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Chapter 1

Introduction

This work is dedicated to the study of the vector and axial-vector spec-
tral functions of the τ lepton within the framework of a U(2)L × U(2)R
Linear Sigma Model with electroweak interaction. As an effective field the-
ory the Linear Sigma Model describes hadronic degrees of freedom based
on the symmetries of the Standard Model of Particle Physics. Therefore,
the following section aims at giving a general and concise introduction to
the Standard Model and the meaning of symmetries for contemporary ele-
mentary particle physics. In the next section the SU(3)C symmetry group
will be discussed in short, followed by an introduction to chiral symmetry
SU(2)L×SU(2)R. In the last section of this chapter the Glashow-Weinberg-
Salam theory of the local group SU(2)L × U(1)Y is presented. Important
concepts of the theoretical framework of the Standard Model, such as the
Noether Theorem, the Gauge Principle, Spontaneous Symmetry Breaking,
and the Higgs Mechanism will be introduced in the context of these three
symmetry groups. In Chapter 2 it will be first shown how the symmetries
of the Standard Model are realised within the global U(2)L × U(2)R Linear
Sigma Model and how electroweak interactions can be introduced to the
model on the basis of local SU(2)L × U(1)Y symmetry transformations of
the hadronic degrees of freedom. The vertices that are relevant for the vec-
tor and axial-vector decay channels in weak τ decay are extracted from the
Lagrangian with electroweak interaction in Chapter 3. This is followed by a
short introduction to the Källen-Lehmann Representation of spectral func-
tions and how these can be parametrised within the framework of this model
(Chapter 4). The results of the vector and axial-vector spectral functions
are presented in Chapter 5 and 6.
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1.1 Standard Model

The forces that create and act on matter can be brought down to four fun-
damental interaction types; gravitation, electromagnetism, weak interaction
and strong interaction. The attempt to unify these interactions within one
theory has been a difficult task during the last century.

Electromagnetic phenomena were seen to be materialisations of two different
forces; electricity and magnetism and it is already about 150 years ago since
it is known that magnetism and electricity can actually be traced back to
the same source. In 1865 James Clerk Maxwell explained with the Maxwell
equations the relations between the spatial and time dependencies of the
electric and magnetic fields ~E and ~B [1]. Since then, the question what kind
of phenomena, electricity or magnetism, is observed, has become solely a
question of the reference frame. After the formulation of Einstein’s special
relativity in the framework of the four-dimensional Minkowski space, it was
discovered that the Maxwell equations were already covariant under Lorentz
transformations. They could now be written in a profound, yet simple way

∂µF
µν = µ0j

ν , Fµν = ∂µAν − ∂νAµ ,

∂λFµν + ∂µF νλ + ∂νF λµ = 0 , (1.1)

where Fµν is the field strength tensor of the electromagnetic four potential
Aµ = (ϕ, ~A).

In the late 1940s Richard Feynman, Freeman Dyson and Julian Schwinger
developed Quantum Electrodynamics (QED) as a Lagrangian-derived quan-
tum field theory for the electromagnetic phenomena. The electromagnetic
potential Aµ is now associated with the photon field and arises naturally as
the gauge boson of a theory with local U(1) symmetry.

Now, ever since the success of QED as a local quantum field theory, based on
the group U(1), many physicists believe that all of the known four fundamen-
tal interactions ought to be described in the framework of local quantum field
theories, where the interaction between matter fields is generated through
the presence of gauge fields. So far, that has been successfully achieved for
weak and strong interactions while the development of a theory of quantum
gravity still faces problems.

The Standard Model of Particle Physics describes all matter and its inter-
actions on a microscopic scale where the effects of gravity are negligible. It
is based on a Lagrange density whose degrees of freedom are fields that,
after canonical quantisation, represent wave functions of particles in space
time and a local SU(3)C ×SU(2)L ×U(1)Y symmetry group. To each sym-
metry group correspond interaction fields (gauge bosons) and matter fields
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(fermions). The fermions itself are divided in six quarks and six leptons and
they are organised with increasing masses in three flavour families each (see
Table 1.1).

Quarks Leptons

Flavour Mass
electric

charge e
Flavour Mass

electric

charge e

u 1.5 to 3.3 MeV 2/3 νe 0
d 3.5 to 6.0 MeV −1/3 e− 0.51 MeV −1

s 105 MeV −1/3 νµ 0
c 1.27GeV 2/3 µ− 105.66 MeV −1

b 4.20 GeV −1/3 ντ 0
t 171.3GeV 2/3 τ− 1.78 GeV −1

Table 1.1: Fermion families

While quarks carry the quantum numbers colour, electromagnetic charge
and weak isospin and are thus subject to all three fundamental interactions,
leptons only carry electromagnetic charge and weak isospin. The Glashow-
Weinberg-Salam Theory of Weak Interaction (GWS) describes electromag-
netic and weak interactions among quarks and leptons by means of a local
SU(2)L × U(1)Y symmetry group. Quantum Chromodynamics (QCD) de-
scribes the strong interaction between quarks on the base of a local SU(3)C
group. Both, GWS and QCD, are so-called gauge theories where the interac-
tion fields arise from the requirement of invariance of the Lagrangian under
the transformations of the fields. An additional term in the Lagrange den-
sity, the properly normalized square of the field strength tensor, generates
the gauge field self interactions.

The electroweak phenomena of SU(2)L×U(1)Y are created by three massive
weak bosons (W±, Z0) and the massless photon. The requirement that the
Lagrangian should remain invariant under local SU(2)Y gauge transforma-
tions was challenged by the observed masses of the weak bosons, since a mass
term would violate the symmetry. The skilful use of the concept of Spon-
taneous Symmetry Breaking plus the introduction of a scalar background
field, the Higgs field, solved that problem.

For SU(3)C there are eight massless gluons that generate the force holding
the coloured quarks confined. Due to confinement, neither quarks nor gluons
exist as single particle states. They only appear in colour-neutral bound
states of, e.g., mesons (q̄q) and baryons (qqq). The existence of other colour-
neutral bound states, such as glueballs and tetraquarks, is currently under
research. Although lattice calculations yield strong evidence for its existence,
the glueball has not yet been unambiguously identified.
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∆−(ddd) ∆0(ddu) ∆+(uud) ∆++(uuu)

Ω−(sss)

Σ−(dds)

Θ−(dss)

Σ+(uus)

Θ0(uss)

Σ0(uds)

Figure 1.1: The SU(NF = 3) baryon decuplet with IP = 3/2+.

While the leptonic fermions were already known and partly proven experi-
mentally, quarks were introduced as auxiliary degrees of freedom1 that al-
lowed to organise the growing number of observed particles and resonances
during the second half of last century. On the base of Wigner’s group the-
ory developments hadrons could now be understood as multiplets of states
whose properties were explained by their quark content. For example the
baryon decuplet (Fig. 1.1) and the meson octet (Fig. 1.2) can be organised
as the 10, resp. 8, representations of SU(Nf = 3), with Nf referring to
the number of quark flavours. Based on the assumption that the quarks
might become massless for very high energies, the flavour group describes
the quarks as a degenerate multiplet under U(Nf ) flavour transformations.

π−(ūd) π+(d̄u)

K−(ūs)

(ūu+ d̄d)
(ūu+ d̄d− 2s̄s)

K̄0(d̄s)

K0(s̄d) K+(s̄u)

π0, η8

Figure 1.2: The SU(NF = 3) pseudoscalar meson octet.

1Gell-Mann discusses a unitary symmetry group on the base of a set of fictitious

”leptons” which [are degenerate in their mass and] may have nothing to do with real leptons

but help to fix the physical ideas in a rather graphic way. He also proposed the algebraic
structure of the internal space of the quarks (colour space) and although he did not
explicitly mention the gluons as carrier of strong interaction he pointed out that there
might be an interacting vector field analogously to the U(1) gauge field of QED [2].
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Although, at first, this idea was heavily disputed, experimental evidence for
quarks as fundamental building blocks of hadrons was given only few years
later by results of pion nucleon collisions at Brookhaven National Laboratory
in 1970 [3]. These were explained by Drell and Yan in terms of partons
(nucleon constituents) that carry only a fraction of the charge of the electron.
Two partons, a quark of the nucleon and an antiquark of the pion annihilate
into a photon which in turn decays into a lepton pair µ+µ− with the cross
section being proportional to the squared quark charge. For collisions of
π−= ūd (π+= ud̄) with 12C = 18u+ 18d the theoretical prediction for the
ratio of the two cross sections is

σ(π+N → µ+µ−) ≃ 18Q2
d = 18

(

1

9

)

,

σ(π−N → µ+µ−) ≃ 18Q2
u = 18

(

4

9

)

Rth. =
σ(π+N → µ+µ−)

σ(π−N → µ+µ−)
=

1

4
. (1.2)

This agrees with the results from the experiment2 where the ratio for the
two cross sections is

Rexp =
1

4
.

However, some resonances (e.g., ∆++) could only be explained as bound
states of three quarks with same flavour and spin. But as spin 1/2 particles
quarks have to obey Fermi-Dirac-Statistics and thus, follow Pauli’s exclusion
principle. For ∆++= u↑u↑u↑ Pauli’s exclusion principle seemed to be clearly
violated and enforced the necessity of another additional degree of freedom,
colour.

The idea of colour as a new charge of the quarks was supported by the
results of e+e− annihilations at high energies as they were performed since
1967 at Stanford Linear Accelerator Center (SLAC). The ratio of the cross
sections σ(e+e− → q̄q) and σ(e+e− → µ+µ−) could only be explained by a
factor NC , accounting for the three additional colour degrees of freedom;

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= NC

∑

Q2
q = 3

(

4

9
+

1

9
+

1

9

)

= 2 . (1.3)

Another reason for the success of the Standard model were predictions made
about the existence of new particles that up to that time had not been dis-

2This example is, e.g., found in [4].
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covered3. Chapter IV in [5] gives a comprehensive overview about exper-
iments that led to broad acceptance of the idea of quarks being coloured
constituents of matter carrying fractional electromagnetic charges.

Furthermore, reflections on symmetries do not only allow for organising
particles within multiplets or describing interactions as exchange of gauge
bosons. They also give insight into the profound nature of conservation laws.
In the theoretical framework of the Standard Model (Quantum Field The-
ory, QFT) the symmetry properties of the particle multiplets are reflected
in the associated Lagrange density which then itself has to be invariant un-
der transformations of the fields. Invariance of a Lagrangian under certain
transformations then automatically leads to symmetric equations of motion.
Now, the Noether Theorem states that to each independent symmetry trans-
formation of the degrees of freedom corresponds a conserved quantity, the
Noether Current and that to each conserved current corresponds a conserved
charge.

There are external symmetries, described by the Poincare group4, and in-
ternal symmetries that refer to intrinsic particle properties as, e.g., strong
and weak isospin and electric charge. Global internal symmetries lead to the
classification of particles within multiplets, while local internal symmetries
lead to gauge bosons that generate interactions.

A transformation is called global if its parameter is constant and local if the
parameter is space-time dependent. Requiring invariance of the Lagrangian
under local transformations of the matter fields then deduces the existence
of massless spin-1 fields, the gauge bosons that couple to the conserved
charges. The result is a new, covariant derivative that transforms as the
fields themselves so that the Lagrangian remains invariant and the dynamics
between fermions and gauge bosons is generated in the covariant derivative5.

Thus, examining the symmetry properties does not only yield important
constraints on the Lagrangian and the allowed interactions between particles,
but also yields observable conserved currents and the interactions among
them.

3For example on page 31 in the Eightfold Way Gell-Mann and Murray predicted the
η meson as a pseudoscalar resonance χ0, which should decay into 2γ like π0, unless it is

heavy enough to yield π+ + π− + γ with appreciable probability [2].
4The group of Lorentz transformations is a subgroup of the larger-10 dimensional

Poincare group which is the symmetry group underlying such fundamental physical in-
sights as energy and momentum conservation which result from invariance under time
and space translations. Also, angular momentum conservation can be ascribed to invari-
ance under the rotation group O(3) which is also a subgroup of the Poincare group.

5This procedure is also called minimal coupling, since only those interaction terms be-
tween gauge and matter field are introduced that are necessary to retain gauge invariance.
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1.2 Quantum Chromodynamics

Quantum Chromodynamics is the theory of the strong interaction based on
a local SU(3)C symmetry group whose fundamental representation is given
by the SU(3)C quark vector

qf =





qrf
qgf
qbf



 , f = u, d, s, c, t, b . (1.4)

Each entry qr, qg, qb is a four-dimensional Dirac spinor and red, green, blue
denote the colour degrees of freedom. They are the charges of strong in-
teraction. The interactions among the charged quarks are transmitted via
gluons, the gauge fields of SU(3)C .

The Dirac Lagrangian

LDirac =
∑

f

q̄f (iγµ∂
µ −mf ) qf (1.5)

is symmetric under global SU(3) colour transformations. The transforma-
tions are performed by unitary (3× 3) matrices U with

UU † = U †U = 1 (1.6)

and

det(U) = 1 . (1.7)

They act on q according to

q −→ q′ = Uq = exp

(

−i
8
∑

a=1

θa
λa

2

)

q

≃ (1− i

8
∑

a=1

θa
λa

2
)q . (1.8)

The Gell-Mann matrices λa are one representation of the N2
C − 1 = 8 gener-

ators of SU(3) and obey the commutation relations

[λa ,λb] = 2ifabcλc , with (a, b, c = 1, ..., 8) , (1.9)

where fabc are the antisymmetric structure constants of SU(3). Under local
SU(3) transformations (θ → θ(xµ)) the quark vector transforms as

q −→ q′ = exp

(

−i
8
∑

a=1

θa(x
µ)
λa

2

)

q ≃
(

1− i
8
∑

a=1

θa(x
µ)
λa

2

)

q . (1.10)
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A symmetry-violating term arises from the partial derivative because of
the space-time dependence of the transformation parameter. In order to
resolve this the partial derivative is promoted to a covariant derivative via
the introduction of gauge boson fields A µ

∂µqf → Dµqf = ∂µqf + igQCDA µ
a

λa

2
qf , (1.11)

where the gluon matrix A µ = A µ
a

λa

2 transforms under the adjoint represen-
tation of SU(3)C as

A µ → UA µU † − i

gQCD

U∂µU † . (1.12)

From U being unitary matrices it follows that

∂µ(UU
†) = U∂µU

† + (∂µU)U † = 0 . (1.13)

It can then be shown that the terms from the partial derivative acting on U
are cancelled by the terms that arise from the transformation of the gauge
fields. Then the quark covariant derivative Dµqf transforms as qf ,

Dµqf −→ (Dµqf )
′ = ∂µq′f + igQCD A µ ′ λa

2
q′f

= U(xµ)∂µq′f + [∂µU(xµ)]qf

+ igQCD[U(xµ)A µU †(xµ)− i

gQCD

U(xµ)∂µU †(xµ)]U(xµ)qf

= U(xµ)Dµqf , (1.14)

and thus maintains the symmetry of the Lagrangian under local SU(3)C
transformations.

QCD is flavour-blind - gluonic fields do not distinguish between different
quark flavours and SU(3)C transformations act on the colour degrees of
freedom only - but in nature the quarks are not degenerate in flavour space,
so the fermionic term in the Lagrangian becomes a sum over all flavours.
And the QCD Lagrangian finally can be defined as [6]

LQCD =

Nf
∑

f=1

q̄f (iγµDµ −mf ) qf −
1

4

8
∑

a=1

F a
µνF

µν
a (1.15)

where

Fµν
a = ∂µA ν

a − ∂νA µ
a − gQCDfabcA

µ
b A ν

c (1.16)
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is the field strength tensor of the gauge bosons and fabc are the antisym-
metric SU(3) structure constants6. From (1.15) the equations of motion for
quark and gluonic fields are then obtained as

(iγµDµ −mf )qf = 0 , (1.17)

DµF a
µν = gQCD

∑

f

q̄f
λa
2
γνqf . (1.18)

The equations of motion for the gauge field show that the covariant derivative
acting on the field strength tensor is proportional to the matter current

Jνa =
∑

f

q̄f
λa
2
γνqf . (1.19)

In the absence of matter the current on the right-hand side of (1.18) vanishes

DµF a
µν = 0 . (1.20)

In the QED analogue one obtains in the absence of matter ∂αF
αβ = 0 for

the inhomogeneous Maxwell equations. Thus the photon field itself does not
carry charge and does not act as a source for itself. In Yang-Mills theories,
on the contrary, due to the non-Abelian nature of the group SU(3), the
result is

∂νF
µν
a = −gQCDfabcAbνF

µν
c . (1.21)

This accounts for the fact that gluons also carry colour and act as sources for
strong interaction themselves. The self-interaction of the gauge fields arises
from the commutator in the field strength tensor and is a general feature of
non-Abelian field theories.

From the Lagrangian one can directly read off the so-called tree-level vertices,
that allow for a perturbative QCD calculation of physical observables such
as decay widths. Quantities that are explicitly contained in the Lagrangian,
as here for example the coupling constant gQCD in (1.12) and the quark
masses mf in (1.15) are referred to as bare masses or couplings, respectively.
In order to obtain the physical values of these bare quantities, also the
interactions need to be considered. This leads to diverging contributions
and thus each theory has to be renormalised so that the physically relevant
values can be extracted.

In the case of the QCD Lagrangian, renormalisation results in an energy-
dependent coupling constant

αS(q
2) =

g2QCD(q
2)

4π
, (1.22)

6For an explicit representation of the SU(3) structure constants see refs. [7] or [8].
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also called the running coupling αS . The energy dependence of αS is given
by the following relation

αS(q
2) =

4π

(11− 2Nf

3 )ln(q2/Λ2)
(1.23)

where Λ refers to the Yang-Mills scale. From Equation (1.23) follows that, for
Nf < (11·3)/2, as it is realised in nature, αS decreases with increasing energy.
For low energies q2 . 1 GeV2 the value of the running coupling constant
increases, suggesting one possible explanation for the well-known feature of
confined quarks and gluons. Quarks and gluons cannot be observed as single
particle states, but as colour-neutral (white) objects only. For high energies
a new phase of matter is expected, the quark gluon plasma in which quarks
and gluons are deconfined, since for high energies the value of the running
coupling decreases (asymptotic freedom).

1.3 Chiral Symmetry

In the limit of massless quarks, the QCD Lagrangian reveals another funda-
mental symmetry: global U(Nf )L × U(Nf )R transformations of the quark
spinors

q
U(Nf )L−→ ULq , q

U(Nf )R−→ URq . (1.24)

where q denotes an Nf -dimensional vector in flavour space with each entry
being a four-component Dirac spinor field.

The U(Nf ) matrices UL and UR act on the Dirac as well as on the flavour
space. They are defined as

UL = exp{−i1− γ5

2

N2
f−1
∑

a=0

θaLta} , UR = exp{−i1 + γ5

2

N2
f−1
∑

a=0

θaRta} .

(1.25)

From now on, for any Lie group U(Nf ) the generators are denoted by ta and
a = 0, 1, 2, ..., N2

f − 1 while the N2
f − 1 generators of SU(Nf ) are denoted

by ti and i = 1, 2, ..., N2
f − 1. As in the QCD case they obey the SU(Nf )

commutation relations

[ti, tj] = ifijktk . (1.26)
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The field q can be decomposed in its left- and right-handed7 components by
the chiral projectors

PL =
1− γ5

2
, PR =

1 + γ5
2

(1.27)

=⇒ q = (PL + PR)q = qL + qR ,

where γ5 is defined as

γ5 = iγ0γ1γ2γ3 = γ5 , (1.28)

and γµ are the Dirac matrices. In chiral representation8 γ5 is diagonal

γ5 =

(

1 0
0 −1

)

, (1.29)

such that qR, qL are eigenvectors of γ5 with eigenvalues L,R (±1 resp.).

For the decomposed fields qL, qR the QCD Lagrangian reads

LQCD =

Nf
∑

f=1

i(q̄L,fγµD
µqL,f + q̄R,fγµD

µqR,f )

−
Nf
∑

f=1

(q̄R,fmfqL,f + q̄L,fmfqR,f )−
1

4

8
∑

a=1

F a
µνF

µν
a . (1.30)

7For massless particles chirality corresponds to positive or negative helicity, defined
as the projection of the spin onto the momentum vector

h± =
~σ · ~p

p
= ±1 .

After a Fourier transformation into momentum space (∂µ
→ pµ) the equation of motion

for free, massive fermions reads

(γµpµ −m)q = (γµpµ −m)

(

1− γ5
2

q +
1 + γ5

2
q

)

.

For massless fermions in chiral representation the Dirac equation above decouples into the
Weyl equations. In literature, however, the distinction between chirality and helicity is
often not made clear. As the weak interaction couples to chiral left-handed fields being
represented by the eigenvalues of γ5 it seems important to make this differentiation here.

8In the chiral representation the 4-spinors are defined as

qcf =

(

(qcf )R
(qcf )L

)

and the Dirac matrices are defined as

γ0 =

(

0 1

1 0

)

, γi =

(

0 −σi

σi 0

)

.
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In the chiral limit where all quarks masses vanish, the above Lagrangian
is clearly invariant under chiral transformations (1.24). In nature, however,
chiral symmetry is not exact. While on the hadronic mass scale of 1 GeV
the masses of up and down quark and even the strange quark can be consid-
ered to be still small enough (mu ≃ 0.0015 GeV, md ≃ 0.0035 GeV, ms =
0.105 GeV) to allow for the assumption of a chiral symmetry, the charm
mass mc = 1.27 GeV is already of the order of the hadronic masses, while
mb = 4.20 GeV and mt = 171.3 GeV clearly exceed the scale where they
could be approximated as ”vanishing”. Considering the 2 × N2

f chiral cur-
rents, derived from the Lagrangian with the quark mass terms included,
reveals the pattern of chiral symmetry breaking, according to the different
possibilities of mass degeneracy.

1.3.1 Chiral Currents and Symmetry Breaking

After the transformation defined in (1.24)

LQCD −→ LQCD + δLQCD , (1.31)

δLQCD = q̄LtaγµqL∂
µθaL + q̄RtaγµqR∂

µθaR

− iθaL(q̄LtaMqR − q̄RtaMqL)− iθaR(q̄RtaMqL − q̄LtaMqR) ,
(1.32)

where M is the diagonal quark mass matrix of rank Nf

M = diag(mu,md,ms,mc,mb,mt) . (1.33)

Now the Noether theorem states that if a Lagrangian

L = L (φa(x
µ), ∂µφa(x

µ)) (1.34)

is invariant under the transformations

xµ → xµ = xµ + δxµ , φa → φ′a = φ+ δφµa , (1.35)

then there exist the conserved Noether currents

J µ
a =

∂L

∂ (∂µφa)
δφa − δxµL , ∂µJ µ

a = 0 , (1.36)

and that to each conserved current corresponds a conserved charge

Qa =

∫

J0
ad

3x . (1.37)

12



The right-handed and left-handed currents can now be obtained by consid-
ering the variation of δLQCD with respect to the parameters δθL and δθR
[9]

J µ
a(L,R) =

δLQCD

δ(∂µθaL,R)
. (1.38)

The 2N2
f independent parameters θVa and θAa are defined by the relations:

Vector transformation:

θLa = θRa ,

θVa =
θLa + θRa

2
. (1.39)

Axial-vector transformation:

θLa = −θRa ,

θAa =
−θLa + θRa

2
. (1.40)

Letting the U(Nf )L × U(Nf )R transformations act simultaneously on left-
handed and right-handed quark fields one can define global vector and axial-
vector transformations9 according to

q
U(Nf )V−→ q′ = ULURq = exp{−iθaV ta}q , (1.41)

q
U(Nf )A−→ q′ = ULURq = exp{−γ5θaAta}q . (1.42)

The currents corresponding to vector and axial-vector transformations are
then

V µ
a =

δLQCD

δ(∂µθaL)
+

δLQCD

δ(∂µθaR)
= q̄γµtaq , (1.43)

Aµ
a =

δLQCD

δ(∂µθaL)
− δLQCD

δ(∂µθaR)
= q̄γµγ5taq , (1.44)

with divergences

∂µV
µ
a =

∂δLQCD

∂θaL
+
∂δLQCD

∂θaR
= iq̄[M, ta]q , (1.45)

∂µA
µ
a =

∂δLQCD

∂θaL
− ∂δLQCD

∂θaR
= iq̄{ta,M}γ5q . (1.46)

9Because of γ5 in (1.42) the axial-vector transformations do not build a group, since
closure is not satisfied.
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Now the manifestations of chiral symmetry breaking and some of the experi-
mentally verified predictions made from the resulting constraints will be de-
scribed. Analogously to the irreducible representations of U(Nf )L×U(Nf )R
the 2N2

f currents in (1.43) and (1.44) can be split into two singlet cur-
rents and two currents belonging to the adjoint representation of the group
(U(Nf ) = U(1) × SU(Nf )).

One can anticipate the following scenarios of mass degeneracy:

• all quarks are massless mf = 0,

• all quarks are massive, but degenerate mu = md = ms = mc = mt =
mb = m,

• all quarks are massive and not degenerate.

Within these scenarios one can analyse chiral symmetry from Equations
(1.45) and (1.46).

The U(1)V symmetry corresponds to the conservation of the quark number;
its generator is proportional to the unit matrix and thus commutes with all
other generators. From (1.43) the U(1)V current can be read off as

V µ
0 = q̄γµt0q (1.47)

and its divergence is

∂µV
µ
0 = iq̄[M, t0]q = 0 . (1.48)

Thus, even for massive quarks, the U(1)V vector symmetry remains unbro-
ken and baryon number is always conserved.

While SU(Nf )V is broken in the case of massive and non-degenerate quarks
it is clearly preserved, if mu = md = . . . = mf . Then the quark mass matrix
M commutes with all other generators

∂µV
µ
i = imf q̄[1, ti]q = 0 , i = 1, 2, 3 . (1.49)

The N2
f − 1 vector currents are then conserved individually and SU(Nf )V

remains intact10. SU(Nf )V is the standard flavour symmetry (isospin for
Nf = 2), as, for example, for the nucleon isospin doublet of SU(2)f .

10Electromagnetic interactions break the vector symmetry explicitly which, e.g., results
in the Gell-Mann-Nishijima relation. A closer analysis of the electroweak interaction and
its symmetry breaking will be given in the following section about the Glashow-Salam-
Weinberg model.
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The SU(Nf ) axial-vector currents A
µ
i are only conserved if the quark masses

are identically zero since

∂µA
µ
i = q̄{ti,M}γ5tiq . (1.50)

The divergence of the U(1) axial current Aµ
0 is obtained as

∂µA
µ
0 = 2iq̄Mγ5q . (1.51)

and also vanishes in the chiral limit. This is, however, only true on the classi-
cal level. Calculations to first order of perturbation theory of the amplitude
of an axial current coupled to two vector currents coupled to gluons reveal
that the Ward identities can only be respected for either the vector or the
axial-vector current [7]. Since the symmetry under vector transformations
corresponds to conservation of baryon number, one chooses the U(1) axial
symmetry to be explicitly broken11. For massless quarks and Nc = 3 the
not conserved singlet current, corresponding to the η meson, then reads

∂µA
µ
0 =

αSNC

8π
F a
µν F̃

aµν with (F̃ a
µν = εµναβF a

αβ). (1.52)

The anomalous axial singlet current yields the explanation of the massive η
meson which otherwise would be a massless Goldstone boson of the sponta-
neously broken axial-vector symmetry.

The contribution from the anomaly to the current corresponding to the
neutral π is

∂µA
µ
3 =

αNC

12π
F a

µνF̃
aµν (1.53)

and yields a great confirmation of the chiral anomaly in the axial-vector
current in the presence of an electromagnetic field; the π0 → γγ decay rate
was predicted in agreement with the experimental result to be

Γπ0→γγ =

(

αNc

3πfπ

)2 m3
π

64π
≃ 7.7 eV

by Adler, Bell and Jackiw [12]. Equations (1.52) and (1.53) show that the
symmetry breaking term depends on the number of quark colours NC but is
independent on assumptions about the degeneracy of the quarks in flavour
space12.

11On the physical side this “true” breaking of the axial chiral symmetry is also at-
tributed to instanton effects as it has been shown by t’Hooft [10]. Detailed discussion on
the subject of the chiral anomaly can be found, e.g., in Chapter III-3 of [7] and Chapter
18 in [11].

12Bouchiat, Iliopoulos and Meyer [13] showed that for three generations of quarks and
leptons the anomalies cancel out separately for quarks carrying fractional electromagnetic
charges and if the number of colours is NC = 3 [11]. This remarkably substantiates quark
colour as additional degree of freedom. Only when the anomalous contributions cancel
each other out, theories that are based on a local symmetry with anomalous currents will
be renormalisable and produce experimentally verifiable predictions.
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Both vector and axial-vector isospin currents of the chiral model reflect
strong isospin symmetry which is for example seen in the almost exact de-
generacy of the hadronic mass spectra for the pion triplet (Nf = 2) or
the kaon quadruplet (Nf = 3). They are also in accordance with the cur-
rents that are observed in electroweak, strangeness preserving semileptonic
interactions. Their relation is seen for example in the Goldberger-Treiman
relation

gπNN = gA
MN

fπ
≃ 12.5 (1.54)

which connects the effective strong-interaction coupling between pions and
nucleons gπNN and the pion decay constant fπ extracted from the weak
decay of the pion. The constant gA describes the ratio of the vector and
axial-vector couplings as they are measured in weak β decay. Since the
weak interaction is a purely V -A interaction one would expect this ration
to be one. But as a consequence of the broken axial symmetry the ratio is
gA = GA

GV
≃ 1.22. The experimental value from pion-nucleon scattering is

given by
g2πNN

4π
≃ 13.5 ⇒ gπNN ≃ 13.03 .

which agrees with the theoretical prediction to about 4% [7, 14].

The Goldberger-Treiman relation can be derived from an assumption called
partial conservation of the axial current (PCAC). In SU(2)f the weak decay
of π → µντ is dominated by the axial current Aµ

i . The amplitude Mπ→µν , de-
rived from the weak interaction Lagrangian of strangeness-conserving semilep-
tonic processes, is of current-current type and proportional to

〈0|q̄γµ(1− γ5)tiq|πj〉 = 〈0|V µ
i |πj〉 − 〈0|Aµ

i |πj〉 .

In order to describe the transition between the vacuum JP = 0+ and the
pion JP = 0− it is necessary to demand a non-zero matrix element for the
axial current

〈0|q̄γµγ5tiq|πj〉 = ipµfπδije
−ip·x . (1.55)

The decay rate for the process π → µντ is then calculated to

Γπ → µν =
G2

Fm
2
µf

2
π(m

2
π −m2

µ)
2

4πm3
π

cos2θC . (1.56)

GF denotes the effective weak Fermi coupling and is defined as

GF =
g2

2
√
2M2

W

. (1.57)
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From (1.56) the vacuum decay constant of the pion fπ can be determined
by experiment and its value is given by fπ = 92.4 MeV.

Taking the divergence of (1.55) results in

〈0|∂µAµ
i (x)|πj(p)〉 = −pµpµfπδije−ip·x = −m2

πfπδije
−ip·x . (1.58)

With a pion mass of mπ± = 0.139 GeV the divergence of the axial current
can clearly be approximated by zero on hadronic mass scales of ∼ 1 GeV.
Thus, at least for Nf = 2 and massive quarks, the axial chiral symmetry is
considered to be approximately conserved on the classical level.

1.3.2 Spontaneously Broken Chiral Symmetry

For Nf = 2 the irreducible representations of U(Nf )L ×U(Nf )R for mesons
are obtained as external products of their fundamental representations. The
mesonic states are then considered to be the bilinear combinations

scalar: σa = q̄ ta q ,

pseudoscalar: πa = iq̄ taγ
5q ,

vector: V µ
a = q̄ taγ

µq ,

axial vector: Aµ
a = q̄ taγ

µγ5q .

With the unitary matrices UV , UA as they are given in (1.41) and (1.42)
the quark fields transform under SU(2) vector and axial-vector transforma-
tions13 according to

q
V−→ UV q ≃

(

1− iθiV ti
)

q ,

q
A−→ UAq ≃

(

1− iγ5θ
i
Ati
)

q . (1.59)

Under SU(2)V transformations the scalar, pseudoscalar, vector, and axial-
vector triplets therefore transform as

scalar: q̄tiq −→ q̄tiq + q̄ εijkθV jtkq ,

pseudoscalar: iq̄tiγ
5q −→ iq̄tiγ

5q + iq̄ εijkθV jtkγ
5q ,

vector: q̄tiγ
µq −→ q̄tiγ

µq + q̄ εijkθV jtkγ
µq ,

axial vector: q̄tiγ
µγ5q −→ q̄tiγ

µγ5q + q̄ εijkθV jtkγ
µγ5q .

(1.60)

13The following discussion of the chiral transformation of the mesons is based on the
introduction to chiral symmetry written by Volker Koch [14].
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This is only a rotation in strong isospace, e.g., one obtains for the pseu-
doscalar triplet

~π
V−→ ~π + ~θV × ~π . (1.61)

The results for a vector transformation acting on scalar, vector, and axial-
vector fields can be written down analogously.

Now, under axial-vector transformations, the adjoint field transforms as
q̄ → q̄′ ≃ q̄(1 − iγ5θAiti), because γ

5 anticommutes with γ0. Together with
the anticommutation relations {ti, tj} = δij the pion triplet transforms as

iq̄γ5tiq −→ iq̄′γ5tiq
′ ≃ iq̄(1− iγ5θAjtj) γ

5ti (1− iγ5θAjtj)q

= iq̄γ5tiq + θAj

(

q̄tjγ
5γ5tiq + q̄γ5titjγ

5q
)

+O[θA]
2

= iq̄γ5tiq + θAj q̄{ti, tj}q
= iq̄γ5tiψ + θAiq̄q . (1.62)

The purely pseudoscalar like state (∼ γ5) obtained an additional scalar con-
tribution (∼ 1); the axial transformation performs a rotation of the pseu-
doscalar states into the scalar states as for example

~π
A−→ ~π + ~θAσ (1.63)

and analogously for vectors and axial vectors

~ρµ
A−→ ~ρµ + ~θA × ~aµ1 . (1.64)

Since mesons are colourless bound quark-antiquark states, the symmetry
properties of QCD are expected to be also reflected in the hadronic spec-
trum. Under axial transformations scalars and pseudoscalars, as well as
vectors and axial vectors appear to be partners and should thus have the
same eigenvalues. As it was already noted, the symmetry corresponding to
vector transformations is related to conservation of strong isospin and is re-
flected in the spectrum of the pion triplet. But from hadron spectroscopy it
is also known that the difference between the ρ and the a1 mass is already of
the order of the ρ mass itself (mρ = 0.776 GeV, ma1 = 1.23 GeV) and the
expected symmetry property, the degeneracy under axial transformations, is
not observed in experiment. On the other side, PCAC and the Goldberger
Treiman relation indicate that it is justified to assume that the axial symme-
try is at least approximately conserved. The resolution to this contradiction
is the spontaneous breaking of the axial symmetry.

Apart from the symmetry properties of the Lagrangian, the ground state
of the potential of a system (vacuum) also possesses symmetries. Provided
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that the ground state is not unique but consists of an infinite number of
degenerate ground states, the symmetry is spontaneously broken, if one of
these degenerate ground states is explicitly ascribed to the vacuum. The
ground state is then only invariant under transformations performed by the
broken generators.

For a O(N) symmetric Lagrangian of the form

L =
1

2
(∂µΦi)

2 − 1

2
µ2(Φi)

2 − λ

4
[(Φi)

2]2 (1.65)

and µ2 > 0 there is exactly one ground state at position φ0 = 0 and the
ground state has the same symmetries under O(N) transformations of the
fields φi −→ Oijφj , i, j = 0, 1, . . . , N − 1 as the Lagrangian. The number
of symmetries of the ground state is then the same as the dimension of
the symmetry group of the Lagrangian, and all N(N−1)

2 generators of O(N)
annihilate the ground state

Φ′
0 = UΦ0 = 0 . (1.66)

Figure 1.3: Mexican hat potential of a O(N = 2) Linear Sigma Model with
Φ = (σ, π)T and L = 1

2(∂
µΦ)2 − 1

2µ
2(Φ)2 − λ

4 [(Φ)
2]2.

Now, if µ2 < 0, the ground state is moved to a constant distance φ0 from the
origin (Figure 1.3). At first, the ground state is still invariant under rotations
in the N dimensional plane spanned by the fields φi , i = 0, 1, . . . , N−1, but
as soon as one ascribes this vacuum expectation value to one specific field

Φ0 = (φ0, 0, 0, . . . , 0) , (1.67)
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the symmetry is spontaneously broken. The ground state is now only sym-
metric under transformations of a subgroup of the original symmetry group
and only the generators in the direction of Φ0 annihilate the ground state.

Goldstone’s Theorem [15] states that, if a continuous symmetry is sponta-
neously broken, there arise as many massless scalar fields as there are broken
generators in the ground state, or more precisely; if a Lagrangian is invari-
ant under a continuous symmetry group G and the number of generators
of G is N , while the ground state is only invariant under a subset H, with
dimension M , then, there are N −M massless spin 0 particles. Expanding
the potential about its minimum gives rise to the mass term of the field
corresponding to the unbroken symmetry, while the fields corresponding to
the broken symmetries are massless.

Now, looking at the O(2) example in Figure 1.3, one can understand the
σ field as the radial component of Φ and π as the tangential component.
Then, radial excitations of Φ along the σ axis do cost energy (mσ 6= 0),
while excitations of Φ in the tangential direction are along the trough of the
potential and do not cost energy (mπ = 0). Thus, the pions are considered to
be the massless Goldstone bosons of the spontaneously broken axial-vector
symmetry.

For the SU(2)L × SU(2)R scalar and pseudoscalar mesons this means that
the potential is invariant under axial-vector rotations in the plane of the
chiral partners σ and π.

Since the σ meson carries the quantum numbers of the vacuum (0+) it can
be chosen to take on the expectation value of the ground state φ0

σ → σ + φ0 .

Then the symmetry is spontaneously broken and the three pions (JP = 0+)
are considered to be the Goldstone bosons. In the Lagrangian, there are now
new contributions to the mass terms that are proportional to the square of
the vacuum expectation value. Thus, the mass difference between the pion
and σ resonances is explained by means of a spontaneously broken chiral
symmetry. The same mechanism gives rise to the mass difference between ρ
and a1. In the chiral limit, where chiral symmetry is exact, a1 and ρ become
degenerate in mass after the chiral phase transition (T > TC).
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1.4 Glashow-Weinberg-Salam Theory

Besides its symmetry under local SU(3)C and global SU(2)L × SU(2)R the
QCD Lagrangian without mass term14

LDirac =
∑

f

q̄f iγµ∂
µqf . (1.69)

is also invariant under SU(2)L ×U(1)Y gauge transformations. The indices
L and Y refer to the groups generated by the weak isospin and hypercharge
operators I3 and Y . These two groups provide the framework to describe
electromagnetism and weak interaction within a unified gauge theory.

Electric charge Q as immediately experimentally observable quantum num-
ber is related to hypercharge Y and the third component of weak isospin I3
by the Gell-Mann-Nishijima relation of the weak interaction

Q = I3 +
Y

2
. (1.70)

All fermions - leptons and quarks - are subject to electroweak interactions.
Weak interaction bosons couple only to fields with weak isospin I3, e.g.,
either left-handed particles or right-handed antiparticles, and thus weak
interaction violates the symmetry under charge C and parity P conjugation
individually, while it preserves combined CP transformations (Figure 1.4).

In the two flavour case the SU(2)L fundamental representation for up and
down quark is given by a left-handed doublet state q1 describing the fields
that transform under SU(2)L and two right-handed isosinglets q2, q3 that
do not transform under SU(2)L

q1 =

(

uL
dL

)

, q2 = uR, q3 = dR . (1.71)

As for chiral symmetry left-handedness and right-handedness are defined by
the eigenvalues ±1 of γ5 in chiral representation. The quantities qR, qL are
the eigenvectors of γ5. They are obtained by the chiral projectors given in
(1.27).

Another important peculiarity about the weak interaction eigenstates is that
they are not the eigenstates of the strong interaction, but a rotation among

14For fermionic fields such a mass term would read

Lm = m(q̄LqR + q̄RqL). (1.68)

Since it mixes the left- and right-handed fields it is not invariant under SU(2)L × U(1)Y
transformations of qL, qR. A closer description of the fermionic masses and their gauge
invariant generation in the Lagrangian can be found for example in Chapter 20.2 of [16].
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uL, cL, tL

I3 =
1

2
, Y =

1

3

C−−−−→
ūL, c̄L, t̄L

I3 = 0, Y = −2

3

uL, cL, tL

I3 =
1

2
, Y =

1

3

P−−−−→
uR, cR, tR

I3 = 0, Y =
4

3

uL, cL, tL

I3 =
1

2
, Y =

1

3

CP−−−−→
ūR, c̄R, t̄R

I3 = −1

2
, Y =

1

3

Figure 1.4: Charge and parity transformations of up, charm and top quark.

those. Denoting the weak eigenstates with d′, s′, b′ their relation to the chiral
(strong isospin) eigenstates is described by the Cabibbo-Kobayashi-Maskawa
matrix VCKM





d′

s′

b′



 = VCKM





d
s
b



 . (1.72)

For three flavours this reduces to a rotation about the Cabibbo angle θC
(

d′

s′

)

=

(

cosθC sinθC
−sinθC cosθC

)(

d
s

)

. (1.73)

The following introduction into the Glashow-Weinberg-Salam Theory will
be only applied to the quarks of the first family u and d, where d is now
already defined as the weak quark spinor, so that the prime, referring to the
prefactor cos θC of u, can be omitted.

Now, in terms of the weak eigenstates15 the non-interacting Lagrangian can
be written as

L0 = iq̄1γ
µ∂µq1 + iq̄2γ

µ∂µq2 + iq̄3γ
µ∂µq3 . (1.75)

15The GWS model is trivially extended to all lepton families by adding the correspond-
ing terms. Since the neutrinos are considered to be their own antiparticles there is only
one right-handed singlet in each family

(

νl,L
lL

)

, lR . (1.74)
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In Section 1.3 it was shown that the Lagrangian in (1.75) is invariant under
global SU(2)L transformations. Since any U(1) transformation is propor-
tional to a phase factor only, L0 is also invariant under combined SU(2)L×
U(1)Y transformations according to

q1 → q′1 = UY ULq1 ,

q2 → q′2 = UY q2 ,

q3 → q′3 = UY q3 . (1.76)

Now, invariance of the Lagrangian (1.75) under local SU(2)L transforma-
tions of the doublet

q1 → q′1 = UL(x
µ)q1 = e−iθi(xµ)tiq1 (1.77)

is again obtained via a covariant derivative. If the weak gauge bosons
W µ(xµ) = W µ

i (x
µ)ti transform under local SU(2)L adjoint representation

as

W µ(xµ)
SU(2)L−→ UL(x

µ)W µ(xµ)U †
L(x

µ)− i

g
∂µUL(x

µ)U †
L(x

µ) , (1.78)

the covariant derivative reads

∂µ → Dµ = ∂µ − igW µ(xµ) , (1.79)

and the weakly interacting Lagrangian reads

Lweak = iq̄1γµDµq1 . (1.80)

Both, left- and right-handed quarks, are subject to electroweak interactions
and should therefore transform under local U(1)Y . Generally, the gauge bo-
sons couple to the charges of the symmetry group; while left-handed fields
carry weak isospin and right-handed fields do not, both, left- and right-
handed fields, carry electromagnetic charge. Also, provided that due to the
Anderson-Higgs mechanism the weak gauge bosons are massive, the third
component of the physical weak interaction boson Z0 is a mixed state of the
U(1)Y and SU(2)L gauge fields Bµ andW µ

3 . This gave rise to the Gell-Mann-
Nishijima relation of the weak interaction, describing the relation between
the quantum numbers of bare and physical fields.

Now, in order to incorporate the fact that the neutral currents Bµ and W µ
3

couple differently to left- and right-handed fields, the transformations of the
doublet and the singlets have to be proportional to the corresponding U(1)Y
eigenvalues y1, y2, and y3. Thus, for U(1)Y the transformation law is

q1 −→ q′1 = UY1q1 = eiy1θ(x
µ)q1 ,
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q3 −→ q′2 = UY2q2 = eiy2θ(x
µ)q2 ,

q3 −→ q′3 = UY3q3 = eiy3θ(x
µ)q3 . (1.81)

The gauge field corresponding to the gauge group U(1)Y is denoted by Bµ

and transforms as

Bµ U(1)Y−→ Bµ ′ = Bµ +
1

g′
∂µθ(xµ) . (1.82)

For each quark state qi one obtains a covariant derivative according to the
transformation properties of qi under SU(2)L × U(1)Y

Dµ
1 = ∂µ − igW µ(xµ)− ig′y1B

µ(xµ) ,

Dµ
2 = ∂µ − ig′y2B

µ(xµ) ,

Dµ
3 = ∂µ − ig′y3B

µ(xµ) . (1.83)

With the transformations (1.78) and (1.82) of the gauge bosons W µ and Bµ

the covariant derivatives transform as the quark fields themselves and thus
maintain the local symmetry of (1.80), where D is replaced with Di , i =
1, 2, 3. The dynamical contribution of the gauge fields is contained in the
field strength tensors. For the abelian U(1)Y field Bµ it reads

Bµν = ∂µBν − ∂νBµ (1.84)

and is invariant under SU(2)L×U(1)Y transformations. For the non-abelian
gauge bosons

W µν = ∂µW ν − ∂νW µ − ig[W µ,W ν ], W µν =W µν
i ti (1.85)

is obtained, with W µν transforming as the adjoint representation

W µν SU(2)L × U(1)Y−−−−−−−−−→ ULW
µνU †

L . (1.86)

The weakly interacting quark Lagrangian can be written down as

Lint =

3
∑

i=1

iq̄iγµD
µ
i qi −

1

4
BµνB

µν − 1

4
WµνW

µν . (1.87)

In order to maintain gauge invariance the gauge bosons of Yang-Mills theo-
ries have to be massless. While this holds for the photon γ, the interaction
field of Quantum Electrodynamics, the weak interaction bosons actually are
massive. They carry a mass of mW± = 80.399 GeV and mZ0 = 91.188 GeV
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[6]16. The contradiction of the massive gauge bosons W±, Z0 was resolved
by spontaneous symmetry breaking, this time applied to a isospinor scalar
field ξ implemented by a φ4 interaction Lagrangian

Lξ = (∂µξ†)(∂µξ)− µ2ξ†ξ − λ

4
(ξ†ξ)2 . (1.88)

This so-called Higgs field carries weak isospin I = 1
2 and hypercharge Y = 1.

It transforms under the electroweak symmetry group like the left-handed
fermion fields,

ξ =

(

ξ+

ξ0

)

, (1.89)

ξ
SU(2)× U(1)−−−−−−−→ξ′ = ULUY ξ . (1.90)

Both fields, ξ+ and ξ0, are complex-valued

ξ+ =
1√
2
(ξ3 + iξ4) , (1.91)

ξ0 =
1√
2
(ξ1 + iξ2) . (1.92)

To render the symmetry of Lξ local, the partial derivative in (1.88) is again
replaced by a covariant derivative according to the one acting on the left-
handed doublet

Dµξ = ∂µξ − igW µξ − ig′Bµξ . (1.93)

Thus the weakly interacting Lagrangian for the Higgs field reads

L int
ξ = (Dµξ†)(Dµξ)− V (ξ) , (1.94)

with the potential defined as

V (ξ) = µ2ξ†ξ +
λ

4
(ξ†ξ)2 . (1.95)

In the Goldstone mode where µ2 < 0 the minima of the potential lie on a
circle with

〈0|ξ|0〉 =
√

−2µ2

λ
=

√
2ξ0 .

16Since usually the exchanged momenta in an interaction process are much smaller
than the W bosons masses, their propagator reduces to 1/M2

W and thus explains the short
range or “weakness” of the weak interaction. It was not obvious from the beginning that
it is only of short range and not weak in terms of its coupling strength which is actually
of the order of the electromagnetic coupling.
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Now the real part Re[ξ0] = ξ1 is chosen to take on the expectation value of
the ground state. Then, the minimum of V (ξ) is not degenerate anymore
and is defined to be

〈0|ξ1|0〉 =
√
2ξ0 ,

and 〈0|ξ2|0〉 = 〈0|ξ3|0〉 = 〈0|ξ4|0〉 = 0 . (1.96)

The local symmetry of L int
ξ enables different isospin transformations of ξ

at each point in space time, this freedom to choose a distinct orientation
for ξ in isospace has to be removed by a gauge-fixing procedure. In unitary
gauge where ξ is set to be in the t3 direction only, all fluctuations of the
ground state that would affect the fields ξ2, ξ3, and ξ4 vanish and thus ξ(xµ)
for each point in space-time is defined as

ξ(xµ) =

(

0

ξ0 +
ς(xµ)√

2

)

. (1.97)

The interaction of ξ with the electroweak bosons is then derived from the
covariant derivative (1.93) according to

Dµξ =

(

0
∂µς√

2

)

− i
g

2
W µ

(

0

ξ0 +
ς√
2

)

− i
g′

2
Bµ

(

0

ξ0 +
ς√
2

)

(1.98)

and

(Dµξ†)(Dµξ) =
1

2
(∂µς)2 +

g2ξ20
4

[(W µ
1 )

2 + (W µ
2 )

2] +
ξ20
4
(gW µ

3 − g′Bµ)2

+ products of higher order . (1.99)

The Higgs field kinetics are now described by the first term in (1.99). The
degrees of freedom ξ2 , ξ3 , and ξ4 in the definition (1.92) are now the massless
modes of the scalar field, while the vacuum expectation value of ξ gives rise
to self-interaction terms of the gauge fields. So to say, the three Goldstone
modes are eaten by the three SU(2)L gauge bosons so that they become
massive.

Now, the charged physical fields are identified as

W µ± =
W µ

1 ∓ iW µ
2√

2
(1.100)

and the physical neutral weak boson Z0 is associated with a linear combina-
tion of the gauge bosons of the SU(2)L × U(1)Y local symmetry. It mixes
the t0 and t3 components of the bare gauge fields (Weinberg mixing)

Zµ =
1

√

g′2 + g2
(gW µ

3 − g′Bµ) .
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The boson masses are then obtained as

mW± =
gξ√
2
, mZ0 =

√

g′2 + g2
ξ√
2
. (1.101)

The remaining degree of freedom is used to construct the massless photon
field orthogonal to Z0

Aµ =
1

√

g′2 + g2
(gW µ

3 + g′Bµ) . (1.102)

This is nothing else than a change of basis from the vector space that spans
the SU(2)L ×U(1)Y bare gauge fields W µ, Bµ into the basis of the physical
fields W±, Z0, Aµ. This mixing of the bare gauge fields is also described by
a rotation about an angle θW

(

Aµ

Zµ

)

=

(

cosθW sinθW
−sinθW cosθW

)(

Bµ

W µ
3

)

. (1.103)

The Weinberg angle θW is defined by the relations

g
√

g2 + g′2
= cosθW ,

g′

g
= tanθW (1.104)

and one obtains e = g′ sin θW = g cos θW . The Weinberg angle has been
experimentally determined by the ratio of the weak boson masses to be

sin2θW = 1− M2
W

M2
Z

= 0.222 . (1.105)

The Weinberg mixing has no influence on the charged currents. The flavour-
changing interactions between the charged bosons W± and the left-handed
quark doublets are thus given by

LW± = g(ūL, d̄L)γµ(W
µ
1 t

1 +W µ
2 t

2)

(

uL
dL

)

= g(ūL, d̄L)γµ





0
Wµ

1 −iWµ
2√

2
Wµ

1 +iWµ
2√

2
0





(

uL
dL

)

=
g√
2

(

ūγµ
1− γ5

2
W µ+d+ d̄γµ

1− γ5

2
W µ−u

)

.

(1.106)

The above Lagrangian will be exactly the same for the lepton fields as they
have been defined in (1.74). Figure 1.5 also gives an example for lepton
flavour- changing processes.
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W

u

d

g(1−γ5)

2
√
2
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νe

e

g(1−γ5)

2
√
2

Figure 1.5: Flavour-changing weak processes

The interactions with the neutral bosons have to be calculated from

LB,W3 = gq̄1γµW
µ
3 t

3q1 +
g′

2

3
∑

i=1

yiq̄iγµB
µqi . (1.107)

From there one can already see that interactions generated by the neutral
currents are between the fermions and antifermions of both chiralities. After
rotating the bare fields into their physical counterparts this becomes

LA,Z0 =

3
∑

i=1

eq̄iγµQiA
µqi +

e

2sinθW cosθW

3
∑

i=1

q̄iγµ(v − aγ5)Zµqi . (1.108)

The factor v − aγ5 describes the V -A structure of weak interaction. The
neutral-current couplings vf and af are, according to [17], found in Table
1.4.

The first term in (1.108) is the well-known QED interaction Lagrangian,
where Qi denotes the electromagnetic charge operators

Q1 =

(

2
3 0
0 −1

3

)

, Q2 =
2

3
, Q3 = −1

3
. (1.109)

The second term contains the interaction vertices between the neutral Z
boson and the left- and right-handed quarks.

e νe u d

2vf −1 + 4 sin2 θW 1 1− 8
3 sin

2 θW −1 + 4
3 sin

2 θW

2af −1 1 1 −1

Table 1.2: Neutral-current vector and axial-vector couplings

Now, the most important characteristics of weak interactions have been
presented. The next chapter will describe the Linear Sigma Model, followed
by an introduction of weak interactions according to the GWS model of
electroweak interactions.
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Chapter 2

Linear Sigma Model and

Electroweak Interaction

2.1 The Linear Sigma Model

Linear sigma models are effective quantum field theories, where the princi-
ples of the Standard Model are applied to the hadronic degrees of freedom.
In the energy region of ≈ 1 GeV quarks are still confined and their bound
states can be observed as the light mesonic resonances. The Linear Sigma
Model with U(Nf = 2)L × U(Nf = 2)R symmetry attempts to describe the
phenomenology of the scalar (σ, ~a0), pseudoscalar (η, ~π), vector (ω , ~ρ), and
axialvector resonances (f1, ~a1). They are parametrised by direct products
of the quark vectors in U(2)L × U(2)R fundamental representation for up
and down quarks. Then from Standard Model symmetry considerations a
Lagrangian

L = L (Φ, Lµ, Rµ)

is constructed.

Now, in this U(2)L×U(2)R Linear Sigma Model, Φ is defined as the external
product of the quark spinors in the fundamental representation

Φij ≃< qLq̄R >ij . (2.1)

In the above equation i and j denote the flavour indices i, j = 1, 2 and the
quark vectors are defined as

qL =

(

uL
dL

)

, qR =

(

uR
dR

)

. (2.2)
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Thus, for mass-degenerate up and down quarks, the matrix-valued field Φ
reads explicitly

Φij ≃
√
2q̄j,R qi,L, i, j = 1, 2 . (2.3)

Since Φ is an object in the product space of the U(2)L and U(2)R irreducible
representations, the left-hand side and right-hand side in (2.3) are not the
same. However, the matrix-valued field Φ and the external product of the
flavour vectors obey the same transformation law under chiral transforma-
tions. The same holds for the left- and right-handed fields that are discussed
below.

The [2̄⊗2] irreducible representations of U(2)L×U(2)R are given by one left-
handed and one right-handed doublet, hence the field Φ transforms under
U(2)L × U(2)R as

Φ → Φ′ = ULΦU
†
R . (2.4)

The transformation is generated by the unitary matrices

UL = e−iθaLta , UR = e−iθaRta (2.5)

with ta being the U(2) generators.

Using the left-handed chiral projector PL, defined in Equation (1.27), Φij

can be decomposed into its scalar and pseudoscalar contributions according
to

Φij ≃
√
2q̄j,R qi,L =

√
2q̄jP

2
Lqi =

√
2q̄jPLqi

=
1√
2
q̄j(1− γ5)qi =

1√
2
(q̄jqi − q̄jγ

5qi) , i, j = u, d . (2.6)

For left- and right-handed fields Lµ and Rµ the analogue procedure, this
time applied to direct products of the fundamental and “anti”-fundamental
representations of U(2)L and U(2)R respectively, yields the definition for
vector and axial-vector fields

Lµ
ij ≃

√
2q̄j,Lγ

µqi,L =
1√
2
(q̄jγ

µqi + q̄jγ
µγ5qi) , (2.7)

Rµ
ij ≃

√
2q̄j,Rγ

µqi,R =
1√
2
(q̄jγ

µqi − q̄jγ
µγ5qi) . (2.8)

They transform separately under the adjoint representations of U(2)L and
U(2)R as

Lµ −→ULL
µU †

L , Rµ −→ URR
µU †

R . (2.9)
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Now, according to the strong isospin eigenvalues I3 of their constituents the
fields are embedded into the algebra of strong isospin by means of the U(2)V
generators

t0=
1

2

(

1 0
0 1

)

, t1=
1

2

(

0 1
1 0

)

, t2=
1

2

(

0 −i
i 0

)

, t3=
1

2

(

1 0
0 −1

)

(2.10)

and

Φ = Φat
a, Lµ = Lµ

at
a, Rµ = Rµ

at
a . (2.11)

The generator t0 corresponds to U(1) and ti (i = 1, 2, 3) correspond to the
subgroup SU(2) with commutation relations

[ti ,tj] = iεijktk .

The SU(2) structure constants are given by

εijk =







1, for even permutations of 123
−1, for odd permutations of 123
0, otherwise .

Finally, the scalar, σa, and pseudoscalar degrees of freedom, πa, are repre-
sented in Φ by

Φ = (σ + iη)t0 + (~a0 + i~π) · ~t = (σa + iπa) ta . (2.12)

Vector, V µ, and axial-vector mesons, Aµ, are introduced by left-handed and
right-handed fields

Lµ = (V µ
a +Aµ

a) ta = (ωµ + fµ1 )t0 + (~ρµ + ~aµ1 ) · ~t ,
Rµ = (V µ

a −Aµ
a) ta = (ωµ − fµ1 )t0 + (~ρµ − ~aµ1 ) · ~t . (2.13)

Again, the index a = 0, 1, 2, 3 denotes the generators of U(2), while the index
i = 1, 2, 3 denotes the SU(2) generators.

Having thus attributed the light mesonic states to their representation in Φ,
Lµ, and Rµ, the Lagrangian of the model can be constructed. It is based on
a free Klein-Gordon Lagrangian for scalar and pseudoscalar fields with a Φ4

potential

L0=Tr[(∂µΦ†)(∂µΦ)]−m2
0Tr[Φ

†Φ]−λ1Tr[(Φ†Φ)2]−λ2
(

Tr[Φ†Φ]
)2
. (2.14)

The Lagrangian L0 is invariant under global U(2)L×U(2)R transformations
(2.4) of Φ.
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The parameters of a global transformation are space-time independent and
together with the invariance of the trace under cyclic permutations of its
arguments the invariance of the derivative term in L0 can be seen from

Tr[(∂µΦ′ †)(∂µΦ′)] = Tr[(∂µURΦU
†
L)(∂

µULΦU
†
R)]

= Tr[UR(∂
µΦ)U †

LUL(∂
µΦ)U †

R)] = Tr[(∂µΦ†)(∂µΦ)] .

The same holds for all other terms in L0 as they contain only products of
Φ with its hermitian conjugate Φ†.

When vector and axial-vector fields were, in a variety of ways [18, 19, 20],
introduced into the Linear Sigma Model they where first treated as massive
Yang-Mills fields of a local chiral symmetry. They transform as the adjoint
representation of the chiral group and they are spin 1 fields. Thus, it seems
obvious to construct a chirally invariant Lagrangian based on the assumption
that the left- and right-handed fields are the gauge bosons of a local U(2)L×
U(2)R symmetry. Consequently, the global U(2)L × U(2)R symmetry was
set to a local one as it has been done by [18, 19, 20] for an O(4) model and
by [21] for the U(2) model. However, there is no local chiral symmetry in
the QCD Lagrangian and the present Linear Sigma Model is also based on a
global chiral symmetry. But, the local model is still the basis on which the
chirally invariant terms for vector and axial-vector mesons were constructed
and the restraint of a local symmetry was lifted only later.

At first, the partial derivative in (2.14) is replaced by a covariant one and
generates the dynamics between scalar and vector mesons

DµΦ = ∂µΦ − ig1 (L
µΦ−ΦRµ) ,

(DµΦ)† = ∂µΦ† + ig1

(

RµΦ† − Φ†Lµ
)

(2.15)

and (2.14) becomes

LΦ = Tr[(DµΦ†)(DµΦ)]−m2
0Tr

[

Φ†Φ
]

− λ1Tr
[

(Φ†Φ)2
]

− λ2
(

Tr
[

Φ†Φ
]

)2
.

(2.16)

The Lagrangian is invariant under local transformations if the left-handed
and right-handed fields transform as

Lµ −→ULL
µU †

L +
i

g1
UL∂

µU †
L, (2.17)

Rµ −→URR
µU †

R +
i

g1
UR∂

µU †
R . (2.18)

In the global model, the second term in (2.18) becomes zero and the trans-
formation laws in Equation (2.9) are obtained.
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While maintaining gauge invariance by constructing a covariant derivative
on the basis of a local chiral symmetry is effortless, introducing a mass term
for the vector and axial-vector fields already breaks chiral gauge invariance.
One could also think about introducing a scalar field, similar to the Higgs
mechanism for the electroweak interactions, but the main advantage of a
local chiral symmetry would be that the gauge field couplings could all be
described by the same coupling constant g1 in (2.15).

However, most important is that the models based on a local chiral symmetry
cannot describe the phenomenology of vector and axial-vector mesons [20].
Thus, one reduces chiral symmetry to a global one and can then simply add
a mass term according to

m2
1

2
Tr
[

(Lµ)2 + (Rµ)2
]

. (2.19)

The invariance of the partial derivative term under global chiral transforma-
tions can be seen from

DµΦ −→ (DµΦ) ′ = UL(∂
µΦ)U †

R − ig1

(

ULL
µU †

LULΦU
†
R − ULΦU

†
RURR

µU †
R

)

= UL(∂
µΦ)U †

R − ig1

(

ULL
µΦU †

R − ULΦR
µU †

R

)

= ULD
µΦU †

R (2.20)

and for the mass term from

m1

2
Tr(L′

µ L
µ ′ +R′

µ R
µ ′)

=
m1

2
Tr[ULLµU

†
LULL

µU †
L + URRµU

†
RURR

µU †
R]

=
m1

2
Tr[LµL

µ +RµR
µ] . (2.21)

Again, only the invariance of the trace under cyclic permutations was used.

The dynamics of the Yang-Mills bosons is encoded in the field strength
tensors for left- and right-handed fields

Lµν = ∂µLν − ∂νLµ , Rµν = ∂µRν − ∂νRµ . (2.22)

They transform covariantly under U(Nf )L and U(Nf )R

Lµν −→ ULL
µνU †

L, Rµν −→ URR
µνU †

R . (2.23)

They are generally obtained from the commutator of the covariant deriva-
tive and thus should also contain non-Abelian contributions from the left-
and right-handed fields. With a local chiral symmetry, these non-Abelian
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contributions would then be proportional to the coupling constant g1. Since
this model is only invariant under global transformations, one can define
new additional couplings for each contribution that would arise from the
commutator in the field strength tensors. Thus, Lµν and Rµν have been
redefined and contain the derivative terms only.

The non-Abelian contributions to the field strength tensors appear together
with other chirally invariant higher-order interaction vertices with couplings
g2, g3, g4, g5 and g6 in L3 and L4

L3 =−2ig2
(

Tr
[

Lµν [Lµ, Lν ]
]

+Tr
[

Rµν , [Rµ, Rν ]
])

, (2.24)

L4 = g3{Tr[LµLνLµLν ] + Tr[RµRνRµRν ]}
+ g4{Tr[LµLµL

νLν ] + Tr[RµRµR
νRν ]}

+ g5Tr[R
µRν ]Tr[L

µLν ]

+ g6{Tr[Lµ, L
µ]Tr[Lν , L

ν ] + Tr[Rµ, R
µ]Tr[Rν , R

ν ]} . (2.25)

Because the field strength tensors are obtained as the commutators of the
covariant derivatives, they inevitably transform covariantly by definition.
Thus, the Lagrangian for Lµ and Rµ finally reads

LLR =
1

4
Tr
[

(Lµν)2 + (Rµν)2
]

+
m1

2
Tr
[

(Lµ)2 + (Rµ)2
]

+ L3 + L4 .

(2.26)

Additional chirally invariant terms between the scalar, pseudoscalar and
vector and axial-vector fields are added as

L5 =
h1
2
Tr(Φ†Φ)Tr[LµL

µ +RµR
µ] + h2Tr[Φ

†LµL
µΦ+ Φ†RµR

µΦ]

+ 2h3Tr[ΦRµΦ
†Lµ] . (2.27)

They generate other possible interactions and will also modify the equations
for the physical vector and axial-vector masses.

2.1.1 Spontaneous Symmetry Breaking, Field Renormalisa-

tion, and Mass Terms

In Chapter 1.3 the chiral symmetry of the QCD Lagrangian has been dis-
cussed. It was shown that chiral symmetry is broken explicitly by the quark
masses and spontaneously by the non-vanishing vacuum expectation value of
the chiral condensate. Moreover, even for vanishing quark masses the global
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axial symmetry is broken by the U(1)A anomaly. For massive but degenerate
quarks the symmetry under axial transformations is completely violated and
for non-degenerate massive quarks SU(2)V is broken, too, leaving U(1)V as
the only unbroken symmetry.

To emulate this pattern of explicit chiral symmetry breaking two additional
terms are introduced into the model

LeSB + LA = Tr
[

H(Φ† +Φ)
]

+ c(detΦ + detΦ†) . (2.28)

The first term

LeSB = Tr
[

H(Φ† +Φ)
]

(2.29)

emulates the explicit breaking of the SU(2) vector symmetry corresponding
to the different possibilities of quark-mass degeneracy. The matrix H is
diagonal in flavour space and defined as

H = hat
a , (2.30)

where the elements ha correspond to the quark masses and ta to the U(2) gen-
erators. The explicit symmetry breaking term affects the vacuum by tilting
the ground state towards the direction of the respective generators. Because
the chiral condensate must carry the quantum numbers of the vacuum, only
the generators that correspond to the non-charged particles (t0 and t3 for
Nf = 2) are used to simulate the explicit breaking of chiral symmetries and
the matrix H is defined to be diagonal (h1 = h2 = 0), in order not to violate
the symmetry under charge conjugation by off-diagonal terms.

Vanishing quark masses correspond to an unbroken chiral symmetry, thus all
coefficients ha would be set to zero and the U(2)V as well as the symmetry
under axial transformations remains unharmed. For h0 6= 0 and all other
h1,2,3 = 0 the explicit symmetry breaking term represents the case of non-
vanishing but degenerate quark masses where SU(2)V is still intact. For
non-vanishing and non-degenerate quark masses one would also set h3 6= 0
to break SU(2)V explicitly.

The present Linear Sigma Model is based on the assumption of massive
but mass-degenerate up and down quarks. On the hadronic mass scale, the
mass difference between up and down quark is small enough to be neglected.
Hence, mu = md and therefore h0 6= 0 and h3 = 0. This also corresponds to
the fact that after the symmetry has been spontaneously broken, only the
sigma field has a vacuum expectation value. Thus, the ground state is tilted
towards the t0 direction. More information about how explicit symmetry
breaking of QCD in nature is realised in Linear Sigma Models with different
numbers of quark flavours is, e.g., found in [22].
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The second term in (2.28)

LA = c(detΦ + detΦ†)

corresponds the the U(1)A anomaly and breaks the symmetry explicitly to
U(2)V ×SU(2)A. According to the transformation of Φ as given in (2.4) the
term yielding the U(1)A anomaly becomes

LA → c[detΦ′ + det Φ′ †] = c
[

det(ULΦU
†
R) + det(URΦ

†U †
L)
]

= c
[

det
(

e−iθaLtaΦeiθ
a
Rta
)

+ det
(

e−iθaRtaΦ†eiθ
a
Lta
)]

= c
[

det
(

e−i 12 (θ
a
V ta+θaAta)Φei

1
2 (θ

a
V ta−θaAta)

)

+ det
(

e−i 12 (θ
a
V ta−θaAta)Φ†ei

1
2 (θ

a
V ta+θaAta)

)]

= c
[

det
(

e−iθaAtaΦ
)

+ det
(

eiθ
a
AtaΦ†

)]

= c
[

det
(

e−iθ0At0−iθiAtiΦ
)

+ det
(

eiθ
0
At0+iθiAtiΦ†

)]

= c
[

det
(

e−iθiAti
)

det
(

e−iθ0At0Φ
)

+ det
(

eiθ
i
Ati
)

det
(

eiθ
0
At0)Φ†

)]

= c
[

exp (Tr[−iθiAti]) det
(

e−iθ0At0Φ
)

+ exp (Tr[iθiAti]) det
(

eiθ
0
At0)Φ†

)]

= L ′
A 6= LA , (2.31)

hence, because the SU(2) generators ti, i 6= 0, are traceless matrices, LA

transforms into

L ′
A = c

[

det
(

e−iθ0At0Φ
)

+ det
(

eiθ
0
At0Φ†

)]

(2.32)

and thus breaks, as it has been shown above, the axial symmetry U(1)A.

Finally, the full Lagrange density for the global U(2)L×U(2)R Linear Sigma
Model with scalar, pseudoscalar, vector, and axial-vector degrees of freedom
is

L = LΦ + LLR + LeSB + LA + L3 + L4 + L5

= Tr[(DµΦ†)(DµΦ)]−m2
0Tr

[

Φ†Φ
]

− λ1Tr
[

(Φ†Φ)2
]

− λ2
(

Tr
[

Φ†Φ
]

)2

− 1

4
Tr
[

(Lµν)2 − (Rµν)2
]

+
m1

2
Tr
[

(Lµ)2 + (Rµ)2
]

+Tr
[

H(Φ† +Φ)
]

+ c(detΦ + detΦ†) + L3 + L4 + L5 . (2.33)
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In terms of its mesonic components the Lagrangian without the higher-order
terms L3,4,5 reads

L =
1

2
[∂µσ + g1(ηf

µ
1 + ~π · ~aµ1 )]2 +

1

2
[∂µη − g1(σf

µ
1 + ~a0 · ~aµ1 )]2

+
1

2
[∂µ~a0 + g1(~ρ

µ × ~a0 + η~aµ1 + ~πfµ1 )]
2

+
1

2
[∂µ~π − g1(~π × ~ρµ + σ~aµ1 + ~a0f

µ
1 )]

2

−m2
0

2
(σ2 + η2 + ~a20 + ~π2)− λ1

4
(σ2 + η2 + ~a20 + ~π2)2

−λ2
2

[

1

4

(

σ2 + η2 + ~a20 + ~π2
)2

+ (σ~a0 + η~π)2 + (~a0 × ~π)2
]

− 1

4
(∂µων − ∂νωµ)2 − 1

4
(∂µf ν1 − ∂νfµ1 )

2

− 1

4
[∂µ~ρν − ∂ν~ρµ + g1(~ρ

µ × ~ρν + ~aµ1 × ~aν1)]
2

− 1

4
[∂µ~aν1 − ∂ν~aµ1 + g1(~ρ

µ × ~aν1 + ~aµ1 × ~ρν)]
2

+
m2

1

2
(ωµ 2 + ~ρµ 2 + fµ 2

1 + ~aµ 2
1 ) +

1

2
c(σ2 − ~a20 − η2 + ~π2) + h0σ .

(2.34)

The Lagrangian L5 also contains vector and axial-vector self-interactions
and thus affects the equations describing their physical masses. In terms of
its mesonic fields one obtains

L5 =
h1
2
Tr[Φ†Φ]Tr[LµL

µ +RµR
µ] + h2Tr[Φ

†LµL
µΦ+ Φ†RµR

µΦ]

+ 2h3Tr[ΦRµΦ
†Lµ]

=
h1
4

(

σ2 + η2 + ~a20 + ~π2
) (

f21µ + ω2
µ + ~a 2

1µ + ~ρ 2
µ

)

+
h2
4

[

(

σ2 + η2 + ~a20 + ~π2
) (

f21µ + ω2
µ + ~a 2

1µ + ~ρ 2
µ

)

+ 4 (f1µ~a1µ + ωµ ~ρµ) · (η ~π + σ~a0 + (~a0 × ~π))
]

+
1

4
h3

{

2
[

(~a1µ × ~π)2 − (~a1µ · ~π)2 − (~ρµ × ~π)2 + (~ρµ · ~π)2

+ (~a1µ × ~a0)
2 − (~a1µ · ~a0)2 − (~ρµ × ~a0)

2 + (~ρµ · ~a0)2
]

− (f21µ − ω2
µ)(η

2 + σ2 + ~a20 + ~π2)− (η2 + σ2)(~a21µ − ρ2µ)

− 4f1µ[σ~a1µ · ~a0 + η~a1µ · ~π − ~ρµ · (~π × ~a0)]

+ 4ωµ[σ~ρµ · ~a0 + η~ρµ · ~π − ~a1µ · (~π × ~a0)]
}
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The analysis of the mass spectra of the scalar resonances σ and π indicates
(Section 1.3) that chiral symmetry is dynamically broken by a non-vanishing
vacuum expectation value of the ground state.

In the hadronic sector of QCD spontaneous breaking of chiral symmetry is
realised by shifting the σ field by its non-vanishing constant vacuum expec-
tation value 〈0|q̄RqL|0〉 ≃ φ0 such that the excitations of the field Φ around
its ground state can be studied. Since the σ resonance is the only scalar reso-
nance that is equipped with the quantum numbers of the vacuum (JP = 0+)
it is considered to take on the role of the chiral condensate. The potential
for σ can be read off from the Lagrangian (2.34) as

V (σ) =
1

2
(m2

0 − c)σ2 +
1

4

(

λ1 +
λ1
2

)

σ4 − h0σ . (2.35)

The effect of the explicit symmetry breaking term LeSB is clearly seen in
the potential above. By means of −h0σ the ground state is tilted towards
the positive σ direction and the vacuum loses its symmetry under axial
rotations.

Setting m2
0 − c < 0 results, before explicit symmetry breaking (h0 = 0), in

an infinite number of degenerate ground states along a circle in the plane of
the chiral partners at1 σ = φ0. The vacuum expectation value φ0 is defined
as the value that minimises the potential

dV (σ)

dσ

∣

∣

∣

∣

σ=φ0

= 0 ,

⇒ (m2
0 − c)φ0 +

(

λ1 +
λ2
2

)

φ30 − h0 = 0 . (2.36)

At this point (h0 = 0) the vacuum is still invariant under rotations in the
plane of the chiral partners. The symmetry is spontaneously broken if sigma
is shifted about its vacuum expectation value

σ(xµ) −→ σ(xµ) + φ0 . (2.37)

Applying (2.37) to the Lagrange density results in the following additional
terms for LΦ

1

2

[

−2g1φ0∂
µηfµ1 + g21φ

2
0f

µ 2
1 + 2φ0g

2
1(σf

µ 2
1 + fµ1 ~a0 · ~a

µ
1 )
]

1An explicit expression for φ0, dependent on the bare parameters m0, λ1, λ2, c, h0,
can be obtained by Cardano’s method and has been explicitly calculated in [23]. In the
following discussion φ0 is simply taken as a constant. It will be expressed in terms of the
physical, observable masses for ρ and a1 and the pion decay constant fπ .
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+
1

2

[

−2g1φ0∂
µ~π · ~aµ1 + g21φ

2
0~a

µ 2
1 + 2φ0g

2
1(σ~a

µ 2
1 + fµ1 ~a0 · ~a

µ
1 + (~π × ~ρµ) · ~aµ1 )

]

−m2
0

2
(φ20 + 2φ0σ)

−λ1
4

[

φ40 + 4φ30σ + 6φ20σ
2 + 4φ0σ

3 + 2φ20η
2 + 4φ0ση

2 + 2φ20~a
2
0

+4φ0σ~a
2
0 + 2φ20~π

2 + 4φ0σ~π
2
]

−λ2
2

[

1

4

(

φ40 + 4φ30σ + 6φ20σ
2 + 4φ0σ

3 + 2φ20η
2 + 4φ0ση

2 + 2φ20~a
2
0

+4φ0σ~a
2
0 + 2φ20~π

2 + 4φ0σ~π
2
)

+ (φ20~a
2
0 + 2φ0σ~a

2
0 + 2φ0η~a0 · ~π)

]

+ h0φ0 +
1

2
c(φ20 + 2φ0σ) . (2.38)

For L5 one obtains the following additional terms

h1
2
φ0σ(f

2
1µ + ω2

µ + ~a21µ + ~ρ 2
1µ) +

h1
4
φ20(f

2
1µ + ω2

µ + ~a21µ + ~ρ 2
1µ)

+
h2
2
φ0σ(f

2
1µ + ω2

µ + ~a21µ + ~ρ 2
1µ) +

h2
4
φ20(f

2
1µ + ω2

µ + ~a21µ + ~ρ 2
1µ)

+ h2φ0(f1µ~a0 · ~a1µ + ωµ~a0 · ~ρ)

+
h3
2
φ0σ(−f21µ + ω2

µ − ~a21µ + ~ρ 2
1µ) +

h3
4
φ20(−f21µ + ω2

µ − ~a21µ + ~ρ 2
1µ)

+h3φ0
[

ωµ~a0 · ~ρ− f1µ~a0 · ~a1µ + ~π · (~a1µ × ~ρ)
]

. (2.39)

The blue terms, being proportional to the field self-interactions, give addi-
tional contributions to the quadratic scalar, pseudoscalar, vector, and axial-
vector meson terms

3

2

(

λ1 +
λ2
2

)

φ20σ
2 ,

1

2

(

λ1 +
λ2
2

)

φ20~π
2 ,

1

2

(

λ1 +
λ2
2

)

φ20η
2 ,

1

2

(

λ1 +
3λ2
2

)

φ20~a
2
0 ,

[

g21 +
1

2
(h1 + h2 − h3)

]

φ20f
µ 2
1 ,

[

g21 +
1

2
(h1 + h2 − h3)

]

φ20~a
µ 2
1 .

Together with the symmetry breaking terms arising from the U(1)A anomaly

c(detΦ + detΦ†) =
1

2
c(σ2 + ~π2 − η2 − ~a20) ,

the meson masses are obtained as

m2
σ = m2

0 + 3

(

λ1 +
λ2
2

)

φ20 − c , (2.40)

m2
a0 = m2

0 +

(

λ1 + 3
λ2
2

)

φ20 + c , (2.41)
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m2
η = Z2

[

m2
0 +

(

λ1 +
λ2
2

)

φ20 + c

]

, (2.42)

m2
π = Z2

[

m2
0 +

(

λ1 +
λ2
2

)

φ20 − c

]

=
h0
φ0

, (2.43)

m2
ω = m2

ρ = m2
1 +

φ20
2
(h1 + h2 + h3) , (2.44)

m2
f1 = m2

a1 = m2
1 + (g1φ0)

2 +
φ20
2
(h1 + h2 − h3). (2.45)

The constants h1, h2, h3 arise from L5 and not from the explicit symmetry
breaking term LeSB, where apart from h0 all other ha = 0. As it will be
shown later, the factor Z2 in the mass terms of the pseudoscalar states is due
to a wave-function renormalisation that will take place in the course of the
procedure that removes the unphysical, bilinears marked in red in (2.38).
Without spontaneous symmetry breaking Z would be equal to one. The
above equations clearly show that spontaneous symmetry breaking prompts
the mass difference between the chiral partners σ, π and η, ~a0. The mass
degeneracy between the vector and axial-vector chiral partners is lifted by
a commensurate shift of the axial-vector mass terms.

Shifting σ about its constant vacuum expectation value has broken the
SU(2)A symmetry spontaneously and gave rise to N2

f − 1 = 3 Goldstone
bosons, the pions. The scalar σ took on the role of the Higgs field in the
electroweak Lagrangian. Its vacuum expectation value φ0 couples to the
scalar and pseudoscalar singlets and gives rise to additional mass terms
which, even without explicit chiral symmetry breaking (h0 = 0), realize the
mass difference between the chiral partners σ0 and π, as well as between ρ
and a1. In nature the pions are indeed massive (h0 > 0), but from PCAC
one can also conclude that the explicit breaking of the axial symmetry is
only small. The pions are thus considered to be the quasi-Goldstone bosons
of the spontaneously broken axial symmetry.

The bilinear terms marked in red in (2.38)

2g1φ0∂
µηfµ1 , 2g1φ0∂

µ~π · ~aµ1

appear as off-diagonal couplings of the pseudoscalar and axial-vector fields
and then the bare fields in the Lagrangian would not be the eigenvectors of
the interaction Hamiltonian, but mixed ~π~a1µ and ηf1µ states.

Now, if chiral symmetry was local, these bilinear contributions could be
removed by a ’t Hooft gauge-fixing term [21] according to

LGF =− 1

2ξ
(∂µω

µ)2 − 1

2ξ
(∂µf

µ
1 + ξg1φ0η)

2
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− 1

2ξ
(∂µ~ρ

µ)2 − 1

2ξ
(∂µ~a

µ
1 − ξg1φ0~π)

2 . (2.46)

If now as for the GWS model the vacuum is set to the t3 component only
and ξ → ∞ (unitary gauge), then LGF would reduce to

−g1φ0∂µfµ1 η −
1

2
ξg21φ

2
0η

2 − g1φ0∂µ~a
µ
1 · ~π − 1

2
ξg21φ

2
0~π

2

and cancel the bilinear terms in (2.38). Using the ’t Hooft gauge fixing
would be desirable as it maintains renormalisability. However, chiral sym-
metry is only global and applying the ’t Hooft gauge fixing does not remove
the unphysical mixing terms moreover, effective theories do not have to be
renormalisable and gauge symmetry is already broken by the vector and
axial-vector masses.

Another possibility is to redefine the axial-vector fields, f1µ and ~a1µ, and
consider the bare fields as mixed states of their physical composites. The
axial-vector bare fields are then replaced by

Aµ
a −→ Aµ

a + w∂µπa . (2.47)

It should be remembered that πat
a = ηt0 + ~π · ~t. In order to remove the

bilinear terms in (2.38), w is defined as

w =
g1φ0
m2

a1

. (2.48)

Now, in order to examine the procedure of removing the unphysical bilinear
terms, only

LΦ + LYM + Lφ0 (2.49)

will be considered, where LΦ is the scalar Lagrangian with the contributions
from SSB being separated into Lφ0 and LYM that are affected by the shift
of the axial-vector fields.

After the shift of the axial-vector fields, the scalar Lagrangian without the
contributions from spontaneous symmetry breaking reads

LΦ =
1

2

{

(∂µσ)2 + 2g1(∂
µσ)
[

η(fµ1 + w∂µη) + ~π · (~aµ1 + w∂µ~π)
]

+g21[η(f
µ
1 + w∂µη) + ~π · (~aµ1 +w∂µ~π)]2

}

+
1

2

{

(∂µη)2 − 2g1(∂
µη)[σ(fµ1 + w∂µη) + ~a0 · (~aµ1 + w∂µ~π)]

+g21[σ(f
µ
1 + w∂µη) + ~a0 · (~aµ1 + w∂µ~π)]2

}

+
1

2

{

(∂µ~a0)
2 + 2g1(∂

µ~a0) · [~ρµ × ~a0 + η(~aµ1 + w∂µ~π) + ~π(fµ1 + w∂µη)]
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+g21 [~ρ
µ × ~a0 + η(~aµ1 + w∂µ~π) + ~π(fµ1 + w∂µη)]2

}

+
1

2

{

(∂µ~π)
2 − 2g1(∂µ~π) · [~π × ~ρµ + σ(~aµ1 + w∂µ~π) + ~a0(f

µ
1 + w∂µη)]

+g21 [~π × ~ρµ + σ(~aµ1 + w∂µ~π) + ~a0(f
µ
1 + w∂µη)]2

}

−m2
0

2
(σ2 + η2 + ~a20 + ~π2)− λ1

4
(σ2 + η2 + ~a20 + ~π2)2

−λ2
2

[

1

4

(

σ2 + η2 + ~a20 + ~π2
)2

+ (σ~a0 + η~π)2 + (~a0 × ~π)2
]

+
1

2
c (σ2 − ~a20 − η2 + ~π2) + h0σ. (2.50)

For the Lagrangian of the vector and axial-vector fields one obtains

LYM = −1

4
(∂µων − ∂νωµ)2 − 1

4
[∂µ(f ν1 + w∂νη)− ∂ν(fµ1 + w∂µη)]

2

− 1

4

[

(∂µ~ρν − ∂ν~ρµ)2 + 2g1(∂
µ~ρν − ∂ν~ρµ) ·

(~ρµ × ~ρν + ~aµ1 × ~aν1 + w∂µ~π × w∂ν~π)

+g21(~ρ
µ × ~ρν + ~aµ1 × ~aν1 + w∂µ~π × w∂ν~π)2

]

− 1

4
{ [∂µ(~aν1 + w∂ν~π)− ∂ν(~aµ1 + w∂µ~π)]2

+2g1 [∂
µ(~aν1 + w∂ν~π)− ∂ν(~aµ1 +w∂µ~π)] ·

[~ρµ × ~aν1 + ~ρµ × w∂ν~π + ~aµ1 × ~ρν + w∂µ~π × ~ρν ]

+g21 [~ρ
µ × ~aν1 + ~ρµ × w∂ν~π + ~aµ1 × ~ρν + w∂µ~π × ~ρν ]2

}

+
m2

1

2

[

ωµ 2 + ~ρµ 2 + (fµ1 )
2 + 2wfµ1 ∂

µη + w2(∂µη)2 + (~aµ1 )
2

+2w~aµ1 · ∂µ~π + w2(∂µ~π)2
]

. (2.51)

After redefining the axial vectors the additional terms in LΦ that arise from
SSB and contain the unwanted bilinear terms are

Lφ0 =
1

2

{

−2g1φ0∂
µηfµ1 + 2g21φ

2
0wf

µ
1 ∂

µη + 2g1φ0w(∂
µη)2 + g21φ

2
0f

µ 2
1

+g21φ
2
0w

2(∂µη)2 + 2φ0g
2
1 [σ(f

µ
1 + w∂µη)2

+(fµ1 + w∂µη)~a0 · (~aµ1 + w∂µ~π)]
}

+
1

2

{

−2g1φ0∂
µ~π · ~aµ1 + 2g21φ

2
0w~a

µ
1 · ∂µ~π + 2g1φ0w(∂

µ~π)2 + g21φ
2
0~a

µ 2
1

+g21φ
2
0w

2(∂µ~π)2 + 2φ0g
2
1 [σ(~a

µ
1 + w∂µ~π)2

+(fµ1 + w∂µη)~a0 · (~aµ1 + w∂µ~π) + (~π × ~ρµ) · (~aµ1 + w∂µ~π)2]
}

+ . . . (2.52)

where the ellipsis hides the terms that are unaffected by the redefinition.
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Together with the shifted axial-vector fields the terms in L5 that are also
affected by the spontaneous symmetry breaking read

h1
2
φ0σ

[

(f1µ + w∂µη)
2 + ω2

µ + (~a1µ + w∂µ~π)
2 + ~ρ 2

1µ

]

+
h1
4
φ20
[

f21µ + 2wf1µ∂µη + w2(∂µη)
2 + ω2

µ

+~a 2
1µ + 2w~a1µ · ∂µ~π + w2(∂µ~π)

2 + ~ρ 2
1µ

]

+
h2
2
φ0σ[(f1µ + w∂µη)

2 + ω2
µ + (~a1µ + w∂µ~π)

2 + ~ρ 2
1µ]

+
h2
4
φ20
[

f21µ + 2wf1µ∂µη + w2(∂µη)
2 + ω2

µ

+~a 2
1µ + 2w~a1µ · ∂µ~π + w2(∂µ~π)

2 + ~ρ 2
1µ

]

+ h2φ0[(f1µ + w∂µη)~a0 · (~a1µ + w∂µ~π) + ωµ~a0 · ~ρ]

+
h3
2
φ0σ[−(f1µ + w∂µη)

2 + ω2
µ − (~a1µ + w∂µ~π)

2 + ~ρ 2
1µ]

+
h3
4
φ20
[

− f21µ − 2wf1µ∂µη − w2(∂µη)
2 + ω2

µ

− ~a 2
1µ − 2w~a1µ · ∂µ~π − w2(∂µ~π)

2 + ~ρ 2
1µ

]

+h3φ0
{

ωµ~a0 · ~ρ− (f1µ + w∂µη)~a0 · (~a1µ + w∂µ~π) + ~π · [(~a1µ + w∂µ~π)× ~ρ ]
}

.
(2.53)

Adding together the red terms in (2.51), (2.52), and (2.53) yields

[−g1φ0 + g21φ
2
0w +m2

1w +
1

2
φ20w(h1 + h2 − h3)]f

µ
1 w∂

µη , (2.54)

[−g1φ0 + g21φ
2
0w +m2

1w +
1

2
φ20w(h1 + h2 − h3)]~a

µ
1 · w∂µ~π . (2.55)

With w as defined in (2.48) and m2
a1 = m2

1 + g21φ
2
0 +

1
2φ

2
0(h1 + h2 − h3) the

prefactors of the bilinear terms cancel each other

− g1φ0 + g21φ
2
0w +m2

1w +
1

2
φ20w(h1 + h2 − h3)

=
−2g1φ0m

2
a1 + 2g21φ

2
0g1φ0 + 2m2

1g1φ0 + φ20g1φ0(h1 + h2 − h3)

2m2
a1

=
g1φ0

[

(−m2
a1 + g21φ

2
0 +m2

1 +
1
2φ

2
0(h1 + h2 − h3)

]

m2
a1

= 0 . (2.56)

Now, the kinetic terms of η and π obtained additional prefactors. They are
seen in the blue-marked terms in (2.51), (2.52), and (2.53) that, after being
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added to the kinetic term in (2.50), reduce to

1

2
− g1φ0w +

1

2
g21φ

2
0w

2 +
1

2
m2

1w
2 +

1

2
φ20w

2(h1 + h2 − h3)

=
1

2

m2
a1 − (g1φ0)

2

m2
a1

. (2.57)

In order to obtain the canonically normalised kinetic terms, the pseudoscalar
fields must additionally be renormalised by a constant Z

η −→ Zη, ~π −→ Z~π , (2.58)

where Z2 is defined as

Z2 =
g1φ0
m2

1w
=
m2

1 + (g1φ0)
2

m2
1

. (2.59)

Thus, the “unsolicited” prefactor is absorbed by a renormalisation of the
pseudoscalars fields.

This is the renormalisation Z that was mentioned in the equations of the
pseudoscalar masses in (2.42) and (2.43).

To determine φ0 the relations for the vacuum expectation value (2.36) and
the pion mass (2.43) are recalled

[

m2
0 +

(

λ1 +
λ2
2

)

φ2
0 − c

]

Z 2 = m2
π ,

[

m2
0 +

(

λ1 +
λ2
2

)

φ20 − c

]

φ0 − h0 = 0 .

From here the parameter h0 that generates the explicit breaking of chiral
symmetry is calculated to be

h0 =
m2

πφ0
Z2

. (2.60)

The assumption that the pions are the quasi-Goldstone bosons of an approx-
imately conserved chiral symmetry as it is expressed in the PCAC relation
∂µA

µ
i = m2

πfππi yields
φ0
Z
m2

ππi = m2
πfππi ,

such that finally φ0 can be expressed as

φ0 = Zfπ =

√

m2
1 + (g1φ0)2

m2
1

fπ . (2.61)

The chiral condensate is thus determined to be proportional to the pion
vacuum decay constant fπ and the pion renormalisation constant Z.
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2.2 SU(2)L × U(1)Y and Weak Interaction

In Section 1.4 the Gell-Mann-Nishijima relation was introduced as

Q = I3 +
Y

2
,

with Q being the electromagnetic charge of a Dirac field, I3 its weak isospin
and Y its hypercharge. In the GWS model of electroweak interactions the
the physical photon field that couples to the charge Q is a linear combi-
nation of the bare SU(2)L × U(1)Y gauge fields W µ

3 and Bµ. The photon
couples with same strength Q to fermions and their antifermions, while W µ

3

only couples to fields with weak isospin I3. Thus, Bµ couples to both left-
and right-handed fields but with different strength. In order to answer the
question how the group SU(2)L×U(1)Y acts on the mesonic field Φ so that
the characteristics of the GWS model are reproduced, the constituent quark
fields in Φ will undergo a transformation according to the one discussed in
Section 1.4.

2.2.1 U(1)Y Transformation

Under local U(1)Y the left-handed doublet q1 = (uL, dL)
T and the right-

handed singlets q2 = uR, q3 = dR, according to (1.81), transform as

qi −→ q′i = UYi
qi , (2.62)

with the unitary transformation matrix

UYi
= eiyiθY (xµ), i = 1, 2, 3 ,

and assigned hypercharges

y1 = 2

(

Qu −
1

2

)

= Qd +
1

2
=

1

3
, (2.63)

y2 = 2Qu =
4

3
, y3 = 2Qd = −2

3
. (2.64)

The scalar and pseudoscalar fields were defined as

Φkl ≃
1√
2
(q̄lqk − q̄lγ

5qk) ≃
√
2q̄l,R qk,L , i, j = u, d . (2.65)

The matrix for scalar and pseudoscalars is defined as

Φ ≃
(

ūRuL d̄RuL
ūRdL d̄RdL

)

. (2.66)
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Since Φ obeys the same transformation laws as the external product of the
left- and right-handed quark vectors, the transformation of Φ under U(1)Y
can be found by transforming the constituent fields. Their transformation
properties are well-known from the Standard Model of Electroweak Interac-
tions. Therefore the U(1)Y transformation acts on Φ according to

Φ
U(1)−→ Φ′ ≃

(

ūRe
−iy2θY uLe

iy1θY d̄Re
−iy3θY uLe

iy1θY

ūRe
−iy2θY dLe

iy1θY d̄Re
−iy3θY dLe

iy1θY

)

=

(

ūRuLe
i(− 4

3
+ 1

3
)θY d̄RuLe

i( 2
3
+ 1

3
)θY

ūRdLe
i(− 4

3
+ 1

3
)θY d̄RdLe

i( 2
3
+ 1

3
)θY

)

=

(

ūRuLe
−i 1

2
θY d̄RuLe

i 1
2
θY

ūRdLe
−i 1

2
θY d̄RdLe

i 1
2
θY

)

=

(

ūRuL d̄RuL

ūRdL d̄RdL

)

(

e−i 1
2
θY 0

0 ei
1
2
θY

)

.

Since θY is infinitesimal the transformation can also be written down as an
expansion in θY , such that

Φ′ ≃
(

ūRuL d̄RuL

ūRdL d̄RdL

)(

1− i12θY +O[θY ]
2 0

0 1 + i12θY +O[θY ]
2

)

=

(

ūRuL d̄RuL

ūRdL d̄RdL

)

+

(

ūRuL d̄RuL

ūRdL d̄RdL

)(

−i12θY 0
0 +i12θY

)

+

(

ūRuL d̄RuL

ūRdL d̄RdL

)(

O[θY ]
2 0

0 O[θY ]
2

)

≃
(

ūRuL d̄RuL

ūRdL d̄RdL

)

− i
θY
2

(

ūRuL d̄RuL

ūRdL d̄RdL

)(

+1 0
0 −1

)

.

The transformation of Φ can now be expressed in terms of the already given
strong isospin algebra spanned by {ti} = {σi

2 }

Φ
U(1)Y−→ Φ′ = ΦU †

Y ≃ Φ− iθY Φ t3 , (2.67)

with

UY = eiθY (xµ)t3 .

The Lagrangian without the explicit symmetry breaking terms LA and LeSB

L = Tr[(DµΦ†)(DµΦ)]−m2
0Tr

[

Φ†Φ
]

− λ1Tr
[

(Φ†Φ)2
]

− λ2
(

Tr
[

Φ†Φ
]

)2

− 1

4
Tr
[

(Lµν)2 − (Rµν)2
]

+
m1

2
Tr
[

(Lµ)2 + (Rµ)2
]
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+ L3 + L4 + L5 (2.68)

is invariant under local U(1)Y transformations if a vector field Bµt3 is intro-
duced in the covariant derivative

DµΦ = ∂µΦ− ig1(L
µΦ−ΦRµ) + ig′ΦBµt3 . (2.69)

Then Bµt3 transforms under adjoint representation as

Bµt3 −→ (Bµt3)
′ = UYB

µt3U
†
Y +

i

g′
UY ∂

µU †
Y . (2.70)

The invariance of L is preserved if the covariant derivative transforms un-
der U(1)Y as the field itself. The covariant derivative also contains the
interaction terms between the scalar, pseudoscalar, vector, and axial-vector
fields. Since U(1)Y is a subgroup of SU(2)R × U(1)V and the vector fields
are treated as massive Yang-Mills bosons their transformation leaves the La-
grangian invariant if they transform as the adjoint representation2 as well:

Lµ −→ Lµ ′ = UY L
µU †

Y = Lµ ,

Rµ −→ Rµ ′ = UYR
µU †

Y . (2.71)

For the covariant derivative one obtains

(DµΦ)′ = ∂µΦ′ − ig1(L
µ ′Φ′ − Φ′ Rµ ′) + ig′Φ′(Bµt3)

′

= ∂µ(ΦU †
Y )− ig1(L

µΦU †
Y − ΦU †

Y UYR
µU †

Y )

+ ig′(ΦU †
Y )(UYB

µt3U
†
Y +

i

g′
UY ∂

µU †
Y )

= (∂µΦ)U †
Y +Φ∂µU †

Y − ig1(L
µΦU †

Y − ΦRµU †
Y )

+ ig′ΦU †
Y UYB

µt3U
†
Y −ΦU †

Y UY ∂
µU †

Y

= (∂µΦ)U †
Y − ig1(L

µΦU †
Y − ΦRµU †

Y ) + ig′ΦBµt3U
†
Y

+Φ∂µU †
Y − Φ∂µU †

Y

= (DµΦ)U †
Y . (2.72)

2This can also be seen by applying the transformation explicitly to left- and right-
handed fields. The left-handed doublet only transforms with an overall phase factor,
while the transformation of the right-handed ”doublet” becomes dependent on the same
overall phase and t2, which turns out to be equivalent to the transformation under the
U(1)Y adjoint representation:

Rµ
−→ Rµ ′ = UY RµU†

Y = eiθY t3Rµe−iθY t3

≃ (1 + iθY t3)R
µ(1− iθY t3)

= Rµ + 2iθY Rµt2 +O[θY ]2.
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Thus

Tr[(DµΦ)′
†
(DµΦ)′] = Tr[UY (DµΦ)

†(DµΦ)U †
Y ]

= Tr[(DµΦ)U †
Y UY (D

µΦ)†]

= Tr[(DµΦ)†(DµΦ)]. (2.73)

Now, one could also introduce the other weak gauge bosons into the model.
However, the group SU(2)L is non-Abelian - the relation eA+B = eAeB

only holds for commuting matrices A and B - so one cannot simply repeat
the steps above and transform each composite field in order to find the
transformation law for Φ under SU(2)L.

2.2.2 Vector Meson Dominance

Another possibility to construct gauge-invariant interaction vertices between
the weak bosons and Φ is Vector Meson Dominance (VMD). The following
résumé about VMD is based on the introduction given in [24].

Sakurai developed VMD to answer the question of how the photon couples
to hadronic matter (here pions). The higher-order self-energy contributions
of the photon propagator do not only consist of virtual e+e− pairs but also of
virtual quark-antiquark pairs. As the photon is a vector field, these hadronic
(q̄q) vacuum polarisations should be vector-like, too. VMD is now based on
the assumption that the hadronic contributions to the photon self-energy
consist only of the known vector mesons. The field-current identity states
that the hadronic electromagnetic current is proportional to a vector meson,
the neutral ρ meson

jµEM =
m2

ρ

gρ
ρµ0 . (2.74)

Equation (2.74) was later generalised to the ρ triplet, where the neutral ρ0
is the third component of an isospin triplet.

Different attempts were made by Sakurai, Lurie, Kroll, Lee, and Zumino
to generate interactions between the vector mesons and hadronic matter.
There was the idea from Sakurai to treat the vector mesons as the gauge
fields of a local SU(2) strong isospin symmetry, but it had the problem of
a vector-meson mass term which destroyed gauge invariance. Lurie coupled
the vector mesons within a global SU(2)V symmetry to conserved hadronic
currents. Later, Kroll, Lee, and Zumino introduced the interactions between
the vector mesons and hadronic matter in terms of the field-current identity
in Equation (2.74).
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Today there exist basically two representations of vector meson dominance,
VMD1 and VMD2. In both representations Sakurai coupled the vector
mesons to hadrons (pions) by the covariant derivative

Dµ~π = ∂µ~π − gρππ~ρ× ~π (2.75)

Based on the assumption that the ρ self-interactions are negligible, the cur-
rent Jµ

π is defined as

Jµ
π = (~π × ∂µ~π)0 = i(π−∂µπ+ − π+∂µπ−) (2.76)

and accounts only for the terms that correspond to the neutral component
ρ0µ interacting with two charged pions3. Thus, from now on, ρµ is understood
to refer only to the neutral ρ meson component ρ0µ. Both representations,
VMD1 and VMD2, are based on the Lagrangian

LVMD = −1

4
FµνF

µν − 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ − gρππρµ · Jµ
π . (2.77)

The dynamics of the photon field and of the vector field are described by
Fµν and ρµν respectively, with both of them being ordinary field strength
tensors. Now, VMD1 and VMD2 differ in the way they couple the photon
field to the ρ meson

• VMD1 generates the γρ interaction by

−eAµJ
µ
π − 2

2gρ
Fµνρ

µν . (2.78)

Because of the derivatives in the field strength tensors the coupling of
the photon to ρ depends on the exchanged momenta q2 and vanishes for
q2 → 0. Then the contribution of the direct photon-hadron coupling
in eAµJ

µ
π becomes dominant and describes the energy region below

the ρ meson’s mass.

• VMD2 generates the interaction by

−e
m2

ρ

gρ
ρµ

′ Aµ ′ +
1

2

(

e

gρ

)2

m2
ρ Aµ

′ Aµ ′ . (2.79)

Despite the photon mass term in VMD2 the photon propagator turns
out to be of the correct form, if one assumes that its self-energy con-
tributions consist only of vector mesons.

3This accounts for the fact that the neutral ρ meson decays almost entirely via the
two pion channel.
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If the coupling of ρ is the same for all interactions gρ = gρππ, the above
representations are equivalent to each other. The transition from VMD2 to
VMD1 is made by a transformation of the fields. The field ρµ ′ in VMD2 is
a mixed state of ρµ and Aµ of VMD1

ρ′µ = ρµ +
e

gρ
Aµ , (2.80)

Aµ ′ = Aµ

√

1− e2

g2ρ
, (2.81)

e′ = e

√

1− e2

g2ρ
. (2.82)

2.2.3 Electroweak Interactions

Now, how can VMD be of use for introducing the weak bosons by minimal
coupling into the Linear Sigma Model? In the U(2)L × U(2)R model the
scalar and pseudoscalar fields are obtained from the direct product of a
left-handed quark doublet and a right-handed anti-doublet. The covariant
derivative in (2.68) generates interactions between left- and right-handed
fields with Φ. While the bare weak bosons W µ couple only to fields that
carry weak isospin (left-handed fields), the U(1)Y gauge field Bµ couples
to both, left- and right-handed fields. Moreover, Bµ is a mixed field of the
physical fields Aµ and Zµ.

One can now assume that the vacuum polarisation of the bare gauge field
Bµ consists only of hypercharged quark-antiquark pairs. Similarly the self-
energy contributions of the weak bosons W µ would only consist of left-
handed quark-antiquark pairs. Therefore W µ can be regarded as being
“proportional” to the left-handed fields in Lµ, while the hypercharge gauge
field Bµ should contain contributions from Lµ and Rµ since left- and right-
handed fields carry hypercharge.

That way one can ensure thatW µ couples only to the left-handed content in
Φ, while Bµ couples to both. Together they should also yield the Weinberg
mixing of the physical fields and thus allow for describing the interactions
of the charged and neutral electroweak currents.

The U(1)Y gauge boson Bµ couples to the hypercharge with yi as given by
(2.64). Since the hypercharge values differ for right-handed up and down
quark the analogue to the field-current identity reads

Jµ
Y ≡ g′

2

(

y1 0
0 y1

)

Lµ +
g′

2

(

y2 0
0 y3

)

Rµ
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≃ g′

2

(

y1ūLγ
µuL 0

0 y1d̄Lγ
µdL

)

+
g′

2

(

y2ūRγ
µuR 0

0 y3d̄Rγ
µdR

)

. (2.83)

Based on the assumption that, as depicted4 in Figure 2.1, the left-handed
vacuum polarisation of Bµ couples to the left-handed quark fields in Lµ and
the right-handed vacuum polarisation of Bµ couples to the right-handed
fields in Rµ one can now express Lµ and Rµ in terms of the U(1)Y gauge
field Bµ.

Rµ Bµ

ūR

d̄R
Bµ Lµ

uL

dL

W µ Lµ

uL

dL

Figure 2.1: The bare U(1)Y gauge field Bµ couples to the left- and right-
handed fields Lµ and Rµ, while the SU(2)L gauge field W µ only couples to
the left-handed fields Lµ.

This basically means that the vector and axial-vector fields obtain an addi-
tional contribution from Bµ

Lµ → Lµ +
g′

2g1

(

y1 0
0 y1

)

Bµ , (2.84)

Rµ → Rµ +
g′

2g1

(

y2 0
0 y3

)

Bµ (2.85)

and the covariant derivative becomes

DµΦ = ∂µΦ− ig1

{[

Lµ +
g′

2g1

(

y1 0
0 y1

)

Bµ

]

Φ− Φ

[

Rµ +
g′

2g1

(

y2 0
0 y3

)

Bµ

]}

= ∂µΦ− ig1(L
µΦ− ΦRµ)− i

g′

2

[(

y1 0
0 y1

)

BµΦ− Φ

(

y2 0
0 y3

)

Bµ

]

= ∂µΦ− ig1(L
µΦ− ΦRµ)− i

g′

2
Φ

(

y1 − y2 0
0 y1 − y3

)

Bµ .

4The graph in Figure 2.1 is only used as an visualisation of the idea. It is not a
Feynman diagram! It also has to be remembered that uR and dR couple with different
strengths to the hypercharge gauge field.
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Together with the hypercharge values y1 = 1/3, y2 = 4/3 and y3 = −2/3
this reduces to

DµΦ = ∂µΦ− ig1(L
µΦ− ΦRµ) + ig′ΦBµt3 (2.86)

and reproduces the result (2.69) that was previously obtained from directly
transforming the quark components.

This is equivalent to defining Rµ as

Rµ −→ Rµ +
g′

g1
Bµt3 (2.87)

and can now be generalised to describe SU(2)L interactions.

The gauge field of U(1)Y lies in the direction of t3 as a consequence of
the fact that, in order to obtain QED from SU(2)L × U(1)Y , the U(1)Y
gauge field couples with different strength to the different flavours of the
right-handed fermions. Since the weak bosons couple universally to the
left-handed flavours, one can immediately see that

Lµ −→ Lµ +
g

g1
W µ, W µ =W µ

a ta , (2.88)

after Φ has been transformed under local SU(2)L according to5

Φ −→ ULΦ, UL = e−iθaL(x
µ)ta . (2.89)

With (2.87) and (2.88) the covariant derivative finally reads

DµΦ = ∂µΦ− ig1

[

(Lµ + g
g1
W µ)Φ− Φ(Rµ + g′

g1
Bµ)

]

= ∂µΦ− ig1(L
µΦ− ΦRµ) + ig′ΦBµ − igW µΦ .

(2.90)

The Lagrangian

L = Tr[(DµΦ†)2DµΦ]− 1
4Tr[WµνW

µν +BµνB
µν ]

− m2
0Tr[Φ

†Φ]− λ1Tr[(Φ
†Φ)2]− λ2(Tr[Φ

†Φ])2

− 1
4Tr[(L

µν)2 − (Rµν)2] +
m2

1
2 Tr[(Lµ)2 + (Rµ)2]

+ L3 + L4 + L5

(2.91)

5The signs in the exponent of the definitions of the transformations are conventional.
Although the convention used here might be confusing since it results in different signs
for the gauge-field terms in the covariant derivative it was chosen because it allows to
write the SU(2)L × U(1)Y transformation acting on the fields φ,Lµ, Rµ analogously to
the chiral transformation under SU(2)L × SU(2)R.
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is invariant under local SU(2)L × U(1)Y transformations

Φ −→ Φ′ = ULΦU
†
Y

Lµ −→ Lµ ′ = ULL
µU †

L ,

Rµ −→ Rµ ′ = UYR
µU †

Y ,

Bµ −→ Bµ ′ = UYB
µU †

Y + i
g′UY ∂

µU †
Y ,

W µ −→ W µ ′ = ULW
µU †

L + i
gUL∂

µU †
L .

(2.92)

The covariant derivative term transforms as

(DµΦ)′ = ∂µΦ′ + ig′Φ′ Bµ ′ − ig W µ ′Φ′ − ig1(L
µ ′ Φ′ − Φ′ Rµ ′)

= ∂µ(ULΦU
†
Y )− ig1(ULL

µU †
LULΦU

†
Y − ULΦU

†
Y UYR

µU †
Y )

+ ig′(ULΦU
†
Y )(UY B

µU †
Y +

i

g′
UY ∂

µU †
Y )

− ig(ULW
µU †

L − i

g
(∂µUL)U

†
L)(ULΦU

†
Y )

= (∂µUL)ΦU
†
Y + UL(∂

µΦ)U †
Y + ULΦ∂

µU †
Y + ig′ULΦB

µU †
Y

− ULΦ∂
µU †

Y − igULW
µΦU †

Y − (∂µUL)ΦU
†
Y

− ig1(ULL
µΦU †

Y − ULΦR
µU †

Y )

= UL(∂
µΦ)UY + ig′ULΦB

µU †
Y − igULW

µΦU †
Y

− ig1(ULL
µΦU †

Y − ULΦR
µU †

Y )

= UL(D
µΦ)U †

Y . (2.93)

where ∂µ(UU †) = (∂µU)U † + U∂µU † = 0 has been used. Therefore, the
kinetic term is invariant under the combined SU(2)L×U(1)Y transformation.
The invariance of all other terms is seen by the analogue procedure.

2.2.4 Weinberg Mixing, Field Strength Tensors Lµν , Rµν

In order to express the bare gauge fieldsW µ
3 andBµ in terms of their physical

counterparts Aµ and Zµ the Weinberg rotation is applied to the bare gauge
fields in (2.90)

(

W µ
3

Bµ

)

=

(

cosθW sinθW
−sinθW cosθW

)(

Zµ

Aµ

)

(2.94)

and leads to

ig′ΦBµt3 − igW µ
3 t3Φ = iΦg′(− sin θWZ

µ + cos θWA
µ)t3
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− ig(cos θWZ
µ + sin θWA

µ)t3Φ

= iAµ(g′ cos θWΦt3 − g sin θW t3Φ)

− iZµ(g cos θW t3Φ+ g′ sin θWΦt3).

= ieAµ[Φ, t3]− iZµ(g cos θW t3Φ+ g′ sin θWΦt3) .
(2.95)

Using e = g sin θW = g′ cos θW and redefining Aµt3 → Aµ, Zµt3 → Zµ yields
the result

ig′ΦBµt3 − igW µ
3 t3 = −ie[Aµ,Φ]− igcosθW

(

ZµΦ+ tan2 θWΦZµ
)

. (2.96)

Hence the final covariant derivative in terms of the physical, charged and
neutral, interaction fields together with left- and right-handed fields reads

DµΦ = ∂µΦ− ig1(L
µΦ−ΦRµ)− ig(W µ

1 t1 +W µ
2 t2)Φ

−ie[Aµ,Φ]− igcosθW (ZµΦ+ tan2 θWΦZµ) .
(2.97)

Finally the field-strength tensors Lµν and Rµν undergo a redefinition, too.
The derivative terms in the definition (2.22) of the original field strength
tensors Lµν and Rµν contribute terms that would destroy the invariance of
the Lagrangian under local SU(2)L×U(1)Y transformations. Therefore the
partial derivative in (2.22) is also promoted to a covariant one by inserting
the gauge fields. From the local SU(2)L transformation arise the following
terms in the field strength tensors

∂µ Lν ′ = UL(∂
µLν)U †

L + (∂µUL)L
νU †

L + ULL
ν(∂µU †

L) . (2.98)

The second two terms have to be removed by the contributions from the
gauge field transformation (2.92). If the covariant derivative is defined to
be

Dµ
LL

ν = ∂µLν − ig[W µ, Lν ] , (2.99)

then the commutator reads after the transformation

ig[W µ ′, Lν ′
] = ig

[

ULW
µU †

L +
i

g
UL∂

µU †
L, ULL

νU †
L

]

= ig
(

ULW
µLνU †

L−
i

g
(∂µUL)L

νU †
L−ULL

νW µU †
L−

i

g
ULL

ν∂µU †
L

)

= igUL[W
µ, Lν ]U † + (∂µUL)L

νU †
L + ULL

ν(∂µU †
L) . (2.100)

The terms arising from the local transformation in (2.98) are now cancelled
by the additional terms arising from the transformation of the gauge field
and thus

(Dµ
LL

ν)′ = UL(∂
µLν − ig[W µ, Lν ])U †

L = UL(D
µ
LL

ν)U †
L . (2.101)
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Applying the analogous procedure to the derivatives acting on the right-
handed fields shows that the covariant derivative for Rµ has to be

Dµ
RR

ν = ∂µRν − ig′[Bµ, Rν ] . (2.102)

In terms of the physical fields generating the electroweak phenomenology
the field strength tensors for left- and right-handed fields then read

Lµν = Dµ
LL

ν −Dν
LL

µ

= ∂µLν − ig[W µ
1 t1 +W µ

2 t2, L
ν ]

−ie[Aµ, Lν ]− ig cos θW [Zµ, Lν ]
−{∂νLµ − ig[W ν

1 t1 +W ν
2 t2, L

µ]
−ie[Aν , Lµ]− ig cos θW [Zν , Lµ]}

Rµν = Dµ
RR

ν −Dν
RR

µ

= ∂µRν − ie[Aµ, Rν ] + ig sin θW [Zµ, Rν ]
−(∂νRµ − ie[Aν , Rµ] + ig sin θW [Zν , Rµ]) .

(2.103)

The field strength tensors can also be derived from the commutator of the
covariant derivative according to

[Dµ,Dν ] = −ig1Fµν . (2.104)

Since this needs a careful treatment of indices of the “left” and “right” prod-
uct spaces, this calculation was delegated to Appendix A.

2.2.5 The Wρ Vertex

Because of the spontaneously broken axial symmetry, the Lagrangian that
has been developed so far does not contain any mixing terms between the
charged weak gauge bosons and the vector mesons. After σ is shifted by its
constant VEV

Φ = φ0t0 + (σa + iπa)ta , (2.105)

mixing terms between the left- and right-handed fields and the charged elec-
troweak bosons arise. Both, left- and right-handed fields contain contribu-
tions from the vector mesons. But the mixing terms turn out to contain only
a mixing between the charged weak bosons and the axial-vector mesons. For
the term which contains the dynamics between the vector and axial-vector
hadronic states and the scalars and pseudoscalars g1(L

µΦ − ΦRµ) in (2.97)
one obtains

g1(L
µΦ−ΦRµ)
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= g1 [(V
µ
a +Aµ

a)taφ0t0 − φ0t0(V
µ
a −Aµ

a)ta]

+ g1

3
∑

a,b=0

[

(V µ
a +Aµ

a)(σb − iπb)tatb − (σa − iπa)(V
µ
b +Aµ

b )tatb
]

=
1

2
g1φ0A

µ
ata

+ g1

3
∑

a,b=0

[

(V µ
a +Aµ

a)(σb − iπb)tatb−(σa − iπa)(V
µ
b +Aµ

b )tatb
]

. (2.106)

From (DµΦ)†DµΦ one then can only obtain mixing terms between W µ and
fµ1 ,~a

µ
1

Tr
[

(ig1(Φ
†Lµ−RµΦ

†)+ igΦ†Wµ)(−ig1(LµΦ− ΦRµ)− ig W µΦ)
]

= Tr [(2ig1φ0t0Aµata + igφ0t0Wµata + ...) (−2ig1φ0t0A
µ
ata − ig W µ

a taφ0t0 + ...)]

= 2gg1φ
2
0AµaW

µ
b Tr[t0t0tatb] + 2gg1φ

2
0WµaA

µ
bTr[t0t0tatb] + ...

=
1

2
gg1φ

2
0WµaA

µ
b δab + ... . (2.107)

The mixing terms are proportional to the chiral condensate in t0 direction,
thus the contributions from the vector mesons cancel and only the WµA

µ

mixing term survives in (2.107). The ellipses denote those terms that already
lead to three-point interaction vertices and are not needed at the moment.

However, the main contributions in the vector channel of the τ decay come
from the intermediate ρ resonance. These contributions could not be ac-
counted for with the Lagrangian that has been defined so far. Thus it is
necessary to “manually” introduce a chirally invariant term of the form

LWρ =
δg

2
Tr[WµνL

µν ] . (2.108)

This is the only way how it is possible to introduce a WµV
ν term which is

allowed by symmetry. It has exactly the same structure as the term Sakurai
used to generate the electromagnetic interaction between the photon and the
ρ meson in VMD1 and as a product of two covariantly transforming field
strength tensors, it is of course gauge invariant, too. The newly introduced
parameter δ will be fixed later in the ρ-2π channel.

2.2.6 The Lagrange Density with Electroweak Interactions

So far, all considerations were based on the chiral eigenstates. Because of
Cabibbo mixing the weak coupling constant g has to be multiplied by the
factor cos θC . Even though here weak interactions are only acting on two
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flavours, up and down, the down quark has to be rotated into its weak
counterpart d′.

For this reason the prefactor that accounts for the Cabibbo mixing is needed
in all terms that generate interactions between the charged weak bosons and
the mesonic bound quark-antiquark states. Then the covariant derivative
acting on Φ in its final form reads

DµΦ = ∂µΦ− ig1(L
µΦ− ΦRµ)− ig cos θC(W

µ
1 t1 +W µ

2 t2)Φ

−ie[Aµ,Φ]− igcosθW (ZµΦ+ tan2 θWΦZµ)

(2.109)

and the Lagrangian with all terms reads

LΦ = Tr
[

(DµΦ)†(DµΦ)
]

+ δg cos θC
2 Tr[WµνL

µν ]

−m2
0 Tr[Φ

†Φ]− λ1Tr[(Φ
†Φ)2]− λ2(Tr[Φ

†Φ])2

− 1
4 Tr[(L

µν)2 − (Rµν)2] + m1
2 Tr[(Lµ)2 − (Rµ)2]

+ 1
4 Tr[(W

µν)2 + (Bµν)2] + Tr[H(Φ + Φ†)]

+ c(detΦ + detΦ†) + L3 + L4 + L5 .

(2.110)

The partial derivatives in L3 have also been replaced by the SU(2)L×U(1)Y
covariant derivatives Dµ

L and Dµ
R for the left- and right-handed fields as they

were defined in (2.99) and (2.102).
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Chapter 3

Tree-Level Vertices

In this chapter the vertex factors for calculating the spectral functions of the
vector and axial-vector τ decay channels will be derived from the Lagrangian
(2.110). That way the necessary coupling constants for calculating the τ
vector and axial-vector spectral functions are obtained.

Because of its big mass of 1.777 GeV the τ lepton does not only participate
in leptonic decays, but also in semileptonic (hadronic) decays. Because
it is a flavour changing process, it can only be mediated by the charged
weak bosons. The τ lepton decays into W and ντ . The W boson then in
turn decays itself into either a lepton pair (leptonic decays) or into hadrons
(semi-leptonic decays). Since hadrons are built up from strongly interacting
matter, the τ decay is a good object to study the interplay of electroweak and
strong interactions within an effective field theory that describes the QCD
hadronic degrees of freedom. The semi-leptonic decays of the τ contribute
with about 55% to its total decay width and can generally be divided into
the vector channel with G-parity 1, reflected in an even number of hadronic
decay products, and into the axial-vector channel with G-parity −1, reflected
in an odd number of final hadrons. As the current work is based on a two-
flavour Linear Sigma Model, only the decays resulting in final pion states
will be studied.

After the spontaneous breaking of chiral symmetry the fields in the La-
grangian Φ, Lµ, and Rµ read

Φ = (σa + iZπa)ta + φ0t0

= (σ + φ0 + iZη)t0 + (~a0 + iZ~π) · ~t
(3.1)

Lµ = V µ +Aµ , Rµ = V µ −Aµ

Aµ = (fµ1 + wZ∂µη)t0 + (~aµ1 + wZ∂µ~π) · ~t , V µ = ωµt0 + ~ρ µ · ~t .
(3.2)
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The relevant interaction vertices with the charged weak bosons are obtained
from

Lint=Tr
[

(DµΦ†)DµΦ
]

+
g cos θCδ

2
Tr [WµνL

µν ] +
1

4
Tr
[

(Lµν)2
]

+ L3 .

(3.3)

The neutral currents do not contribute to the examined decays, thus, from
now on, W µ is defined to be

W µ =W µ
1 t1 +W µ

2 t2 , (3.4)

and for the following calculations the covariant derivative in (3.3) is redefined
to

DµΦ = ∂µΦ − ig1(L
µΦ − ΦRµ)− ig cos θCW

µΦ ,

(DµΦ)† = ∂µΦ
†+ ig1(Φ

†Lµ −RµΦ
†) + ig cos θCΦ

†Wµ . (3.5)

The field strength tensor for the left-handed fields then reads

Lµν = ∂µLν − ig cos θC [W
µ, Lν ]− (∂νLµ − ig cos θC [W

ν , Lµ]) , (3.6)

and for the right-handed fields

Rµν = ∂µRν − ∂νLµ . (3.7)

3.1 τ → Wντ Vertex

The process τ → Wντ can be calculated from the electroweak interaction
Lagrangian as it was derived in Section 1.4, Equation (1.87). As already
given by (1.74), the weak isospin doublet for the third lepton family is

ψ =

(

τ
ντ

)

and the charged weak interaction Lagrangian for τ reads

Lτ→Wντ =
g

2
√
2
ν̄τW

−
µ γ

µ(1− γ5)τ + h.c. . (3.8)

From here the decay rate of τ into an asymptotic off-shellW boson is worked
out to be

Γ(τ→Wντ )(x
2) =

1

8π

( −g
2
√
2

)2 m3
τ

M2
W

(

1− x2

m2
τ

)2(

1 +
2M2

W

m2
τ

)

. (3.9)
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The detailed calculation of the decay width is found in Appendix D. Further,
the above result can also be used to calculate the momentum-dependent
tree-level decay width of the τ lepton into a τ neutrino and an off-shell
vector or axial-vector resonance. Therefore, the W propagator is replaced
by an effective coupling that can be constructed from the Standard Model
of Electroweak Interactions and the Lagrangian of the Linear Sigma Model.
In the following sections, the tree-level vertices of the weak W bosons in the
vector and axial-vector channel will be determined. The obtained tree-level
couplings can then be used to calculate the decay rates for τ− → ρ−ντ and
τ− → a−1 ντ .

3.2 Vector Channel

The non-strange contributions to the τ spectral functions in the vector chan-
nel come from processes that result in either two- or four-pion final states
(Figure 3.1). The total branching fraction of the non-strange vector channel
is given by BV = (31.82 ± 0.18 ± 0.12)%. The vector channel is clearly
dominated by the two-pion channel which contributes with 25.471%, while
the four-pion vector channel contributes only with 5.567%.

τ → ππ0ντ τ → π3π0ντ (3ππ0ντ )

W
τ

ντ

π

π

W
τ

ντ

π

π

π

π

Figure 3.1: Vector channel contributions ππ0 and π3π0, 3ππ0.

3.2.1 2π Vector Channel

The processes that yield two-pion final states are depicted in Figure 3.2.
There is one process in which the W boson decays directly in two pions
and another process in which W transforms into a ρ meson which then
disintegrates in two final pions.
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W
τ

ντ

π

π

W
ρτ

ντ

π

π

Figure 3.2: Intermediate states for the ππ0 vector channel.

W → ππ0:

The tree-level three-vertices that account for W− → π−π0 arise only from
the square of the covariant derivative1 which contains products from the
partial derivative term for scalars and pseudoscalars with the W interaction
term

ig cos θC Tr
[

−∂µΦ†W µΦ+Φ†Wµ∂
µΦ
]

= ig cos θC ×
Tr
{

−∂µ[(σa−iZπa)ta+φ0t0](W µ
1 t1+W

µ
2 t2)[(σb+iZπb)tb+φ0t0]

+ [(σa+iZπa)ta+φ0t0](W
µ
1 t1+W

µ
2 t2)∂

µ[(σb−iZπb)tb+φ0t0]
}

.

All terms proportional to φ0 and φ20 will be omitted since they either gen-
erate mixing terms between W and the (pseudo-) scalar fields, or they are
proportional to simple propagators of the weak bosons. Terms proportional
to σa and η also do not contribute to the direct Wππ0 vertex as well and
are omitted, too.

With indices k = 1, 2 and i, j = 1, 2, 3 the above equation simplifies to

−ig cos θCZ2
(

πjWµk∂
µπi − πiWµk∂

µπj
)

Tr[titktj ] , (3.10)

where, according to Einstein’s sum convention, summation over repeated
indices is implied. Using the identity for the trace over a product of the
three SU(2) generators

Tr[titjtk] =
i

4
εijk (3.11)

yields

g cos θCZ
2

2
[W µ

1 (π2∂
µπ3 − π3∂

µπ2) +W µ
2 (π3∂

µπ1 − π1∂
µπ3)] . (3.12)

1There are no contributions from 1
4
Tr[LµνL

µν ]. This term does only seem to contain
momentum-dependent tree-level three-vertices with one weak boson and two pionic states.
But these contributions cancel each other, since they are proportional to (∂µ∂

ν
− ∂ν∂

µ)π3

.
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Now one can change to the physical charged representation and the tree-level
vertices for W± → π±π0 read

ig cos θCZ
2

2

[

W−(π+∂µπ0 − π0∂µπ+) +W+(π0∂µπ− − π−∂µπ0)
]

. (3.13)

The W±π±π0 vertex receives another contribution from the covariant deri-
vative, the product terms of W and Φ and the vector and axial-vector fields
with Φ. The calculation to obtain that vertex will be shown in detail for
once, for the other vertices in the vector channel as well as in the axial-vector
channel an analogous procedure was applied. From the covariant derivative
one obtains another contribution to the coupling between

g cos θCg1Tr
[

Φ†Wµ(L
µΦ− ΦRµ) + (Φ†Lµ −RµΦ

†)W µ Φ]

= g cos θCg1×

Tr
{

[(σa−iZπa)ta+φ0t0]Wµktk(V
µ
b +Aµ

b )tb [(σc+iZπc)tc+φ0t0]

−[(σa−iZπa)ta+φ0t0]Wµktk[(σb+iZπb)tb+φ0t0] (V
µ
c −Aµ

c )tc

+[(σa−iZπa)ta+φ0t0](Vµb +Aµb)tbWµktk[(σc+iZπc)tc+φ0t0]

−(Vµa −Aµa)ta[(σb−iZπb)tb+φ0t0]Wµktk [(σc+iZπc)tc+φ0t0]
}

= g cos θCg1Tr
[

(−iZπata+φ0t0)WµktkA
µ
b tb (iZπctc+φ0t0)

+(−iZπata+φ0t0)Wµktk(iZπbtb+φ0t0)A
µ
c tc

+(−iZπata+φ0t0)AµbtbWµktk(iZπctc+φ0t0)

+Aµata(−iZπbtb+φ0t0)Wµktk(iZπctc+φ0t0)

+ . . . (terms ∝ Vµ)
]

= g cos θCg1
(

− iZπaWµkA
µ
b φ0Tr[tatktbt0] + φ0WµkA

µ
a iZπbTr[t0tktatb]

− iZπaWµkφ0A
µ
bTr[tatkt0tb] + φ0WµkiZπaA

µ
bTr[t0tktatb]

− iZπaAµbW
µ
k φ0Tr[tatbtkt0] + φ0AµaW

µ
k iZπbTr[t0tatktb]

−AµaiZπbW
µ
k φ0Tr[tatbtkt0] +Aµaφ0W

µ
k iZπbTr[tat0tktb]

+ . . .
)

=
iZg cos θCg1φ0

2

(

πaWµkA
µ
bTr[tktatb] + πaWµkA

µ
bTr[tktatb]

+WµkπaA
µ
bTr[tktatb]− πaAµbW

µ
k Tr[tktatb]

−AµaW
µ
k πbTr[tktatb] +WµkA

µ
a iZπbTr[tktatb]

−AµaπbW
µ
k Tr[tktatb]−AµaW

µ
k πbTr[tktatb]

+ . . .
)

=
iZg cos θCg1φ0

2

(

πaWµkA
µ
bTr[tktatb] + πaWµkA

µ
bTr[tktatb]

−AµbπaW
µ
k Tr[tktbta]−AµbW

µ
k πaTr[tktbta]
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+ . . .
)

=
iZg cos θCg1φ0

2

(

4WµkπaA
µ
bTr[tktatb] + . . .

)

. (3.14)

Again, the index k = 1, 2 describes the isospin index of the two charged
weak bosons. The three-point vertices of W and two pions in the above
equation arise now as consequence of the spontaneously broken axial sym-
metry. Because of the a1π mixing, the axial-vector bare fields have been
redefined in terms of their physical fields (see Equation (3.2)) and also
contain normalised pseudoscalar fields wZ∂µη and wZ∂µ~π. With Aµ =
(fµ1 + wZ∂µη)t0 + (~aµ1 + wZ∂µ~π) · ~t, the coupling between W and the pseu-
doscalar pions is obtained as

2iwZ2g cos θCg1φ0Wµkπa(∂
µπb)Tr[tktatb] . (3.15)

After the trace has been performed this reads

iwZ2g cos θCg1φ0
2

(Wµ1π2∂
µπ3 −Wµ1π3∂

µπ2 +Wµ2π3∂
µπ1 −Wµ2π1∂

µπ3) .

(3.16)

Changing to the physical charged representation yields the following result
for the contribution to the W± → π±π0 vertex from (3.14)

ig cos θCg1φ0wZ
2

2

[

W−
µ (π0∂µπ+ − π+∂µπ0) +W+

µ (π−∂µπ0 − π0∂µπ−)
]

.

(3.17)

Together with (3.13) the vertex prefactor of the decay channel where W
decays directly into two pions as depicted in Figure 3.2 is then

(

ig cos θCZ
2

2
− ig cos θCg1φ0wZ

2

2

)

. (3.18)

After the explicit expressions for the parameters

w =
g1φ0
m2

a1

, φ0 = Zfπ , g1 =
ma1

Zfπ

√

1− 1

Z2
(3.19)

are inserted, (3.18) simplifies to

− ig cos θC
2

. (3.20)

As it could already be expected, the coupling in the process W → ππ0 is
only influenced by the weak interaction coupling constant g and the Cabibbo
mixing angle.
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W → ρ:

The 2π vector-channel decay takes place over the intermediate ρ resonance
which yields the dominant contribution to the vector channel. It is ac-
counted for by the Wρ mixing term that is manually incorporated into the
Lagrangian in (2.108) by g cos θCδ

2 Tr[WµνL
µν ]. With the indices k = 1, 2 and

i = 1, 2, 3 this yields

g cos θCδ

2
Tr [(∂µWν − ∂νWµ)(∂

µLν − ∂νLµ)]

=
g cos θCδ

2

[

∂µWνk(∂
µV ν

i + ∂µAν
i )− ∂µWνk(∂

νV µ
i + ∂νAµ

i )

− ∂νWµk(∂
µV ν

i + ∂µAν
i ) + ∂νWµk(∂

νV µ
i + ∂νAµ

i )
]

Tr[tkti] .
(3.21)

Since here only those vertices are considered that yield contributions to the
process τ → ππ0 on tree-level, the terms accounting for the gauge field
self-interactions have been left out. Using the identity

Tr[titj ] =
1

2
δij (3.22)

then leads to

g cos θCδ

4

[

(∂µWν1 − ∂νWµ1)(∂
µρν1 − ∂νρµ1 + ∂µaν11 − ∂νaµ11)

+(∂µWν2 − ∂νWµ2)(∂
µρν2 − ∂νρµ2 + ∂µaν12 − ∂νaµ12)

]

. (3.23)

Transforming the bare fields in (3.23) into their physical, charged represen-
tation then yields the following contributions to the two π vector channel
with intermediate ρ resonance

g cos θCδ

2
∂µW

−
ν (∂µρν + − ∂νρµ +) + h.c. . (3.24)

After performing integration by parts, using the Proca condition ∂µρ
µ = 0

and ∂µ → iqµ one obtains the momentum dependent Wρ mixing term2

g cos θCδq
2

2
(W−

µ ρ
µ+ +W+

µ ρ
µ−) . (3.25)

From (3.23) an additional Wa1 mixing contribution was obtained that also
influences the axial-vector channel, which is subject of the next chapter. The
contributions to the Wa1 mixing read

g cos θCδq
2

2
(W−

µ a
µ+
1 +W+

µ a
µ−
1 ) . (3.26)

2The full calculation for this mixing term is found in Appendix B.
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3.2.2 4π Vector Channel

The four-pion vector channel τ− → ντ 3ππ
0 (π3π0) in Figure 3.1 consists of

the intermediate processes in Figure 3.3

W
a1τ

π

π

π

π

ντ

W
ρ

ρ
τ

π

π

π

π

ντ

W
τ

π

π

π

π

ντ

ρ

Figure 3.3: Intermediate processes of the four pion vector channel.

W → a1π:

The contributions to the Wa1π vertex are obtained from the squared covari-
ant derivative Tr[(DµΦ†)DµΦ] by

Tr
[

(DµΦ)†DµΦ
]

= Tr
[

(∂µΦ
†+ ig1(Φ

†Lµ −RµΦ
†) + igΦ†Wµ)×

(∂µΦ − ig1(L
µΦ − ΦRµ )− ig W µΦ )

]

= g1gTr
[

(Φ†Lµ −RµΦ
†)W µΦ+ Φ†Wµ(L

µΦ− ΦRµ)
]

+ ... (3.27)

and from the square of the field strength tensor Lµν by

1

4
Tr[LµνL

µν ] = −1

4
Tr
{

[∂µLν − ig[W µ, Lν ]− (∂νLµ − ig[W ν , Lµ])]2
}

= −1

4
igTr

(

(∂µLν − ∂νLµ)
{

[W µ, Lν ]− [W ν , Lµ]
}

+
{

[W µ, Lν ]− [W ν , Lµ]
}

(∂µLν − ∂νLµ)
)

+ ... .
(3.28)

From (3.27) the amplitude for the vertex W− → a−1 π
0 (a01π

−) is then deter-
mined to be

1

2
igg1Zφ0W

−
µ (aµ+1 π0 − aµ01 π+) + h.c. , (3.29)

and the contribution from (3.28) reads

1

4
igwZ

[

(W−
µ ∂νπ

+ −W−
ν ∂µπ

+)(∂µaν 01 − ∂νaµ01 )

− (W−
µ ∂νπ

0 −W−
ν ∂µπ

0)(∂µaν+1 − ∂νaµ+1 )
]

+ h.c. .
(3.30)
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W → ρρ0:

TheW−ρ−ρ0 vertex is also obtained from the square of the left-handed field
strength tensor (3.28). It is given by

1

4
ig [ (W−

µ ρ
+
ν −W−

ν ρ
+
µ )(∂

µρν01 − ∂νρµ01 )

− (W−
µ ρ

0
ν −W−

ν ρ
0
µ)(∂

µρν+1 − ∂νρµ+1 ) ]

+h.c. . (3.31)

W → ρππ:

The four-leg vertex of the decay W− → ρ0π−π0(ρ−2π0, ρ−2π) is not only
influenced by the covariant derivative

1

2
gg1Z

2W−
µ

[

π0(π0ρµ + − π+ρµ 0) + π+(π−ρµ + − π+ρµ −)
]

+ h.c. . (3.32)

but also by the interaction terms in L3

−2ig2Tr {Lµν [Lµ, Lν ]} = 2ig2Tr {(ig[W µ, Lν ]− ig[W ν , Lµ]} [Lµ, Lν ]) .
(3.33)

Together with the normalised identity for the trace of the product over four
Pauli matrices

Tr[titjtktl] =
1

8
δijδkl +

1

8
δilδjk −

1

8
δikδjl , (3.34)

the Wρ2π0 and Wρ02π vertex is obtained as

−gg2w2Z2×
{

W−
µ

[

ρµ −(∂νπ
+)2 − ∂νπ

0(∂νπ0ρµ + − ∂µπ0ρν +)

+ ∂νπ
+(∂νπ0ρµ 0 + ∂µπ0ρν 0 − ∂νπ−ρµ + + 2∂µπ−ρν +)

−∂µπ+(2∂νπ0ρν 0 + ∂νπ
+ρν − + ∂νπ

−ρν +)
]

+W−
ν

[

ρν −(∂µπ
+)2 + ∂µπ

0(∂νπ0ρµ + − ∂µπ0ρν +)

+∂µπ
+(∂νπ0ρµ 0 + ∂µπ0ρν 0 + 2∂νπ−ρµ + − ∂µπ−ρν +)

−∂νπ+(2∂µπ0ρµ 0 + ∂µπ
−ρµ + + ∂µπ

+ρµ −)
]

}

. (3.35)

3.3 Axial-Vector Channel

The axial-vector channel contains those processes with odd G-parity. The
non-strange contributions in the decay of τ into the axial-vector channel con-
sist of three- or five-pion final states (Figure 3.4) and their total branching
fraction is BA = (30.19 ± 0.18 ± 0.12)%.
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τ → ντπ2π
0 (3π) τ → ντπ4π

0 (3π2π0, 5π)

Wτ

ντ

π

π

π

Wτ

ντ

π

π

π

π
π

Figure 3.4: The three- and five-pion channels of the axial-vector channel in
the τ decay.

3.3.1 3π Axial-Vector Channel

The amplitudes for the intermediate states of the decay into the 3π axial-
vector channel are depicted in Figure 3.5. In the three-pion decay channel
there are two contributions from τ → 3πντ and τ → π2π0ντ . They have
the branching fractions B3π = 9.041% and Bπ2π0 = 9.239%. The three-pion
decay channel is dominated by the a1 resonance and the small difference
in the two branching fractions is due to a small breaking of strong isospin
symmetry because of the mass difference between the charged and neutral
pions [25]. The blob in the diagram with the a1 intermediate state contains
the decay channels of a1 → 3π (π2π0), a1 → ρπ0(ρ0π), a1 → f0π and
a1 → σπ.

W → 3π(π2π0):

The decay W → 3π(π2π0) receives contributions from the covariant deriva-
tive Tr[(DµΦ)†DµΦ], as well as from L3 by −2ig2Tr {Lµν [L

µ, Lν ]} . The
contributions from the covariant derivative read

1

2
g cos θCg1Z

3wW−
µ

(

π+π0∂µπ0 + π+π−∂µπ+ + π+π+∂µπ−
)

+ h.c. (3.36)

and the contributions from L3 are

gg2 cos θCw
3Z3×

(

W−
µ

{

∂µπ+[(∂νπ
0)2 + ∂νπ

−∂νπ+]− ∂νπ
+[∂µπ0∂νπ0 + ∂µπ−∂νπ+]

}

+W−
ν

{

∂νπ+[(∂µπ
0)2 + ∂µπ

−∂µπ+]− ∂µπ
+[∂µπ0∂νπ0 + ∂µπ

+∂νπ−]
}

)

+h.c. . (3.37)
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Figure 3.5: Intermediate states of the three-pion axial-vector channel.

W → a1:

The dominant a1 intermediate state in the three pion axial-vector channel
arises from the covariant-derivative term. Because of spontaneous breaking
of the axial symmetry there arise terms between the axial-vector fields and
the charged weak bosons that are proportional to the chiral condensate φ20.
They read

1

2
g cos θCg1φ

2
0W

−
µ a

µ + + h.c. . (3.38)

TheWa1 mixing term is affected by the extra term (2.108) that was incorpo-
rated into the model in order to generate the amplitudes for the Wρ mixing.
The modification of the Wa1 mixing amplitude is given by (3.26). It reads

g cos θCδq
2

2
W−

µ a
µ +
1 + h.c. . (3.39)

Thus the probability of the Wa1 mixing contribution in the axial-vector
channel can be calculated from

g cos θC
2

(δq2 + g1φ
2
0)W

−
µ a

µ +
1 + h.c. . (3.40)

W → ρπ:

The vertex of the third and last contribution to the 3π axial-vector channel
from the intermediate process of W coupling directly to a ρ meson and a
pion is obtained from the covariant derivative but also from the field strength
tensors squared. The amplitudes can be calculated from

1

2
ig cos θCg1Zφ0W

−
µ (ρµ 0π+ − ρµ +π0) + h.c. (3.41)

and

1

2
ig cos θCZw

[

(W−
µ ∂νπ

+ −W−
ν ∂µπ

+)(∂µρν 0 − ∂νρµ 0)

−(W−
µ ∂νπ

0 −W−
ν ∂µπ

0)(∂µρν + − ∂νρµ +)
]

+ h.c. . (3.42)
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3.3.2 5π Axial-Vector Channel

W
ρτ

π

π

π

π

π
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Figure 3.6: Intermediate processes of the five-pion axial-vector channel.

The five-pion axial-vector channel contributes less than 1% to the axial-
vector branching fraction. The vertices for its intermediate states (Figure
3.6) are extracted analogously to the previous ones and are now only listed:

W → 2ρπ:

Zgg2w
{

W−
µ [ ρµ+

(

2∂νπ
0ρν0 + ∂νπ

−ρν+ + ∂νπ
+ρν−

)

+ρ0ν
(

ρν0∂µ.π+ − ρµ0∂νπ+ − ρν+∂νπ0
)

−ρ+ν
(

∂νπ0ρµ0 + ∂µπ−ρν+ − ∂µπ+ρν− + 2ρµ−∂νπ+
)

]

+W−
ν

[

ρν+( ∂µπ
+ρµ− + ∂µπ

−ρµ+ + 2∂µπ
0ρµ0

)

+ρ0µ
(

∂νπ+ρµ0 − ∂µπ+ρν0 − ρµ+∂νπ0
)

−ρ+µ (∂µπ0ρν0 + ∂νπ−ρµ+ − ∂νπ+ρµ− + 2∂µπ+ρν−) ]
}

,

W → ρa1:

−1

4
ig
{

W−
µ

[

a0ν(∂
µρν+ − ∂νρν+)− a+ν (∂

µρν0 − ∂νρν0)

−ρ0ν(∂µaν+ − ∂νaν+)− ρ+ν (∂
µaν0 − ∂νaν0)

]

W−
ν

[

a0µ(∂
νρµ+ − ∂µρµ+)− a+µ (∂

νρµ0 − ∂µρµ0)

−ρ0µ(∂νaµ+ − ∂µaµ+)− ρ+µ (∂
νaµ0 − ∂µaµ0)

]

}

,

W → a1ππ:

− 1

2
gg1Z

2W−
µ

(

π+π0a0µ + (π+)2a−µ + π+π−a+µ + h.c.
)

+ gg2w
2Z2

{

W−
ν

[

∂µπ
+
(

∂µπ−aν+ − aν−∂µπ+ − aµ0∂νπ0 − 2∂νπ−aµ+
)

+∂µπ
0
(

∂µπ0aν+ − aν0∂µπ+ − ∂νπ0aµ+
)

+∂νπ
+
(

∂µπ+aµ− + ∂µπ−aµ+ + 2aµ0∂µπ0
)]

+W−
µ

[

∂νπ
+
(

∂νπ−aµ+ − aµ−∂νπ+ − aν0∂µπ0 − 2∂µπ−aν+
)

+∂νπ
0
(

∂νπ0aµ+ − aµ+∂
νπ+ − ∂µπ0aν+

)

+∂µπ
+
(

∂νπ+aν− + ∂νπ−aν+ + 2aν0∂νπ0
)]

}

. (3.43)
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Chapter 4

Decay Widths and Spectral

Functions

4.1 Källen-Lehmann Representation and Optical

Theorem

In general the spectral density function ρ(s) is defined in the Källen-Lehmann
representation of the two-point correlation function

∆(s) =

∞
∫

0

dp2

2π

ρ(p2)

s− p2 + iε
, (4.1)

where the spectral density contains the sum over all possible transition am-
plitudes between the vacuum and each outgoing state λ

ρ(s) =
∑

λ

(2π)δ(s −m2
λ)|〈0|φ(0)|λ0〉|2 , (4.2)

and the variable s is the running mass squared in the centre-of-mass frame.

After performing the integration in (4.1) and using the identity

lim
y→0+

1

x± iy
= p.v.

1

x
∓ iπδ(x) ,

the spectral density is obtained as the imaginary part of the propagator

ρ(s) = |2Im[∆(s)]| .
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Splitting the two-point correlation function into intervals below and above
the threshold for two-particle production yields

∆(s) =

(2m)2
∫

0

dp2

2π

ρ(p2)

s− p2 + iε
+

∞
∫

(2m)2

dp2

2π

ρ(p2)

s− p2 + iε

=
Z

s−m2 + iε
+

∞
∫

(2m)2

dp2

2π

ρ(p2)

s− p2 + iε
. (4.3)

The first term is the free propagator for a particle of mass m. The constant
Z accounts for the field-strength renormalisation of the transition amplitude
of the incoming field to a single outgoing field. Possible bound states would
occur as further poles in the region below (2m)2.

The second term describes the multi-particle final state of the resonance af-
ter the interaction, with a branching cut of the propagator in the complex
p2 plane above the threshold of (2m)2 that contains the continuous distri-
butions of all the multi-particle final states, starting with the process with
two final particles.

Consequently the spectral density may be expressed as

ρ(s) = 2πZδ(s −m2) + 2Im[∆̃(s)] . (4.4)

The delta distribution yields exactly the one-particle state and the second
term contains the continuum contributions of the branching cut.

4.2 Interacting Lagrangian and Spectral Functions

Based on an interacting Lagrangian of the form

L =
1

2
(∂µS)

2 − 1

2
m2

0S
2 +

1

2
(∂µϕ)

2 − 1

2
m2ϕ2 + gSϕ2 , (4.5)

one can find another possibility to parametrise the spectral density of the
scalar field S and describe, e.g., the process S → 2ϕ [26].

The propagator of the interacting theory then reads

∆(s) =
1

s−m2
0 + g2Re [Σ(s)] + g2iIm [Σ(s)] + iε

, (4.6)

For a non-interacting theory (g → 0) this is the free propagator of a scalar
field

∆S(s) =
1

s−m0 + iε
. (4.7)
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Figure 4.1: Vacuum polarisations of a resonance

In the interacting case, for cubic point interactions, the self-energy Σ con-
tains the sum1 of the loop diagrams depicted in Fig. 4.1

Σ(s) = −i
∫

d4q

(2π)4
1

[

(q + p
2 )

2 −m2 + iε
] [

(q − p
2 )

2 −m2 + iε
] . (4.8)

This approach is discussed for a scalar resonance in [26]. If g goes to zero,
the propagator of the free field with mass m0 is obtained. For g 6= 0 the
mass of the intermediate resonance fulfils the equation

mr −m2
0 + g2Re [Σ(mr)] = 0 .

The spectral density can thus be defined as

ρ(s) = Zδ(s −mr)Θ(2m− s) +
1

π
Im
[

∆̃(s)
]

.

The generalised optical theorem relates the imaginary part of the self-interaction
to the decay width

g2Im[Σ(s)] =
√
sΓ(s)

and with mr = m0 + g2Re [Σ(s)] the spectral density above threshold reads

ρ(s) =
1

π

√
sΓ(s)

(s−m2
r)

2 + (
√
sΓ(s))2

. (4.9)

For a momentum-independent decay width Γfull and mass mr the Breit-
Wigner distribution is obtained and reads

ρBW(s) =
1

π

mrΓfull

(s−m2
r)

2 + (mrΓfull)2
. (4.10)

Now one can also consider coupled decay processes of an initial state via a
resonance into a final state. As it was shown in [26] the mass distribution

1Because of the logarithmic divergence in the definition of the self-energy in (4.8) it
is necessary to use a regularisation function fΛ(s) to implement a cut-off Λ which will
modify the decay width by a multiplicative s−dependent factor. The appropriate cut-off
function fΛ(s) will be introduced when it is needed for the further analysis.
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of the decay width of a process i → r + f ′ → f ′ + f can be expressed as
convolution of the decay Γi→rf ′(s) of the initial state i into an intermediate
resonance-like state r and a final state f ′ and the spectral density function
ρ(s) of the resonance with final states f

Γi→ff ′ =

∞
∫

0

dsρr→f (s)Γi→rf ′(s) , (4.11)

where f describes a final state, that may consist of 1, 2, . . . , n particles.

For example; the decay of the τ lepton via its vector ρ or axial-vector a1
decay channels can be calculated from the decay rate of τ → ντr, with
r = ρ, a1, and the vector or axial-vector spectral density of the resonances
ρV (s) and ρA(s) as follows

Γτ→ντ2π(4π) =

∞
∫

0

dsρρ→2π(4π)(s)Γτ→ρντ (s) , (4.12)

Γτ→ντ3π(5π) =

∞
∫

0

dsρa1→3π(5π)(s)Γτ→a1ντ (s) . (4.13)

4.3 ALEPH Spectral Functions and their Parame-

trisation within the Linear Sigma Model

The ALEPH collaboration has measured the τ spectral function in great
detail [25]. The spectral functions v1(s) and a1(s) in the vector and axial-
vector channel are given by

v1(s)=
m2

τ

6 cos θC
2SEW

B(τ−→ V −ντ )

B(τ−→ e−ν̄eντ )
× dNV

NV ds

[

(

1− s

m2
τ

)2(

1+
2s

m2
τ

)

]−1

,

(4.14)

a1(s)=
m2

τ

6 cos θC
2SEW

B(τ−→ A−ντ )

B(τ−→ e−ν̄eντ )
× dNA

NAds

[

(

1− s

m2
τ

)2(

1+
2s

m2
τ

)

]−1

.

(4.15)

They are related to the imaginary part of the two-point correlation functions
as

Im[∆V (s)] =
1

2π
v1(s) , (4.16)

Im[∆A(s)] =
1

2π
a1(s) . (4.17)
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The factor dN/Nds describes the normalised invariant mass-squared distri-
bution. As shown in Appendix C, it is related to the spectral density ρ(s)
and the decay width Γτ−→V −/A−ντ (s) by

dNV

NV ds
=
ρV (s)Γτ−→V −ντ (s)

Γτ→V −ντ

,
dNA

NAds
=
ρA(s)Γτ−→A−ντ (s)

Γτ→A−ντ

(4.18)

where Γτ→V −ντ and Γτ→A−ντ are the partial widths in the corresponding
channel. They are related to the branching fraction by

Γτ→V −(A−)ντ = B(τ− → V −(A−)ντ ) · Γfull
τ .

The partial decay widths are also related to ρ(s) by the mass distribution
of the decay width in Equation (4.11).

a)
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τ

ρ
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4
√
2M2

W

b)

1−k2/M2

W
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W

τ
a1

ντ

g

2
√
2

g cos θC(δq2+g1φ2
0)

2
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− g2 cos θC(δq2+g1φ2
0)

4
√
2M2

W

Figure 4.2: Effective couplings of a) τ → ρντ and b) τ → a1ντ .

The decay width Γτ→Wντ (s) was calculated in Appendix D based on the
assumption of τ decaying into an asymptotic off-shell W boson. The result
for the decay width will now be used to further calculate the momentum-
dependent decay width of the τ lepton into a τ neutrino and the ρ and a1
mesons. Vectors and axial vectors are both spin-1 particles just as the W
boson and the result (D.12) can directly be generalised to the width for the
τ lepton decaying into a neutrino and any asymptotic spin-1 particle. Then
the momentum-dependent decay widths in the centre-of-mass frame of τ
read

Γτ→ρντ (s) =
g2ρm

3
τ

8π

1

s

(

1− s

m2
τ

)2(

1 +
2s

m2
τ

)

, (4.19)
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Γτ→a1ντ (s) =
g2a1m

3
τ

8π

1

s

(

1− s

m2
τ

)2(

1 +
2s

m2
τ

)

(4.20)

and only the couplings gρ and ga1 remain to be identified. Compared to
the energy scale of 1 GeV of the investigated processes the mass MW =
80, 399 ± 0.023 GeV is large and the W propagator can be reduced to

− gµν
M2

W

. (4.21)

Thus, the couplings gρ and ga1 are obtained from representing the exchange
of the weak W boson by a point-like interaction vertex, as shown in the
diagrams in Figure 4.3. Together with the couplings that were derived from
the Lagrangian in Chapter 3 in (3.24) and (3.40), and with q2 → s, the
effective vector coupling gρ and the effective axial-vector coupling ga1 are
defined as

gρ =
g2 cos θC

4
√
2M2

W

δ · s , (4.22)

ga1 =
g2 cos θC

4
√
2M2

W

(

g1φ
2
0 + δ · s

)

. (4.23)

Finally, since each spectral density has to fulfil the sum rule

∞
∫

0

ρ(s)ds = 1 , (4.24)

a normalisation factor

1

N
, N =

∞
∫

0

ρ(s)ds (4.25)

is added to the definitions of v1(s) and a1(s).

Now, the relations between the ALEPH spectral functions v1(s), a1(s) and
the spectral densities ρV (s), ρA(s) within the framework of the Linear Sigma
Model read

v1(s) =
(2π)2

SEW
(δ · s)2 1

s

ρV (s)

N
, (4.26)

a1(s) =
(2π)2

SEW
(δ · s+ g1φ

2
0)

2 1

s

ρA(s)

N
. (4.27)

The influence of the model is seen at two points. At first by means of the two
couplings gρ and ga1 . They have been directly derived from the Lagrangian
Lint, which itself is based on gauge invariance and the assumption that ρ
and a1 are chiral partners. Second, the s-dependent decay widths in (4.9)
can also be calculated directly from Lint.

75



Chapter 5

Vector Channel Spectral

Function

In this chapter the vector-channel spectral density of the τ decay is calcu-
lated and used to determine the value for the vector channel coupling δ.
Since several different approaches to parametrise the spectral density are
used, this chapter is now shortly summarised.

1. The vector-channel coupling δ is estimated to δ ≃ 0.20662 on the basis
of the convolution (5.2) from the previous section.

2. The Breit-Wigner spectral density which is based on the s-independent
full width at half maximum is used as a first approximation and yields
δ ≃ 0.19946.

3. The fully s-dependent spectral function is calculated on the basis of the
s-dependent decay width Γρ−→π−π0(s) obtained from the Linear Sigma
Model. Within that section it will be found that it is necessary to shift
the ρ meson mass to improve the agreement between the data and the
spectral function. The spectral function will be fitted with respect
to three parameters; the ρ mass mρ, the full width Γρ(m

2
ρ) and the

free parameter δ. The results of this fit will then be inserted into the
Breit-Wigner spectral density to compare the two parametrisations.

4. Implementing the Wρ mixing in a different way on the basis of a new
Lagrangian avoids the shift of the ρ mass. The Breit-Wigner spectral
density and the fully s-dependent spectral density will be applied to
calculate the vector spectral function. The result is compared to the
one from the previous section.
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5. Two other s-dependent ρ decay widths (Gounaris-Sakurai, Vojik-Lichard)
for the decay ρ− → π−π0 will be used to parametrise the spectral func-
tion. The result is again compared to the result from the s-dependent
decay width Γρ−→π−π0(s) of the Linear Sigma Model.

Section (5.3) contains the approximation in 3. It will be seen, that the fully
s-dependent spectral function v1(s), based on the decay width Γρ−→π−π0(s)
from the Linear Sigma Model and a derivative Wρ coupling ∼ δs, yields the
best dynamical description of the vector channel.

5.1 First Estimate of the Parameter δ

The main contribution to the inclusive1 vector spectral function of the τ
lepton in [25] comes from the π−π0 channel. It has a clearly defined peak
with v1(s = 0.5875 GeV2) = 2.7654. The data of the inclusive and exclu-
sive invariant mass squared distributions from the ALEPH collaboration are
found in [27].

The decay of τ into two-pion final states is the result of the direct decay
of W into two pions together with the process where W mixes with the
ρ meson which then itself decays into two pions. This would yield to a
probability for the total decay of τ into two pions where the amplitudes of
the two processes interfere with each other. Based on the assumption that
the direct contributions from W− → π−π0 are small, the decay rate for
τ− → π−π0ντ will only depend on the free parameter δ. This is the Wρ
coupling constant that was introduced in Chapter 2.2 by

LWρ =
g cos θCδ

2
Tr[Wµνρ

µν ] . (5.1)

The exclusive spectral density of the process τ− → ρ−ντ → π−π0ντ then
makes it possible to determine the numerical value of δ.

The following gedankenexperiment only leads an estimate of the range of
δ and is not used in further calculations. Following the purely hypotheti-
cal assumption that the ρ meson is “stable”2, the spectral density in the

1The inclusive spectral function describes the sum of all spectral functions in the
respective channel, e.g., in the case of the non-strange vector channel the inclusive
spectral function contains the spectral functions of the processes τ−

→ π−π0ντ and
τ−

→ π+2π−ντ (π
−2π0ντ ), while the exclusive spectral function only contains one or

some of the partial spectral functions.
2If the ρ resonance were stable, the final state of the τ decay in the π−π0 vector

channel would of course not contain any pions. But still, since ρ can only decay into two
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convolution (4.11) would reduce to a delta distribution δ(s − m2
ρ). After

performing the integration in (4.11) the following relation

Γτ−→π−π0ντ =

∞
∫

0

ds δ(s −m2
ρ)Γτ−→ρ−ντ (s)

= Γτ−→ρ−ντ (m
2
ρ)

=
m3

τ

8πm2
ρ

(

g2 cos θC

4
√
2M2

W

δ mρ

)2(

1−
m2

ρ

m2
τ

)2(

1 +
2m2

ρ

m2
τ

)

(5.2)

is obtained. This is also in agreement with the fact that in the process
where τ decays into two final pions via an intermediate ρ, the ρ meson it-
self can, because of parity conservation, only decay into two pions. From
Γexp.
τ−→π−π0ντ

= 5.7811 · 10−13 GeV the parameter δ is expected to be approx-
imately δ ≈ 0.20662.

5.1.1 The Breit-Wigner Spectral Density and the fully s-

Dependent Spectral Density

In order to obtain an exact value for δ, different parametrisations of the spec-
tral density ρV (s) which enters the definition of the vector-channel spectral
function

v1(s) =
(2π)2

SEW
(δs)2

1

s
ρV (s) , (5.3)

are calculated and compared to the data for the π−π0 exclusive vector chan-
nel.

The Breit-Wigner spectral density is defined as

ρBW
V (s) =

1

π

mρΓ
full
ρ

(s−m2
ρ)

2 + (mρΓfull
ρ )2

, (5.4)

where Γfull
ρ is the experimentally determined full width at half maximum

of the ρ resonance and mρ is defined as the square root of the resonance’s
peak position. The Breit-Wigner spectral density is only an approximation
of the spectral density based on an s-dependent decay width Γ(s) for the
resonance in question.

pions and since ρ is considered to be the dominating intermediate state, one can infer that
all two-pion final states in the vector channel result from an intermediate ρ and thus the
decay rate of τ−

→ π−π0ντ must be the same as the decay rate Γτ−→ρ−ντ
(m2

ρ).
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The fully s-dependent spectral density for the ρ meson reads

ρV (s) =
1

π

√
s Γρ(s)

(s−m2
ρ)

2 + (
√
s Γρ(s))2

. (5.5)

From the s-dependent decay width Γρ(s) one obtains the full width by the
definition

Γρ(s = m2
ρ) ≡ Γfull

ρ . (5.6)

5.2 Breit-Wigner Spectral Density

Since the ρ resonance’s full width at half maximum is small compared to
its mass, it can be approximated by the Breit-Wigner spectral density given
in (5.4). This allows for an estimate of the influence of the vector coupling
δ and also for a first testing of the parametrisation of the spectral density
v1(s) within the Linear Sigma Model. E.g., the convolution formula for the
unstable ρ meson (4.11) enters the normalisation constant in the definition
of the spectral density v1(s) in Equation 5.3 and then also influences the
numerical value for the vector coupling δ.
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Figure 5.1: Breit-Wigner approximation of the vector channel with ρ mass and
width from the PDG; mρ = 0.77549 GeV , Γfull

ρ = 0.1491 GeV. The vector-channel
coupling δ = 0.20662 is obtained from (5.2) .
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The result for the spectral function with Breit-Wigner spectral density ρBW
V (s)

is presented in Figure 5.1 where the ρ mass and full width are the values
given by the Particle Data Group (PDG):

mρ = 0.77549 GeV ,

Γfull
ρ = 0.1491 GeV . (5.7)

The result is already remarkably good, although the function exceeds the
peak of the data about 9%. Fig. 5.1 is still based on the vector coupling
constant that was obtained from the assumption of a “stable” ρ meson which
is not only a strong simplification but moreover, this is not the case in nature.
The too large peak value of v1(s) can be improved by adjusting δ so that
the spectral function reproduces the height of the peak.

A fit for the vector coupling yields

δ = 0.19946 . (5.8)

The result is seen in Figure 5.2 and agrees remarkably well with the data.
With the Breit-Wigner spectral density and the fitted Wρ coupling δ the
lineshape of the vector channel is reasonably well reproduced. There is
however a small shift about 25 MeV2 of the entire spectral function v1(s) to
higher values of s. The free parameter δ only influences the height of the
spectral density. It can not be modified in a way that the spectral density
would be shifted to smaller values of s.
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Figure 5.2: Breit-Wigner approximation of the vector channel with parameters
mρ = 0.77549 GeV , Γfull

ρ = 0.1491 GeV from the PDG, and fitted δ = 0.19946 .
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It was seen how the ρ resonance can be approximated by a spectral function
that uses the Breit-Wigner parametrisation of the spectral density. Using
the full width at half maximum does not account for the full dynamics of the
decay ρ− → π−π0 since it does not include the momentum-dependence in
the ρ-meson decay width. In the next section the fully s-dependent spectral
density (5.5) will be calculated.

5.3 Spectral Density based on the s-Dependent

Decay Width Γρ−→π−π0(s) from the Linear Sigma

Model

The dynamics of the decaying ρ meson is described by the momentum-
dependent decay width Γρ−→π−π0(s) which has been calculated within the
U(2)L×U(2)R Linear Sigma Model in [28] and can now be inserted into the
definition of the spectral density (5.5).

The result for the decay width is

Γρ−→π−π0(s) =
m5

ρ

48πm4
a1

[

1−
(

2mπ√
s

)2
] 3

2
[

g1Z
2 +

g2
2
(1− Z2)

]2
. (5.9)

The parameters g1 and g2 are given by

g1 =
ma1

Zfπ

√

1− 1

Z2
, (5.10)

g2 =
2

Z2 − 1

(

g1Z
2 − 4m2

a1

mρ

√

3πΓρ−→π−π0

(m2
ρ − 4m2

π)
3
2

)

. (5.11)

They are related to each other in such a way that, independent from the
choice of the parameters Z and ma1 , the momentum-dependent decay width
reproduces the full width if s = m2

ρ:

Γρ−→π−π0(m2
ρ) = Γfull

ρ .

The fully s-dependent spectral density v1(s) based on Γρ−→π−π0(s) reads

v1(s) =
4π

SEW
(δs)2

1

s

√
s Γρ−→π−π0(s)

(s−m2
ρ)

2 + (
√
s Γρ−→π−π0(s))2

. (5.12)
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Figure 5.3 presents the result for the spectral density with momentum depen-
dent decay width Γρ−→π−π0(s) and the ρ mass and width as they are given
by the PDG. The vector-channel coupling δ = 0.20625 was again fitted to
the value of the peak. It is surprisingly close to the value that was obtained
by the convolution formula in (5.2) which was based on the assumption that
ρ was stable, but here the full dynamical process of the ρ meson decay is
described. With one free parameter and the momentum-dependent ρ decay
width in (5.5), the vector-channel spectral density is well described.
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Figure 5.3: The vector spectral density v1(s) based on the s-dependent decay
width Γρ−→π−π0(s) from the Linear Sigma Model with mass mρ = 0.77549 GeV ,
full width Γρ−→π−π0(m2

ρ) = 0.14910 GeV from the PDG, and fitted δ = 0.20625 .

5.3.1 Fitted Spectral Function based on Γρ−→π−π0(s)

However, there is still the small shift towards the higher s-range, that was
already seen in the previous section for the Breit-Wigner spectral density.
As it was, e.g., shown in [29] the values for the obtained masses for the ρ
meson depend strongly on the underlying parametrisation of the momentum-
dependent decay width.

Thus, the spectral density with momentum-dependent decay width (5.12)
is subjected to a fit with respect to the ρ mass and width, and the vector-
coupling δ. The fitting method is the so-called χ2-fit, that is based on the
method of the least squares.
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The result is shown in Figure 5.4. The vector channel coupling δ obtains a
small downward scaling to

δ = 0.20397 (5.13)

but is of almost the same size as the previous results from the convolution
formula, δ = 0.20662, and the simply to the peak-value fitted coupling
δ = 0.20625.
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Figure 5.4: The vector-channel spectral density v1(s) based on the s-dependent
decay width Γρ−→π−π0(s) from the Linear Sigma Model and fitted parameters:
mρ = 0.75515 GeV, Γρ−→π−π0(m2

ρ) = 0.14150 GeV, and δ = 0.20397 .

For ρ mass and width the values

mρ = 0.75515 GeV , (5.14)

Γρ−→π−π0(m2
ρ) = 0.14150 GeV (5.15)

were obtained. With these fitted values the spectral function is shifted
about 30 MeV2 to the lower s-range. The shifted ρ mass mρ = 0.75515 GeV
is only about 2.6% smaller than the value for the ρ mass given by the PDG,
mρ = 0.77549 GeV.

For s-values above ≈ 0.7 GeV the spectral density lies slightly above the
data. This deviation results from the diverging contributions in the self-
energy of the ρ meson. They correspond to the loop diagram that was
discussed in (4.8). The result for the vector-channel spectral density can
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then be even further improved by multiplying the momentum-dependent
decay width with a regularisation function which is defined by

fΛ(s) = exp
[4m2

π − s

Λ2

]

. (5.16)

The regularisation function fΛ(s) is based on the exchanged momentum in
the decay process and a cut-off parameter Λ which is of dimension GeV.

The s-dependent width of the resonance is then modified to

Γρ−→π−π0(s)
fΛ(s)

−−−−→ Γρ−→π−π0(s) e
4m2

π−s

Λ2 . (5.17)
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Figure 5.5: Fit to v1(s) with s-dependent ρ decay width from the Linear
Sigma Model and cut-off Λ = 1.1 GeV and fitted values mρ = 0.75479 GeV,
Γρ−→π−π0(m2

ρ,Λ) = 0.15694 GeV, and δ = 0.19840.

While the value of the ρ mass is almost insensitive to value of the cut-off
parameter, the full width depends strongly on the choice of the cut-off pa-
rameter Λ. With decreasing Λ the “full” width Γfull

ρ = Γρ−→π−π0(s = m2
ρ)

becomes unphysically large. This is, of course, no surprise as the regularisa-
tion function is a multiplicative factor in the decay width. Thus, the lower
bound of the cut-off parameter was chosen to be 1.1 GeV. Then the result
for the decay width Γfull

ρ was stable and did not run to unphysically large
values anymore.
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The results for the fit with cut-off parameter Λ = 1.1 GeV are

δ = 0.19840 , (5.18)

mρ(Λ) = 0.75479 GeV , (5.19)

Γρ−→π−π0(m2
ρ,Λ) = 0.15694 GeV . (5.20)

The fit to the spectral density with cut-off yields a decreasing ρ mass and
an increasing ρ full width.

The fitted spectral density with momentum-dependent ρ decay width and
cut-off is shown in Figure 5.5. The diverging contributions from the ρ-
meson self-energy are almost entirely removed by the cut-off and the func-
tion smoothly follows the lineshape of the data. The spectral density v1(s)
together with the momentum-dependent decay width derived from the La-
grangian of the U(2)L×U(2)R Linear Sigma Model reproduces the exclusive
two-pion vector-channel spectral density in very good agreement with the
data, if the ρ mass and width are slightly modified. The result can be even
more improved if a cut-off is applied.

5.3.2 Comparison to Breit-Wigner with fitted Parameters

δ and mρ

If the fitted parameters are inserted into the Breit-Wigner spectral density
the result in Figure 5.6 is obtained. By the fitted mass the Breit-Wigner
spectral density is shifted to a lower s-range and its peak position coincides
now with the peak position of the data. However, it obtains a peak value
that is too large and exceeds the data.

Compared to the spectral density with momentum dependent decay width
the Breit-Wigner approximation yields underestimated values for the vector-
channel coupling δ and also underestimated values for the full width of the
ρ resonance.

It will now be examined how other parametrisations for the s-dependent ρ
decay width can be applied to calculate the spectral density for the vector
channel.
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Figure 5.6: Result for v1(s) with the Breit-Wigner spectral density and the fitted
parameters from (5.15): mρ = 0.75515 GeV, Γfull

ρ = 0.1415 GeV, and δ = 0.20398.

5.4 Comparison to other Parametrisations for the

WρVertex and the s-Dependent ρDecay Width

5.4.1 Momentum-Independent Wρ Mixing

One possibility to avoid the shift of the ρ mass and keep the values given by
the PDG is to generate the Wρ vertex within the Linear Sigma model by a
non-derivative coupling.

Therefore, the additional term that was introduced to the Lagrangian at the
end of Section 2.2 in (2.108) is replaced by

Lmi =
g cos θCδmρ

2
Tr[Wµρ

µ] . (5.21)

The additional constant factor mρ could, in principle, be absorbed in the
coupling constant δ. Writing it down explicitly in the above Lagrangian
helps to obtain the vector-channel coupling with a numerical value that can
be compared to the results of the previous sections.

The “new” spectral function, with the non-derivative coupling for the Wρ
mixing term reads now

vnd1 (s) =
(2π)2

SEW
(δm2

ρ)
2 1

s
ρV (s) , (5.22)
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where for ρV (s) one can again insert either the Breit-Wigner approximation
(5.4) based on the full width Γfull

ρ or the fully s-dependent spectral density
(5.5) based on the momentum-dependent decay width. The result for this
approximation with PDG values for mρ and Γfull

ρ is shown in Fig. 5.7. Again
the vector-coupling δ was fitted so that the spectral density obtains the peak
value of the data.
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Figure 5.7: Breit-Wigner approximation of the vector channel spectral density
vnd1 (s) with non-derivative coupling in the Wρ mixing Lagrangian. Mass mρ =
0.77549 GeV and full width Γfull

ρ = 0.1491 GeV are the values from the PDG and
the vector coupling is fitted to δ = 0.19942 .

The peak of vnd1 (s) is moved to the correct position. But the spectral density
now only reproduces the data around the position of the peak. For small
s and above the 2π-production threshold the spectral density based on the
non-derivative coupling yields a too large result for the two-pion decay and
for s & 0.7 GeV2 the calculated spectral density goes much faster to zero
than the data. Moreover, in the low s region the spectral density v1(s) based
on full width Γfull

ρ already starts to diverge above the threshold for two-pion
production. Because of the constant vector-channel coupling ∼ δmρ the 1/s-
dependence in the definition of the spectral function v1(s) becomes dominant
for small s. With a non-derivative vector-channel coupling ∼ δmρ only the
data in the range 0.4 GeV2 < s < 0.7 GeV2 can be described.

Figure 5.8 presents the result for the fully momentum-dependent spectral
density based on the decay width Γρ−→π−π0(s) and with non-derivative cou-
pling. Although, the peak is again shifted to the right position the result
is, compared to the previous case of Breit-Wigner, not improved. The fully
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Figure 5.8: Spectral density based on the momentum-dependent decay width
Γρ−→π−π0(s) with non-derivative coupling in the Wρ mixing term; mρ =
0.77549 GeV and Γρ−→π−π0(m2

ρ) = 0.1491 GeV are the values from the PDG, and
the vector coupling is fitted to δ = 0.20434 .

s-dependent spectral density also shows a divergence above the two-pion
threshold and lies below the data for s & 0.7 GeV2.

The spectral density based on a non-derivative coupling in the Wρ mixing
term, cannot reproduce the data as well, as it was done with the spectral
density based on the derivative coupling from

LWρ =
δg cos θC

2
Tr[WµνL

µν ] . (5.23)

Moreover, apart from the divergence in the low s region which is caused by
the constant coupling, implementing theWρ mixing by (5.21) would destroy
the gauge invariance of the Lagrangian, while its only advantage lies in the
fact that one could keep the ρ mass and width fixed to the values that are
given by the Particle Data Group.

These values are, however, strongly dependent on the momentum-dependent
ρ decay width which enters, e.g., the spectral density. Therefore the results
for two other s-dependent decay widths are examined in the next subsection.
One is the decay width of Gounaris and Sakurai and the other one is a decay
width Vojik and Lichard have used in order to fit the ρ form factors, for the
experiments CMD-2, SND, and KLOE.
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5.4.2 Two other Parametrisations of the ρ Decay Width

In [29] Vojik and Lichard have shown that the obtained values for the ρ mass
and width depend strongly on the underlying parametrisation of the ρ decay
width. Based on two parametrisations of the ρ resonance’s contribution to
the pion electromagnetic form factor they fitted the experimental data of
different collaborations (CMD-2, SND, KLOE) and compared the obtained
masses and widths.

They used two different formulas for the ρ− → π−π0 decay width. On
average, the values based on the parametrisation

ΓVL(s) = Γρ

m2
ρ

s

(

s− 4m2
π

m2
ρ − 4m2

π

)
3
2

, (5.24)

are about 10 MeV smaller than the ones obtained from the generally used
Gounaris-Sakurai parametrisation

ΓGS(s) = Γρ
mρ√
s

(

s− 4m2
π

m2
ρ − 4m2

π

)
3
2

, (5.25)

which is also the parametrisation underlying the Particle-Data-Group’s data
for the ρ mass and width.

The decay width in (5.24) is additionally modified by a regularisation func-
tion

exp

{

m2
ρ − s

24β2

}

, (5.26)

with cut-off

β = 0.4 GeV . (5.27)

Table 5.1 shows the results for ρ mass and width which they obtained by
using the two decay widths in (5.25) and (5.24) to calculate the electromag-
netic form factors of the ρ decay.

Both momentum-dependent decay widths ΓVL(s) and ΓGS(s) are now in-
serted into the definition of the vector-channel spectral density (5.5). It
was then examined how the mass and width that were obtained from fitting
the KLOE data are, when applied to the ALEPH data, can describe the
two-pion vector channel.

Figure 5.9 shows the result for the spectral density based on ΓVL(s), the cut-
off β = 0.4 GeV, mρ = 0.76139 GeV, Γρ = 0.14007 GeV, and δ = 0.20085.
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Figure 5.9: Spectral density v1(s) for the Vojik and Lichard parametrisation of the
s-dependent decay width, ΓVL(s) with cut-off β = 0.4 GeV applied to the ALEPH
data with mass mρ = 0.76139 GeV and width ΓVL(m

2
ρ) = 0.14007 GeV obtained

from KLOE data, and with fitted δ = 0.20085.

With a ρ mass that is shifted about 2.9% the spectral density based on
ΓVL(s) describes the peak and full width at half maximum reasonably well.
The value for the vector coupling δ = 0.20085 was again fitted so that the
spectral density describes the peak. However, although a cut-off of the form
(5.27) is already included, the spectral density clearly gives too high values
for the two-pion production in the higher s-range.

The result for the spectral density based on the Gounaris-Sakurai decay
width ΓGS(s) is presented in Fig. 5.10. The values for the ρ mass and the ρ
full width are the results for the KLOE data and given in Table 5.1. It does

mρ ΓVL(m
2
ρ) mρ ΓGS(m

2
ρ)

[GeV] [GeV] [GeV] [GeV]

CMD-2 0.76708 0.1361 0.7753 0.1423

SND 0.77460 0.1461 0.7746 0.1473

KLOE 0.76139 0.14007 0.76922 0.14471

Table 5.1: Results for the ρ mass and width obtained on the basis of the s-
dependent parametrisation for the decay widths ΓVL(s) and ΓGS(s) as given
in (5.24) and (5.25).
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Figure 5.10: Spectral density v1(s) for the Gounaris-Sakurai parametrisation of
the s-dependent ρ decay width ΓGS(s) applied to ALEPH data but with mass and
width extracted from KLOE data: mρ = 0.76922 GeV , ΓGS(m

2
ρ) = 0.14471 GeV ,

and fitted δ = 0.25606 .

not match the data as well as Vojik and Lichard’s decay width ΓVL(s). The
deviation from the data becomes much larger in the upper s-range.

In this parametrisation the vector coupling constant would be δ = 0.25606
which is about 25% higher than the values extracted from the other parametri-
sations. Taking δ with a value about 0.25 would give much better results for
the axial-vector channel3 than with δ ≈ 0.2. Then it would not be necessary
to change Z to a value that is not only outside the range 1.47 ≤ Z ≤ 1.87
as it was obtained by previous calculations of the σ → ππ decay width, but
also predicts unphysically high values for the s-dependent width Γa1→ρπ(s).

However, as it can be clearly seen in Fig. 5.10 the full width at half maximum
is not reproduced. Even with an additional regularisation function based on
the momentum in (5.25), it is impossible to obtain the same width, the
position of the peak and not such a strong deviation from the data points
in the region of s > 0.7 GeV. Moreover, a cut-off based on the Gounaris-
Sakurai parametrisation would have to be approximately Λ ≈ 1.8 GeV in
order to have a significant effect on the higher s-range and to obtain an
appropriate width and for Λ ≈ 1.8 GeV. But then the value of the vector
coupling decreases again to δ = 0.19608 and the problem with the size of

3In Section 6 the problems with the interdependencies of the coupling constants and
the result for the axial-vector spectral density will be discussed in detail.
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the pion wave-function renormalisation constant Z is recreated.

In this chapter the vector-channel spectral density parametrised within the
U(2)L × U(2)R Linear Sigma Model as it was developed in Chapter 2.2 has
been calculated. The result agrees very well with the data for the exclusive
two-pion vector channel given by the ALEPH collaboration. The free param-
eter δ allows to adjust the height of the spectral functions. The results for
δ that were obtained for different parametrisations of the spectral function
are summarised in Table 5.2.

It was found that none of the other examined parametrisations, the different
expressions for the s-dependent decay width (ΓVL(s) ΓGS(s)) or another
Wρ mixing term in the Lagrangian (5.21), lead to a better result for the
spectral function, than it is obtained with the parametrisation of v1(s) that
bases on the ρ decay width from the Linear Sigma Model and s-dependent
vertex with vector-channel coupling δ.

Spectral density mρ

[GeV]

Γ(m2
ρ)

[GeV]

Vertex δ Cut-off

[GeV]

ρ “stable” 0.77549 0.1491 δs 0.20662 none

Breit-Wigner 0.77549 0.1491 δs 0.19946 none

Breit-Wigner 0.77549 0.1491 δm2
ρ 0.19942 none

Linear Sigma Model 0.77549 0.14910 δs 0.20625 none

Linear Sigma Model 0.75515 0.14150 δs 0.20398 none

Linear Sigma Model 0.75479 0.15694 δs 0.19840 Λ = 1.1

Linear Sigma Model 0.77549 0.14910 δm2
ρ 0.20434 none

Vojik-Lichard 0.76139 0.14007 δs 0.20085 β = 0.4

Gounaris-Sakurai 0.76922 0.14471 δs 0.25606 none

Table 5.2: Values obtained for the Wρ coupling constant δ for the different
parametrisations of the ρ decay widths that enter the spectral density v1(s). The
values in the line marked in red are the results of the fit to the vector channel
spectral density and will be used for the axial-vector spectral density in the next
chapter.
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Chapter 6

Axial-Vector Channel

Spectral Function

6.1 Breit-Wigner Spectral Density

The vector coupling constant δ was determined in the previous chapter. The
results will now be used to calculate the axial-vector channel’s spectral func-
tion. The axial-vector spectral function’s peak is not as sharp as the one of
the vector spectral function, which leads to difficulties in the determination
of the a1 meson mass. While the ρ spectral function clearly has its peak
at v1(s = 0.5875 GeV2) = 2.7654, the a1 resonance’s peak is a broad distri-
bution of three-pion final states between 1.0625 GeV2 ≤ s ≤ 1.3375 GeV2

with 0.95407 ≤ a1(s) ≤ 0.98189. In the PDG the a1 mass is given by
ma1 = (1.23 ± 0.04) GeV . The uncertainty in the full a1 width with
0.25 GeV < Γa1 < 0.6 GeV is even larger. Also, recent publications by
Wagner and Leupold [30, 31] have made the argument that the observed
resonance might actually not be a q̄q state, but a molecule-like, coupled ρπ
state. So far, the resonance as it is shown in [25] was interpreted as the
signal of the JPC = 1++ mesonic resonance of the SU(Nf = 3) meson octet.
In the following chapter, the resonance depicted in Fig. 6.1 will be studied
under the assumption that the a1(1260) resonance is indeed the q̄q state
that can be associated with the a1 meson of the Nf = 3 meson octet and
the chiral partner of ρ.

The intermediate decay processes of the axial-vector channel are identified
as

τ− →W−ντ → 2π−π+ντ (π
−2π0ντ ) ,

τ− →W−ντ → a−1 ντ → ρ0π−ντ (ρ
−π0ντ ) → 2π−π+ντ (π

−2π0ντ ) ,
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Figure 6.1: The exclusive axial-vector spectral function for the process τ →
3πντ , (2π

−π+ντ + π−2π0ντ ) as it was published by the ALEPH collaboration in
[25]. The raw data for the spectral function and also its errors are found in [27].

τ− →W−ντ → a−1 ντ → σ π−ντ → 2π−π+ντ ,

τ− →W−ντ → a−1 ντ → f0 π
−ντ → 2π−π+ντ ,

and

τ− →W−ντ → a1ντ → 2π−π+ντ (π
−2π0ντ ) .

The branching fractions for the two different final states 2π−π+ντ and
π−2π0ντ are almost identical B(τ− → 2π−π+) = (9.041 ± 0.097)% and
B(τ− → π−2π0) = (9.239 ± 0.124)%. A small breaking of strong isospin
symmetry causes the mass difference between the charged and neutral pion
mass and this in turn explains why these two branching fractions are not of
exactly the same size. Since the two branching fractions are almost equal
(Γ2π−π+/Γπ−2π0 = 0.98), it is valid to assume that the decay of a1 takes
place predominantly via the ρπ intermediate state [25, 32]. If, in this decay
channel, the contributions from the processes involving σ and f0 were not
suppressed, one would see a larger difference in the two branching fractions1.
There exist data on the a1 branching fractions, however, the PDG does not
use the data published in [32] for further analysis. Since the dependence on
the pion wave-function renormalisation constant Z is at parts very compli-
cated, the results in [32] will nevertheless be used selectively in the course
of this chapter.

1Here, f0 describes the f0(1370) resonance.
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The axial-vector spectral function in the parametrisation of the Linear Sigma
Model is given by (4.27),

a1(s) =
(2π)2

SEW
(δs + g1φ

2
0)

2 1

s

ρA(s)

N
. (6.1)

The chiral condensate φ0 is related to the pion wave-function renormalisation
constant Z and the pion decay constant fπ by

φ0 = Zfπ . (6.2)

The (axial-) vector-scalar coupling g1 depends on Z as

g1 =
ma1

Zfπ

√

1− 1

Z2
. (6.3)

Previous calculations of the σ → ππ decay rate within the U(2)L × U(2)R
Linear Sigma Model in [28] predict Z to be in the range 1.47 < Z < 1.87.

Another Z dependence is found in the process a1 → ρπ which yields the
dominant contribution to the axial-vector channel. Its decay rate Γa1→ρπ(s)
has been calculated in [28] as

Γa1→ρπ(s) =
k(
√
s,mρ,mπ)

12πm2
a1

[

h2µν − (hµνK
ν
1 )

2

m2
ρ

− (hµνP
µ)2

m2
a1

+
(hµνP

µKν
1 )

2

m2
ρm

2
a1

]

.

(6.4)

The function

k(ma,mb,mc) =
1

2ma

√

m4
a−2m2

a(m
2
b+m2

c)+(m2
b−m2

c)
2 θ(ma−mb−mc) (6.5)

describes the momentum exchange of the process a → b c. The momentum
of a1 is denoted by Pµ, that of ρ byKµ

1 , and that of π byKµ
2 . The amplitude
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Figure 6.2: The dependence of the a1 → ρπ decay width Γa1→ρπ(Z) depending on
Z as calculated by [28].
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is then obtained from the term in the square brackets. Its explicit form is
found in [28] as well.

The decay rate in (6.4) increases with smaller values of Z and decreases
when Z assumes higher values (Figure 6.2). For the mass ma1 = 1.23 GeV
which is given by the PDG and the range of the full a1 decay width given by
0.25 GeV < Γa1 < 0.6 GeV the pion renormalisation constant Z is limited
to 1.47 < Z < 1.87. This result agrees with the interval that has been
determined from the σ → ππ decay width. Its range is shifted to smaller
values of Z if the a1 mass is taken to be smaller than the mass given by
the PDG. If ma1 ≈ 1.08 GeV, the value of Z decreases to Z = 1.38 for the
upper bound of the decay rate Γa1 = 0.600 GeV.

Before calculating the fully s-dependent spectral density a1(s) based on
Γa1→ρπ(s), the spectral function based on the Breit-Wigner approximation
will be used as a consistency check for the parameters that have been ob-
tained from the vector channel. The Breit-Wigner spectral density for the
axial-vector channel reads

ρBW
A (s) =

1

π

ma1Γ
full
a1

(s −m2
a1)

2 + (ma1Γ
full
ma1

)2
. (6.6)

For calculating the spectral function a1(s) with the Breit-Wigner spectral
density those values of Z are used that can be associated with the a1 full
width at half maximum Γfull

a1 = Γa1→ρπ(m
2
a1 , Z) = 0.4545 GeV for a given

mass ma1 . The full width at half maximum is directly taken from the data
depicted in Figure 6.1.

The results from the Breit-Wigner spectral density for three generically cho-
sen masses ma1 = 1.23 (1.19, 1.08) GeV are shown in Figure 6.3. The mass
ma1 = 1.23 GeV is the value that is usually associated with the a1 resonance,
ma1 = 1.19 GeV is the lower bound given by the PDG and ma1 = 1.08 GeV
lies slightly above the result of the a1 mass obtained in [20].

Although it was expected that the Breit-Wigner parametrisation is not really
suitable to describe such a broad resonance as the axial-vector resonance,
it is still surprising that the spectral function is not even approximately of
the correct size. Naively one would expect the spectral function to deviate
from the line shape of the data in form of a too narrow width. But here
the calculated spectral density is about a factor 1/2 too small and describes
only half of the data.

The dependence of the position of the peak on the choice of the a1 mass is
also seen in Figure 6.3. As for the vector channel the peak position is shifted
to smaller values of s for smaller masses ma1 . Obviously ma1 = 1.23 GeV
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Figure 6.3: The axial-vector spectral functions in the Breit-Wigner approxima-
tion for ma1

= 1.08 (1.19, 1.23) GeV with δ = 0.20398. The pion renormalisation
constant Z is chosen such that Γa1→ρπ(ma1

,Γρ, Z) = 0.4545 GeV.

and ma1 = 1.19 GeV are too large to reproduce the correct peak position,
while ma1 = 1.08 GeV yields a much better result in terms of the peak
position.

6.2 Estimates of the Parameters Z and δ

The momentum-dependent spectral function a1(s) based on Γa1→ρπ(s) in
Equation (6.4) could now already be calculated. But, since Γa1→ρπ(s) also
depends on the a1 meson’s mass, it seems useful to first calculate the Breit-
Wigner parametrisation and reduce the complexity of the interdependencies
between the parameters. From the vector channel it is known that the
Breit-Wigner spectral density works very well to approximate the fully s-
dependent spectral function of this model. This enormously simplifies the
investigation of the role of the a1 mass as well as the effect of different choices
of the a1 full width and the influence of the parameters Z and δ. In order to
solve the problem of the too small spectral function, it was also attempted
to obtain different combinations of Z and δ.
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6.2.1 Pion Renormalisation Constant Z

First, δ remains fixed to the value obtained from the vector channel,

δ = 0.20398 , (6.7)

which is the result of the fit for the fully s-dependent vector-channel spectral
function, marked in red in Table 5.2. The result is based on the assumption
that the 2π vector channel is dominated by the ρ resonance and that the
contributions arising from the direct W− into π−π0 decay are negligibly
small.

In the axial-vector channel W transforms into an a1 meson which then via
its intermediate states2 decays into three pions. Now, in order to estimate a
new value for Z the convolution formula (4.11) was applied to the three-pion
τ decay. Here, the assumption was made that all 3π final states can only
occur via an intermediate a1 meson and then again that all intermediate a1
mesons result in three final pions:

Γexp
τ−→3πντ

=
m3

τ

8πm2
ρ

[

g2 cos θC

4
√
2M2

W

(

δ m2
a1− g1φ

2
0

)

]2(

1−
m2

ρ

m2
τ

)2(

1 +
2m2

ρ

m2
τ

)

.

(6.8)

Again, this is a strong simplification, but it seems to be more reasonable
than simply guessing the value of Z. The values obtained for Z based
on Equation (6.8) are found in Table 6.1. They also depend on the value
of δ, the coupling constant of the Wρ vertex. In this approach the pion
renormalisation constant experiences a strong downward scaling to Z ∼ 1.2,
which causes the spectral function to obtain a height that is approximately
of the same size as the data.

δLSM = 0.20398
ma1

1.23 GeV 1.19 GeV 1.08 GeV
Z 1.27942 1.27275 1.22276

δLSMcutoff = 0.19840
ma1

1.23 GeV 1.19 GeV 1.08 GeV
Z 1.23446 1.22959 1.18643

Table 6.1: Z values, calculated from Eq. (6.8), obtained for three a1 masses and
vector-channel coupling δ. The latter is the result from the fitted fully s-dependent
spectral function in the vector channel v1(s); without cut-off δ = 0.20398, with
cut-off δ = 0.20398.

Figure 6.4 shows the results for three a1 masses,ma1 = 1.08 (1.19, 1.23) GeV,
where each graph contains three possible choices of the full width Γfull

a1 .

2The dominant a1 → 3π intermediate states are ρπ (∼ 60.19%), σπ (∼ 18.76%), and
f0π (∼ 7.40%). Since they are taken from [32], these branching fractions need to be
treated carefully, too.
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Again, with decreasing mass the spectral function is entirely shifted to
smaller values of s. It is important to stress that the Z value used in the
calculation of the spectral functions a1(s) in Figure 6.4 is not the one which
is obtained by [28]. Using the values given in Figure 6.4 to calculate the
a1 → ρπ decay width will yield unphysically large results.

With a considerably smaller Z-value it is obviously possible to parame-
trise the line shape of the axial-vector channel very well. However, for
ma1 = 1.08 GeV the Z-dependent decay rate Γa1→ρπ(m

2
a1) calculated from

Equation (6.4) is already larger than 2 GeV (see Figure 6.2). As seen in
Figure 6.2 there is a strong decrease for smaller Z and the decay width
Γa1→ρπ(m

2
a1) becomes unphysically large.

The unphysically large a1 decay rate is a serious problem since it questions
the consistency of the underlying model. One thing that has not been con-
sidered yet is the fact that according to the PDG the decay a1 → ρπ might
account only for about 60.19% of the a1 decay, as it has been observed at the
CLEO II detector and published in [32]. The PDG states that the data is
not reliable and cannot be used for averages and fits. However, it is interest-
ing to see if the assumption that only 60.19% of the three-pion final states
result from the intermediate process a1 → ρπ would resolve the problem
with the too small spectral density.

The underlying assumption for the determination of Z with respect to the
a1 → ρπ decay width is that a1 decays predominantly via the ρπ channel.
Since Z depends on the value of the decay width, one would expect Z to
become smaller, if the dominance of the ρπ intermediate state is questioned.
Then Γa1→ρπ(m

2
a1) would only account for 60.19% of the full width. However,

for a smaller a1 decay width the obtained value for Z(ma1 ,Γa1) increases,
e.g.

Z(1.08 GeV, 0.4545 GeV) = 1.43369 ,

Z(1.08 GeV, 0.6 · 0.4545 GeV) = 1.52204 .

Thus, even if, in a first guess, a smaller decay width were used to find a new
estimate on the value of Z the spectral function would remain at the same
size and describe only about half of the experimental data. With δ ≃ 0.2,
as it is given from the vector channel, Z would have to be in the range
0.12 < Z < 0.14.

With respect to the pion renormalisation constant Z it is concluded that
it is not possible to modify Z in such a way that one would not encounter
inconsistency problems, if δ remains fixed to the value from the vector chan-
nel.
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Figure 6.4: The axial-vector spectral functions in the Breit-Wigner approxima-
tion for three masses ma1

= 1.23 (1.19, 1.08) GeV and three full a1 decay widths
Γfull
a1

= 0.35 (0.4, 0.45) GeV and ma1
= 1.23 GeV. The value Z = 1.27942 is an

approximation based on the partial decay width of τ → 2π−π+ντ (π
−2π0ντ ) with

δ = 0.20398 from the vector channel with Breit-Wigner approximation.



6.2.2 Vector Coupling δ

Now it seems advisable to examine the role of the vector-channel coupling
δ. With the help of Equation (6.8) δ is approximated with respect to the
value of Z that reproduces Γa1→ρπ(m

2
a1 , Z) = 0.4545 GeV2. Since δ itself

does not depend on ma1 this is only done for ma1 = 1.08 GeV and the
resonance’s full width at half maximum Γfull

a1 = 0.4545 GeV. From (6.8) one
obtains δ = 0.2317. The result is shown in Figure 6.5. Clearly the result is
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Figure 6.5: The axial-vector spectral functions in the Breit-Wigner approximation
for ma1

= 1.08 GeV and full width at half maximum Γfull
a1

= 0.4545 GeV. Based
on Γρπ(Z = 1.43369) = 0.4545 GeV the coupling δ = 0.2317 was obtained.

much better if one assumes δ to be about 18% larger than the one that was
obtained from the fit in Chapter 5.

The calculations made in Chapter 5 were based on the dominance of the
ρ meson in the 2π decay channel. The contributions from the W boson
directly decaying in 2π have been neglected. If the amplitude of the process
W− → π−π0 were destructively interfering with ρ− → π−π0 it would lead to
a bigger vector coupling δ. That way Z would remain in the range predicted
from previous calculations and it would also not enter a range where the
Γa1→ρπ(s) decay rate would become unphysically large.

The Z dependence of the calculated decay rate Γτ→a1ντ (Z) for the results of
the fit to the fully s-dependent spectral function (see Table 6.1) is shown in
Figure 6.6. The two constant lines describe the decay width of the process
τ → 3πντ with Γexp.

τ→3πντ
= (4.1491± 0.159) · 10−13 GeV given by the results
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Figure 6.6: The calculated Γτ→a1
(Z) for different values of δ compared to the

τ → 2π−π+ + π−2π0 decay rate.

of the ALEPH collaboration. The decay rate Γτ→a1ντ (Z) for a given δ
agrees only in a small interval with the experimental data of Γτ→3πντ . But
as expected, by assuming that δ would be about 18% larger, the interval
in which the calculated decay rate agrees with the experiment is shifted to
higher values of Z.

The last attempt to find a possible solution for the misfit between the ex-
perimental data and the result for the spectral function based on the Breit-
Wigner spectral density and the full width Γfull

a1 is to investigate how the
calculated spectral function is affected, if the results on the a1 → ρπ decay
width from [32] are taken into account for an approximation. The convolu-
tion formula (6.8) couples the decay width Γτ→ρπ(s) to the spectral density
distribution a1(s). In [32] the a1 to ρπ decay width is given with 60.19%.
But from

Γexp.
τ→3π ≃ 0.6 · Γτ→a1ντ (m

2
a1) (6.9)

one obtains δ = 0.2735. This is again significantly larger than the value
obtained from the vector channel. Thus, in order to keep Z in the desired
range, it is mandatory to examine the further contributions in the vector
channel, which might result in an higher effective value of the vector coupling
δ.
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6.3 Axial-Vector Spectral Density based on the

Elastic Decay Width a1 → ρπ from the Linear

Sigma Model

So far, in order to examine the influence of the parameters ma1 ,Γa1 , δ and Z
on the the spectral function, the Breit-Wigner spectral density was used in
the axial-vector spectral function a1(s). The results of the previous section
are now applied to the study of the fully s-dependent spectral density on the
basis of the s-dependent decay width Γa1→ρπ(s). The decay rate as given in
[28] reads

Γa1→ρπ(s) =
k(
√
s,mρ,mπ)

12πm2
a1

[

h2µν −
(hµνK

ν
1 )

2

m2
ρ

− (hµνP
µ)2

m2
a1

+
(hµνP

µKν
1 )

2

m2
ρm

2
a1

]

(6.10)

and the spectral function for the axial-vector channel is given as

a1(s) =
(2π)2

SEW
(δs + g1φ

2
0)

2 1

s

ρA(s)

N
. (6.11)

With (6.10) the parametrisation of the spectral density becomes

ρA(s) =

√
sΓa1→ρπ(s)

(s−m2
a1)

2 + (
√
sΓa1→ρπ(s))2

. (6.12)

Figure 6.7 presents the fully s-dependent spectral function for three different
a1 masses, each with three different choices of Z and therefore three values
for the full width Γa1→ρπ(m

2
a1 , Z). The width of the spectral function for a

given mass is now solely modified by the choice of Z. As expected from the
Breit-Wigner parametrisation with this choice of parameters δ and Z the
calculated spectral function a1(s) does not reproduce the data’s line shape.
The position of the peak is again shifted to smaller s for smaller ma1 and the
choice of the a1 mass now also influences the height of the spectral function.
With decreasing mass, the peak flattens and for the mass given by the PDG,
ma1 = 1.23 GeV, especially for Γa1→ρπ(m

2
a1) = 0.600 GeV, the peak of the

spectral function almost disappears.
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Figure 6.7: The fully s-dependent spectral function based on the momentum-
dependent a1 decay width Γa1→ρπ(s) and δ = 0.20398 for three masses ma1
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6.4 Fitted Axial-Vector Spectral Density

Finally, a χ2 fit was performed for the axial-vector spectral function. Apart
from Z, which was restricted to 1.38 < Z < 1.87, there were no restrictions
imposed on the other parameters. It was attempted to fit the peak and the
full width at half maximum. Therefore only a set of data points has been
evaluated for the fit. The result is shown in Figure 6.8. From the fit to the
fully s-dependent spectral function a1(s) the values

δ = 0.25656 , (6.13)

Z = 1.48723 , (6.14)

ma1 = 1.0917 GeV , (6.15)

Γρπ(Z) = 0.4051GeV (6.16)

are obtained. Again, if the value for δ is taken to be larger than the one that
was obtained from assuming that the ρ resonance is the dominating decay
channel in the τ → 2π vector channel one can find a set of parameters that
parametrises the spectral function reasonably well within the restrictions of
this model.
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Figure 6.8: Fit for the fully s-dependent spectral function a1(s) with momentum-
dependent decay width Γa1→ρπ(s).

As in the vector channel, the divergent contributions from the self-energy
result in a deviation from the data in the higher s-range. One may now also
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introduce a cut-off function f(Λ) based on the momentum k(ma,mb,mc)
function in (6.10)

f(Λ) = exp

[

−k(ma1 ,mρ,mπ)
2

Λ2

]

, (6.17)

Γa1→ρπ(s,ma1 , Z)
fΛ(s)

−−−−→ Γa1→ρπ(s,ma1 , Z) · e−
k(ma1 ,mρ,mπ)2

Λ2 . (6.18)

The decay width thus depends now on the parameters ma1 , Z, and Λ, where
Λ is of dimension energy and should not become smaller than Λ = mρ+mπ.
The cut-off parameter was chosen to be 0.9 GeV. Then the results of the fit
were stable and did not run to unphysical values.
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Figure 6.9: Fitted a1(s) spectral density with s-dependent decay width Γa1→ρπ(s)
with cut-off Λ = 0.9 GeV.

For the fit with cut-off Λ = 0.9 GeV (Fig. 6.9) the results are:

δ = 0.2406 ,

Z = 1.4895 , (6.19)

ma1 = 1.09319 GeV ,

Γ(ma1 , Z,Λ) = 0.36705 GeV . (6.20)

Both fits yield a value for the pion wave-function renormalisation constant
Z of ∼ 1.48. This is actually very well within the range that is necessary to
describe the a1 → ρπ decay rate, the σ → ππ decay rate, and the axial-vector
spectral density simultaneously without inconsistency problems. However,
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therefore the vector channel coupling δ would have to be approximately 18%
larger.

The results for the a1 masses are almost of the same value and predict
ma1 ≃ 1.09 GeV.

With the cut-off the converging contributions from the self energies are re-
moved and Γ(m2

a1 , Z,Λ) becomes smaller, but it still remains within the
range given by the PDG.

However, if the larger vector-channel coupling δ = 0.24055 is applied to
calculate the fully s-dependent vector-channel spectral density (Figure 6.10),
it is clear that the exact value of δ requires further investigation. The
spectral function v1(s, δ = 0.24055) clearly exceeds the data. The remaining
“free” parameters are to a certain extent the ρ mass and the ρ full width.
However, a fit with fixed vector coupling, δ = 0.24055, and free parameters
mρ and Γρ→π−π0(m2

ρ) = Γfull
ρ yields a full decay with in the range∼ 0.22 GeV

which is definitely too large and does not reproduce the 2π vector-channel
data.
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Figure 6.10: Vector channel spectral density with δ = 0.24055, Γρ−→π−π0(m2
ρ) =

0.14150 GeV, and mρ = 0.75515 GeV.
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The objective of the current work was to describe on tree-level the ρ and a1
mesons as q̄q states within an effective chiral model with electroweak interac-
tion. The spontaneously broken chiral symmetry is reflected in the structure
of the effective weak τ → a1ντ vertex ga1 ∼ δs − g1φ

2
0. The coupling δ was

fixed in the vector channel. The vector-channel coupling δ appears to be too
small and the difficulties in the generalisation of the result from the vector
channel to the axial-vector channel could not be resolved. Thus, vector and
axial-vector spectral functions could not be described simultaneously by a
common set of parameters.

It further needs to be investigated whether this is really a result of a mod-
ification of the vector coupling δ by the direct W− → π−π0 decay. Also, it
is necessary to implement the other contributions in the axial-vector chan-
nel and to examine higher order contributions. Another possibility is to
examine the Weinberg sum rules to obtain more insight into the nature of
the relations between vector and axial-vector spectral densities within this
model. If it proves to be not possible to describe vector and axial-vector
spectral densities simultaneously it might as well have more fundamental
reasons as, for instance, the question whether within a chiral model a1 and
ρ can really be described as two q̄q mesons that are chiral partners.
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Chapter 7

Conclusions and Outlook

In order to describe the vector and axial-vector spectral functions of the
τ decay on the basis of an effective quantum field theory with hadronic
degrees of freedom and weak interactions, the Linear Sigma Model with
scalar, pseudoscalar, vector, and axial-vector mesons based on a global chi-
ral U(2)L × U(2)R symmetry was extended to a model which is now also
invariant under local SU(2)L × U(1)Y transformations. First, the quark
fields were subjected to a U(1)Y transformation, which led to the under-
standing of how the U(1)Y transformation manifests itself on the hadronic
level of the Linear Sigma Model. Second, it was shown that applying Vec-
tor Meson Dominance for the hypercharge gauge field to the Linear Sigma
Model yields the same result as it was obtained from directly transforming
the quark fields.

The result from applying VMD could then be further used to introduce
weak interactions in a gauge-invariant way. Together with a new parameter
δ, an additional interaction term between the left-handed fields and the
weak bosons was introduced into the model in order to generate a mixing
term between the charged weak bosons W±

µ and ρ±µ . From this extended
Lagrangian the tree-level weak interaction vertices were extracted and used
to derive effective vector and axial-vector channel couplings (gρ, ga1). The
new mixing term also yielded an additional contribution to theWa1 mixing,
which otherwise would only be proportional to the chiral condensate. The
fact that ρ and a1 are chiral partners whose mass difference is generated
by the spontaneously broken symmetry, is thus also clearly visible in the
structure of ga1 .

In a next step, the decay rate of the Standard Model τ− → W−ντ process
was applied to the τ− → ρ−ντ (a

−
1 ντ ) decay width with an effective coupling

that accounted for the W exchange by a point-like Fermi interaction. The
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two couplings were now proportional to the newly introduced δ, the Fermi
coupling GF , and for ga1 to the chiral condensate φ0. Vector and axial-vector
effective couplings were then used to derive a relation between the Källen-
Lehmann representation and the ALEPH collaboration’s spectral densities
of the τ decay.

Based on the assumption that the ρ resonance yields the dominant con-
tributions to the vector channel, the vector-channel spectral function was
calculated within several different parametrisations and compared to the
experimental data given by the ALEPH collaboration. That way it was pos-
sible to obtain numerical results for the parameter δ, which could then be
used to determine the axial-vector spectral function as well. It was neces-
sary to shift the PDG mass of the ρ meson to mρ = 0.76139 GeV in order to
obtain a good description of the data’s lineshape. For all parametrisations
the calculated vector-channel spectral function with shifted ρ mass agrees
well with the experiment, for the vector channel coupling δ ≃ 0.19. How-
ever, when this result was applied to the axial-vector spectral function, it
was found that with the given parameter set the calculated spectral function
describes approximately only half of the data.

The problem of the too small axial-vector spectral function turned out to be
independent on whether one used the Breit-Wigner parametrisation or the
spectral density based on the s-dependent decay width Γa1→ρπ(s). Since the
range of the parameter Z is strongly limited by the a1 → ρπ decay width,
one solution would be to further study the influence of the process W → ππ
on the vector-channel coupling δ. If δ were about 25% larger, one could also
describe the axial-vector spectral function very well.

Furthermore, for the axial-vector channel the assumption was made that
the process a1 → ρπ dominates this decay channel, but there are further
contributions such as a1 → σπ and a1 → f0π that yield three-pion final
states and might also contribute. Currently there are no reliable data for
the a1 branching fractions and one should also take into account the results
on their decay widths as calculated from the Lagrangian to see whether this
improves the results.

It is also necessary to improve on the accuracy of the parameters δ, mρ, Γρ

and Z. The spectral functions are very sensitive to the numerical values
of the parameters, which in principle enables their determination with high
precision, and thus it is also a good test of the model’s validity. On the
other hand, this raises the difficulty of how to fix all the parameters in a
consistent way. Moreover because of finite width effects of the uncertainty
in the a1 mass, which makes the study of its resonance difficult.

Calculating the spectral densities and comparing them to the ALEPH data,
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allows for a precise determination of the parameters. Once the parameters
are fixed consistently, the model can be further applied to make predictions
of other physical observables, such as meson masses and decay widths.

Another possibility is the generalisation of the U(2)L ×U(2)R Linear Sigma
Model with weak interaction to the case of Nf = 3. The extension of
the model to Nf = 3 is already in progress. Also, this work is based on
considerations in the vacuum, one natural direction for further investigations
is the application of the fixed parameters to in-medium effects and non-zero
temperature processes.

If it is possible to resolve the inconsistencies between the parameters of
the vector channel and the axial-vector channel, it would also yield strong
evidence that the resonance which is observed at s ≃ 1.15 GeV2 and whose
nature has not yet been unambiguously identified can be understood as the
JPC = 1++ iso-triplet resonance of the U(Nf = 3) meson nonet.
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Appendix A

Field Strength Tensors

Lµν and Rµν

The following explanation is based on Chapter 15.1 in Peskin and Schroeder’s
book on Quantum Field Theory [16]. In gauge theories the field strength
tensors of the fields can be calculated from the commutator [Dµ,Dν ] of the
covariant derivative. If a Lagrangian of a field φ has a local symmetry under
the transformation

φ→ φ′ = Uφ (A.1)

the commutator of the covariant derivatives [Dµ,Dν ]φ must be invariant
under the transformations itself, as it is only the product of two covariantly
transforming factors. The commutator does not act on φ as a derivative, but
as a multiplicative factor, only. Since this proves the gauge invariance of the
field strength tensors within the context of the globally SU(2)L × SUR(2)
invariant Linear Sigma Model the calculation will be performed explicitly.

In Chapter 2.2 the covariant derivative with the electroweak gauge bosons
was defined as

DµΦ = ∂µΦ− ig1(L
µΦ− ΦRµ)− igW µΦ+ ig′ΦBµ , (A.2)

where the field Φ is a tensor product on the space of left- and right-handed
isospin with altogether 4 indices. The general chiral transformation then
reads

(UL ⊗ U∗
R)Φ (A.3)

For mesons this reduces to the known transformation law Φ′ = ULΦUR. In
order to calculate the field strength tensors from the commutator of the
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covariant derivative one needs to factor out the field Φ in (A.2). Therefore
it is useful to write DµΦ explicitly as a four tensor, then one can also see
on what spaces the gauge fields and Lµ, Rµ act on

(Dµφ)ij =
{

(1⊗ 1)ik,jl∂
µ − ig1[(L

µ ⊗ 1)− (1⊗RµT )]ik,jl

− ig(W µ ⊗ 1)ik,jl + ig′(1⊗BµT )ik,jl
}

φkl . (A.4)

The commutator then yields the sum of all field strength tensors for the
left- and right-handed mesons, as well as for the gauge bosons W µ and
Bµ. The calculation was performed assuming that chiral symmetry were
local. The consequences with respect to the commutator for left- and right-
handed fields, as well as for the coupling constant g1 from local symmetry
were disregarded only later in the definition of the left- and right-handed
field strength tensors.

In this context the field strength tensors Lµν for the left-handed fields will
now be derived from

−ig1Lµν = [Dµ
L,D

ν
L]. (A.5)

For simplicity the covariant derivative in the equation above has been defined
as

Dµ
L = ∂µ − ig1L

µ − igW µ . (A.6)

Since Lµ and Rµ act on different spaces, they commute with each other,
as well as Lµ with Bµ and Rµ with W µ, thus one can simply take those
terms that act from the left on Φ. This is also seen, when one uses the
representation of DµΦ as a four tensor in the left- and right-handed product
space. The commutator is obtained as

[Dµ
L,D

ν
L] = [∂µ − ig1L

µ − igW µ, ∂ν − ig1L
ν − igW ν ]

=−ig1∂µLν − ig∂µW ν − g21L
µLν − g1gL

µW ν

− gg1W
µLν − g2W µW ν

−
(

− ig1∂
νLµ − ig∂νW µ − g21L

νLµ − g1gL
νW µ

− gg1W
νLµ − g2W νW µ

]

=−ig1{∂µLν − ∂νLµ − ig1[L
µ, Lν ]− ig[W µ, Lν ] + ig[Lµ,W ν ]}

− ig{∂µW ν − ∂νW µ − ig[W µ,W ν ]} . (A.7)

In the global model the coupling constant of the commutator of the mesonic
fields is not necessarily g1 anymore. The non-abelian contributions [Lµ, Lν ],
are therefore proportional to a new coupling constant g2 and are excluded
from the definition of the field strength tensor

Lµν = ∂µLν − ig[W µ, Lν ]− (∂νLµ − ig[W ν , Lµ]) . (A.8)
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The right-handed covariant derivative is defined as

Dµ
RΦ = ∂µΦ+ ig1ΦR

µ + ig′ΦBµ . (A.9)

In order to factor out Φ, Dµ
RΦ is written as a four tensor. In the product

space the chiral transformations act on Φ as

Φij → φ′ij = (UL)ikΦkl(U
†
R)lj = (UL ⊗ U∗

R)ik,jl , (A.10)

where ”⊗ ” denotes the tensor (dyadic) product.

Then the covariant derivative reads

(Dµ
RΦ)ij = (∂µΦ)ij + ig1(ΦR

µ)ij + ig′(ΦBµ)ij

= δik∂
µΦklδlj + ig1δilΦlkR

µ
kj + ig′δilΦlkB

µ
kj

= δikδjlΦkl + ig1δilR
µT
jk Φlk + ig1δilB

µT
jk Φlk

= (1⊗ 1)ik,jlΦkl + ig1(1⊗RµT )ik,jlΦkl + ig1(1 ⊗BµT )ik,jlΦkl .
(A.11)

Thus, one can write

Dµ
R = ∂µ + ig1R

µT + ieBµT . (A.12)

and follow the same steps as in the calculation for Lµν . The right-handed
field strength tensor is obtained as

Rµν = ∂µRν − ig′[Bµ, Rν ]− (∂νRµ − ie[Bν , Rµ]) . (A.13)

The non-abelian contributions for the left- and right-handed fields read

−2ig2{Tr[Lµν [Lµ, Lν ]] + Tr[Rµν [Rµ, Rν ]} (A.14)

and they are transferred to an additional term L3 (see section 2.1).
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Appendix B

Wρ Vertex

The mixing term between the W boson and the ρ meson is given by

g cos θCδ

2
∂µW

−
ν (∂µρν + − ∂νρµ +) + h.c. . (B.1)

Integration by parts yields

∫

V
∂µW

−
ν ∂

µρν+dV =

∫

V
∂µ(W

−
ν ∂

µρν+)dV −
∫

V
W−

ν ∂µ∂
µρν+dV (B.2)

and

∫

V
∂µW

−
ν ∂

νρµ+dV =

∫

V
∂µ(W

−
ν ∂

νρµ+)dV −
∫

V
W−

ν ∂µ∂
νρµ+dV . (B.3)

Applying Gauss’ theorem to the first integral over the surface of a large
volume in (B.2) and (B.3), and the Proca condition ∂µρ

µ = 0 to the latter
term in (B.3) yields

∂µW
−
ν (∂µρν+ − ∂νρµ+) = −W−

ν ∂µ∂
µρν+ (B.4)

for the mixing term. After performing the derivative in (B.4) one obtains
∂µ → iqµ and with qµq

µ = s the mixing term reads

−g cos θCδs
2

W−
ν ρ

ν+ . (B.5)
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Appendix C

Invariant Mass-Squared

Distribution

The spectral function in [25] depends on the invariant mass-squared distri-
bution

1

N

dN

ds
, (C.1)

which contains the information on the line shape of the experimental spectral
function. In this chapter the relation between the invariant mass-squared
distribution (C.1) and the theoretical spectral function ρ(s) is derived. The
number of 2π final states NV in the vector channel of τ decay can be written
as

N2π = B(τ → 2πντ )Nτ , (C.2)

with

B(τ → 2πντ ) =
Γτ→2πντ

Γtot
τ

(C.3)

being the branching fraction of the respective decay channel normalised
to Γtot

τ . Now, the convolution (see (4.11)) of the spectral function in the
respective channel ρV (s) with the decay width of τ → ρντ gives the decay
rate for the vector channel

Γτ→2πντ =

∫ ∞

0
ds [ρV (s)Γτ→ρντ (s)] . (C.4)

Taking the derivative with respect to s on both sides of (C.2) yields

dN2π

ds
=

Nτ

Γtot
τ

ρV (s)Γτ→ρντ (s) . (C.5)
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Multiplying the right-hand side of (C.5) with 1 = Γτ→2πντ /Γτ→2πντ and
using (C.2) again then yields the expression of the invariant mass-squared
distribution in terms of the vector spectral function and the decay width in
the respective channel

1

N2π

dN2π

ds
=

1

Γτ→2πντ

ρV (s)Γτ→ρντ (s)

=
ρV (s)Γτ→ρντ (s)

∫

∞

0 ds [ρV (s)Γτ→ρντ (s)]
. (C.6)
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Appendix D

τ → Wντ Decay Width

The decay τ →Wντ is well known from the electroweak sector of the Stan-
dard Model. Bosons, as well as the a1 and ρmesons are vector fields and thus
yield the same amplitudes for decay processes. The decay width τ →Wντ is
calculated in this chapter, under the assumption that the W boson were vir-
tual and severely off-shell. Then the W propagator in the diagram depicted
in Fig. D.1 will be replaced by a point-like interaction vertex proportional
to the inverse mass of W . Because of the off-shell nature of the process
τ → Wντ → ρντ (a1ντ ) the W boson’s mass M2

W in the decay width is
replaced by the running mass s. Thus, the result can be used as the energy-
dependent decay width Γ(s) for the processes τ → ρντ (a1ντ ).

W
τ

ρ, a1

ντ

Figure D.1: The decay τ →Wντ → ρντ (a1ντ ).

The charged weak interaction Lagrangian for leptons is given in Chapter 1.4
as

Lτ→Wντ = gψ̄(Wµ1t1+Wµ2t2)γ
µ(1− γ5)ψ

=
g

2
√
2
ψ̄ντW

−
µ γ

µ(1− γ5)ψτ + h.c. . (D.1)
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The decay width is obtained from the squared S-matrix element of first or-
der. The factor 1

2 considers the two possible directions of polarisation of the
decaying τ lepton, while summing over λ and s, s′ refers to the polarisations
of all the fields that participate in the decay

Γτ→Wντ =
1

T
V

∫

d3k

(2π)3
V

∫

d3q′

(2π)3
1

2

3
∑

λ=1

2
∑

s’,s=1

| − iM |2 . (D.2)

The wave functions of the in- and outgoing particles are

W−
µ =

εµ√
2V k0

eik·x, ψ̄ντ =
ūντ

√

2V q′0
eiq

′·x, ψτ =
uτ√
2V q0

e−iq·x. (D.3)

Then the squared S-matrix element reads

| − iM |2 =
∣

∣

∣

∣

−i
∫

d4x
−g
2
√
2
ψ̄ντγ

µ(1− γ5)ψτW
−
µ

∣

∣

∣

∣

2

=

( −g
2
√
2

)2 1

8V 3q0q′0k0

(
∫

d4xεµe
ik·xūντ e

iq′·xγµ(1− γ5)uτ e
−iq·x

)2

,

(D.4)

with k and q′ describing the outgoing momenta, λ the directions of polari-
sation of the W boson, and s, s′ the spin of τ and ντ .

Integrating over space time then yields

(

δ4(q′ + k − q)
)2

= δ4(q′ + k − q)δ4(0) =
V T

(2π)4
δ4(q′ + k − q)

such that the decay width reads

Γτ→Wντ

=
1

8(2π)2

( −g
2
√
2

)2

×

1

q0

∫

d4k

k0

∫

d4q′

q′0
δ4(q′ + k − q)

1

2

∑

λ, s, s′

∣

∣εµūντγ
µ(1− γ5)uτ

∣

∣

2
.

(D.5)

The fermionic and bosonic projection operators are defined as

3
∑

λ=1

εµ(k, λ)εν(k, λ) = −gµν +
kµkν
M2

W

(D.6)

2
∑

s=1

uα(q, s)ūβ(q, s) = (p/+m)αβ . (D.7)
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With this relation for the sum over the spin directions and together with
the assumption that the neutrinos are massless one obtains

1

2

3
∑

λ=1

2
∑

s’,s=1

∣

∣εµūντγ
µ(1− γ5)uτ

∣

∣

2

=
1

2

(

−gµν +
kµkν
M2

W

)

Tr[(q/+mτ )γ
µ(1− γ5)q/′γν(1− γ5)]

= 8

(

−gµν +
kµkν
M2

w

)

(qµq′ν + qνq′µ − (q · q′)gµν)

=
8

M2
W

[(

M2
W − k · k

2

)

(q · q′) + 2(k · q)(k · q′)
]

. (D.8)

The trace over the product of Dirac matrices has been calculated according
to the identities

Tr[γαγβγγγδ] = 4(gαβgγδ + gαδgβγ − gαγgβδ)

Tr[γαγβγγγδγ5] = −4εαβγδ .

Finally only the integral

Γτ→Wντ

=
1

(2π)2

( −g
2
√
2

)2 1

mτM2
W

⊗

∫

d3k

k0

∫

d3q′

q′0
δ4(q′ + k − q)

[(

M2
W − k · k

2

)

(q · q′) + (k · q)(k · q′)
]

(D.9)

has to be calculated.

In the τ centre-of-mass frame one obtains for the four momenta

(

mτ

~0

)

=

(

|~q ′|
~q ′

)

+

(
√

x2 + ~k2

~k

)

where x refers to the mass of the off-shell W boson.

The four-dimensional delta function can be written as

δ4(q′ + k − q) = δ(q′0 + k0 − q0)δ
(3)(~q ′ + ~k) .

Then the integral reads

∫

d3k

k0

∫

d3q′

q′0
δ(q′0 + k0 − q0)δ

(3)(~q ′ + ~k)
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= 4π

∫

k2dk√
x2 + k2

∫

d3q′

|~q0 ′|δ(q
′
0 + k0 − q0)δ

(3)(~q ′ + ~k)

= 4π

∫

dk δ

(

k − m2
τ − x2

2mτ

)

k
(

1 + k√
x2+k2

)√
x2 + k2

= 4π

(

m2
τ − x2

2mτ

)

1

mτ
. (D.10)

Inserting the energy-momentum relation in the τ centre-of-mass frame yields

(

M2
W − k · k

2

)

(q · q′) + (k · q)(k · q′) = 1

2
m3

τ

(

m2
τ − x2

2mτ

)(

1 +
2M2

W

m2
τ

)

.

(D.11)

Finally, inserting (D.10) and (D.11) into the expression for the decay width
(D.9) one obtains

Γτ→Wντ (x
2) =

1

8π

( −g
2
√
2

)2 m3
τ

M2
W

(

1− x2

m2
τ

)2(

1 +
2M2

W

m2
τ

)

. (D.12)

With M2
W , x

2 → s and an effective Fermi coupling

GF =
g2

2
√
2M2

W

, (D.13)

the s-dependent decay width for τ → ρ(a1)ντ can be written as

Γτ→ρ(a1)ντ (s) =
1

8π

(

gρ/a1
)2 m3

τ

s

(

1− s

m2
τ

)2(

1 +
2s

m2
τ

)

, (D.14)

with gρ and ga1 being defined as the product of the Fermi coupling constant
with the Wρ and Wa1 couplings, from the results (3.25) and (3.26)

gρ =
g2 cos θC

4
√
2M2

W

δs , (D.15)

ga1 =
g2 cos θC

4
√
2M2

W

(

g1φ
2
0 + δs

)

. (D.16)
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