5 (aµ1 + Zw∂µπ)

]
· T
}

Ψ4+

− cAN Ψ̄1γµ
[(
fµ1 + Zw∂µηN − γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ − γ5ρµ

)
· T
]

Ψ2+

− cAN Ψ̄2γµ
[(
fµ1 + Zw∂µηN − γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ − γ5ρµ

)
· T
]

Ψ1+

− cAM Ψ̄3γµ
[(
fµ1 + Zw∂µηN + γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ + γ5ρµ

)
· T
]

Ψ4+

− cAM Ψ̄4γµ
[(
fµ1 + Zw∂µηN + γ5ωµ

)
T 0 +

(
aµ1 + Zw∂µπ + γ5ρµ

)
· T
]

Ψ3+

− gN Ψ̄1

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ1+

− gN Ψ̄2

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ2+

− gM Ψ̄3

[(
σ + ϕN − iγ5ZηN

)
T 0 +

(
a0 − iγ5Zπ

)
· T
]

Ψ3+

− gM Ψ̄4

[(
σ + ϕN − iγ5ZηN

)
T 0 +

(
a0 − iγ5Zπ

)
· T
]

Ψ4+

− λ′1ϕSΨ̄2

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ2+

− λ′1ϕSΨ̄2

[(
γ5σ + γ5ϕN + iZηN

)
T 0 +

(
γ5a0 + iZπ

)
· T
]

Ψ1+

+ λ′1ϕSΨ̄1

[(
γ5σ + γ5ϕN + iZηN

)
T 0 +

(
γ5a0 + iZπ

)
· T
]

Ψ2+

+ λ′1ϕSΨ̄1

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ1 + ...
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... − λ′2ϕSΨ̄2

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ2+

+ λ′2ϕSΨ̄2

[(
γ5σ + γ5ϕN + iZηN

)
T 0 +

(
γ5a0 + iZπ

)
· T
]

Ψ1+

− λ′2ϕSΨ̄1

[(
γ5σ + γ5ϕN + iZηN

)
T 0 +

(
γ5a0 + iZπ

)
· T
]

Ψ2+

+ λ′2ϕSΨ̄1

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ1+

− λ′3ϕSΨ̄4

[(
σ + ϕN − iγ5ZηN

)
T 0 +

(
a0 − iγ5Zπ

)
· T
]

Ψ4+

− λ′3ϕSΨ̄4

[(
γ5σ + γ5ϕN − iZηN

)
T 0 +

(
γ5a0 − iZπ

)
· T
]

Ψ3+

+ λ′3ϕSΨ̄3

[(
γ5σ + γ5ϕN − iZηN

)
T 0 +

(
γ5a0 − iZπ

)
· T
]

Ψ4+

+ λ′3ϕSΨ̄3

[(
σ + ϕN − iγ5ZηN

)
T 0 +

(
a0 − iγ5Zπ

)
· T
]

Ψ3+

− λ′4ϕSΨ̄4

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ4+

+ λ′4ϕSΨ̄4

[(
γ5σ + γ5ϕN + iZηN

)
T 0 +

(
γ5a0 + iZπ

)
· T
]

Ψ3+

− λ′4ϕSΨ̄3

[(
γ5σ + γ5ϕN + iZηN

)
T 0 +

(
γ5a0 + iZπ

)
· T
]

Ψ4+

+ λ′4ϕSΨ̄3

[(
σ + ϕN + iγ5ZηN

)
T 0 +

(
a0 + iγ5Zπ

)
· T
]

Ψ3+

− m0,1 +m0,2

2

(
Ψ̄4Ψ2 + Ψ̄3Ψ1 + Ψ̄2Ψ4 + Ψ̄1Ψ3

)
+

− m0,2 −m0,1

2

(
Ψ̄4γ

5Ψ1 + Ψ̄3γ
5Ψ2 − Ψ̄1γ

5Ψ4 − Ψ̄2γ
5Ψ3

)
+ LNF=2

meson . (6.16)

Here we have defined

λ′i := λi/
√

2 (6.17)

and dropped the index N of the sigma meson.
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7. Mixing and Fit of the Parameters m0,1,
m0,2, gN , gM , and λ1, . . . , λ4

In this chapter we determine the masses of the baryons included in Lmirror, eqs. (5.35) and (5.36).
Coincidently we fit the parameters m0,1,m0,2, gN , gM , and λ1, . . . , λ4, which are included in the mass
matrix.

7.1. Mixing of the Four Nucleon Fields and Diagonalisation of the
Lagrangian without λi terms

After spontaneous symmetry breaking (σ in ΦNf=2 becomes σ + ϕ) the Lagrangian (6.15) shows the
following mixing terms of the four fields Ψ1, ..., Ψ4:

Lmass = −gNϕ
2

(
Ψ̄1Ψ1 + Ψ̄2Ψ2

)
− gMϕ

2

(
Ψ̄3Ψ3 + Ψ̄4Ψ4

)
+

− m0,1 +m0,2

2

(
Ψ̄4Ψ2 + Ψ̄3Ψ1 + Ψ̄2Ψ4 + Ψ̄1Ψ3

)
+

− m0,2 −m0,1

2

(
Ψ̄4γ

5Ψ1 + Ψ̄3γ
5Ψ2 + Ψ̄1γ

5Ψ4 + Ψ̄2γ
5Ψ3

)
. (7.1)

Because of these mixing terms, the four nucleon field in the Lagrangian are not yet the physical
ones. In order to determine them we have to diagonalise the Lagrangian. We define the vector
Ψ = (Ψ1, γ

5Ψ2,Ψ3, γ
5Ψ4)T and rewrite the mass terms in matrix form. Then we introduce a so-called

mass matrix M through the definition:

Lmass
!

= −
(

Ψ̄1,−Ψ̄2γ
5, Ψ̄3,−Ψ̄4γ

5
)
M




Ψ1

γ5Ψ2

Ψ3

γ5Ψ4




= −Ψ̄MΨ,

with M =
1

2




gNϕ 0 m0,1 +m0,2 −m0,1 +m0,2

0 −gNϕ m0,1 −m0,2 −m0,1 −m0,2

m0,1 +m0,2 m0,1 −m0,2 gMϕ 0

−m0,1 +m0,2 −m0,1 −m0,2 0 −gMϕ



. (7.2)

In order to avoid γ5s in the mass matrix all four components of the vectors to the left and the right
should have the same parity. For that reason we have redefined the fields which are proportional to
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the pseudoscalar diquark (i.e., with negative parity), by inserting a γ5: Ψ2 → γ5Ψ2 and Ψ4 → γ5Ψ4.
Furthermore, we made use of (γ5Ψi) = −Ψ̄iγ

5.
In order to diagonalise Lmass we have to solve the eigenvalue problem

Mu(i) = miu
(i),

Miju
(k)
j = mku

(k)
i , (7.3)

where u(i) (i ∈ {1, ...,dim(M)}) are the so-called eigenvectors and mi are the four eigenvalues of the
mass matrix M . Notice that there is no Einstein sum over i, but there are four equations of this type.
If we multiply eq. (7.3) with u(l) from the left hand side, we find

u
(l)
i Miju

(k)
j = mku

(l)
i u

(k)
i = mkδ

kl, (7.4)

since the eigenvectors are orthogonal, u(l) · u(k) = δlk. Hence the matrix

Uij = u
(j)
i (7.5)

diagonalises M :

U †MU = diag(m1,m2,m3,m4). (7.6)

Going back to the Lagrangian Lmass we realize that it is diagonalized by

Lmass = −Ψ̄UU †MUU †Ψ = −Ψ̄physdiag(m1,m2,m3,m4)Ψphys, (7.7)

with the physical fields

Ψphys = U †Ψ. (7.8)

Thus, we have to determine the eigenvalues of M , which correspond to the masses of the physical
fields. We evaluate

Mu(i) = miu
(i)

(M −mi14×4)u(i) = 0

⇒ det
[
M −mi14×4

]
!

= 0 (7.9)

and find

m1 = +
√

2
√

Ω1 + Ω2,

−m2 = −
√

2
√

Ω1 + Ω2,

m3 = +
√

2
√

Ω1 − Ω2,

−m4 = −
√

2
√

Ω1 − Ω2, (7.10)

86



7.1. Mixing of the Four Nucleon Fields and Diagonalisation of the Lagrangian without λi terms

with

Ω1 := g2
Nϕ

2 + g2
Mϕ

2 + 4(m0,1 +m0,2)2,

Ω2 :=

√[
(gNϕ− gMϕ)2 + 4(m0,1 +m0,2)2

] [
(gNϕ+ gMϕ)2 + 4(m0,1 −m0,2)2

]
. (7.11)

Thus we realize that the masses of the nucleon and its chiral partner are still degenerate. Note that the
masses of the baryons with negative parity (Ψ2 and Ψ4) have a minus sign because of the definitions
Ψ2 → γ5Ψ2 resp. Ψ̄2 → −Ψ̄2γ

5 and Ψ4 → γ5Ψ4 resp. Ψ̄4 → −Ψ̄2γ
5. Therefore we relabelled

m2 → −m2 and m4 → −m4.
There are at least two possibilities why our model does not yield four different masses. The first point
might be the fact that our model does not pay attention to the inner structure of the baryons. Thus,
the mass difference between the scalar and the pseudoscalar diquark is not included. Another point
might be the fact that we work only on tree level and heavier baryons or baryons with larger momenta
are not included. (With respect to the latter point we added the λi-terms to the Lagrangian in the
last chapter.)
The first idea can easily be implemented in a phenomenological (but not rigorous) way by adding the
mass difference ∆m between the pseudoscalar and scalar diquark to the diagonal elements of the mass
matrix M , which contain the pseudoscalar diquark (=̂ have negative parity). Thus, the mass matrix
would read

M =
1

2




gNϕ 0 m0,1 +m0,2 −m0,1 +m0,2

0 −gNϕ− 2∆m m0,1 −m0,2 −m0,1 −m0,2

m0,1 +m0,2 m0,1 −m0,2 gMϕ 0

−m0,1 +m0,2 −m0,1 −m0,2 0 −gMϕ− 2∆m



. (7.12)

The following masses are obtained:

m1 = −∆m

2
−
√

Ω1 − Ω2

4
,

−m2 = −∆m

2
+

√
Ω1 − Ω2

4
,

m3 = −∆m

2
−
√

Ω1 + Ω2

4
,

−m4 = −∆m

2
+

√
Ω1 + Ω2

4
, (7.13)

with

Ω1 := 2g2
Nϕ

2 + 2g2
Mϕ

2 + 2(gNϕ+ gMϕ)∆m+ ∆m2 + 8(m2
0,1 +m2

0,2),

Ω2 := 2
√

(gNϕ+ gMϕ+ ∆m)2 + 4(m0,1 −m0,2)2
√

(gNϕ− gMϕ)2 + 4(m0,1 +m0,2)2. (7.14)
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As expected the masses are no longer degenerate. However, there is still a problem: When computing
the difference between the masses of the nucleons (parity = +) and the chiral partners (parity = -),

m2 −m1 = ∆m,

m4 −m3 = ∆m, (7.15)

we see that the mass differences are given by the mass difference between pseudoscalar and scalar
diquark. Moreover, the mass differences of both partners are identical. Unfortunately that is in
contrast to experiment. Namely, the resonances listed in ref. [23] are the particles N(939) ≡ N and
N(1440) with positive parity and the resonances N(1535) and N(1650) with negative parity. The
masses of these particles are given in ref. [23] as

mexp
N(939) ' 939 MeV,

mexp
N(1440) ' 1440 MeV,

mexp
N(1535) ' 1535 MeV,

mexp
N(1650) ' 1655 MeV. (7.16)

If we assume N(1535) to be the chiral partner of N(939) and the N(1650) the chiral partner of
N(1440), the approximate mass differences are

mN(1535) −mN(939) = 596 MeV,

mN(1650) −mN(1440) = 210 MeV, (7.17)

or when N(1650) is the chiral partner of N(939) and N(1535) the chiral partner of N(1440):

mN(1650) −mN(939) = 711 MeV,

mN(1535) −mN(1440) = 95 MeV. (7.18)

Hence the simple ansatz of including “ad hoc” the missing mass difference between pseudoscalar and
scalar diquark ∆m in the mass matrix failed. This is indeed the reason why we have included the
λi-terms in sec. 5.3. In the next section we will see that these terms generate a splitting of the masses.
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7.2. Diagonalisation of the Lagrangian with λi terms

From the Lagrangian (6.16) which includes the additional λi-terms we extract the following mixing
terms:

Lmass = −
(
gNϕN

2
− λ1 + λ2

2
√

2
ϕNϕS

)
Ψ̄1Ψ1 −

(
gNϕ

2
+
λ1 + λ2

2
√

2
ϕNϕS

)
Ψ̄2Ψ2+

−
(
gMϕN

2
− λ3 + λ4

2
√

2
ϕNϕS

)
Ψ̄3Ψ3 −

(
gMϕ

2
+
λ3 + λ4

2
√

2
ϕNϕS

)
Ψ̄4Ψ4+

−
(
λ1 − λ2

2
√

2
ϕNϕS

)(
−Ψ̄2γ

5Ψ1 + Ψ̄1γ
5Ψ2

)
+

−
(
λ3 − λ4

2
√

2
ϕNϕS

)(
−Ψ̄4γ

5Ψ3 + Ψ̄3γ
5Ψ4

)
+

−
(
m0,1 +m0,2

2

)(
Ψ̄4Ψ2 + Ψ̄3Ψ1 + Ψ̄2Ψ4 + Ψ̄1Ψ3

)
+

−
(
m0,2 −m0,1

2

)(
Ψ̄4γ

5Ψ1 + Ψ̄3γ
5Ψ2 − Ψ̄1γ

5Ψ4 − Ψ̄2γ
5Ψ3

)
. (7.19)

Again, we can rewrite this as a vector-matrix-vector product:

Lmass = −
(

Ψ̄1,−Ψ̄2γ
5, Ψ̄3,−Ψ̄4γ

5
)
M




Ψ1

γ5Ψ2

Ψ3

γ5Ψ4



, (7.20)

with the mass matrix M now being:

1

2




gNϕN − (λ1+λ2)ϕNϕS√
2

(λ1−λ2)ϕNϕS√
2

m0,1 +m0,2 m0,1 −m0,2

(λ1−λ2)ϕNϕS√
2

−gNϕN − (λ1+λ2)ϕNϕS√
2

m0,2 −m0,1 −m0,1 −m0,2

m0,1 +m0,2 m0,2 −m0,1 gMϕN − (λ3+λ4)ϕNϕS√
2

(λ3−λ4)ϕNϕS√
2

m0,1 −m0,2 −m0,1 −m0,2
(λ3−λ4)ϕNϕS√

2
−gMϕN − (λ3+λ4)ϕNϕS√

2



.

(7.21)

When computing the eigenvalues of this matrix, we find that the results are very long expressions and
therefore we cannot give an analytic expression. Thus, from now on we are forced to work numeri-
cally.
We will try to find numerical values for the eight parameters gN , gM ,m0,1,m0,2, λ1, . . . , λ4, which are
included in the mass matrix (7.21), in such a way that the eigenvalues match to the experimental
masses (7.16). Since we have only four eigenvalue equations to fit these eight parameters, it is clear
that we will find more than one combination of values that yields perfect eigenvalues. However, note
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that the correct description of masses is non-trivial, because of the particular form of the equations.

At this point we should note that the appropriate numerical approach would be a larger fit, which in-
cludes first and foremost sufficiently many experimental quantities or results from lattice calculations
and also all twelve parameters (the above ones plus cN , cM , cAN , cAM ) of our model. As additional
input from experiment or lattice calculations we can find five decay widths and four axial coupling con-
stants (see chapters 8.3 and 9). In this work, for the sake of simplicity, we will not perform such a fit,
but show a step-by-step procedure. First we take only the mass matrix and the included parameters
into account and perform a fit. This method will not lead to perfect results, but will be a first attempt
towards a solution and yields hints in which part of the parameter space one should search for solutions.

With the vacuum expectation values ϕN = (164.6 ± 0.1) MeV and ϕS = (126.2 ± 0.1) MeV [2] the
choice (for more details, see Appendix C)

gN = 15.13 , λ1 = 0.02260 MeV−1,

gM = 17.80 , λ2 = 0.02060 MeV−1,

m0,1 = −166.4MeV , λ3 = 0.00201 MeV−1,

m0,2 = 294.5MeV , λ4 = 0.01000 MeV−1,

(7.22)

yields the correct masses. But there are further interesting solutions: Namely it is also possible to
determine a solution in which λ1 = λ2 and λ3 = λ4:

gN 15.37

gM 17.80

m0,1 -260.4 MeV

m0,2 332.6 MeV

λ1 = λ2 [MeV−1] 0.02410

λ3 = λ4 [MeV−1] 0.003507

Table 7.1.: The choice of values for the parameters gN , gM ,m0,1,m0,2, λ1, . . . , λ4, we will work with in
the following.

With this choice we reduce the number of parameters in our Lagrangian by two, since now

λ1 − λ2 = 0,

λ3 − λ4 = 0. (7.23)

This means that the Lagrangian simplifies even more with this special choice. From now on we will
do all calculations with the values given in table 7.1.
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The next step is to determine the physical fields by using eq. (7.8):

Ψphys = U †Ψ,

Ψphys
i = U †ijΨj = UjiΨj = u

(i)
j Ψj ,

⇒




Ψphys
1

γ5Ψphys
2

Ψphys
3

γ5Ψphys
4



≡




N939

γ5N1535

N1440

γ5N1650




=




u
(1)
1 u

(2)
1 u

(3)
1 u

(4)
1

u
(1)
2 u

(2)
2 u

(3)
2 u

(4)
2

u
(1)
3 u

(2)
3 u

(3)
3 u

(4)
3

u
(1)
4 u

(2)
4 u

(3)
4 u

(4)
4







Ψ1

γ5Ψ2

Ψ3

γ5Ψ4



, (7.24)

where u(i), i ∈ {1, 2, 3, 4} are the eigenvectors of M and we relabelled Ψphys
1 to N939, Ψphys

2 to N1535,

Ψphys
3 to N1440 and Ψphys

4 to N1650 in accordance to the eigenvalues resp. masses. We have to deter-
mine the eigenvectors to find the transformation matrix which transforms the fields included in the
Lagrangian into the physical fields. With the parameters given in table 7.1 the eigenvectors are

u(1) = (−0.9902, 0.006661, 0.07194, 0.1197)T ,

u(2) = (0.1139, 0.3158, 0.03041, 0.9415)T ,

u(3) = (0.0718, 0.09646, 0.9927, 0.008389)T ,

u(4) = (−0.03776, 0.9439, 0.09179, 0.3150)T . (7.25)

The fields included in the Lagrangian Ψi are related to the physical fields N939, N1535, N1440, N1650 by




Ψ1

γ5Ψ2

Ψ3

γ5Ψ4




=




u
(1)
1 u

(1)
2 u

(1)
3 u

(1)
4

u
(2)
1 u

(2)
2 u

(2)
3 u

(2)
4

u
(3)
1 u

(3)
2 u

(3)
3 u

(3)
4

u
(4)
1 u

(4)
2 u

(4)
3 u

(4)
4







N939

γ5N1535

N1440

γ5N1650




=

=




-0.9902 0.006661 0.07194 0.1197

0.1139 0.3158 0.03041 0.9415

0.0718 0.09646 0.9927 0.008389

−0.03776 0.9439 0.09179 0.3150







N939

γ5N1535

N1440

γ5N1650




. (7.26)

An interesting point is that, since N1650 has the largest amount in Ψ2, N(1650) is predominantly the
chiral partner of the nucleon N(939). N(1535) is then the chiral partner of N(1440). This is in
agreement with the results of ref. [3, 4].
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7. Mixing and Fit of the Parameters m0,1, m0,2, gN , gM , and λ1, . . . , λ4

In order to obtain the Lagrangian in dependence of the physical fields (without mixing terms) we have
to plug the relations (7.26) into the Lagrangian (6.16). The result is an extremely long expression.
Therefore, we will not write down the full Lagrangian, but give only the relevant parts.
As expected, the mass terms are given by:

Lmass = m939N̄939N939 +m1535N̄1535N1535 +m1440N̄1440N1440 +m1650N̄1650N1650 (7.27)

where the masses mi are given in eq. (7.16).
Since we will need it in the following chapter 8.3, we exemplarily also give the coupling terms which
are relevant for the calculation of the decay width of a chiral partner (N1535 or N1650) into the nucleon
(N939) and a pseudoscalar P (P · τ or ∂µP · τ ) which can be π or η,

LN?→NP =− igN1535→N939P N̄939P · τN1535 +gN1535→N939∂P N̄939γ
µ∂µP · τN1535+

− igN1650→N939P N̄939P · τN1650 +gN1650→N939∂P N̄939γ
µ∂µPi · τN1650, (7.28)

and the coupling terms which are relevant for the calculation of the decay width of N1440 decaying
into the nucleon N939 and a pseudoscalar P :

LN1440→N939P =− iγ5gN1440→N939P N̄939P · τN1440 +gN1440→N939∂P N̄939γ
5γµ∂µP · τN1440. (7.29)

The coupling constants g...→... can be read off eq. (6.16) regarding eq. (7.26). With

N939 =: N1,

N1535 =: N2,

N1440 =: N3,

N1650 =: N4,

(7.30)

we find for i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3, 4}:

gNi→NjP =
1

2
Z
[
gN

(
u

(1)
j u

(1)
i − u

(2)
j u

(2)
i

)
+ gM

(
−u(3)

j u
(3)
i + u

(4)
j u

(4)
i

)
+

+ λ′1
(
−u(1)

j u
(1)
i − u

(1)
j u

(2)
i − u

(2)
j u

(1)
i − u

(j)
2 u

(i)
2

)
+

+ λ′2
(
−u(1)

j u
(1)
i + u

(1)
j u

(2)
i + u

(2)
j u

(1)
i − u

(2)
j u

(2)
i

)
+

+ λ′3
(
u

(3)
j u

(3)
i + u

(3)
j u

(4)
i + u

(4)
j u

(3)
i + u

(4)
j u

(4)
i

)
+

+ λ′4
(
−u(3)

j u
(3)
i + u

(3)
j u

(4)
i + u

(4)
j u

(3)
i − u

(4)
j u

(4)
i

)]
. (7.31)
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7.2. Diagonalisation of the Lagrangian with λi terms

For k ∈ {2, 4} and l ∈ {1, 3}:

gNi→Nj∂P =
Zw

2

[
cN

(
−u(1)

l u
(1)
k + u

(2)
l u

(2)
k

)
+ cM

(
u

(3)
l u

(3)
k − u

(4)
l u

(4)
k

)
+

− cAN
(
u

(1)
l u

(2)
k − u

(2)
l u

(1)
k

)
− cAM

(
u

(3)
l u

(4)
k − u

(4)
l u

(3)
k

)]
(7.32)

and

gN3→N1∂P =
Zw

2

[
cN

(
u

(1)
1 u

(1)
3 + u

(2)
1 u

(2)
3

)
− cM

(
u

(3)
1 u

(3)
3 + u

(4)
1 u

(4)
3

)
+

+ cAN

(
u

(1)
1 u

(2)
3 + u

(2)
1 u

(1)
3

)
+ cAM

(
u

(3)
1 u

(4)
3 + u

(4)
1 u

(3)
3

)]
. (7.33)
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8. Decays of Baryonic Resonances

The baryonic Lagrangian describes various interactions. A glance at the experimental results [23],
however, reveals that there are only five decays which are kinematically allowed. These are

N(1535) −→ N(939)π,

N(1535) −→ N(939)η,

N(1650) −→ N(939)π,

N(1650) −→ N(939)η,

N(1440) −→ N(939)π. (8.1)

For this reason, in this chapter we will compute the decay width of N? → NP , where N? corresponds
to the resonances N(1535) or N(1650), N to the nucleon N(939) or N(1440) and P to a pseudoscalar,
which can be π or η. In the end, this result will be extended to the calculation of the decay N(1440)→
N(939)P .

8.1. Decay of the type N? −→ NP

If we look at the interaction terms (7.28), we notice that derivative interactions are present. However,
as a simple start for this kind of calculations we will evaluate the decay width considering only the
simpler couplings N?NP without derivatives. Later we can easily include the derivative couplings.

8.1.1. Decay Channel Without Derivatives

An interaction Lagrangian which describes the coupling N?NP and contains no derivative couplings
is given by

LN?NP =− igN→N?P N̄?P · τN − igN?→NP N̄P · τN?, (8.2)

where g...→... are coupling constants. The product of the pseudoscalar triplet field P with the vector of
Pauli matrices τ is the hermitian pseudoscalar particle matrix P . The second term of this Lagrangian
is the one which is interesting for us since we want to calculate 〈f |Sint |i〉 = 〈NP |Sint |N?〉 with
Sint = i

∫
d4xLint. It corresponds to the Feynman diagram:

95



8. Decays of Baryonic Resonances

�k

p1 p2

N?

N P

where we have assigned the 4-momenta p1, p2, and k to the fields. The decay is evaluated in the rest
frame of the decaying particle, i.e.,

k = 0. (8.3)

Using conservation of momentum yields also a relation between the outgoing momenta:

p1 = −p2. (8.4)

In order to calculate the decay width we make use of eq. (2.43) which reads for this case:

ΓN?→NP =
1

2mN?

1

(2π)6

∫
d3p1

2EN (p1)

d3p2

2EP (p2)
|iM|2 (2π)4δ(4)(k − p1 − p2). (8.5)

We rewrite the Dirac delta distribution by splitting it into a product of a space- and time-component:

δ(4)(k − p1 − p2) = δ(mN? − EN (p1)− EP (p2))δ(3)(p1 + p2) =

= δ(mN? −
√
p2

1 +m2
N −

√
p2

1 +m2
P )δ(3)(p1 + p2) = . . .

where, in the last line, we have used the last delta distribution, from which follows that p2
2 = p2

1. The
first delta distribution can be rewritten further by using the following formula for delta distributions
with a function as an argument:

δ (f(x)) =
∑

i

δ(x− xi)
|f ′(xi)|

, (8.6)

where xi are the zeros of the function (f(xi) = 0) and f ′(xi) is the first derivative of f with re-
spect to x at xi, which must not be zero. Hence we have to find the zero of the function f(|p1|) =

mN? −
√
p2

1 +m2
N −

√
p2

1 +m2
P , which we label pf . It is given by

pf =
1

2mN?

√
(m2

N?
−m2

N −m2
P )2 − 4m2

Nm
2
P . (8.7)
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8.1. Decay of the type N? −→ NP

Furthermore we need the derivative of f(|p1|) = mN? −
√
p2

1 +m2
N −

√
p2

1 +m2
P at the zero pf , which

reads

∂f(|p1|)
∂|p1|

∣∣∣
|p1|=pf

=
pfmN?√

p2
f +m2

N

√
p2
f +m2

P

. (8.8)

Then, the delta distribution (8.6) can be expressed as

δ(4)(k − p1 − p2) =

∣∣∣∣∣

(
∂f(|p1|)
∂|p1|

∣∣∣
|p1|=pf

)−1
∣∣∣∣∣ δ(|p1| − pf )δ(3)(p1 + p2) =

=

√
p2
f +m2

N

√
p2
f +m2

P

pfmN?

δ(|p1| − pf )δ(3)(p1 + p2). (8.9)

Plugging this result back into the decay width (8.5) yields:

ΓN?→NP =
1

2mN?

1

(2π)6

∫
d3p1

2EN (p1)

d3p2

2EP (p2)
|iM|2 (2π)4

√
p2
f +m2

N

√
p2
f +m2

P

pfmN?

×

× δ(|p1| − pf )δ(3)(p1 + p2) =

=
1

2mN?

1

(2π)2

∫
d3p1

2EN (p1)2EP (p1)
|iM|2

√
p2
f +m2

N

√
p2
f +m2

P

pfmN?

δ(|p1| − pf )δ(3)(p1 + p2),

(8.10)

where in the last line we used the last delta distribution to replace p2 with −p1 and substituted the
integration variable −p1 with p1. This is possible, because the integration runs over the whole R3

space. When we convert to spherical coordinates d3p1 → dp1 dΩ p2
1 and regard that

∫
dΩ = 4π, since

we have no angular dependences, the decay width (8.10) reads

ΓN?→NP =
pf

8πm2
N?

|iM|2 δ(|p1| − pf )δ(3)(p1 + p2). (8.11)

Finally, in order to evaluate the matrix element M of the second term of the interaction Lagrangian
(8.2), we use Feynman rules (see sec. 2.3) and get

iMss′ = −igN?→NP ūs
′
(p1)us(k), (8.12)

where s and s′ are the spins of the incoming and outgoing particle. Since we do not know the initial
and final spins of the particles of the decay, we have to average over initial spins and to sum over the
final ones. (The decaying particle has one certain spin and the final particle can have arbitrary spin.)
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8. Decays of Baryonic Resonances

Mathematically we have

|iM|2 ≡ |iM|2 =
1

2

∑

s,s′

∣∣∣iMss′
∣∣∣
2

=

=

∣∣gN?→NP
∣∣2

2

∑

s,s′

∣∣∣ūs′(p1)us(k)
∣∣∣
2

=

=

∣∣gN?→NP
∣∣2

2

∑

s,s′

ūs
′
α (p1)usα(k)ūsβ(k)us

′
β (p1) = . . . , (8.13)

where α and β are spinor indices. For the spin sum over the 4-spinors us(p) holds the relation

∑

s

usα(p)ūsβ(p) = (γµpµ +m)αβ . (8.14)

Therefore, the spin averaged square amplitude (8.13) reads

|iM|2 =

∣∣gN?→NP
∣∣2

2
(γµkµ +mN?)αβ(γνp1ν +mN )βα =

=

∣∣gN?→NP
∣∣2

2
Tr {(γµkµ +mN?)(γ

νp1ν +mN )} =

=

∣∣gN?→NP
∣∣2

2
(Tr {γµγν} kµp1ν + Tr {14×4}mN?mN ) =

=

∣∣gN?→NP
∣∣2

2
(4kµp1µ + 4mN?mN ) = 2 |gN?NP | (mN?EN (p1) +mN?mN ) =

= 2
∣∣gN?→NP

∣∣2mN?mN

(
EN (p1)

mN
+ 1

)
, (8.15)

where in the third line we have used that the gamma matrices are traceless (Tr γµ = 0 ∀ µ = 0, 1, 2, 3).
In the fourth line we applied the relation Tr {γσγµ} = 4gσµ. Furthermore we regard that k = 0, eq.
(8.3), from which follows that kµp1µ = k0p0

1 = mN?EN (p1). Plugging this into the decay width (8.11)
and regarding the delta distributions yields

ΓN?→NP =
pfmN

2πmN?

∣∣gN?→NP
∣∣2

2

(
EN
mN

+ 1

)
, (8.16)

where

EN = EN (pf ) =
√
p2
f +m2

N . (8.17)

This result is now easy to extend to the decay width of a Lagrangian with derivative couplings.
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8.1. Decay of the type N? −→ NP

8.1.2. Including Derivative Couplings

Since the Lagrangian of our model contains also derivative interactions, we have to extend the previous
result (8.16). Therefore, we consider the following Lagrangian, which is based on the interaction terms
(7.28):

LN?NP =− igN→N?P N̄?P · τN + gN→N?∂P N̄?γ
µ∂µP · τN+

− igN?→NP N̄P · τN? + gN?→N∂P N̄γ
µ∂µP · τN?. (8.18)

Thus, due to the last term there is an additional Feynman diagram which contributes to the N? → NP
decay. It includes a coupling to the derivative of the meson field.

�k

p1 p2

N?

N P

gN?NP

+ �k

p1 p2

N?

N P

gN?NPγ
µp2µ

This new diagram now has a different coupling constant. Making use of the correspondence i∂µ = pµ
the momentum pµ of the meson enters in the expression. The relation (8.11) for the decay width is
still valid - only the matrix element |iM| is affected. Using the Feynman rules (see sec. 2.3) we find
for the amplitude

iMss′ = −iūs′(p1)Cus(k = 0) with C = −igN?→NP + igN?→N∂Pγρp2ρ. (8.19)

Again, we have to average over initial spins and sum over final spins to find the averaged squared
amplitude

|iMss′ |2 =
1

2

∑

s,s′

∣∣∣iMss′
∣∣∣
2

=
1

2

∑

s,s′

ūs
′
(p1)Cus(k)ūs(k)C̃us

′
(p1) = . . . , (8.20)

where we used that γ0γµ†γ0 = γµ and defined C̃ = igN?→NP − igN?→N∂Pγρp2ρ = γ0C†γ0. Applying
the relation for the spin sums over the 4-spinors us(p) (8.14) yields

|iMss′ |2 =
1

2
Tr
{
C(γµkµ +mN?)C̃(γνp1ν +mN )

}
=

=

(
gN?→NP

)2

2
Tr {(γµkµ +mN?)(γ

νp1ν +mN )}+

+

(
gN?→N∂P

)2

2
Tr {γσp2σ(γµkµ +mN?)γ

ρp2ρ(γ
νp1ν +mN )}+

− gN?→NP gN?→N∂P

2
Tr {γσp2σ(γµkµ +mN?)(γ

νp1ν +mN ) +

+(γµkµ +mN?)γ
σp2σ(γνp1ν +mN )} = . . . (8.21)
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For reasons of clarity and comprehensibility we will evaluate the three traces separately.

• The first trace is the same as we have evaluated in eq. (8.15):

(
gN?→NP

)2

2
Tr {(γµkµ +mN?)(γ

µp1µ +mN )} = 2
(
gN?→NP

)2
mN?mN

(
EN (p1)

mN
+ 1

)
, (8.22)

• The second trace can be rearranged in the following way:

(
gN?→N∂P

)2

2
Tr {γµp2µ(γνkν +mN?)γ

ρp2ρ(γ
σp1σ +mN )} =

=

(
gN?→N∂P

)2

2
[Tr {γµγνγργσ} p2µpνp2ρp1σ + Tr {γµγρ} p2µmN?p2ρmN ] =

=

(
gN?→N∂P

)2

2
[4(p2µk

µp2νp
ν
1 − p2µp

µ
2kνp

ν
1 + p2µp

µ
1kνp

ν
2) + 4mN?mNp2µp2µ] = . . . ,

where we made use of Tr{γµγν} = 4gµν and Tr{γµγνγργσ} = 4(gµνgρσ − gµρgνσ + gµσgνσ) and
regarded that Tr{γµ1γµ2 . . . γµn} = 0 for odd n. With k = 0,, eq. (8.3), and p2µp

µ
2 = m2

P we
get:

. . . =

(
gN?→NP

)2

2

[
4(EP (p2)mN?p2νp

ν
1 −m2

PmN?EN (p1) + p2µp
µ
1mN?EP (p1)) + 4mN?mNm

2
P

]
= . . .

With the four-momentum conservation k = p1 + p2 we can find an expression for the product
p1µp

µ
2 :

kµ = pµ1 + pµ2

k2 = (p1 + p2)2 = p2
1 + 2p1µp

µ
2 + p2

2

m2
N? = m2

N + 2p1µp
µ
2 +m2

P ⇒ p1µp
µ
2 =

1

2
(m2

N? −m2
N −m2

P ).

If we plug this into eq. (8.23), we find a final expression for the second trace:

. . . = 2
(
gN?→N∂P

)2 [
(m2

N? −m2
N −m2

P )EP (p2)mN? −m2
PmN?EN (p1) +mN?mNm

2
P

]
.

(8.23)

• Analogously the third trace can be rearranged to

− gN?→NP gN?→N∂P

2
Tr {γρp2ρ(γ

µkµ +mN?)(γ
µp1µ +mN )+

+(γµkµ +mN?)γ
ρp2ρ(γ

µp1µ +mN )} =

=− gN?→NP gN?→N∂P

2

[
4(m2

N? −m2
N −m2

P )mN? + 8EP (p2)mN?mN

]
. (8.24)
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Hence the final expression for the averaged squared matrix element (8.21) is

|iMss′ |2 = 2
(
gN?→NP

)2
mN?mN

(
EN (p1)

mN
+ 1

)
+

+ 2
(
gN?→N∂P

)2 [
(m2

N? −m2
N −m2

P )EP (p2)mN? −m2
PmN?EN (p1) +mN?mNm

2
P

]
+

− 2gN?→NP gN?→N∂P
[
(m2

N? −m2
N −m2

P )mN? + 2EP (p2)mN?mN

]
. (8.25)

Plugging the result (8.25) into eq. (8.11) yields us the decay width of the decay N? → NP including
derivative couplings:

ΓN?→NP = λP
pf

8πm2
N?

|iM|2

=
pfmN

4πmN?

{(
gN?→NP

)2
(
EN
mN

+ 1

)
+

+
(
gN?→N∂P

)2 [
(m2

N? −m2
N −m2

P )
EP
mN
−m2

P

EN
mN

+m2
P

]
+

− gN?→NP gN?→N∂P
[
(m2

N? −m2
N −m2

P )
1

mN
+ 2EP

]}
, (8.26)

with

pf =
1

2mN?

√
(m2

N?
−m2

N −m2
P )2 − 4m2

Nm
2
P , (8.27)

where EN = EN (pf ) =
√
p2
f +m2

N and EP = EP (pf ) =
√
p2
f +m2

P , because of the delta distribution

in eq. (8.11). Furthermore we added a factor λP by hand. This factor should

• for P = π pay attention to the three possible isospin states of the pion, i.e.,

λπ = 3. (8.28)

• and for P = η take into account that

η = ηN cosφP + ηS sinφP , (8.29)

where ηN ≡ (ūu+ d̄d)/
√

2 and ηS ≡ s̄s and φP is the mixing angle. Its value lies between −32◦

and −45◦ [27]. For the following results we will choose φP = −38.7◦ ± 6◦.
It is assumed that the amplitude of the decay N? → NηS is massively suppressed. This means
that to good approximation

ΓN?→Nη ' cos2 φPΓN?→NηN .
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Thus:

λη = cos2 φP . (8.30)

8.2. Decay Width of N3 −→ N1P

An interaction Lagrangian which is based on the interaction terms (7.29) and describes the coupling
of N3N1P is given by

LN3N1P =− igN1→N3P N̄3γ
5P · τN1 + gN1→N3∂P N̄3γ

5γµ∂µP · τN1+

− igN3→N1P N̄1γ
5P · τN3 + gN3→N1∂P N̄1γ

5γµ∂µP · τN3, (8.31)

where the indices are chosen according to eq. (7.30). If we assign the 4-momenta in analogy to sec.
8.1.2:

• The decaying particle N3 has 4-momentum k,

• the outgoing nucleon N1 has 4-momentum p1, and

• the pseudoscalar P has 4-momentum p2,

we find that the decay width for N3 −→ N1P has the same form as the relation given in eq. (8.11):

ΓN3→N1P =
pf

8πm2
N3

|iM|2 δ(|p1| − pf )δ(3)(p1 + p2), (8.32)

with

pf =
1

2mN3

√
(m2

N3
−m2

N1
−m2

P )2 − 4m2
N1
m2
P . (8.33)

The only difference to the calculations of sec. 8.1.2 is the matrix element |iM|, because the coupling
constants in the Lagrangian (8.31) include additional γ5 matrices. In comparison to eq. (8.19) this
leads to an additional minus sign:

iMss′ = −iūs′(p1)C ′us(k = 0) with C ′ = −iγ5gN3→N1P + iγ5gN3→N1∂Pγρp2ρ. (8.34)

Again, we have to average over initial spins and sum over final spins to find the averaged squared
amplitude

|iMss′ |2 =
1

2

∑

s,s′

∣∣∣iMss′
∣∣∣
2

=
1

2

∑

s,s′

ūs
′
(p1)C ′us(k)ūs(k)C̃ ′us

′
(p1) = . . . , (8.35)
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8.2. Decay Width of N3 −→ N1P

where C̃ ′ = −iγ5gN3→N1P − iγ5gN3→N1∂Pγρp2ρ = γ0C ′†γ0. Applying the relation for the spin sums
over the 4-spinors us(p) (8.14) yields

|iMss′ |2 =
1

2
Tr
{
C ′(γµkµ +mN3)C̃ ′(γνp1ν +mN1)

}
=

= −
(
gN3→N1P

)2

2
Tr
{
γ5(γµkµ +mN3)γ5(γνp1ν +mN1)

}
+

+

(
gN3→N1∂P

)2

2
Tr
{
γ5γσp2σ(γµkµ +mN3)γ5γρp2ρ(γ

νp1ν +mN1)
}

+

− gN3→N1P gN3→N1∂P

2
Tr
{
−γ5γσp2σ(γµkµ +mN3)γ5(γνp1ν +mN1) +

+γ5(γµkµ +mN3)γ5γσp2σ(γνp1ν +mN1)
}

=

= −
(
gN3→N1P

)2

2
Tr {(−γµkµ +mN3)(γνp1ν +mN1)}+

+

(
gN3→N1∂P

)2

2
Tr {−γσp2σ(−γµkµ +mN3)γρp2ρ(γ

νp1ν +mN1)}+

− gN3→N1P gN3→N1∂P

2
Tr {γσp2σ(−γµkµ +mN3)(γνp1ν +mN1) +

+(−γµkµ +mN3)γσp2σ(γνp1ν +mN1)} = . . . , (8.36)

where we have used that {γ5, γµ} = 0 and γ5γ5 = 1. The two traces can be rearranged further:

• The first trace is apart from one sign the same as we have evaluated in (8.15). It is given by:

−
(
gN3→N1P

)2

2
Tr {(−γµkµ +mN3)(γµp1µ +mN1)} = 2

(
gN3→N1P

)2
mN3mN1

(
EN1(p1)

mN1

− 1

)
.

(8.37)

• The second trace can be rearranged to:

(
gN3→N1∂P

)2

2
Tr {−γσp2σ(−γµkµ +mN3)γρp2ρ(γ

νp1ν +mN1)} =

= 2
(
gN3→N1∂P

)2 [
(m2

N3
−m2

N1
−m2

P )EP (p2)mN3 −m2
PmN3EN1(p1)−mN3mN1m

2
P

]
.

(8.38)

• The third trace is given by:

− gN3→N1P gN3→N1∂P

2
Tr {γσp2σ(−γµkµ +mN3)(γνp1ν +mN1) +

+(−γµkµ +mN3)γσp2σ(γνp1ν +mN1)} =

= −g
N3→N1P gN3→N1∂P

2

[
4(m2

N3
−m2

N1
−m2

P )mN3 − 8EP (p2)mN3mN1

]
. (8.39)
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Hence the final expression for the averaged squared matrix element (8.36) is

|iMss′ |2 = 2
(
gN3→N1P

)2
mN3mN1

(
EN1(p1)

mN1

− 1

)
+

+ 2
(
gN3→N1∂P

)2 [
(m2

N3
−m2

N1
−m2

P )EP (p2)mN3 −m2
PmN3EN1(p1)−mN3mN1m

2
P

]
+

− gN3→N1P gN3→N1∂P

2

[
4(m2

N3
−m2

N1
−m2

P )mN3 − 8EP (p2)mN3mN1

]
. (8.40)

Plugging the result (8.40) into eq. (8.32) yields us the decay width of the decay N3 → N1P :

ΓN3→N1P = λP
pf

8πm2
N?

|iM|2

=
pfmN1

4πmN3

{(
gN3→N1P

)2
(
EN1

mN1

− 1

)
+

+
(
gN3→N1∂P

)2 [
(m2

N3
−m2

N1
−m2

P )
EP
mN1

−m2
P

EN1

mN1

−m2
P

]
+

− gN3→N1P gN3→N1∂P
[
(m2

N3
−m2

N1
−m2

P )
1

mN1

− 2EP

]}
(8.41)

with

pf =
1

2mN3

√
(m2

N3
−m2

N1
−m2

P )2 − 4m2
N1
m2
P , (8.42)

where EN1 = EN1(pf ) =
√
p2
f +m2

N1
and EP = EP (pf ) =

√
p2
f +m2

P . The factor λP is defined in eq.

(8.28) and (8.30).

8.3. Fit of cN , cM , cAN
and cAM

to Decay Widths

The remaining undetermined parameters cN , cM , cAN , and cAM in the Lagrangian (6.16) can be fixed
by using the experimental values of the decay widths which belong to the kinematically allowed decays
(8.1). According to ref. [23] the observed values are

Γexp
N(1535)→N(939)π = (67.5± 15) MeV

Γexp
N(1535)→N(939)η = (63.0± 15) MeV

Γexp
N(1650)→N(939)π = (105± 30) MeV

Γexp
N(1650)→N(939)η = (15.0± 7.5) MeV

Γexp
N(1440)→N(939)π = (195± 30) MeV. (8.43)

In order to calculate the decay widths which result from our model we use the expression (8.26), the
values for the coupling constants given in eqs. (7.31) and (7.32), and the values for the parameters
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8.3. Fit of cN , cM , cAN and cAM to Decay Widths

given in table 7.1. Furthermore, we use the following values, for the masses of a1, the pseudoscalars
π and η [23], and the coupling constant g1 of the meson sector [2] :

ma1 = (1230± 61.5) MeV

mπ = (138± 6.9) MeV

mη = (547.9± 27.4) MeV

g1 = 5.8433± 0.0176 (8.44)

Then we impose that they should be equal to the experimental quantities (8.43).
Therefore we define a function

χ2(cN , cM , cAN , cAM ) :=
[
ΓN(1535)→N(939)π(cN , cM , cAN , cAM )− Γexp

N(1535)→N(939)π

]2
+

+
[
ΓN(1535)→N(939)η(cN , cM , cAN , cAM )− Γexp

N(1535)→N(939)η

]2
+

+
[
ΓN(1650)→N(939)π(cN , cM , cAN , cAM )− Γexp

N(1650)→N(939)π

]2
+

+
[
ΓN(1650)→N(939)η(cN , cM , cAN , cAM )− Γexp

N(1650)→N(939)η

]2
+

+
[
ΓN(1440)→N(939)π(cN , cM , cAN , cAM )− Γexp

N(1440)→N(939)π

]2
, (8.45)

which should be minimized with a preferably small minimum, in order to determine the parameters
cN , cM , cAN , and cAM . Doing this we find that the minimum is not narrow and the results of the fit
depend very strongly in the starting point we choose. Table 8.1 shows the results with two different
starting points for each parameter.
We see that the values can be completely different just because of choosing different starting points

of the fit. Nevertheless, the results for the decay widths are always equal, because all minima have
the same depth.
Considering the decays into nucleon and pion the results are very good. Only the decay widths of the
decay into the nucleon and η differ from the experimental results. Here the decay width of the decay
of the resonance N(1650) into Nη is much closer to the imposed values. This is a result which is in
accordance to the results of ref. [3].
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8. Decays of Baryonic Resonances

starting point (SP) and result of the fit experimental values [23]

SP 1 result SP 2 result

cN -15 -21.18 -1 -49.02 -

cM 10 -21.11 100 2.537 -

cAN 0 -0.006340 -3 -2.040 -

cAM 0 15.91 -1 8.149 -

ΓN(1535)→N(939)π [MeV] 72.75 67.5± 15

ΓN(1535)→N(939)η [MeV] 5.567 63.0± 15

ΓN(1650)→N(939)π [MeV] 105.0 105± 30

ΓN(1650)→N(939)η [MeV] 9.775 15.0± 7.5

ΓN(1440)→N(939)π [MeV] 195.0 195± 30

Table 8.1.: Results of the fit with two different starting points for each parameter.
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9. The Axial Coupling Constants

Other interesting quantities which yield information of the chiral structure of the baryon sector are
the axial coupling constants. These are the constants in front of the axial currents (1.38) which have
the following form:

Aa,µ = gAΨ̄γµγ5 τ
a

2
Ψ. (9.1)

In general, the current of a Lagrangian (resulting from the conservation under an arbitrary transfor-
mation) is given as [16]

Jµ
∑

k

∂L
∂ (∂µΦk)

δΦk with Φk infinitesimal−−−−−−−−→ Φk + δΦk. (9.2)

Using that in our case Φk = πk and δΦk = δπk and that (for infinitesimal axial transformations)

UA = UL = U †R = e−iθ
i
Aγ

5T i ' 1− iθiAγ5T i, the pion field transforms as

πk=̂iq̄γ5τkq
UA−−−−−→ iq†(1 + iθiAγ

5T i)γ0γ5τk(1− iθiAγ5T i)q =

iq̄(1− iθiAγ5T i)γ5τk(1− iθiAγ5T i)q =

= iq̄γ5τkq − q̄θiAγ5γ5 1

2

(
τ iτk + τkτ i

)
q +O(θ2

A) =

' πk − q̄θiA
1

2
2δikq = πk − θkAq̄q = πk − θkAσN

π
UA−−−−−→ π − θAσN , (9.3)

where we have used the anti-commutator for the Pauli matrices {τ i, τk} = 2δik and σN =̂q̄q. Thus
δπk = −σN . Additionally, have to pay attention to the fact that we had to renormalise π after the
condensation of the sigma meson: π → Zπ. Hence the infinitesimal variation (in first order) of the
pion under axial transformation after the condensation of the sigma meson, σN → σN + ϕN , is given
by

δπk = −ϕN
Z

+ . . . , (9.4)

where only the relevant term is listed. In order to find the axial coupling constants of our baryon
Lagrangian (6.16) we first extract the terms generating the axial currents. These are kinetic terms
and the pseudo-vectorial couplings of nucleon and pion, which occur after the shift of the aµ1 axial
field from the terms describing the interaction of nucleons with (axial-) vector fields. First, omitting
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9. The Axial Coupling Constants

the kinetic terms the relevant terms of the Lagrangian (6.16) are

LA = −cNZw
2∑

i=1

(
Ψ̄iγ

µγ5τ

2
· ∂µπΨi

)
+ cMZw

4∑

i=3

(
Ψ̄iγ

µγ5τ

2
· ∂µπΨi

)
+

− cANZw
2∑

i,j=1,
i6=j

(
Ψ̄iγ

µτ

2
· ∂µπΨj

)
− cAMZw

4∑

i,j=3,
i 6=j

(
Ψ̄iγ

µτ

2
· ∂µπΨj

)
. (9.5)

Using eqs. (9.2) and (9.4) we can compute the axial currents resulting from these terms:

Aa,µc =
∂LA

∂(∂µπa)

(
−ϕN
Z

)
= cNwϕN

2∑

i=1

Ψ̄iγ
µγ5 τ

a

2
Ψi − cMwϕN

4∑

i=3

Ψ̄iγ
µγ5 τ

a

2
Ψi+

+ cANwϕN

2∑

i,j=1,
i 6=j

Ψ̄iγ
µ τ

a

2
Ψj + cAMwϕN

4∑

i,j=3,
i 6=j

Ψ̄iγ
µ τ

a

2
·Ψj (9.6)

Considering also the transformation of Ψi under axial transformations shows that the kinetic term
yields an axial current, too. In order to calculate them we need the infinitesimal axial transformation
(UA = UL = U †R) of a spinor. First we consider one whose left- and right-handed components transform
under U(3)R × U(3)L as ΨR → URΨR and ΨR → ULΨL. Then we find:

Ψ = ΨR + ΨL
UA−−−−−→ U †AΨR + UAΨL = (1 + iθiAT

iγ5)ΨR + (1− iθiAT iγ5)ΨL =

= ΨR + ΨL + iθiAT
iγ5ΨR − iθiAT iγ5ΨL =

= Ψ + iθiAT
iγ5 1 + γ5

2
Ψ− iθiAT iγ5 1− γ5

2
Ψ =

= Ψ + iθiAT
iγ5Ψ. (9.7)

Thus, the infinitesimal change of this spinor under axial transformations is given by

δΨa = iT aγ5Ψ. (9.8)

In analogy we find for a spinor whose left- and right-handed components transform under U(3)R ×
U(3)L as ΨR → ULΨR and ΨR → URΨL:

δΨa = −iT aγ5Ψ. (9.9)

Then, from the kinetic term for Ψi results the following part of axial current:

Aa,µΨi,kin =
∂Lkin,Ψi

∂(∂µΨi)
δΨa

i =





Ψ̄iiγ
µiT aγ5Ψi = −Ψ̄iγ

µγ5 τa

2 Ψi for i = 1, 2,

−Ψ̄iiγ
µiT aγ5Ψi = Ψ̄iγ

µγ5 τa

2 Ψi for i = 3, 4.
(9.10)

Adding up these currents for i = 1, 2, 3, 4 and the upper current Aa,µc we find the total current

Aa,µ = g
(1)
A Ψ̄1γ

µγ5 τ
a

2
Ψ1 + g

(1)
A Ψ̄2γ

µγ5 τ
a

2
Ψ2 + g

(2)
A Ψ̄3γ

µγ5 τ
a

2
Ψ3 + g

(2)
A Ψ̄4γ

µγ5 τ
a

2
Ψ4 +Aa,µmix,

108



with

Aa,µmix = g
(12)
A

2∑

i,j=1,
i6=j

Ψ̄iγ
µ τ

a

2
Ψj + g

(34)
A

4∑

i,j=3,
i 6=j

Ψ̄iγ
µ τ

a

2
Ψj , (9.11)

and the following abbreviations:

g
(1)
A = −1 + cNwϕN = −1 +

cN
g1

(
1− 1

Z2

)
,

g
(2)
A = 1− cMwϕN = 1− cM

g1

(
1− 1

Z2

)
,

g
(12)
A = cANwϕN =

cAN
g1

(
1− 1

Z2

)
,

and g
(34)
A = cAMwϕN =

cAM
g1

(
1− 1

Z2

)
, (9.12)

where we have used

Z2 =
m2
a1

m2
a1
− g2

1ϕ
2
N

and w =
g1ϕN
m2
a1

⇒ wϕN =
1

g1

(
1− 1

Z2

)
(9.13)

from eqs. (3.38) and (3.43).
If we now plug in the physical fields, given in eq. (7.26), and extract the axial current terms of the
form N̄iγ

µγ5 τa

2 Ni with i ∈ {939, 1535, 1440, 1650} we find the axial coupling constant for N939

gN939
A = g

(1)
A

(
u

(1)
1 u

(1)
1 + u

(2)
1 u

(2)
1

)
+ g

(2)
A

(
u

(3)
1 u

(3)
1 + u

(4)
1 u

(4)
1

)
+

+ 2g
(12)
A u

(1)
1 u

(2)
1 + 2g

(34)
A u

(3)
1 u

(4)
1 , (9.14)

for N1535:

gN1535
A = g

(1)
A

(
u

(1)
2 u

(1)
2 + u

(2)
2 u

(2)
2

)
+ g

(2)
A

(
u

(3)
2 u

(3)
2 + u

(4)
2 u

(4)
2

)
+

+ 2g
(12)
A u

(1)
2 u

(2)
2 + 2g

(34)
A u

(3)
2 u

(4)
2 , (9.15)

for N1440:

gN1440
A = g

(1)
A

(
u

(1)
3 u

(1)
3 + u

(2)
3 u

(2)
3

)
+ g

(2)
A

(
u

(3)
3 u

(3)
3 + u

(4)
3 u

(4)
3

)
+

+ 2g
(12)
A u

(1)
3 u

(2)
3 + 2g

(34)
A u

(3)
3 u

(4)
3 , (9.16)
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and for N1650:

gN1650
A = g

(1)
A

(
u

(1)
4 u

(1)
4 + u

(2)
4 u

(2)
4

)
+ g

(2)
A

(
u

(3)
4 u

(3)
4 + u

(4)
4 u

(4)
4

)
+

+ 2g
(12)
A u

(1)
4 u

(2)
4 + 2g

(34)
A u

(3)
4 u

(4)
4 . (9.17)

Using eq. (7.26) and the results listed in table 8.1 we can compute the axial coupling constants. The
results are listed in table 9.1.

with SP 1 with SP 2 experimental, lattice or RQCM result

g939
A 3.142 6.080 1.267± 0.004 [28]

g1535
A -2.841 -0.1924 0.2± 0.3 [29]

g1440
A -2.853 -0.5410 1.16 [29]

g1650
A 2.559 5.356 0.55± 0.2 [30]

Table 9.1.: Result for the axial coupling constants for the set of parameters cN , cM , cAN , and cAM
with the starting point (SP) 1 and 2, given in table 8.1. The axial coupling constant for
the nucleon N(939) is known from experiment, the constants for N(1535) and N(1650) are
known from lattice calculations and studies in the framework of the relativistic constituent
quark model (RCQM) by employing in the first instance the extended Goldstone-boson
exchange (EGBE) yields the value for the axial coupling constant of N(1440).

Surely, with the present set of parameters the coupling constants cannot be well described.
Moreover, we realize that the results for the axial coupling constants depend very strongly on the
choice of the parameters cN , cM , cAN , cAM . Therefore it is necessary to perform a fit including all
parameters and experimental quantities to gain better results.
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10. Conclusions

The way to describe the nucleon N and its chiral partner N? in the extended linear sigma model
was first studied in ref. [3]. There the resonance N(1535) was considered to be the chiral partner of
the nucleon N(939). This is the most natural assignment, because it is the lightest resonance with
the correct quantum numbers. Among other things, the decay width N? → Nη was computed to be
(10.9 ± 3.8) MeV. The experimental width, given in [23], is (78.7 ± 24.3) MeV, hence the result was
not satisfactory. On the contrary with N(1650) as the chiral partner of the nucleon the decay width
N? → Nη is calculated to be (18.3±8.5) MeV and the experimental width in [23] is (10.7±6.7) MeV.
Thus, with this assignment the result is much better.
A possible improvement has already been outlined in the outlook of ref. [3] and implies the inclusion
of both resonances, N(1535) and N(1650), as well as the nucleon fields N(940) and N(1440), in
one unique Lagrangian. For two flavors the constructed chiral Lagrangian in the mirror assignment
would contain 14 free parameters. These are four (axial-)vector coupling constants, six constants
which parametrize the coupling to (pseudo)scalar mesons, and four parameters of mixing terms. In
order to fix these free parameters we have only 13 experimental quantities: four axial couplings, five
kinematicaly allowed decay widths of N? → Nπ, N? → Nη, and N(1440)→ Nπ, and four masses.
The idea of this work is to start with three flavors, hence with baryon matrices instead of spinors
(baryon doublets). We have constructed the inner structure of the baryon fields in the diquark-quark
model which assumes that baryons are bound states of a diquark and a quark. By this study of the
microscopic baryonic currents, we are automatically led to four baryonic multiplets, as postulated in
ref. [3]. Two of them transforming according to the naive assignment and two others according to the
mirror assignment. Then, we have built a chirally invariant1 Lagrangian which has a smaller number
of free parameters than the Lagrangian constructed for only two flavors. Namely, there are twelve
parameters: two coupling constants which parametrize the coupling to (pseudo)scalar mesons, two
parameters of mixing terms, four (axial-)vector coupling constants, and four parameters which have
been included to obtain a correct description of masses.
In order to fix these parameters we performed a step-by-step fit. We first took only the mass matrix
and the eight corresponding parameters into account and have done a fit. Then, we used decay widths
to fix the remaining parameters. This method is a first attempt to study the model and leads to a
quantitative agreement with data (but not yet fully satisfactory).
From the fit with the mass matrix, we found that N(1650) is predominantly the chiral partner of the
nucleon as anticipated in ref. [5]. However, we realized that the decay width of a resonance into the
nucleon and a pseudoscalar cannot be described very well even in this enlarged mixing. The decay
width of N(1650)→ Nη is close to the experimental result, but the decay width of N(1535)→ Nη is
not.
The calculation of the axial coupling constants does not yield good results yet, but a scan of the the

1Of course the Lagrangian is also a Lorentz scalar and invariant under CPT.
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whole parameter space was not yet performed.
Hence, an important and necessary outlook of this work is to perform a fit which includes all parameters
and experimental quantities at one time.
Moreover the three-flavor case should be studied in more detail. In this way various decay widths can
be investigated in a unique framework.
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A. Units, Conventions, and Notations

Units:

Throughout the whole thesis we will work in natural units:

~ = c = ε0 = 1.

Conventions:

We use the West Coast metric, i.e., the metric tensor in Cartesian coordinates in Minkowski space
is given by

gµν = gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



.

Notations:

In order to distinguish between 4-vectors in Minkowski space and three-dimensional vectors in Eu-
clidean space, we choose the convention to write 3-vectors in bold letters and we indicate the
components by Roman indices (which run over {1, 2, 3}). We always use (and not only to indicate
components) Greek indices (which run over {0, 1, 2, 3}) for 4-vectors.
A contravariant 4-vector carries a raised and a covariant a lowered Greek index. E.g. the contra-
and covariant space-time vector is then written as

xµ = (t,x)T and xµ = gµνx
ν = (t,−x),

where the transposed symbol indicates that xµ actually is a column vector. The covariant 4-vector is
obtained by pulling the indices down using the metric tensor.
The scalar product of two 4-vectors is defined with the metric tensor. E.g. the scalar product of
two space-time vectors reads as

xµgµνx
ν ≡ xνxν = t2 − x2.
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A. Units, Conventions, and Notations

The co - and contravariant 4-gradients are given by

∂µ ≡
∂

∂xµ
=

(
∂

∂t
,∇
)

and ∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)T
.

We use the Dirac matrices in Dirac notation, see sec. B.3.1, unless otherwise indicated.
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B. Summery of Properties of Dirac Matrices

B.1. Definition

The gamma or Dirac matrices γ0, γ1, γ2, and γ3 are defined by fulfilling the following anticommutator
relation:

{γµ, γν} = 2gµν14×4. (B.1)

The covariant gamma matrices are given by

γµ = gµνγ
ν =

(
γ0,−γ1,−γ2,−γ3

)
. (B.2)

The γ5 matrix is defined by

γ5 = iγ0γ1γ2γ3 = iγ0γ
1γ2γ3 = γ5. (B.3)

B.2. Properties

The products of gamma matrices and the identity matrix form a group with 32 elements. Every
representation of a finite group can be chosen unitary (by a proper choice of an basis). Together with
the Dirac-algebra (B.1) we obtain that γ0 is hermitian and the all the other are antihermitian:

γ0† = γ0 and γi† = −γi , i = 1, 2, 3. (B.4)

These relations can be combined in

γµ† = γ0γµγ0. (B.5)

Therewith γ5 is also hermitian

γ5† = γ5. (B.6)

Furthermore it is its own inverse,

γ5γ5 = 14×4, (B.7)

and anticommutates with the gamma matrices,

{
γ5, γµ

}
= 0. (B.8)
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B. Summery of Properties of Dirac Matrices

As a consequence of the fundamental anticommutation relation (B.1) the following identities hold:

γµγµ = 414×4,

γµγνγµ = −2γν ,

γµγνγργµ = 4gνρ14×4,

γµγνγργσγµ = −2γσγργν ,

γµγνγλ = gµνγλ + gνλγµ − gµλγν − iεσµνλγσγ5, (B.9)

and for traces:

Tr (γµ) = 0,

Tr (γµ1γµ2γµ3 . . . γµn) = 0 for an odd number n,

Tr
(
γ5γµ1γµ2γµ3 . . . γµn

)
= 0 for an odd number n,

Tr (γµγν) = 4gµν ,

Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) ,

Tr
(
γ5
)

= Tr
(
γµγνγ5

)
= 0,

Tr
(
γµγνγργσγ5

)
= −4iεµνρσ,

Tr (γµ1γµ2γµ3 . . . γµn) = Tr (γµn . . . γµ3γµ2γµ1) . (B.10)

B.3. Common Representations

The following bases are common in physics.

B.3.1. Dirac Representation

In a proper basis the gamma matrices have the following form which harks back to Dirac:

γ0 =


 12×2 0

0 −12×2


 , γi =


 0 σi

−σi 0


 , i = 1, 2, 3, (B.11)

where

σ1 =


 0 1

1 0


 , σ2 =


 0 −i

i 0


 , σ3 =


 1 0

0 −1


 , (B.12)

are the Pauli matrices.Therewith the γ5 matrix reads

γ5 =


 0 12×2

12×2 0


 . (B.13)
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B.3. Common Representations

B.3.2. Weyl Representation

The representation which is named after Herman Weyl is sometimes also called chiral representation.
The gamma matrices have the following form.

γ0 =


 0 12×2

12×2 0


 , γi =


 0 σi

−σi 0


 , i = 1, 2, 3, (B.14)

The γ5 matrix is diagonal:

γ5 =


 −12×2 0

0 12×2


 (B.15)

B.3.3. Majorana Representation

In the Majorana Representation all gamma matrices are imaginary1,

γ0 =


 0 −σ2

−σ2 0


 , γ1 =


 0 iσ3

iσ3 0




γ2 =


 i 0

0 −i


 , γ3 =


 0 −iσ1

−iσ1 0


 , (B.16)

and γ5 reads

γ5 =


 0 i

−i 0


 . (B.17)

1Therewith the Dirac equations are a real set of differential equations.
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C. The QCD Lagrangian

In order to obtain the QCD Lagrangian we start with the Dirac Lagrangian for Nf quarks

LDirac =

u,d,s,c,b,t∑

f

q̄f (iγµ∂µ −m) qf , (C.1)

where the (six) quarks qf are triplets in SU(3) color space,

qf =




qf,r

qf,g

qf,b


 f = u, d, s, c, b, t, (C.2)

and behave under local SU(3)C transformations as

qf −→ exp



−i

N2
c−1∑

a=1

θa(x)T a



 qf ≡ Uc(x)qf , (C.3)

with T a being the eight generators of SU(3), which are equal to half the Gell-Mann matrices T a = λa/2.
The next step is to claim (additionally to Poincare and CPT theorem) a local SU(3) symmetry. As a
consequence we have to replace the partial derivative in LDirac by a covariant derivative

Dµ = ∂µ + igAµ, (C.4)

containing the coupling constant g of the strong interaction and the gauge field Aµ =
∑N2

c−1
a=1 AaµTa

which transforms under local SU(3) transformations as

Aµ −→ A′µ = Uc(x)

(
Aµ −

i

g
∂µ

)
U †c (x). (C.5)

These eight fields describe the exchange bosons, named gluons, of the strong interaction. Hence they
need a kinetic term, respectively a self-interaction term, in the Lagrangian:

−1

4
GaµνG

µν
a , (C.6)

with the field strength tensor

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAb,µAc,ν , (C.7)
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C. The QCD Lagrangian

where fabc are the structure constants of SU(3). The field strength tensor transforms in the following
way under local SU(3) transformations:

(
GaµνTa

)
−→

(
GaµνTa

)′
= Uc(x)

(
GaµνTa

)
U †c (x). (C.8)

Finally, the gauge invariant QCD Lagrangian is given by

LQCD =

Nf∑

f=1

q̄f (iγµDµ −m) qf −
1

4
GaµνG

µν
a , (C.9)

where the first term describes a coupling of a gluon with quarks and the last term contains the kinetic
term and self interaction of gluons.
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D. How We Determined the Eight Parameters
of the Mass Matrix

In order to determine the eight parameters of the mass matrix in section 7.2, we used the program
Mathematica.
First we define the mass matrix M and set the VEV of the sigma mesons to the given values. Then we
calculate the eigenvalues and since the expressions are very long we define four eigenvalue functions
eigvaluei (i ∈ {1, 2, 3, 4}):

Figure D.1.: Mass matrix and eigenvalue functions.

As a next step we checked if the order of the eigenvalue functions is correct. Therefore we chose any
arbitrary values for the eight parameters and set the masses m0,1 and m0,2 to zero, so that there is no
longer any mixing. With we calculated the values of the eigvaluei functions and compared them to
the eigenvalues we can read off the mass matrix immediately:
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D. How We Determined the Eight Parameters of the Mass Matrix

Figure D.2.: Check the order of the eigenvalue functions.

Figure D.3.: Check the order of the eigenvalue functions.

In order to fix the parameters included in the mass matrix we use that the eigenvalues (eigvaluei)
should be equal to the four masses of the two nucleons and their chiral partnersm939 = 939 MeV,m1535 =
1535 MeV,m1440 = 1440 MeV,m1650 = 1650 MeV. Therefore we defined a function which is similar
to the χ2 function and thus we label it with chi2. It is the sum of squares of the conditions. Now
we have four conditions to fix eight parameters and so we should have some free choices. In order to
realize this we use the Manipulate[.] function of Mathematica to vary the values of λ1 to λ4. After that
we calculated the minimum of chi2 with FindMinimum to find the values of the remaining parameters
at the point where the minimum is deepest:
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Figure D.4.: Determine the parameters through varying the lambda parameters and subsequently find
the minimum of a defined chi2 function.

And last but not least we can compute the eigenvectors:

Figure D.5.: Compute the eigenvectors.

123



D. How We Determined the Eight Parameters of the Mass Matrix

Of course the same procedure can be done for λ1 = λ2 and λ3 = λ4. In the following figure the results
of the parameters can be seen:

Figure D.6.: Same procedure for λ1 = λ2 and λ3 = λ4.
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