
Johann Wolfgang Goethe–Universität
Frankfurt am Main

Fachbereich Physik
Institut für Theoretische Physik

Master Thesis

The Low-Energy Constants of the Extended Linear Sigma Model
at Tree-Level

Florian Divotgey

11.02.15

Supervisor

Prof. Dr. Dirk H. Rischke

Institut für Theoretische Physik

Universität Frankfurt a. M.

Second reviewer

PD. Dr. Francesco Giacosa

Institut für Theoretische Physik

Universität Frankfurt a. M.



Acknowledgments

First of all, I want to thank my supervisor Prof. Dr. Dirk H. Rischke for the great support in the last five
years and for the opportunity to do my master thesis as well as my bachelor thesis in his group. I am very
grateful to him for carefully correcting my thesis. In addition to that, I want to thank all members of the
Chiral Field Theory group for interesting meetings and useful discussions.

Furthermore, I would like to thank my second reviewer PD. Dr. Francesco Giacosa for his excellent support
in the last years and for many useful discussions concerning the thesis.

In addition to that, I want to thank Prof. Dr. Dirk H. Rischke and PD. Dr. Francesco Giacosa for the
excellent and instructive lectures of the last five years and for innumerable discussions about physics.

Moreover, I want to thank PD. Dr. Dennis D. Dietrich and Dr. Hendrik van Hees for many useful and
enlightening discussions about technical and physical aspects of Quantum Field Theory. Furthermore, I am
very grateful to both of you for answering all of my questions in the last year.

Finally, I would like to thank my whole family and my friends Carlo, Dominique, Pascal, Jan, and Martin
for their support in the last five years.

i



Notation

Units, Indices, and Summation

We will always work in natural units, ~ = c = ε0 = 1.

In order to ensure a uniform notation throughout the whole work, we agree that the Latin indices i, j, k, . . .
always run over the ”spatial” coordinate labels 1, 2, 3. In addition to that, the Latin indices a, b, c, . . . will al-
ways run from 0 to 3. Furthermore, the Greek indices µ, ν, . . . generally run over the coordinate labels 0, 1, 2, 3
of four-dimensional Minkowski space-time. Deviations from these conventions will be defined when necessary.

Unless indicated otherwise, we will always sum over repeated co- and contravariant indices. The co- and
contravariant notation will also be used for tensorial objects which are defined in Cartesian coordinates.

Metric, Differential Operators, and Tensors

Throughout the whole work, we will use the convention in which the metric of Minkowski space-time is given
by

(gµν) = (gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

so that the d’Alembertian is given by
� = ∂µ∂

µ = ∂2
t −4 ,

in which

(∂µ) =

(
∂

∂xµ

)
= (∂t,∇) , (∂µ) = (gµν∂ν) = (∂t,−∇)

T

denote the co- and contravariant 4-gradient. It should also be noted that the short-hand notations

∂i =
∂

∂xi
, ∂i =

∂

∂xi

will be used frequently.

While the vectors of n-dimensional position and momentum space

r = (x1, x2, . . . , xn)
T

, k = (k1, k2, . . . , kn)
T

are always indicated by boldface letters, the vectors defined in internal vector spaces, such as isospin space,
are specified in the usual arrow notation

~α = (α1, α2, . . . , αn)
T

.

The three- and four-dimensional Levi-Civita tensor is defined as the totally antisymmetric tensor with
ε123 = 1 and ε0123 = 1.

ii
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Chapter 1

Motivation

Today, physicists believe that all phenomena in the universe can be traced back to four fundamental interac-
tions. Two of them are very well known, since everyday life is strongly influenced and shaped by the effects
of gravitation and electromagnetism. While these two forces are also present at macroscopic scales, weak and
strong interactions are nuclear forces and therefore only take place at microscopic scales. Even if one naively
could suspect something else, the weakest interaction is given by gravitation. At the mass scale of a typical
hadron, like the proton or the neutron, gravitation couples at a magnitude of about 10−36 to matter. Since
gravitation is very well described at the classical level by general relativity, a quantum theory of gravitation
was not found up to now. The next strongest interaction is given by the weak interaction, which couples at
a magnitude of about 10−5 to matter. While the gravitational interaction has an infinite range, the range
of weak interactions is given by ∼ 10−3 fm. This very short range is due to the fact that the gauge bosons
of weak interactions are very heavy. Then, with a coupling of about 10−2 to matter, the next strongest
interaction is given by the electromagnetic interaction. Similar to gravitation, the electromagnetic force has
an infinite range and therefore influences nature at many different scales. Finally, the strongest interaction
in our universe is given by the strong interaction. This fundamental force couples to typical hadronic matter
at a magnitude of about 1. The range of this interaction is given by about 1 fm.

In contrast to gravitation, physicists believe that they found a mathematical description of the other
three fundamental interactions in the framework of Quantum Field Theory. A fundamental feature of these
theories is given by the occurrence of so-called gauge bosons which arise in the adjoint representation of the
gauge symmetry of the respective fundamental theory. These gauge bosons serve as ”messengers” of the
different forces and realize the interactions in those so-called gauge theories. As already mentioned, the three
gauge bosons of the weak interaction have non-vanishing masses, while the photon and the eight gluons are
massless. In order to explain these masses and include them in a gauge-invariant way, one needs a mecha-
nism which is able to generate them in a dynamical way, the so-called Higgs mechanism. This mechanism
was included in the so-called Glashow-Weinberg-Salam theory of electroweak interactions, which unified the
weak and the electromagnetic interaction. It was also possible to summarize the electroweak and the strong
interactions in only one theory, the so-called Standard Model of Particle Physics.

The main focus of this work lies on the properties of the strong interaction. As already mentioned,
physicists found a Quantum Field Theory which describes strong interactions. This theory is called Quan-
tum Chromodynamics (QCD). This name derives from the fact that the fundamental strong interaction is
realized by the exchange of a quantum number which is called color. The fundamental degrees of freedom
in QCD are quarks which arise in the fundamental representation of the SU(3)C color gauge symmetry, and
gluons which arise in the adjoint representation of this symmetry. Due to a feature of QCD, which is called
confinement, it is not possible to observe objects which contain open color. In nature, we are only able to
observe singlets with respect to the color symmetry of QCD. These singlets arise as bound states of quarks
and/or anti-quarks and are referred to as hadrons. Also so-called glueballs, i.e., bound states of gluons are
discussed in the literature.

The usual way of studying the basic properties of a Quantum Field Theory is given by a perturbative
expansion of the different interaction terms of the theory in powers of the respective coupling constant.
However, this approach is only valid as long as the coupling constant remains small, so that the interaction
terms may be treated as a perturbation of the free theory. In the framework of renormalization, it turns
out that the coupling constants of a Quantum Field Theory are not constant, but depend on a momentum
scale. In the case of QCD, the coupling constant is given by the so-called strong coupling αS . While at large
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energies this coupling remains small, so that perturbation theory can easily be applied, the situation changes
completely at low energies. At small energies, the strong coupling becomes arbitrarily large, so that the
perturbative approach fails. In order to investigate the low-energy spectrum of QCD, one has to use meth-
ods which do not rely on a perturbative expansion of the strong coupling, so-called non-perturbative methods.

One possibility for such a method are effective or hadronic models. In these models, one does not con-
sider the strong interaction at the level of quarks and gluons. There, the fundamental degrees of freedom
are mesons (q̄q-states) and baryons (qqq- or q̄q̄q̄-states). In this work, the main focus lies on the mesonic
part of the so-called Extended Linear Sigma Model (eLSM). The eLSM describes a hadronic model which
incorporates not only scalar and pseudoscalar mesons, but also vector and axial-vector mesons. The ”term”
linear derives from the fact that the fundamental fields which describe the different types of mesons enter in
a linear realization of the chiral symmetry of QCD.

The importance of chiral symmetry in the low-energy regime of QCD also derives from the fact that it is
considered to be spontaneously broken. Due to the Goldstone Theorem, this spontaneous symmetry break-
down gives rise to the occurrence of massless pseudoscalar particle excitations, so-called Nambu-Goldstone
bosons, which dominate the low-energy spectrum. The aim of this work is to reduce the eLSM in a way,
so that we finally obtain a theory which only contains the interactions of these Nambu-Goldstone bosons
among themselves. Then, the low-energy couplings of the resulting theory can be compared to those of
Chiral Perturbation Theory (ChPT) which represents a model-independent method in order to describe the
low-energy properties of the strong interaction.

This thesis is arranged as follows: In the second Chapter [2], we want to introduce the basic methods and
ideas of Quantum Field Theory, such as the functional approach to second quantization and the framework
of spontaneously broken global symmetries. Furthermore, we want to introduce the basic properties of
QCD in vacuum. Then, the third Chapter [3] is dedicated to Chiral Perturbation Theory. There, we want
to introduce this framework as an Effective Field Theory which is based on a systematic analysis of the
hadronic n-point functions of strong interactions. Then, in Chapter [4], we finally turn to the eLSM and
introduce the basic term structure of this model. Furthermore, we consider different cases of this model and
present the calculation of the low-energy couplings of these models. Finally, in Chapter [5], we compare our
final results with those obtained from Chiral Perturbation Theory and discuss the meaning of these results.
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Chapter 2

Introduction

The basic idea of this first chapter is to introduce some important methods which are crucial in the con-
struction and the understanding of elementary and effective quantum field theories. Therefore, in Sec. [2.1],
we begin at the classical level and derive the Euler-Lagrange equations using Hamilton’s principle of the sta-
tionary action. Then, we focus on symmetry transformations of the classical action functional S and derive
Noether’s theorem which we will use frequently in the upcoming sections in order to identify the conserved
currents of several theories. Another important concept which has to be addressed in this Chapter, is the
notion of a spontaneously broken symmetry. The spontaneous breakdown of a continuous symmetry and the
famous Goldstone theorem are important tools in modern theoretical physics and will be discussed in Sec.
[2.2]. The last Section [2.3] of this introductory chapter is dedicated to the theory of strong interactions,
Quantum Chromodynamics (QCD), and its basic features in vacuum.

2.1 Classical Field Theory and Symmetries

As mentioned above, this section serves as a brief reminder of the very basic concepts of the Lagrangian
formulation of classical field theory. Due to the great importance of conservation laws in physics, we will also
derive Noether’s theorem which gives a direct connection between the symmetry of the classical action S
under a transformation of the space-time variables and/or the fields of the theory and a conserved quantity.

2.1.1 The Classical Equations of Motion

The Lagrangian formulation of classical field theory can be motivated as the transition of the generalized
coordinates q(t) = (q1(t), . . . , qN (t))T and the generalized velocities q̇(t) = (q̇1(t), . . . , q̇N (t))T to continuous
field variables

qj(t)→ φ(t, r), q̇j → φ̇(t, r) (2.1)

for j = 1, . . . , N . In Eq. (2.1) the spatial dependence of the field variables φ and φ̇ is, in this context, not
to be understood as spatial coordinates, but as a continuous index. Since the values of the field variables
become the dynamical variables of the theory, we obtain a theory with an infinite number of degrees of
freedom. Therefore, the initial Lagrangian L(t,q(t), q̇(t)) becomes a functional of the field variables φ and
φ̇. This functional can be written as a volume integral over the so-called Lagrangian density

L
[
φ, φ̇

]
=

∫
V

d3r L , (2.2)

where V denotes the volume of the physical system. In general, the Lagrangian density is not only a
function of the fields φ and φ̇, but also of ∇φ. Therefore, in relativistic notation, the Lagrangian density
can be written as

L = L (φ, ∂µφ) . (2.3)

The basic quantity of the Lagrangian formulation of classical field theory is the so-called action functional
S, defined as the sum of all contributions of the Lagrangian L

[
φ, φ̇

]
in the time interval [ti, tf ] ∈ R

S =

∫ tf

ti

dt L =

∫
Ω

d4x L (φ, ∂µφ) , (2.4)

where we used Eq. (2.2) and introduced the arbitrary space-time volume Ω = [ti, tf ]× V ⊂ R×R3. At this
point, it should be mentioned that the Lagrangian density (2.3) has to be a scalar under transformations
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of the Poincaré1 group in order to obtain a Poincaré-invariant action functional S. This can be seen by
considering the transformation behavior of the space-time measure which obviously transforms as a scalar

d4x′ =

∣∣∣∣det

(
∂x′µ

∂xν

)∣∣∣∣d4x = |det (Λµν)|d4x = d4x , (2.5)

where we used that the determinant of a Lorentz transformation is equal to ±1.

In general, a theory contains more than only one field. To this end, we generalize our considerations to a
theory containing N fields φa(x), a = 1, . . . , N , defined by the action

S =

∫
Ω

d4x L (φa, ∂µφa) . (2.6)

The equations of motion for the fields φa(x) can be obtained by using Hamilton’s principle of stationary
action. In this context, it has to be taken into account that only the fields inside the space-time volume Ω
are varied. The space-time variables and also the fields on the surface of the space-time volume ∂Ω are held
fixed at a constant value. Therefore, it is possible to interchange the variation and the partial derivatives.
Using this consideration, one finds

0 = δS = δ

∫
Ω

d4x L (φa, ∂µφa)

=

∫
Ω

d4x

[
∂L

∂φa
δφa +

∂L

∂(∂µφa)
δ(∂µφa)

]
=

∫
Ω

d4x

[
∂L

∂φa
− ∂µ

∂L

∂(∂µφa)

]
δφa , (2.7)

where we integrated the second term by parts in the last step. Finally we use that the variation of the fields
δφa was arbitary, so that the square bracket in Eq. (2.7) has to vanish by itself. This condition yields the
Euler-Lagrange equations for the N fields φa(x)

∂µ
∂L

∂(∂µφa)
− ∂L

∂φa
= 0 for a = 1, . . . , N . (2.8)

2.1.2 Noether’s Theorem

In the second part of this short section about classical field theory, we will establish a connection be-
tween conserved quantities and the symmetry of the classical action functional S with respect to continuous
transformations of the fields and the space-time variables. To this end, we only consider infinitesimal trans-
formations of the space-time variables and the fields. The starting point of these considerations will be
Eq. (2.6), i.e., the action functional of a theory containing N fields φa(x), a = 1, . . . , N . The space-time
variables transform according to

x′µ = xµ + δxµ , (2.9)

while the fields transform as
φ′a(x′) = φa(x) + δφa(x) . (2.10)

At this point it is important to mention that the variation δφa(x) contains one part proportional to the
variation of the field itself and another part arising from the fact that also the space-time variables are
varied. This can be seen as follows

δφa(x) = φ′a(x′)− φa(x)

= φ′a(x′)− φa(x′) + φa(x′)− φa(x)

= ∆φa(x′) + ∂µφa(x)δxµ

= ∆φa(x) + ∂µφa(x)δxµ , (2.11)

in which we used that the difference ∆φa(x′) ≡ φ′a(x′)− φa(x′) corresponds to the variation of the field at a
fixed space-time coordinate x′. This kind of variation, in which we only consider the variation of the field,
is often denoted as the total variation of the field. This total variation has the advantage to be commutable
with the derivatives. Furthermore, we expanded the field φa(x′) in a Taylor polynomial up to first order in

1However, it turns out that weak interactions break the symmetry under parity and time-reversal transformations, so that
in nature the realized symmetry group reduces to the proper orthochronous Poincaré group.
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δxµ. Finally, in the last step, we used that the total variation ∆φa(x′) is, up to first order, identical with
the total variation ∆φa(x) at x. Now, we consider the transformed action functional, which is of the form

S [φ′a(x′)] = S [φa(x)] + δS . (2.12)

In order to have a theory which is invariant under the transformations (2.9) and (2.10), we have to require
that the last term δS in Eq. (2.12) vanishes. Therefore, we rewrite this term as follows

δS = S [φ′a(x′)]− S [φa(x)]

= S [φ′a(x′)]− S [φa(x′)] + S [φa(x′)]− S [φa(x)]

=

∫
Ω′

d4x′ L
(
φ′a(x′), ∂′µφ

′
a(x′)

)
−
∫

Ω′
d4x′ L

(
φa(x′), ∂′µφa(x′)

)
+

∫
Ω′

d4x′ L
(
φa(x′), ∂′µφa(x′)

)
−
∫

Ω

d4x L (φa(x), ∂µφa(x)) . (2.13)

In the following step, we expand the first term in Eq. (2.13) around φa(x′). Using that φ′a(x′) = φa(x′) +
∆φa(x′), we find∫

Ω′
d4x′ L

(
φ′a(x′), ∂′µφ

′
a(x′)

)
=

∫
Ω′

d4x′
{

L
(
φa(x′), ∂′µφa(x′)

)
+
∂L

(
φa(x′), ∂′µφa(x′)

)
∂φa(x′)

∆φa(x′)

+
∂L

(
φa(x′), ∂′µφa(x′)

)
∂
(
∂′µφa(x′)

) ∂′µ∆φa(x′)
}

=

∫
Ω′

d4x′ L
(
φa(x′), ∂′µφa(x′)

)
+

∫
Ω

d4x
{∂L (φa(x), ∂µφa(x))

∂φa(x)
∆φa(x) +

∂L (φa(x), ∂µφa(x))

∂ (∂µφa(x))
∂µ∆φa(x)

}
,

(2.14)

where we immediately used that the total variation commutes with the 4-gradient. Next, we consider the
third term in Eq. (2.13). In this term, the Lagrangian density can be expanded around x. In addition to
that, we perform a change of variables from x′ → x inside the integral. This leads to∫

Ω′
d4x′ L

(
φa(x′), ∂′µφa(x′)

)
=

∫
Ω

d4x det

(
∂x′µ

∂xν

){
L (φa(x), ∂µφa(x)) + ∂µL (φa(x), ∂µφa(x)) δxµ

}
=

∫
Ω

d4x
{

L (φa(x), ∂µφa(x)) + ∂µL (φa(x), ∂µφa(x)) δxµ

+ L (φa(x), ∂µφa(x))
∂δxµ

∂xµ

}
, (2.15)

where we used, that det (∂x′µ/∂xν) = 1 +∂δxµ/∂xν and neglected terms of second order in the infinitesimal
quantities δxµ and ∂δxµ/∂xµ. The functional determinant can be calculated by taking the exponential of
ln (det(A)) = Tr (ln(A)). Now, we insert the results (2.14) and (2.15) into Eq. (2.13) to obtain

δS =

∫
Ω

d4x
{∂L (φa(x), ∂µφa(x))

∂φa(x)
∆φa(x) +

∂L (φa(x), ∂µφa(x))

∂ (∂µφa(x))
∂µ∆φa(x)

}
+

∫
Ω

d4x
{
∂µL (φa(x), ∂µφa(x)) δxµ + L (φa(x), ∂µφa(x))

∂δxµ

∂xµ

}
=

∫
Ω

d4x
{∂L (φa(x), ∂µφa(x))

∂φa(x)
∆φa(x) +

∂L (φa(x), ∂µφa(x))

∂ (∂µφa(x))
∂µ∆φa(x)

}
+

∫
Ω

d4x
{
∂µ [L (φa(x), ∂µφa(x)) δxµ]

}
. (2.16)

By considering the second term of the first integral of Eq. (2.16), we recognize that this term can be rewritten
as

∂L (φa(x), ∂µφa(x))

∂ (∂µφa(x))
∂µ (∆φa(x)) = ∂µ

[
∂L (φa(x), ∂µφa(x))

∂ (∂µφa(x))
∆φa(x)

]
−
(
∂µ
∂L (φa(x), ∂µφa(x))

∂ (∂µφa(x))

)
∆φa(x).

(2.17)
This is essentially the same step as in the derivation of the Euler-Lagrange equations. But, in Eq. (2.7) we
assumed that the variation of the fields vanishes on the surface ∂Ω and outside the space-time volume Ω.
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This assumption requires that the first term, i.e., the surface term, in Eq. (2.17) vanishes. In this calculation
we do not make this assumption. Inserting (2.17) into Eq. (2.16), dropping the arguments of the Lagrangian
densities and rearranging the terms, we finally obtain

δS =

∫
Ω

d4x

{
∂L

∂φa(x)
− ∂µ

∂L

∂ (∂µφa(x))

}
∆φa(x) +

∫
Ω

d4x ∂µ

{
∂L

∂ (∂µφa(x))
∆φa(x) + L δxµ

}
=

∫
Ω

d4x ∂µ

{
∂L

∂ (∂µφa(x))

(
δφa(x)− ∂νφa(x)δxν

)
+ L δxµ

}
=

∫
Ω

d4x ∂µ

{
∂L

∂ (∂µφa(x))
δφa(x)−

[
∂L

∂ (∂µφa(x))
∂νφa(x)− gµνL

]
δxν
}

=

∫
Ω

d4x ∂µ

{
∂L

∂ (∂µφa(x))
δφa(x)− θµνδxν

}
, (2.18)

where we used that the fields φa(x) fulfill the classical equations of motion (2.8). Furthermore, we used Eq.
(2.11) to rewrite the total variation and defined the so-called energy-momentum tensor

θµν =
∂L

∂ (∂µφa(x))
∂νφa(x)− gµνL . (2.19)

At the beginning of the above derivation, we started with the requirement that δS = 0, therefore Eq. (2.18)
has to vanish. We recognize that the space-time volume Ω was chosen arbitrary, so that the integral vanishes,
if

∂µ

{
∂L

∂ (∂µφa(x))
δφa(x)− θµνδxν

}
= 0 , (2.20)

which obviously has the form of a continuity equation for the conserved Noether current

Jµ =
∂L

∂ (∂µφa(x))
δφa(x)− θµνδxν . (2.21)

Finally, we are able to evaluate the volume integral of Eq. (2.20) by using the Gaussian theorem to obtain
the conserved Noether charge Q

0 =
d

dt
Q, Q =

∫
V

d3r J0 . (2.22)

The derivation of this section shows what is generally known as Noether’s Theorem: The invariance of
the classical action functional with respect to a continuous transformation of the field variables and/or the
space-time variables gives rise to the existence of a conserved current (2.21) and therefore to the existence
of a conserved charge (2.22).

This section shall be completed by a discussion of the symmetry properties of the energy-momentum tensor
(2.19). This energy-momentum tensor is, in general, not a symmetric tensor. In practice, it is sometimes
advantageous to work with a symmetric energy-momentum tensor. In order to obtain a symmetric, physically
absolutely equivalent energy-momentum tensor, often denoted as Tµν , one adds the 4-divergence of a third-
rank tensor ϑλµν , satisfying ϑλµν = −ϑµλν ,

Tµν = θµν + ∂λϑ
λµν . (2.23)

This tensor is referred to as Belinfante tensor. Such a Belinfante tensor always exists, if the difference of
the unsymmetrized energy-momentum tensor and its transposed, i.e., the antisymmetric part of the energy-
momentum tensor, is proportional to the 4-divergence of a third-rank tensor

θνα − θαν = −∂µϑ̃µνα , (2.24)

which is antisymmetric in the second and third index ϑ̃µνα = −ϑ̃µαν . Now, we choose

ϑµνα =
1

2

[
ϑ̃µνα + ϑ̃ναµ − ϑ̃αµν

]
, (2.25)

so that

T να − Tαν = θνα − θαν + ∂µ (ϑµνα − ϑµαν)

= θνα − θαν + ∂µϑ̃
µνα

= 0 , (2.26)
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where we used Eqs. (2.23), (2.25), and the symmetry properties of ϑ̃µνα. Using Eq. (2.25), we are in
the position to determine the explicit form of the Belinfante tensor ϑµνα. To this end, we consider the
infinitesimal Lorentz transformations of a general theory, described by Eq. (2.6). A general ansatz for the
transformation of the fields φa(x) under the Lorentz group is given by

φ′a(x′) = φa(x) +
i

2
ωµν (Jµν)ab φ

b(x) , (2.27)

where the group parameters satisfy ωµν = −ωνµ and the (Jµν)ab are finite-dimensional representations of
the generators of the Lorentz group. Under infinitesimal Lorentz transformations the space-time variables
transform according to

x′µ = xµ + ωµνxν . (2.28)

Inserting the transformations (2.27) and (2.28) into the Noether current (2.21), we obtain

Jµ =
∂L

∂ (∂µφa(x))

[
i

2
ωνα (Jνα)ab φ

b(x)

]
− θµνωναxα

=
∂L

∂ (∂µφa(x))

[
i

2
ωνα (Jνα)ab φ

b(x)

]
− 1

2
[θµνωναx

α − θµνωανxα]

=
1

2
ωνα

[
∂L

∂ (∂µφa(x))
i (Jνα)ab φ

b(x) + θµαxν − θµνxα
]

=
1

2
ωναM

µνα , (2.29)

where we used the antisymmetry of the group parameters and renamed ν ↔ α in the second term of the
second step. Now, the conservation of this Noether current implies that 0 = ∂µM

µνα which can be rewritten
as

0 = ∂µM
µνα

= ∂µ

[
∂L

∂ (∂µφa(x))
i (Jνα)ab φ

b(x)

]
+ θνα − θαν , ⇒ θνα − θαν = −∂µ

[
∂L

∂ (∂µφa(x))
i (Jνα)ab φ

b(x)

]
.

(2.30)

Finally, using Eqs. (2.24) and (2.25), we obtain the explicit form of the Belinfante tensor of a general theory
(2.6)

ϑµνα =
1

2

[
∂L

∂ (∂µφa(x))
i (Jνα)ab φ

b(x) +
∂L

∂ (∂νφa(x))
i (Jαµ)ab φ

b(x)− ∂L

∂ (∂αφa(x))
i (Jµν)ab φ

b(x)

]
. (2.31)

2.2 Functional Methods, Spontaneously Broken Global Symme-
tries, and the Goldstone Theorem

The main focus of this second section will be the spontaneous breakdown of global, continuous symmetries.
This important mechanism shall be introduced in two steps. In the first step, we consider a simple toy
model with a discrete internal symmetry which will be broken spontaneously. This simple example will show
us that a spontaneous symmetry breakdown requires two prerequisites: degenerate vacua and an infinitely
large space. Then, we extend our considerations to a more complicated toy model with a continuous internal
symmetry. The treatment of this model will show us that the spontaneous breakdown of a continuous
symmetry is closely connected to the existence of massless pseudoscalar excitations. The occurrence of these
so-called Nambu-Goldstone bosons is well described by the famous Goldstone theorem which we will prove
at the end of this section. Since this proof requires functional methods, we will start this section with a very
brief reminder of the functional approach to second quantization.

2.2.1 The Quantum Effective Action and its Symmetries

An important tool in the mathematical treatment of quantum many-particle problems is the process of
second quantization. One approach to second quantization is the so-called canonical quantization. In
this framework, one starts with the classical action of the theory in question. Then, one calculates the
general solutions of the classical equations of motion in accordance with Eq. (2.8). These solutions can be
represented as a decomposition in a complete and orthonormal set of functions, depending on the symmetry
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of the space. Usually, one uses a Fourier decomposition. Now, the Fourier amplitudes in this decomposition
will be promoted to creation and annihilation operators, so that the classical field becomes a field operator. In
addition to that, the canonical momentum densities associated with each classical field will also be promoted
to operators. Then, we require that the field operator and the associated momentum density fulfill the
following equal-time commutation or anticommutation relations

[φa(t, r), πb(t, r
′)]± = iδabδ

(3) (r− r′) , (2.32)

where the symbol [·, ·]+ denotes the anticommutator and [·, ·]− denotes the commutator. The decision
whether to demand a commutator or an anticommutator relation in Eq. (2.32) is based on the statistics of
the fields in question. For bosonic fields, we require an equal-time commutation relation, for fermionic fields,
we claim an equal-time anticommutation relation. At this point, it should be taken into account that (2.32)
has to be modified, if the fields contain additional degrees of freedom arising from internal symmetries of
the field space.

Now, using Eq. (2.32), it is possible to find commutation or anticommutations relations for the creation
and annihilation operators. These relations can be used to rewrite the physical observables like the 4-
momentum operator or the angular-momentum operator in terms of the creation and annihilation operators.
The particle picture is now realized as follows: The physical n-particle states are represented as vectors in a
complex Hilbert space h. These vectors are implemented as square-integrable functions with n variables. The
states which describe real physical systems are defined on the subspaces hB and hF of h. Here the subspace
hB contains symmetric functions and the subspace hF contains antisymmetric functions. According to the
spin-statistics theorem, the symmetric functions describe physical bosons and the antisymmetric functions
describe physical fermions. Therefore, these subspaces are often called state spaces. Then, the n-particle
states can be generated by the action of the creation operators on a unique vacuum state |Ω〉.

Another approach to second quantization is given by functional integrals. Since the central studies of this
work are based on functional methods, we have to repeat the important steps, which lead to the functional
approach to Quantum Field Theory. To this end, we consider a general theory describing N spin-0 fields
φa(x), a = 1, . . . , N , whose Lagrangian is given by

L (φa, ∂µφa) =
1

2
(∂µφa)

2 − m2

2
φ2
a − V (φa) . (2.33)

From classical Lagrangian Field Theory, we know that each of the N classical fields is associated with a
conjugate momentum density

πa(x) =
∂L

∂ (∂0φa)

=
1

2

∂

∂ (∂0φa)

{
(∂0φl)

(
∂0φ

l
)
− (∇φl) ·

(
∇φl

)}
=

1

2

{
∂ (∂0φl)

∂ (∂0φa)

(
∂0φ

l
)

+ (∂0φl)
∂
(
∂0φ

l
)

∂ (∂0φa)

}
= ∂0φ

a(x) , (2.34)

where we used that ∂ (∂0φl) /∂ (∂0φa) = δ al . Then, the Hamiltonian of the theory is given by

H =

∫
d3r H

=

∫
d3r [πa(x)∂0φ

a(x)−L (φa, ∂µφa)]

=

∫
d3r

[
1

2
πa(x)πa(x) +

1

2
(∇φa(x)) ·∇φa(x) +

m2

2
φ2
a(x) + V (φa(x))

]
, (2.35)

where we used Eq. (2.34). As already mentioned at the beginning of this subsection, the canonical for-

malism relates the classical fields φa(x), πa(x) with field operators φ̂a(x) and π̂a(x) which we consider in
the Heisenberg picture. These operators have sets of time-dependent eigenstates which fulfill the following
eigenvalue equations

φ̂a(x) |φ1, . . . , φN , t〉 = φa(x) |φ1, . . . , φN , t〉 , (2.36)

π̂a(x) |π1, . . . , πN , t〉 = πa(x) |π1, . . . , πN , t〉 . (2.37)
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The time-dependence of the above eigenstates is realized by the action of the so-called time evolution operator
Û on the states

|φ1, . . . , φN , t
′〉 = Û(t, t′) |φ1, . . . , φN , t〉 , (2.38)

|π1, . . . , πN , t
′〉 = Û(t, t′) |π1, . . . , πN , t〉 , (2.39)

where

Û(t′, t) = e−iĤ(~̂φ,~̂π)(t′−t) . (2.40)

Furthermore, the sets of eigenstates of the Heisenberg field operators are complete and orthonormal, i.e.,
they satisfy ∫ ∏

r

d~φ(r) |φ1, . . . , φN , t〉 〈φ1, . . . , φN , t| = 1 , (2.41)

〈φ1,i, . . . , φN,i, ti|φ1,j , . . . , φN,j , tj〉 = δ
[
~φi(x)− ~φj(x)

]
, (2.42)

and ∫ ∏
r

d~π(r)

2π
|π1, . . . , πN , t〉 〈π1, . . . , πN , t| = 1 , (2.43)

〈π1,i, . . . , πN,i, ti|π1,j , . . . , πN,j , tj〉 = δ [~πi(x)− ~πj(x)] , (2.44)

where d~φ(x) ≡ dφ1(x) . . . dφN (x) and d~π(x) ≡ dπ1(x) . . . dπN (x). At this point, it should be mentioned
that the completeness relations (2.41) and (2.43) are also fulfilled for the time-independent eigenstates
|φ1, . . . , φN , 0〉 and |π1, . . . , πN , 0〉. Finally, the overlap of these eigenstates is given by

〈φ1, . . . , φN , 0|π1, . . . , πN , 0〉 = exp

{
i

∫
d3r πa(r)φa(r)

}
. (2.45)

After these preliminaries, we come to the starting point of the derivation of the functional integral for the
theory (2.33), which is given by the transition amplitude of an initial field configuration at ti to a final field
configuration at tf ,

〈φ1,f , . . . , φN,f , tf |φ1,i, . . . , φN,i, ti〉 . (2.46)

Now, we decompose the time interval [ti, tf ] into n+ 1 time slices of the same length

tk = ti + kτ , k = 1, . . . , n , (2.47)

and insert a complete set of field operator eigenstates at each of the above grid points into Eq. (2.46)

〈φ1,f , . . . , φN,f , tf |φ1,i, . . . , φN,i, ti〉

=

∫ n∏
j=1

d~φj(r) 〈φ1,f , . . . , φN,f , tf |φ1,n, . . . , φN,n, tn〉 · · · 〈φ1,1, . . . , φN,1, t1|φ1,i, . . . , φN,i, ti〉

=

∫ n∏
j=1

d~φj(r) 〈φ1,f , . . . , φN,f , 0|Û(tf , tn)|φ1,n, . . . , φN,n, 0〉 · · · 〈φ1,1, . . . , φN,1, 0|Û(t1, ti)|φ1,i, . . . , φN,i, 0〉 ,

(2.48)

where we used the time evolution of the field operator eigenstates in the last line and the convolution
property of the time evolution operator. The next step of the calculation shows an important property of
the functional integral, therefore we perform this step in detail. To this end, we pick out one of the transition
amplitudes of the above expression and rewrite it as follows

〈φ1,l+1, . . . , φN,l+1, 0|Û(tl+1, tl)|φ1,l, . . . , φN,l, 0〉

= 〈φ1,l+1, . . . , φN,l+1, 0|1− iĤ(~̂φ, ~̂π)τ |φ1,l, . . . , φN,l, 0〉
= 〈φ1,l+1, . . . , φN,l+1, 0|φ1,l, . . . , φN,l, 0〉

− iτ
∫ ∏

r

dπl(r)

2π
〈φ1,l+1, . . . , φN,l+1, 0|π1,l, . . . , πN,l, 0〉 〈π1,l, . . . , πN,l, 0|Ĥ(~̂φ, ~̂π)|φ1,l, . . . , φN,l, 0〉
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= 〈φ1,l+1, . . . , φN,l+1, 0|φ1,l, . . . , φN,l, 0〉

− iτ
∫ ∏

r

dπl(r)

2π
〈φ1,l+1, . . . , φN,l+1, 0|π1,l, . . . , πN,l, 0〉 〈π1,l, . . . , πN,l, 0|H(~φl, ~πl)|φ1,l, . . . , φN,l, 0〉

= δ
[
~φl+1(r)− ~φl(r)

]
− iτ

∫ ∏
r

dπl(r)

2π
exp

{
i

∫
d3r πa,l

(
φal+1 − φal

)}
H(~φl, ~πl) , (2.49)

where we inserted a complete set of momentum density eigenstates and used the overlap (2.45) and the fact
that the field operator eigenstates are orthonormal. The important step of the above calculation happens
in the penultimate line: There, we use that the Hamilton operator is a function of the field operator φ̂a
and the conjugate momentum density operator π̂a. Then, using the eigenvalue equations (2.36) and (2.37)
of these operators, we observe that the action of the Hamilton operator on the eigenstate |φ1,l, . . . , φN,l, 0〉
projects the respective eigenvalues out of the Hilbert-space vector. This transforms the Hamilton operator
into the classical Hamiltonian H(~φl, ~πl). In order to compactify the result (2.49), we use the exponential
representation of the functional delta-distribution

δ
[
~φi(r)− ~φj(r)

]
=

∫ ∏
r

dπ(r)

2π
exp

{
i

∫
d3r πa

(
φai − φaj

)}
, (2.50)

so that we finally obtain

〈φ1,l+1, . . . , φN,l+1, 0|Û(tl+1, tl)|φ1,l, . . . , φN,l, 0〉

=

∫ ∏
r

dπl(r)

2π
exp

{
i

∫
d3r πa,l

(
φal+1 − φal

)}(
1− iτH(~φl, ~πl)

)
(2.51)

Now, we can use the above result for each of the transition amplitudes in Eq. (2.48) and find

〈φ1,f , . . . , φN,f , tf |φ1,i, . . . , φN,i, ti〉

=

∫ n∏
j=1

d~φj(r)

n∏
j=0

d~πj
2π

exp

i
∫

d3r

n∑
j=0

πa,j
(
φaj+1 − φaj

)
n∏
j=0

(
1− iτH(~φj , ~πj)

)

=

∫ n∏
j=1

d~φj(r)

n∏
j=0

d~πj
2π

exp

iτ
∫

d3r

 n∑
j=0

πa,j
φaj+1 − φaj

τ
−H (~φj , ~πj)


n→∞,
τ→0=

∫
D~φ(x)D~π(x) exp

{
i

∫ tf

ti

d4x
[
πa(x)∂0φ

a(x)−H (~φ, ~π)
]}

. (2.52)

The last line of Eq. (2.52) requires some explanation: The limits n → ∞ and τ → 0 transform the sum
over j in the exponential into an integral in the Riemannian sense. The latter limit also makes sure that
the quotient of the ~φ fields becomes a partial derivative with respect to the time variable. Furthermore, the
functional integral measures are defined as

D~φ(x) ≡ lim
n→∞
τ→0

n∏
j=1

∏
r

d~φ(r) , D~π(x) ≡ lim
n→∞
τ→0

n∏
j=0

∏
r

d~π(r)

2π
. (2.53)

The result (2.52) is often called Phase-Space Path Integral. But the Phase-Space Path Integral of the scalar
field theory (2.33) can also be brought into another form. To this end, we notice that the Hamiltonian
density of the theory, Eq. (2.35), only contains terms which are at maximum of quadratic powers in the
conjugate momenta πa(x). This means that the functional integral over the conjugate momenta is simple
given by a functional generalization of a Gaussian integral, compare [6.2]. We find

〈φ1,f , . . . , φN,f , tf |φ1,i, . . . , φN,i, ti〉

=

∫
D~φ(x)D~π(x) exp

{
i

∫ tf

ti

d4x
[
πa(x)∂0φ

a(x)−H (~φ, ~π)
]}

=

∫
D~φ(x)D~π(x) exp

{
i

∫ tf

ti

d4x

[
−1

2
(πa(x)− ∂0φa(x))

2
+ L (φa(x), ∂µφa(x))

]}
= N

∫
D~φ(x) exp

{
i

∫ tf

ti

d4x L (φa(x), ∂µφa(x))

}
, (2.54)
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where we absorbed the value of the Gaussian functional integral in the normalization constant N . This
result is often referred to as Feynman form of the functional integral of the scalar field theory.

In general, one is not only interested in the transition amplitudes of a quantum field theory, but also
in the expectation values of the field operators. Especially, the time-ordered vacuum expectation values
of arbitrary products of field operators are of particular importance, since they correspond to the n-point
Greens functions of the theory. In the following, we want to derive an expression for the n-point functions
of the scalar field theory (2.33). It will be shown that all n-point functions of the theory can be collected in
only one so-called generating functional. The concept of a generating functional guarantees that the n-point
functions of a theory take a rather simple form in the functional formulation of Quantum Field Theory.
Then, for later purposes, we will also introduce two other kinds of generating functionals, which are able to
generate only special types of n-point functions. In order to derive a functional integral expression of the
n-point functions of our scalar field theory, we consider the following time-ordered expectation value

〈φ1,f , . . . , φN,f , tf |T
{
φ̂k1
a1
· · · φ̂kmam

}
|φ1,i, . . . , φN,i, ti〉 , (2.55)

where T denotes the time-ordering operator. In the above expression, the indices aj label the different scalar
fields in field space, so that aj ∈ [1, N ] for all j = 1, . . . ,m. Furthermore, we decompose the time interval
[ti, tf ] according to Eq. (2.47) and choose the time grid points in way, so that m of them match with the
time arguments kj , j = 1, . . . ,m of the field operators. In order to simplify the above expectation value, we
choose a distinct time-ordering and assume k1 > k2 > . . . > km, so that Eq. (2.55) becomes

〈φ1,f , . . . , φN,f , tf |φ̂k1
a1
· · · φ̂kmam |φ1,i, . . . , φN,i, ti〉 . (2.56)

According to the previous derivation, we insert complete sets of time-dependent field operator eigenstates,
so that the above expectation value becomes

〈φ1,f , . . . , φN,f , tf |φ̂k1
a1
· · · φ̂kmam |φ1,i, . . . , φN,i, ti〉

=

∫ n∏
j=1

d~φj 〈φ1,f , . . . , φN,f , tf |φ1,n, . . . , φN,n, tn〉 · · · 〈φ1,k1+1, . . . , φN,k1+1, tk1+1|φ̂k1
a1
|φ1,k1

, . . . , φN,k1
, tk1
〉

· · · 〈φ1,km+1, . . . , φN,km+1, tkm+1|φ̂kmam |φ1,km , . . . , φN,km , tkm〉 · · · 〈φ1,1, . . . , φN,1, t1|φ1,i, . . . , φN,i, ti〉

=

∫ n∏
j=1

d~φj φ
k1
a1
. . . φkmam 〈φ1,f , . . . , φN,f , 0|Û(tf , tn)|φ1,n, . . . , φN,n, 0〉

· · · 〈φ1,1, . . . , φN,1, 0|Û(t1, ti)|φ1,i, . . . , φN,i, 0〉 , (2.57)

where we used the eigenvalue equation (2.36). According to the discussion of Eq. (2.49), it should be
emphasized that the fields in front of the matrix elements in Eq. (2.58) are classical field quantities which of
course commute. An important consequence of this insight is that any other time-ordering of the operators
in Eq. (2.56) would yield the same result (2.57). This means that the time-ordering of the operators is
always encoded in the functional integral. Returning to the above result, we recognize that, apart from the
product of the field operator eigenvalues, the expressions in Eqs. (2.48) and (2.57) are identical, so that
we can follow the same calculational steps as in the previous derivation. Inserting conjugate momentum
eigenstates into each of the matrix elements in Eq. (2.57), summarizing the exponentials and taking the
limits n→∞ and τ → 0 yields

〈φ1,f , . . . , φN,f , tf |T
{
φ̂k1
a1
· · · φ̂kmam

}
|φ1,i, . . . , φN,i, ti〉

= N
∫

D~φ(x) φa1(xk1) · · ·φam(xkm) exp

{
i

∫ tf

ti

d4x L (φa(x), ∂µφa(x))

}
. (2.58)

In order to derive an expression for the n-point functions of the theory, we return to the expectation value
(2.56) and rewrite it in a different way. Now, we insert two sets of energy eigenstates of the Hamilton
operator of the theory

〈φ1,f , . . . , φN,f , tf |T
{
φ̂k1
a1
· · · φ̂kmam

}
|φ1,i, . . . , φN,i, ti〉

=
∑
n,m

〈φ1,f , . . . , φN,f , tf |n〉 〈n|T
{
φ̂k1
a1
· · · φ̂kmam

}
|m〉 〈m|φ1,i, . . . , φN,i, ti〉

=
∑
n,m

〈φ1,f , . . . , φN,f , 0|Û(tf , 0)|n〉 〈n|T
{
φ̂k1
a1
· · · φ̂kmam

}
|m〉 〈m|Û(0, ti)|φ1,i, . . . , φN,i, 0〉
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=
∑
n,m

e−i(Entf−Emti) 〈φ1,f , . . . , φN,f , 0|n〉 〈n|T
{
φ̂k1
a1
· · · φ̂kmam

}
|m〉 〈m|φ1,i, . . . , φN,i, 0〉

=
∑
n,m

e−(Enτf−Emτi) 〈φ1,f , . . . , φN,f , 0|n〉 〈n|T
{
φ̂k1
a1
· · · φ̂kmam

}
|m〉 〈m|φ1,i, . . . , φN,i, 0〉 , (2.59)

where we performed an analytic continuation to imaginary times t→ −iτ in the last line. This mathematical
trick is often called Wick rotation and we will study it in more detail in Chapter [4.1]. The necessity of this
approach becomes evident, when we try to study the behavior of Eq. (2.59) for large time arguments, i.e.,
for tf → ∞ and ti → −∞. Without the Wick rotation, we would obtain a strongly oscillating exponential
factor and it would not be clear, how to interpret this result. The Wick rotation transforms the oscillating
exponential into an exponentially damped factor. It is obvious that, in the limits tf → ∞ and ti → −∞,
the largest contribution to Eq. (2.59) comes from the term n = m = 0, i.e., from the ground state |0〉 ≡ |Ω〉.
Therefore, we find

lim
τi→−∞,
τf→∞

〈φ1,f , . . . , φN,f ,−iτf |T
{
φ̂k1
a1
· · · φ̂kmam

}
|φ1,i, . . . , φN,i,−iτi〉

= e−EΩ(τf−τi) 〈φ1,f , . . . , φN,f , 0|Ω〉 〈Ω|T
{
φ̂k1
a1
· · · φ̂kmam

}
|Ω〉 〈Ω|φ1,i, . . . , φN,i, 0〉 . (2.60)

Obviously, we found an expression which contains the vacuum expectation value of a time-ordered product
of field operators. In order to find an expression for the n-point functions of the theory, we have to isolate
this factor. To this end, we return to the transition amplitude (2.46) and rewrite it in the same way as Eq.
(2.56)

〈φ1,f , . . . , φN,f , tf |φ1,i, . . . , φN,i, ti〉

=
∑
n

〈φ1,f , . . . , φN,f , tf |n〉 〈n|φ1,i, . . . , φN,i, ti〉

=
∑
n

e−iEn(tf−ti) 〈φ1,f , . . . , φN,f , 0|n〉 〈n|φ1,i, . . . , φN,i, 0〉

=
∑
n

e−En(τf−τi) 〈φ1,f , . . . , φN,f , 0|n〉 〈n|φ1,i, . . . , φN,i, 0〉

τi→−∞,
τf→∞

= e−EΩ(τf−τi) 〈φ1,f , . . . , φN,f , 0|Ω〉 〈Ω|φ1,i, . . . , φN,i, 0〉 . (2.61)

Comparing the results (2.60) and (2.61), we observe that the n-point functions can be written as

G(n)
a1...an(x1, . . . , xn) ≡ 〈Ω|T {φ(x1) · · ·φ(xn)} |Ω〉

= lim
ti→−∞,
tf→∞

〈φ1,f , . . . , φN,f , tf |T
{
φ̂a1

(x1) · · · φ̂an(xn)
}
|φ1,i, . . . , φN,i, ti〉

〈φ1,f , . . . , φN,f , tf |φ1,i, . . . , φN,i, ti〉

= lim
ti→−∞,
tf→∞

∫
D~φ(x) φa1(x1) · · ·φan(xn) exp

{
i
∫ tf
ti

d4x L (φa(x), ∂µφa(x))
}

∫
D~φ(x) exp

{
i
∫ tf
ti

d4x L (φa(x), ∂µφa(x))
}

=

∫
D~φ(x) φa1(x1) · · ·φan(xn) exp

{
i
∫

d4x L (φa(x), ∂µφa(x))
}∫

D~φ(x) exp
{
i
∫

d4x L (φa(x), ∂µφa(x))
} , (2.62)

where we relabeled the field-space and time indices, m → n. At this point it is common to introduce a so-
called generating functional for all n-point functions of the theory. The basic idea of introducing a generating
functional arises from the observation that the product of the classical fields in the numerator of Eq. (2.62)
can simply be generated by functional derivatives. In order to see this, we define the vacuum-to-vacuum
transition amplitude in the presence of external sources

Z[ ~J ] = 〈Ω|Ω〉 ~J = N
∫

D~φ(x) exp

{
i

∫
d4x L (φa(x), ∂µφa(x)) + Ja(x)φa(x)

}
, (2.63)

where we introduced the N -dimensional vector ~J(x) = (J1(x), . . . , JN (x))T . The components of this vector
are classical sources which describe perturbations of the quantum system. Furthermore, the normalization
constant N can be fixed by the normalization requirement Z[ ~J = ~0] = 1. It is now easy to see that the

functional derivatives of Z[ ~J ] with respect to the classical sources at ~J = ~0 yield Eq. (2.62). Therefore, we
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conclude that all n-point functions of the theory can be obtained from the vacuum-to-vacuum amplitude
(2.63) by taking functional derivatives with respect to the external sources

G(n)
a1...an(x1, . . . , xn) = (−i)n δnZ[ ~J ]

δJa1(x) . . . δJan(x)

∣∣∣∣∣
~J=~0

. (2.64)

Due to the property that Eq. (2.63) includes all n-point functions of the theory, i.e., it is the sum of
all vacuum-to-vacuum amplitudes in the presence of the classical sources Ja(x), and since it describes a
functional of the external sources, it is often called generating functional of all n-point functions or simply
generating functional. It is also possible to define another generating functional, denoted as W [ ~J ], which is

the sum of all connected diagrams of the theory. The relation between W [ ~J ] and Z[ ~J ] is given by

iW [ ~J ] = ln(Z[ ~J ]) . (2.65)

This relation can be understood as follows. As mentioned above, the generating functional Z[ ~J ] is the sum
of all diagrams. Now, a general diagram can be written as diagram =

∏
j(1/nj !)(connected)

nj
j , where the

variable nj counts how often a connected subdiagram (connected)j appears in diagram. The factor 1/nj ! is
the so-called symmetry factor, associated with the subdiagram (connected)j . If we insert this expression in

Z[ ~J ] ∝
∑
{nj} diagram and use the definition W [ ~J ] =

∑
j (connected)j , we immediately arrive at Eq. (2.65).

This functional generates the so-called connected n-point functions by taking the functional derivatives of
Eq. (2.65) with respect to the classical sources

G(n),connected
a1...an (x1, . . . , xn) = (−i)n−1 δnW [ ~J ]

δJa1(x) . . . δJan(x)

∣∣∣∣∣
~J=~0

. (2.66)

There also exists another special type of diagrams, the so-called one-particle irreducible (1PI) diagrams.
Under this term one understands diagrams which are connected in a non-trivial way. In plain language, this
means that the diagram is still connected, even if we truncate an arbitrary inner line. Figures [2.1] and [2.2]
show simple examples for 1PI diagrams and diagrams which are not one-particle irreducible. As mentioned

(a) (b)

Figure 2.1: The diagrams (a) and (b) show 1PI vacuum corrections to the free 4-point function in ϕ4-theory. Obviously, it
is possible to truncate an arbitrary inner line without decomposing the diagrams (a) and (b) into disjoint subdiagrams.

(a) (b)

Figure 2.2: The diagrams (a) and (b) show vacuum corrections to the free 2-point function in ϕ4-theory, which are not
one-particle irreducible. It is evident that we are able to truncate an inner line, so that the diagrams (a) and (b) decompose
into disjoint subdiagrams.

before, the 1PI diagrams are special cases of connected diagrams. Therefore, we expect that the generating
functional for those diagrams can be obtained from W [ ~J ] or is at least proportional to W [ ~J ]. In order to
construct the generating functional for 1PI diagrams, we start with the definition

ϕa(x) =
δW [ ~J ]

δJa(x)
(2.67)

of the so-called classical field. The field (2.67) is given by the vacuum expectation value of the field operator
φa(x) in the presence of the classical source Ja(x). The designation as classical field can be motivated by
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an explicit example. To this end, we consider the free Klein-Gordon theory. For this type of theory, the
generating functional for connected Green’s functions can be explicitly computed as

W [J ] = −1

2

∫
d4x1d4x2 J (x1) ∆F (x1 − x2) J (x2) . (2.68)

Inserting this result into Eq. (2.67) we obtain

ϕ(x) = −1

2

δ

δJ(x)

∫
d4x1d4x2 J (x1) ∆F (x1 − x2) J (x2)

= −1

2

∫
d4x1d4x2

{
δJ(x1)

δJ(x)
∆F (x1 − x2)J(x2) + J(x1)∆F (x1 − x2)

δJ(x2)

δJ(x)

}
= −

∫
d4z ∆F (x− z)J(z) . (2.69)

Next, we insert Eq. (2.69) into the classical equation of motion, i.e., in the Klein-Gordon equation. We find(
� +m2

)
ϕ(x) = −

∫
d4z

(
� +m2

)
∆F (x− z)J(z) = J(x) , (2.70)

where we used that the Feynman propagator ∆F (x− z) is a Green function of the Klein-Gordon operator.
Apparently, the classical field ϕ(x) fulfills the classical equation of motion in the presence of the classical
source J(x).

Now, we come back to the general case of a theory containing N fields. If we assume the definition (2.67)
to be invertible, the classical source Ja(x) can be seen as an independent variable. It is therefore possible to
eliminate Ja(x) from the functional by expressing it in terms of the classical field ϕa(x). Hence, we define

the generating functional for 1PI diagrams as the functional Legendre transform of W [ ~J ]

Γ[~ϕ] = W [ ~J ]−
∫

d4x ϕa(x)Ja(x) . (2.71)

By taking the functional derivative of Eq. (2.71) with respect to ϕa, we find another interesting relation

δΓ[~ϕ]

δϕa(x)
=
δW [ ~J ]

δϕa(x)
−
∫

d4x′
{
δϕb(x

′)

δϕa(x)
Jb(x′) + ϕb(x

′)
δJb(x′)

δϕa(x)

}
=

∫
d4x′

{
δW [ ~J ]

δJb(x′)

δJb(x′)

δϕa(x)
− δ(4)(x′ − x)δabJ

b(x′)− ϕb(x′)
δJb(x′)

δϕa(x)

}
= −Ja(x) . (2.72)

The above relation shows that for a vanishing classical source ~J = ~0 the values for the classical fields are
determined by the stationary points of the 1PI generating functional Γ[~ϕ]. This fact is comparable to the
classical equations of motion which follow from the stationary points of the classical action, compare Eq.
(2.7). Due to this similarity, the functional Γ[~ϕ] is often referred to as quantum effective action. Of course,
in close analogy to Eqs. (2.64) and (2.66), the 1PI functions can be obtained by taking the functional
derivatives of Γ[~ϕ] with respect to the classical fields ϕa(x)

Γ(n)
a1...an(x1, . . . , xn) =

δnΓ[~ϕ]

δϕa1(x1) . . . δϕan(xn)

∣∣∣∣
~ϕ=~0

. (2.73)

Finally, we want to study the symmetries of the quantum effective action. More precisely, we want to find
a condition which always holds when the effective action is invariant under a certain transformation of the
fields. In the next section, we will use this relation as the starting point for the proof of the Goldstone
theorem. To this end, we consider a transformation of the N fields of the form

φa(x)→ φ′a(x) = φa(x) + εΩa [φa, x] , (2.74)

where Ωa in general has a functional dependence on φa. Now, we consider the generating functional of all
Green functions Z[ ~J ] and assume that the classical action as well as the path integral measure are both
invariant under the transformation (2.74) of the fields, i.e.,

S[φ′a] = S[φa], D~φ′(x) ≡
∏
x

d~φ(x) = D~φ(x) . (2.75)
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Inserting the transformed fields φ′a(x) into Z[ ~J ] and using the assumptions (2.75), one obtains

Z ′[ ~J ] = N
∫

Dφ′ exp

{
iS[φ′a] + i

∫
d4x Ja(x)φ′a(x)

}
= N

∫
Dφ exp

{
iS[φa] + i

∫
d4x Ja(x)φa(x)

}
exp

{
iε

∫
d4x Ωa[φa, x]Ja(x)

}
= Z[ ~J ] + iε

∫
Dφ exp

{
iS[φa] + i

∫
d4x Ja(x)φa(x)

}∫
d4x Ωa[φa, x]Ja(x)

= Z[ ~J ] + δZ[ ~J ] , (2.76)

where we expanded the second exponential up to first order in ε. In order to be invariant under the
transformation (2.74), the second term δZ[ ~J ] has to vanish exactly. Interchanging the space-time and the

functional integration and dividing by Z[ ~J ], this condition can be written as

0 =

∫
d4x 〈Ωa[φa, x]〉 δΓ[~ϕ]

δϕa
, (2.77)

where we used Eq. (2.72) and defined the average 〈Ωa[φa, x]〉 in presence of the classical source ~J as

〈Ωa[φa, x]〉 =

∫
Dφ exp

{
iS[φa] + i

∫
d4x Ja(x)φa(x)

}
Ωa[φa, x]

Z[ ~J ]
. (2.78)

The invariance conditions (2.77) are often referred to as Slavnov-Taylor identities. Finally, we can add Γ[~ϕ]/ε
on both sides of Eq. (2.77), so that

Γ[ϕa + ε 〈Ωa[φa, x]〉] = Γ[ϕa] , (2.79)

where we neclected terms of order O(ε2). Obviously, the conditions (2.77) imply the invariance of the
quantum effective action under transformations of the type

ϕa(x)→ ϕ′a(x) = ϕa(x) + ε 〈Ωa [φa, x]〉 . (2.80)

It has to be taken into account, that the transformations (2.80) are in general not of the same type as the
transformations (2.74) which we started with. Fortunately, the equivalence of Eqs. (2.74) and (2.80) holds
for an important class of infinitesimal transformations, particularly for infinitesimal transformations which
are linear in the fields

Ωa[φa, x] = ωa(x) +

∫
d4z T b

a (x, z)φb(z) . (2.81)

If we combine Eqs. (2.74) and (2.81), the resulting infinitesimal transformation is very similar to an
infinitesimal element of a Lie group. For such a group the first term ωa(x) vanishes and the matrix
T b
a (x, z) is proportional to the product of a generator of the associated Lie group with a delta-distribution
T b
a (x, z) ∝ T b

a δ
(4)(x− z). For these transformations we are able to find a configuration for the fields φa(x)

and the classical sources Ja(x), so that 〈φa(x)〉 = ϕa(x) and therefore 〈Ωa [φa, x]〉 = Ωa[ϕa, x].

2.2.2 Spontaneously Broken Symmetries and Degenerate Vacua

In the first section we saw that the invariance of the classical action of a theory under the elements of
a continuous group involves a conserved Noether current (2.21) and therefore a conserved Noether charge
(2.22). As seen in subsection [2.1.2], this holds for symmetries of space-time as well as for internal symmetries.
But it shows that in nature not only the preserved symmetries play an important role, but also the explicitly
and spontaneously broken symmetries. In this Subsection we will focus on the systematics of spontaneous
symmetry breaking. As already mentioned in the introduction of this section, there are two important
prerequisites which must be met. On the one hand, we will see that spontaneous symmetry breaking requires
the existence of degenerate vacua. On the other hand, it turns out that an infinite space-time volume will
be another important, even if subtle point. In order to simplify matters, we want to study these subjects
by using the example of a simple theory containing real scalar fields with a quartic self-interaction. The
Lagrangian of this theory is given by

L (ϕ(x), ∂µϕ(x)) =
1

2
(∂µϕ)

2 − V (ϕ) , V (ϕ) =
m2

2
ϕ2 +

λ

4!
ϕ4 . (2.82)
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At first sight, Eq. (2.82) is identical to the Lagrangian of the familiar ϕ4-theory. But in contrast to this
theory, we do not want to fix the sign of the parameter m2. On the other hand, in accordance with the
usual ϕ4 Lagrangian, we define λ > 0 so that the potential density is bounded from below. Obviously, the
Lagrangian (2.82) is invariant under Z2-transformations

ϕ(x)
Z2−→ ϕ′(x) = −ϕ(x) . (2.83)

In general, the cyclic group of rank n, Zn, is a discrete group describing the rotations of regular polygons
with n directed sides. In the case of the field theory (2.82), we have to ”rotate” the field ϕ(x) twice, in
order to transform it into itself. Therefore, the symmetry group of this theory is given by Z2. Later in
this discussion, we will also associate an operator Cϕ, acting on the Hilbert space of our system, with this
symmetry transformation. But prior to that, we have to clarify the consequences of the sign of the constant
m2. To this end, we start with the case which is realized in ordinary ϕ4-theory, i.e., m2 > 0. The potential
density for this case is pictured in Fig. [2.3(a)]. From this figure we observe that the choice m2 > 0 leads

 (φ)

φ

(a) (b)

Figure 2.3: Figure [(a)] shows the potential density given in Eq. (2.82) for m2 > 0. Figure [(b)] demonstrates the two
dimensional version of Fig. [(a)], i.e., the Wigner-Weyl realization of Eq. (2.82).

to a unique minimum at ϕ0 = 0. Of course, it is also possible to find this minimum by setting the first
derivative of V (ϕ) with respect to ϕ to zero

dV (ϕ)

dϕ

∣∣∣∣
ϕ=ϕ0

= m2ϕ0 +
λ

3!
ϕ3

0
!
= 0 . (2.84)

For m2 > 0, the above condition (2.84) immediately leads to the minimum

ϕ0 = 0 , (2.85)

which underpins the observation from Fig. [2.3(a)]. After quantizing the theory (2.82), this unique minimum
of the potential density will lead to a unique ground or vacuum state |Ω〉. Figure [2.3(b)] shows the two-
dimensional generalization of the potential density (2.82). Also in N -dimensional generalizations of this

potential density, we will only obtain a single minimum at ~ϕ = ~0, where ~ϕ = (ϕ1, . . . , ϕN )
T

and therefore a
unique vacuum state. It has to be taken into account that in the case of N ≥ 2 the discrete Z2-symmetry
(2.83) of our model becomes a continuous rotational symmetry. This continuous case is often referred to
as the Wigner-Weyl realization of a symmetry, compare Fig. [2.3(b)]. As we will see in a moment, the
uniqueness of the ground state will not lead to a spontaneous breaking of the Z2-symmetry of our model.
Therefore, we are not interested in this case and turn to the second case m2 < 0. It should be noted that
this sign convention of the parameter m2 is not unphysical, since the Lagrangian (2.82) does not necessarily
have to describe particles of mass m. A more detailed discussion of this point is given in Ref. [RQFT]. In
the continuous case, this choice of sign is referred to as the Nambu-Goldstone realization of a symmetry. In
this case, the condition (2.84) leads to three extreme points

ϕ0,1/2 = ±
√
−6m2

λ
≡ ±ϕ0, ϕ0,3 = 0 . (2.86)

Checking the sufficient condition for the extreme points, it turns out that the point ϕ0,3 corresponds to a local
maximum of the potential density, while the points ϕ0,1/2 describe the two distinct minima of the theory.
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After quantizing the theory, these minima will correspond to two degenerate vacua |Ω,+〉 and |Ω,−〉, which
are obviously distinguishable through the vacuum expectation values +ϕ0 and −ϕ0 of the field operator
ϕ(x). This situation and the corresponding two-dimensional case are depicted in Figs. [2.4(a)] and [(b)]. At
this point, it is convenient to shift the field by one of its vacuum expectation values and introduce a new
dynamical variable

ϕ(x) = σ(x)± ϕ0 . (2.87)

This new field variable describes the field fluctuations around the minima. Therefore, Eq. (2.87) corresponds
to an expansion of the initial field variable around the minima of the potential density. The Lagrangian
(2.82) can be rewritten in terms of the new fluctuation field σ(x)

L (σ(x), ∂µσ(x)) =
1

2
(∂µσ)

2 − V (σ(x)± ϕ0)

=
1

2
(∂µσ)

2 − m2

2

(
σ2 + ϕ2

0 ± 2σϕ0

)
− λ

4!

(
σ4 ± 4σ3ϕ0 + 6σ2ϕ2

0 ± 4σϕ3
0 + ϕ4

0

)
=

1

2
(∂µσ)

2 − 1

2

(
−2m2

)
σ2 ± λ

3!
ϕ0σ

3 − λ

4!
σ4 − m2

2
ϕ2

0 −
λ

4!
ϕ4

0

=
1

2
(∂µσ)

2 − 1

2
m2
σσ

2 ± λ

3!
ϕ0σ

3 − λ

4!
σ4 − V (ϕ0) , (2.88)

where we used Eqs. (2.84), (2.86) and defined the mass of the new particle σ as mσ =
√
−2m. The theory

in terms of the new dynamical field variable obviously develops not only the quartic self-interaction term,
which was already present in Eq. (2.82), but also a new cubic self-interaction term. In addition to that,
we obtain a new constant term which is given by the potential density evaluated at its minimum. However,
this constant term is irrelevant for the dynamics of the σ-field, since it does not contribute to the equations
of motion. Let us come back to the cubic term. This new term ensures that the new Lagrangian (2.88) is

 (φ)

φ

(a) (b)

Figure 2.4: Figure [(a)] shows the potential density given in Eq. (2.82) for m2 < 0. Figure (b) demonstrates the two
dimensional version of figure [(a)], i.e., the Nambu-Goldstone realization of Eq. (2.82).

not invariant under Z2-transformations of the fluctuation field σ(x)
Z2−→ σ′(x) = −σ(x). This observation

could lead one to believe that the initial Z2-symmetry of the Lagrangian might be broken. But in fact,

the initial Z2-symmetry ϕ(x)
Z2−→ ϕ′(x) = −ϕ(x) is still present in the Lagrangian, even though realized in

a different way. This can be seen when we translate the transformation behavior of the initial field ϕ(x)
in the language of the new fluctuation field σ(x). Under Z2 the fluctuation field transforms according to

σ(x)
Z2−→ −σ(x)∓2ϕ0. This shows us that the term ”broken symmetry” is actually not true, since the initial

symmetry is just hidden. Nevertheless, we will use this term frequently throughout this work. Furthermore,
we recognize that the breakdown of the symmetry only occurs because the theory develops two degenerate
vacua for the choice m2 < 0 and selects one of them as the physical vacuum. For the first case m2 > 0
we obtained only a single vacuum state. The vacuum expectation value of the field operator vanishes in
this case. Therefore, a shift of the dynamical field would not develop a symmetry breaking term in the
Lagrangian. In the next subsection, we will see that the spontaneous breakdown of a global continuous
symmetry will have an important consequence, described by the Goldstone theorem. But before we come to
this subject, we go back to another subtle point. In the discussion of Eq. (2.86) we naively assumed that
the realized vacuum state of the theory is given by either |Ω,+〉 or |Ω,−〉. But, in a quantized theory it also
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should be possible to have a vacuum which is described by a superposition of both vacuum states |Ω,+〉 and
|Ω,−〉, e.g.

|Ω̃,+〉 =
1√
2

(|Ω,+〉+ |Ω,−〉) , |Ω̃,−〉 =
1√
2

(|Ω,+〉 − |Ω,−〉) . (2.89)

In the following we want to show that such a vacuum (2.89) is not stable against small external perturbations.
To this end, we introduce an operator Cϕ, associated with the symmetry transformation (2.83). This operator
satisfies the following relations

C2
ϕ = 1, Cϕ = C−1

ϕ = C†ϕ , (2.90)

i.e., it is unitary and also hermitian. The first relation in Eq. (2.90) can be motivated by the fact that the
successive action of two operators Cϕ on a state vector ”reflects” the transformed state onto the initial state.
Therefore, the square of the operator must be given by the unit matrix. Multiplying this relation by C−1

ϕ

yields Cϕ = C−1
ϕ . Using this relation and considering the matrix element 〈ϕ′|Cϕ|ϕ〉, we are able to show the

hermiticity and the unitarity of Cϕ. The action of this operator also implies that

Cϕ |Ω,±〉 = |Ω,∓〉 , (2.91)

which immediately follows from Eq. (2.83). Using this relation, we can show that the linear combinations
|Ω̃,±〉 are invariant or up to a sign invariant under the Z2-transformation (2.83)

Cϕ |Ω̃,±〉 = ± |Ω̃,±〉 . (2.92)

With these considerations we are able to study an infinitesimal external perturbation which is odd in the
field variable ϕ(x). The Hamiltonian describing this perturbation shall be given by HI ≡ δHpert, where δ is
an infinitesimal coupling constant. The consequences of this perturbation can be studied in the framework
of perturbation theory. In our case, the vacuum state |Ω〉 is twice degenerate. Therefore, there exists a two-
dimensional subspace which is formed by the degenerate vacuum states |Ω̃,±〉. We also assume that these
vacuum states form an orthonormal basis of this subspace, which also implies that |Ω,±〉 are orthonormal.
It turns out, that the proof of this assumption requires an infinitely large spatial volume. For the explicit
proof, see for example [Wei2]. Now, the state |Ω〉 can be expanded in the orthonormal basis of the subspace

|Ω〉 =
∑
j=+,−

cj |Ω̃, j〉 . (2.93)

Up to first order in λ, Schrödinger’s equation yields

0 =
∑
j=+,−

cj

(
Hij
pert − E

(1)
Ω δij

)
, (2.94)

in which we defined Hij
pert = 〈Ω̃, i|Hpert|Ω̃, j〉. This equation can be understood as a linear system of

equations for the coefficients cj . The non-trivial solutions of this system require that

det

(
H++
pert − E

(1)
Ω H+−

pert

H−+
pert H++

pert − E
(1)
Ω

)
= 0 . (2.95)

In order to calculate the zeros of the characteristic polynomial of the above matrix it will be easier to first
consider the matrix elements Hij

pert. To this end, we start with the diagonal elements H++
pert and H−−pert

H++
pert = 〈Ω̃,+|Hpert|Ω̃,+〉 = 〈Ω̃,+|C†ϕCϕHpertC†ϕCϕ|Ω̃,+〉 = −H++

pert

H−−pert = 〈Ω̃,−|Hpert|Ω̃,−〉 = 〈Ω̃,−|C†ϕCϕHpertC†ϕCϕ|Ω̃,−〉 = −H−−pert ,
(2.96)

where we have used Eqs. (2.90), (2.92) and the fact that the Hamiltonian Hpert is odd in ϕ(x). Obviously,
these matrix elements have to vanish. The off-diagonal elements do not have to vanish in general. Defining

H+−
pert = H−+

pert ≡ E , E ∈ R and inserting these results into Eq. (2.95), we obtain E
(1)
Ω = ±E and therefore up

to first order in δ
EΩ̃ = EΩ ± δE ± . . . . (2.97)

This calculation shows that the degenerate energy levels of the vacua are shifted by E in the presence of an
infinitesimal perturbation which is odd in the field. To zeroth order in δ, we obtain the vacuum energies
of |Ω,±〉. Inserting the solutions of Eq. (2.95) into the linear system of equations, we are able to solve
for the coefficients cj . Using the normalization of the vacuum states, we obtain c+ = c− = 1/

√
2 for the

eigenvalue E and c+ = −1/
√

2, c− = 1/
√

2 for −E . In order to obtain the vacuum states which diagonalize
the perturbed system up to zeroth order in δ, we have to insert these coefficients into Eq. (2.93). It turns
out that these states are given by |Ω,±〉. This calculation shows us that an external perturbation drives the
vacuum state of the system into the vicinity of either |Ω,+〉 or |Ω,−〉. Which of these two vacua is chosen
to be the ”real” vacuum depends on the form of the perturbation Hpert.
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2.2.3 The Goldstone Theorem

In the last Subsection we saw that the existence of degenerate vacua is a necessary condition for spontaneous
symmetry breaking. In addition to that, we saw that the realized vacuum state of the physical system is not
a superposition of all degenerate vacua, because such linear combinations are not stable against infinitesimal
external perturbations. It was shown, that such perturbations always drive the system in the vicinity of a
vacuum state which is not a superposition of the two vacua. Therefore, only one of the degenerate vacua
becomes the physical vacuum state. We studied this phenomenon at the level of a simple bosonic quantum
field theory (2.82) with a discrete internal Z2-symmetry (2.83). Now, we want to extend this analysis and
study a system with a continuous internal symmetry. Therefore, we define the vector

~ϕ(x) = (ϕ1(x), ϕ2(x))
T

. (2.98)

With this vector, we are able to construct a two-dimensional extension of the model (2.82). The Lagrangian
of this model is then given by

L (ϕ1, ϕ2, ∂µϕ1, ∂µϕ2) =
1

2
(∂µϕi)(∂

µϕi)− V (ϕ1, ϕ2) , V (ϕ1, ϕ2) =
m2

2
ϕiϕ

i +
λ

4
(ϕiϕ

i)2 . (2.99)

In contrast to the example of the last subsection, we immediately choose the Nambu-Goldstone realization
of the potential density, i.e., m2 < 0. The coupling constant λ is again chosen to be larger than zero, so that
the theory is bounded from below. The potential density (2.99) is depicted in Fig. [2.4(b)]. Obviously, this
model is invariant under O(2)-rotations in the internal ϕ-space. This transformation is given by

ϕi(x)
O(2)−→ ϕ′i(x) = Oijϕ

j(x) , (2.100)

where (Oij) ∈ O(2). The group O(2) describes the set of orthogonal (2 × 2)-matrices, which contains the
special orthogonal group SO(2) as a continuous subgroup. The specification ”special” arises from the fact
that the elements of SO(2) satisfy det(O) = 1, while in general an orthogonal matrix has a determinant of
±1. The orthogonal group O(2) also contains a Z2 subgroup. This subgroup is important to realize space
reflections. In general, for the set of orthogonal (N ×N)-matrices, we have O(N) = SO(N)×Z2. It is now
easy to show that the Lagrangian (2.99) is invariant under the transformation (2.100)

L′ =
1

2
(∂µO

ijϕj)(∂
µOikϕ

k)− m2

2
(Oijϕj)(Oikϕ

k)− λ

4

[
(Oijϕj)(Oikϕ

k)
]2

=
1

2
(∂µϕj)O

jiOik(∂µϕk)− m2

2
ϕjO

jiOikϕ
k − λ

4

[
ϕjO

jiOikϕ
k
]2

=
1

2
(∂µϕi)(∂

µϕi)− m2

2
ϕiϕ

i − λ

4
(ϕiϕ

i)2 , (2.101)

where we used the fact that we consider global transformations, the relation OjiOik = δjk, and finally
renamed the summation index k → i. Now, we have to determine the minima of the potential density. The
necessary condition for an extremum gives the following conditions

∂V

∂ϕ1
= λϕ1

[
m2

λ
+
(
ϕ2

1 + ϕ2
2

)] !
= 0 ,

∂V

∂ϕ2
= λϕ2

[
m2

λ
+
(
ϕ2

1 + ϕ2
2

)] !
= 0 .

(2.102)

The above relations are obviously satisfied for

~ϕ0 = ~0, |ϕ0|
2 ≡ ϕ2

0 = ϕ2
1,0 + ϕ2

2,0 = −m
2

λ
. (2.103)

In contrast to the last Subsection, we now obtain an infinite number of extrema, because the second condition
in Eq. (2.103) defines a 1-sphere containing an infinite number of extrema. This situation is depicted in Fig.
[2.5]. As a sufficient condition, we have to check the eigenvalues of the Hessian matrix HV (ϕ1, ϕ2) in the
points (2.103). For the first extremum, given by ~ϕ = ~0, we obtain

HV (0, 0) =

(
m2 0
0 m2

)
. (2.104)
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(a) (b)

Figure 2.5: The plots [(a)] and [(b)] show the 1-sphere of minima defined by Eq. (2.103).

Thus, the eigenvalues of this matrix are given by ζ1/2 = m2 < 0, so that the vector (0, 0)T points at a
maximum of the potential density. For the second condition of Eq. (2.103) we find

HV (ϕ1,0, ϕ2,0) = 2λ

(
ϕ2

1,0 ϕ1,0ϕ2,0

ϕ1,0ϕ2,0 ϕ2
2,0

)
. (2.105)

Using ϕ2
1,0 + ϕ2

2,0 = −m
2

λ , we obtain the following characteristic polynomial

p(ζ) = ζ

(
ζ +

m2

λ

)
. (2.106)

The zeros of this polynomial and therefore the eigenvalues of Eq. (2.105) are given by ζ1 = 0, ζ2 = −m2/λ >
0. Apparently, the Hessian matrix is indefinite, so that we are not able to give a statement about the
extrema. In order to study the properties of the extrema, we note that the potential density (2.99) is only a
function of ϕ2

1 +ϕ2
2. This is of course not surprising, because the theory is invariant under SO(2) rotations2

in the (ϕ1, ϕ2)-plane, compare (2.101). Now, we are able to investigate the vicinity of the extrema, by adding
an infinitesimal radius δr

V (ϕ2
1,0 + ϕ2

2,0 + δr) =
m2

2

(
−m

2

λ
+ δr

)
+
λ

4

(
−m

2

λ
+ δr

)2

= − (m2)2

4λ
+
λ

4
(δr)2

> − (m2)2

4λ

= V (ϕ2
1,0 + ϕ2

2,0) . (2.107)

The above calculation shows that the points in the vicinity of the extrema in the radial direction lie above
them. Obviously, the potential density (2.99) features an infinite number of minima. The condition (2.103)
only fixes the radius on which the minima lie. An infinitesimal external perturbation will now drive the
system into one of the minima, i.e., the perturbation selects the angle on the 1-sphere, describing the
minima of the theory. It is now possible to choose the coordinate system of the internal space in a way that
the selected vacuum is given by the vector

~ϕ0 = (0, ϕ0)
T

, (2.108)

where ϕ0 =
√
−m2/λ. In analogy to the discussion of Eq. (2.87), we are able to expand our initial fields

around the minimum (2.108) and describe the system in terms of the new dynamical variables

~ϕ(x) = (π(x), σ(x) + ϕ0)T . (2.109)

2 As mentioned in the discussion of Eq. (2.101), the whole symmetry group of the theory is given by O(2), but in the
discussion of this subsection, it is sufficient to only deal with the SO(2) symmetry.
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The meaning of the new dynamical variables π(x) and σ(x) will become apparent later. At this point, we
are in the position to rewrite the Lagrangian (2.99) in terms of the new physical fields π(x) and σ(x)

L (π(x), σ(x), ∂µπ, ∂µσ) =
1

2
(∂µπ)2 +

1

2
(∂µσ)2 − m2

2

[
π2 + (σ + ϕ0)2

]
− λ

4

[
π2 + (σ + ϕ0)2

]2
=

1

2
(∂µπ)2 +

1

2
(∂µσ)2 − 1

2
(−2m2)σ2 − λ

4
(π2 + σ2)2 + λϕ0σ

3 + λϕ0σπ
2 − V (0, ϕ0)

=
1

2
(∂µπ)2 +

1

2
(∂µσ)2 − 1

2
m2
σσ

2 − λ

4
(π2 + σ2)2 + λϕ0σ

3 + λϕ0σπ
2 , (2.110)

where we used the relation (2.103), defined the σ-mass mσ =
√
−2m and dropped the constant terms

V (0, ϕ0) = (m2/2)ϕ2
0 + (λ/4)ϕ4

0, since they do not contribute to the dynamics of the theory. Regarding
the above result, we first notice that the SO(2) symmetry is spontaneously broken. But this observation
was already made in the discussion of the previous Subsection. A new phenomenon is now that only the
radial excitation, i.e., the σ-field becomes massive, while the tangential excitation, i.e., the π-field becomes
massless. The appearance of such massless tangential excitations, or strictly spoken, massless particles is a
general result. Those particles will always appear, if a global continuous symmetry is spontaneously broken.
This result is known as the Goldstone theorem which predicts the occurrence of a massless spin-0 boson
with negative parity, denoted as Nambu-Goldstone boson, for each broken generator of the global symmetry
group. It is important to stress that the broken symmetry is a global one. In the case of spontaneously
broken local symmetries, the conserved currents of the internal symmetry group are coupled to gauge fields.
This will result in the so-called Higgs mechanism which will not be discussed in this work. Let us come
back to the discussion of the above calculation and the Goldstone theorem. We saw that the breaking of
SO(2) results in the existence of one Nambu-Goldstone boson. As mentioned above, the number of massless
particles is connected to the amount of broken global symmetries. In order to find a mathematical condition,
which indicates the number of Nambu-Goldstone boson, we will prove the Goldstone theorem. To this end,
we consider a set of real scalar fields φa(x), a = 1, . . . , N , which infinitesimally transform as

φa(x)
G−→ φ′a(x) = φa(x)− iαj(T j)acφc(x) (2.111)

under a certain Lie group G. Here the αj are infinitesimal group parameters. The T j are (N × N)-
matrix representations of the NG generators of the Lie algebra of G. We now assume that the classical
action of the theory and the functional integral measure are both invariant with respect to the infinitesimal
transformations (2.111). According to the discussion of Subsection [2.2.1], the quantum effective action is
also invariant under those transformations, if∫

d4x
δΓ[~ϕ]

δϕa(x)
(T j)acϕ

c(x) = 0 . (2.112)

Now, from Eq. (2.72) we conclude that the quantum effective action fulfills

δΓ[~ϕ]

δϕa(x)
= 0 (2.113)

in the absence of classical sources. This shows that for translation-invariant theories, the solutions of Eq.
(2.113) are constant with respect to the space-time variables. In such cases, the quantum effective action
can be written as

Γ[~ϕ] = −ΩVeff (~ϕ) , (2.114)

where Ω denotes the space-time volume. The function Veff (~ϕ) is the so-called effective potential. This
effective potential has the same symmetries as the potential density at the Lagrangian level, but also contains
the quantum corrections to the classical potential. At this point, it is clear that this proof is also valid at
quantum level. Now, we can insert Eq. (2.114) into Eq. (2.112) and take the derivative with respect to ϕb.
We find

∂2V

∂ϕb∂ϕa
(T j)acϕ

c +
∂V

∂ϕa
(T j) ba = 0 , (2.115)

where we used ∂ϕc/∂ϕb = δcb in the last term. If we now evaluate Eq. (2.115) at the vacuum expectation

value ~φ0 of the theory, the second term in the above relation vanishes, because the first derivative of the
effective potential with respect to the fields is equal to zero at the minimum. Therefore, we are left with

∂2V

∂ϕb∂ϕa

∣∣∣∣
~ϕ=~ϕ0

(T j)acϕ
c
0 = 0 . (2.116)
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This equation has two types of solutions. On the one hand, it is possible that the vector T j~φ0 vanishes.
This happens exactly , when there is a number of generators T j , j = 1, . . . , NH , belonging to a subgroup
H ⊂ G of the initial Lie group G, which annihilate the ground state, i.e., leave the vacuum state invariant.
On the other hand, if the vector T j~φ0 does not vanish, it is possible that this vector is an eigenvector to the
matrix of the second derivatives of the effective potential with the eigenvalue zero. In this case, there is a
set of generators T j , j = NH + 1, . . . , NG, which do not leave the vacuum state invariant. These generators
do not belong to the subgroup H, because otherwise we would obtain the first case. Each of those broken
generators is associated with a Nambu-Goldstone boson, because the T j~φ0 must be linearly independent. In
other words, the number of Nambu-Goldstone bosons arising from spontaneous symmetry breaking of a Lie
group G down to a subgroup H is given by the difference NG −NH , or strictly spoken, by the dimension of
the coset G\H.
We are now able to check the Goldstone theorem at hand of the example of the SO(2)-symmetric model
(2.99). In general, there are N(N − 1)/2 generators, belonging to the Lie algebra so(N) of SO(N). This
can be seen by considering the properties of the elements of SO(N). The condition OijOjk = δik gives N

equations for i = k. In the case i > k, we additionally obtain
∑N−1
l=1 l = N(N − 1)/2 equations, according to

the upper triangle in the (N ×N)-matrix. Therefore, we finally obtain N2−N −N(N −1)/2 = N(N −1)/2
independent parameters, each of them associated with a generator of SO(N). Using this relation, we find
only one generator for SO(2). In our model the SO(2) symmetry is completely broken, therefore we have
NG = 1 and NH = 0, so that we expect 1 − 0 = 1 Nambu-Goldstone boson. In the above discussion, we
emphasized that the broken generators do not leave the vacuum invariant. We are now able to check this
statement in our example. The generator of SO(2) is given by

T =

(
0 −i
i 0

)
. (2.117)

Using Eq. (2.108), we then obtain

T ~ϕ0 =

(
0 −i
i 0

)(
0
ϕ0

)
= −i

(
ϕ0

0

)
6= ~0 , (2.118)

so that we have to require that T ~ϕ0 is indeed an eigenvector of the mass matrix with eigenvalue zero.
In order to complete this Subsection and therefore the discussion of the Goldstone theorem, we want to

come back to Eq. (2.116). Due to the Eqs. (2.73) and (2.114), the matrix of the second derivatives of the

effective potential must be related to the proper two-point function Γ
(2)
ab . In addition to that, we can use

Eqs. (2.67) and (2.72) to find

δ ba δ
(4)(x− z) =

δϕa(x)

δϕb(z)
=

∫
d4y

δϕa(x)

δJc(y)

δJc(y)

δϕb(z)
= −

∫
d4y

δ2W [ ~J ]

δJa(x)δJc(y)

δ2Γ[~ϕ]

δϕc(y)δϕb(z)
. (2.119)

When we now study this relation at ~J = ~ϕ = ~0, we obtain

− i
∫

d4y G(2),connected
ac (x, y)Γ(2),cb(y, z) = δ ba δ

(4)(x− z) . (2.120)

This relation tells us that the proper two-point function is just the inverse of the connected two-point
function. Then, the matrix of the second derivatives of the effective potential with respect to the constant
fields is, up to a Fourier transform, proportional to the inverse momentum-space Feynman propagator with
vanishing momentum (∆ab)−1(p2 = 0). According to the discussion of Eq. (2.116) the vector T j~φ0 must be
an eigenvector with eigenvalue zero for each broken generator. From the existence of such an eigenvector, it
follows that the momentum-space propagator ∆ab(p) has a pole of rank r in p2 = 0. Now, the rank of this

pole is given by the dimension of the space containing the T j~φ0, which is just the dimension of the coset
G\H.

2.3 Quantum Chromodynamics

In the middle of the sixties about 100 elementary particles were found in various experiments. Due to this
large amount of different particles, physicists were sure that those particles cannot be fundamental. In
1964 Gell-Mann, Ne’eman, and Zweig independently introduced a classification scheme for those so-called
hadrons. They suggested that the substructure of the hadrons is given by three fundamental particles, called
quarks. In the mathematical framework of this classification scheme, the up, the down, and the strange
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quark form an irreducible representation of the so-called SU(Nf = 3)V flavor symmetry.3 In the basis of
strong isospin T3 and hypercharge Y , the Hilbert-space vectors of those three quarks are given by

|u〉 = |T3Y 〉 = |1
2

1

3
〉 , |d〉 = |−1

2

1

3
〉 , |s〉 = |0− 2

3
〉 . (2.121)

With this fundamental triplet and the anti-triplet, formed by the corresponding anti-quarks, it is possible to
classify the known hadrons into multiplets of SU(Nf = 3)V . The physical mesons, regarded as qq̄-states in
this picture, form a singlet and an octet under SU(Nf = 3)V . The qqq-states, denoted as baryons, form a
singlet, two octets, and a decuplet under SU(Nf = 3)V . The underlying interaction of quarks and therefore
of all mesons and baryons, i.e, of all hadrons is the strong interaction. Today we know that in addition to the
three light quarks there exist three heavy quarks. These quarks are called charm, bottom, and top quark.
A summary of all six quark flavors is given in Tab. [2.1]. We also know that quarks have an additional

Generation Flavor Mass [GeV ] Q[e] Y J B S C B′ T

I
ur, ug, ub (2.3+0.7

−0.5) · 10−3 2/3 1/3 1/2 1/3 0 0 0 0
dr, dg, db (4.8+0.5

−0.3) · 10−3 −1/3 1/3 1/2 1/3 0 0 0 0

II
cr, cg, cb 1.275± 0.025 2/3 4/3 1/2 1/3 0 1 0 0
sr, sg, sb (95± 5) · 10−3 −1/3 −2/3 1/2 1/3 −1 0 0 0

III
tr, tg, tb 173.07± 0.52± 0.72 2/3 4/3 1/2 1/3 0 0 0 1
br, bg, bb 4.66± 0.03 −1/3 −2/3 1/2 1/3 0 0 −1 0

Table 2.1: The quantum numbers listed are: Q =̂ electric charge, Y =̂ hypercharge, J =̂ total angular
momentum, B =̂ baryon number, S =̂ strangeness, C =̂ charm, B′ =̂ bottomness, T =̂ topness. The quark
masses and the quantum numbers are obtained from Refs. [PDG], [RQM2].

degree of freedom, called color. The introduction of this further quantum number became necessary, when

experimentalists discovered the ∆++ baryon. This baryon has quantum numbers I(JP ) = 3
2 ( 3

2

+
) and

hypercharge Y = 1. Using Eq. (2.121) it is evident that the ∆++ baryon consists of three up quarks, which
leads to a symmetric wave function in flavor space. In addition to that, all spins of the three up quarks
are added up to S = 3

2 , which forms a symmetric wave function in spinor space. Finally, from S = J = 3
2

follows that the angular momentum of ∆++ is given by L = 0, which results in a symmetric spatial wave
function, so that the total wave function Ψ∆++ = ψspace ⊗ ψspin ⊗ ψflavor is also symmetric. But this
result is in contrast to the spin-statistics theorem which tells us that the wave function of a fermion must
be antisymmetric. In order to resolve this contradiction Greenberg, Han, and Nambu introduced color as an
additional degree of freedom for quarks. The three fundamental colors4 red, green, and blue form a triplet
under the SU(NC = 3)C color group. With this additional degree of freedom, the wave function of the
hadrons must be modified by a wave function in color space, so that

Ψhadron = ψspace ⊗ ψspin ⊗ ψflavor ⊗ ψcolor . (2.122)

Fortunately, it turns out that the wave function associated with the singlet in color space is antisymmetric.
Therefore, the total wave function of ∆++ becomes antisymmetric and the contradiction with the spin-
statistics theorem is resolved.

In the early seventies, the theory of strong interactions, Quantum Chromodynamics (QCD), was formu-
lated in a similar way as Quantum Electrodynamics (QED). But, instead of using an abelian gauge group,
as U(1)em in QED, one used the non-abelian gauge group SU(NC = 3)C . In the upcoming subsections, we
want to study the basic properties of Quantum Chromodynamics. Therefore, we start with the construction
of the QCD Lagrangian by using the gauge principle. Then, we introduce the so-called chiral symmetry
of QCD and the related conserved currents. Finally, we will see that the observed hadron spectrum is not
realized as irreducible representations of the chiral group, but of its flavor subgroup SU(Nf )V . From this
observation we shall conclude that the chiral symmetry of QCD must be broken spontaneously down to its
flavor subgroup.

2.3.1 Quantum Chromodynamics as SU(NC)C Gauge Theory

In order to construct the Lagrangian of Quantum Chromodynamics, we start with the Dirac Lagrangian,
describing the dynamics of a free fermionic field. This Lagrangian is given by

LDirac = ψ̄(x) (iγµ∂µ −m)ψ(x) , (2.123)

3Later we will see that SU(Nf = 3)V is a subgroup of the so-called chiral symmetry.
4 The existence of three colors is experimentally verified, e.g. by measuring the R =

σ(e+e−→hadrons)
σ(e+e−→µ+µ−)

ratio of the cross

sections in e+e− annihilation processes.



CHAPTER 2. INTRODUCTION 25

where the γµ denotes the usual Dirac matrices in spinor space, compare App. [6.1.3]. The fermionic field
ψ(x) is given by a Dirac spinor, i.e., a four-component object, transforming under Lorentz transformations
as a (1/2, 0) ⊗ (0, 1/2) representation of the Lorentz group. In the introductory discussion of this section,
we saw that the quark fields have additional degrees of freedom, given by flavor and color. Therefore, the
fermionic field ψ(x) must be modified in a way that it represents a Dirac spinor in spinor space, a (Nf = 6)-
vector in flavor space, and a (NC = 3)-vector in color space. In the following this quark field will be denoted
as Ψ(x). Then, the Lagrangian (2.123) becomes

LQuark = Ψ̄(x) (iγµ∂µ −m) Ψ(x) . (2.124)

At this point we have to notice that the (4×4) mass matrix m in Eq. (2.123) becomes a (4NfNC ×4NfNC)
matrix in the above equation. Also the first term in the Dirac operator is modified by unit matrices acting
in flavor and color space. As mentioned before, the quark and anti-quark fields Ψf (x) and Ψ̄f (x) correspond
to a triplet [3]C and an anti-triplet [3̄]C in color space. Therefore, the complex quark vector for an arbitrary
flavor can be written as

Ψf (x) =

Ψf,r(x)
Ψf,g(x)
Ψf,b(x)

 . (2.125)

The quark fields Ψ(x) and Ψ̄(x) transform in the fundamental representation of SU(NC)C , i.e., they trans-
form as

Ψ(x)
SU(NC)C−→ Ψ′(x) = UCΨ(x) = e−iΛaT

a

Ψ(x),

Ψ̄(x)
SU(NC)C−→ Ψ̄′(x) = Ψ̄(x)U†C = Ψ̄(x)eiΛaT

a

,
(2.126)

where Λa, a = 1, . . . , N2
C − 1, are the group parameters and the T a are the generators of SU(NC)C .

These generators are defined as T a = λa/2, where λa denote the usual Gell-Mann matrices. Furthermore,
they are orthogonal in the sense that Tr(T aT b) = δab/2 and fulfill the Lie algebra su(NC)C of SU(NC)C ,[
T a, T b

]
− = ifabcT

c. Now, the Lagrangian (2.124) is invariant under the global rotations (2.126) in color
space

L ′Quark = Ψ̄′(x) (iγµ∂µ −m) Ψ′(x)

= Ψ̄(x)eiΛaT
a

(iγµ∂µ −m) e−iΛaT
a

Ψ(x)

= Ψ̄(x) (iγµ∂µ −m) Ψ(x) = LQuark , (2.127)

where we used U†CUC = 1NC×NC and the fact that all objects in the Dirac operator, which act on color space,
are proportional to the unit matrix 1NC×NC and therefore commute with UC . In the next step, we require
the Lagrangian LQuark to be invariant under local rotations in color space. To this end, we modify the
group elements of SU(NC)C by a space-time dependence, such that Λa → Λa(x) ∀ a. Now, the invariance of
LQuark under local SU(NC)C rotations, i.e., SU(NC)C transformations with space-time dependent group
parameters, would allow us to pick different group parameters at different space-time points in Minkowski
space without changing the physics which is described by LQuark. It is quite obvious that this requirement
is much stricter than the invariance under global SU(NC)C transformations (2.127). The transformation
behaviour of the quark fields (2.126) is then given by

Ψ(x)
SU(NC)C−→ Ψ′(x) = UC(x)Ψ(x) = e−iΛa(x)TaΨ(x),

Ψ̄(x)
SU(NC)C−→ Ψ̄′(x) = Ψ̄(x)U†C(x) = Ψ̄(x)eiΛa(x)Ta ,

(2.128)

so that the Lagrangian (2.124) transforms as

L ′ = Ψ̄′(x) (iγµ∂µ −m) Ψ′(x)

= Ψ̄(x)eiΛa(x)Ta
[
iγµ

(
∂µe
−iΛa(x)Ta

)
+ e−iΛa(x)Taiγµ∂µ − e−iΛa(x)Tam

]
Ψ(x)

= Ψ̄(x) (iγµ∂µ −m) Ψ(x) + Ψ̄(x)γµ [∂µΛa(x)]T aΨ(x)

= LQuark + δLQuark (2.129)

under local SU(NC)C transformations. Obviously, the Lagrangian is not invariant, because the derivative in
the Dirac operator causes an additional term δLQuark. In order to compensate this term, we introduce an
SU(NC)C gauge field A µ ≡ AµaT a, which transforms under SU(NC)C rotations in a way that the additional
term in Eq. (2.129) is compensated. The actual transformation behaviour of A µ is given by

Aµ
SU(NC)C−→ A ′µ = UC(x)AµU

†
C(x)− i

g
[∂µUC(x)]U†C(x) . (2.130)
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This gauge field is now introduced into the Lagrangian (2.124) by minimal coupling, i.e., we introduce a
covariant derivative

Dµ = ∂µ − igAµ , (2.131)

which transforms in the adjoint representation of SU(NC)C

Dµ → D′µ = ∂µ − ig
{
UC(x)AµU

†
C(x)− i

g
[∂µUC(x)]U†C(x)

}
= ∂µ + [∂µUC(x)]U†C(x) + UC(x)∂µU

†
C(x)− igUC(x)AµU

†
C(x)− [∂µUC(x)]U†C(x)

= UC(x)(∂µ − igAµ)U†C(x)

= UC(x)DµU
†
C(x) (2.132)

and replaces the ordinary 4-gradient. Note that we used 0 = ∂µ

[
UC(x)U†C(x)

]
= [∂µUC(x)]U†C(x) +

UC(x)∂µU
†
C(x) in the second line of Eq. (2.132). With this covariant derivative, the new minimally coupled

Lagrangian is given by
LQuark = Ψ̄(x) (iγµDµ −m) Ψ(x) . (2.133)

Equation (2.133) is now invariant under local SU(NC)C transformations

L ′Quark = Ψ̄′(x)
(
iγµD′µ −m

)
Ψ′(x)

= Ψ̄(x)U†C(x)
(
iγµUC(x)DµU

†
C(x)−m

)
UC(x)Ψ(x)

= Ψ̄(x) (iγµDµ −m) Ψ(x)

= LQuark , (2.134)

where we used the same properties as in Eq. (2.127). The new gauge fields A µ ≡ AµaT
a, introduced in

Eq. (2.131), are associated with the gluons. According to the definition of A µ, the Lagrangian (2.133)
contains a = N2

C − 1 = 8 gauge boson fields Aµa and therefore eight gluons. This number of gauge bosons is
not surprising, because the gluonic fields correspond to the adjoint representation of SU(NC)C and builds
therefore an eight-dimensional irreducible representation [8]C of the color group. Finally, we have to add
a kinetic term for the gluon fields to Eq. (2.133). Analogously to Quantum Electrodynamics, this term is
given by the square of the field-strength tensor associated with the gauge fields. This field-strength tensor
is in general defined as the commutator of the covariant derivatives (2.131). One finds

Fµν =
i

g
[Dµ, Dν ]−

=
i

g
(∂µ − igAµ) (∂ν − igAν)− (∂ν − igAν) (∂µ − igAµ)

=
i

g

{
∂µ∂ν − ig(∂µAν)− igAν∂µ − igAµ∂ν − g2AµAν −

[
∂ν∂µ − ig(∂νAµ)− igAµ∂ν − igAν∂µ − g2AνAµ

]}
= ∂µAν − ∂νAµ − ig [Aµ,Aν ]− . (2.135)

The above equation gives the matrix form of the Yang-Mills field-strength tensor. Using the Lie algebra of
SU(NC)C and the definition of the gauge fields, the Yang-Mills field-strength tensor can be written as

Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ]−

= ∂µA
a
νTa − ∂νAaµTa − igAbµAcν [Tb, Tc]−

= ∂µA
a
νTa − ∂νAaµTa + gf a

bc A
b
µA

c
νT

a

=
(
∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν

)
Ta

= F aµνTa , (2.136)

where we used that the SU(3) structure constants are totally antisymmetric, i.e., f a
bc = −f a

b c = fabc. A
gauge-invariant kinetic term for the gluonic fields is then given by

LGluon = −1

2
Tr (FµνF

µν) . (2.137)
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Using Eqs. (2.132) and (2.135) it is easy to show that (2.137) is indeed gauge invariant

L ′Gluon = −1

2
Tr
(
F ′µνF

′µν)
= −1

2
Tr

(
i

g

[
D′µ, D

′
ν

]
−
i

g
[D′µ, D′ν ]−

)
= −1

2
Tr

(
i

g
UC(x) [Dµ, Dν ]− U

†
C(x)

i

g
UC(x) [Dµ, Dν ]− U

†
C(x)

)
= −1

2
Tr (FµνF

µν)

= LGluon , (2.138)

where we used the cyclic property of the trace. Finally, the Lagrangian of Quantum Chromodynamics is
given by the sum of Eqs. (2.133) and (2.137), so that

LQCD = −1

2
Tr (FµνF

µν) + Ψ̄(x) (iγµDµ −m) Ψ(x) . (2.139)

When we look at Eq. (2.136), we see that the Yang-Mills field-strength tensor has an additional term which
is proportional to two gluonic fields of the colors b and c. This term is of course a consequence of the non-
abelian nature of the gluon fields and therefore of the non-abelian gauge symmetry of QCD. This additional
term ensures that the gluonic term (2.137) does not only consist of a kinetic part for the gluons, but also
includes gluon self-interaction terms. Starting from Eq. (2.137) and using Eq. (2.136), we obtain

−1

2
Tr (FµνF

µν) = −1

2
F aµνF

µν
b Tr

(
TaT

b
)

= −1

4
F aµνF

µν
a

= −1

4

{(
∂µA

a
ν − ∂νAaµ

)
(∂µAνa − ∂νAµa) +

(
∂µA

a
ν − ∂νAaµ

)
gf de
a AµdA

ν
e

+ gfabcA
b
µA

c
ν (∂µAνa − ∂νAµa) + g2fabcf

de
a AbµA

c
νA

µ
dA

ν
c

}
= −1

2
∂µA

a
ν (∂µAνa − ∂νAµa)− g

4

{
f de
a

[
∂µA

a
νA

µ
dA

ν
e − ∂νAaµA

µ
dA

ν
e

]
+ fabc

[
AbµA

c
ν∂

µAνa −AbµAcν∂νAµa
]}
− g2

4
fabcf

de
a AbµA

c
νA

µ
dA

ν
e . (2.140)

Now, all terms proportional to the gauge coupling constant g can be summarized by renaming the Lorentz
and the color indices and using the fact that the SU(3) structure constants are totally antisymmetric. Finally,
we find

− 1

2
Tr (FµνF

µν) = −1

2
∂µA

a
ν (∂µAνa − ∂νAµa)− gf bc

a (∂µA
a
ν)AµbA

ν
c −

g2

4
fabcf

de
a AbµA

c
νA

µ
dA

ν
e . (2.141)

The first term in the above equation corresponds to the free inverse gluon propagator, the second and the
third term correspond to three- and a four-gluon self-interaction vertices. These terms are a consequence of
the non-abelian gauge group SU(NC)C and therefore a feature of all Yang-Mills theories. It turns out that
these gluonic self-interaction terms are the main reason for a phenomenon called asymptotic freedom. This
means that the interaction of quarks and gluons at high energies or small distances becomes weak. Figure
[2.6] shows all interaction vertices resulting from Eq. (2.139). Finally, it should be taken into account that

(a) (b) (c)

Figure 2.6: Figure [(a)] shows the interaction vertex between quarks and gluons. This vertex results from the covariant
derivative in Eq. (2.139). Figures [(b)] and [(c)] show the three- and four-gluon interactions which follow from the Yang-Mills
part of the QCD Lagrangian (2.141). Note that the derivative coupling of the gluonic field in the three-gluon vertex will cause
a momentum dependence of this vertex. Furthermore we recognize that the four-gluon vertex is of order O(g2) in the gauge
coupling constant.

the second quantization of the Yang-Mills fields requires the appearance of another term Lgauge in the QCD
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Lagrangian. The necessity of this term comes from the fact that the gluonic fields have an additional degree
of freedom which is given by the gauge transformations. This additional degree of freedom can be eliminated
by adding a term which includes a constraint on the gauge fields. In the functional integral formulation
of QCD, this gauge fixing is obtained by the method of Faddeev and Popov. This method introduces a
new artificial field whose particle excitations are called ghosts or Faddeev-Popov-ghosts. The name ”ghost”
arises from the fact that the ghost fields are anticommuting Grassmannian fields, but transform in the (0, 0)-
representation of the Lorentz group, i.e., they transform as scalar particles, but obey Fermi-Dirac statistics.
Further, it may happen5, that the ghosts couple to gluons, resulting in a ghost-gluon vertex which also has
to be taken into account in calculations. This ghost-gluon vertex is depicted in Fig. [2.7].

Figure 2.7: Ghost-gluon interaction vertex.

2.3.2 The Chiral Symmetry of Quantum Chromodynamics

In the last subsection, we saw that the Lagrangian of QCD can be obtained by using the gauge principle,
i.e., by promoting a global SU(NC)C symmetry to a local one. This gauge symmetry is of course the most
important symmetry of QCD, because it determines the structure of the Lagrangian and therefore the types
of possible interactions. However, the Lagrangian (2.139) also contains important global symmetries. The
most important one is the so-called chiral symmetry. In order to introduce this symmetry, we consider the
following operators

PL/R =
1∓ γ5

2
, (2.142)

where γ5 = iγ0γ1γ2γ3, compare App. [6.1.3]. These operators are referred to as left- and right-handed
projection operators. The designations left- and right-handed come from the fact that these operators project
the ultrarelativistic positive and negative energy solutions of the free Dirac equation onto the positive and
negative helicity eigenstates. Furthermore, in this zero-mass limit, helicity is equal to chirality. In addition
to that, the relations

PRPL = PLPR = 0, P2
R = PR, P2

L = PL, PR + PL = 14×4 (2.143)

show that these operators are indeed projection operators. Using Eq. (2.142), it is possible to decompose
the quark fields Ψ(x) and Ψ̄(x) into their left- and right-handed components

Ψ(x) = (PL + PR)Ψ(x) = ΨL(x) + ΨR(x), Ψ̄(x) = Ψ̄(x)(PR + PL) = Ψ̄L(x) + Ψ̄R(x) . (2.144)

This approach can be applied to the fermionic part of the QCD Lagrangian (2.139). One finds

LQuark = Ψ̄(x) (iγµDµ −m) Ψ(x)

= Ψ̄(x)(PL + PR) (iγµDµ −m) (PL + PR)Ψ(x)

= Ψ̄L(x) (iγµDµ −m) ΨL(x) + Ψ̄R(x) (iγµDµ −m) ΨR(x) + Ψ̄L(x) (iγµDµ −m) ΨR(x)

+ Ψ̄R(x) (iγµDµ −m) ΨL(x)

= Ψ̄L(x)iγµDµΨL(x) + Ψ̄R(x)iγµDµΨR(x)− Ψ̄L(x)mΨR(x)− Ψ̄R(x)mΨL(x) , (2.145)

where we used in the last line that the other four terms vanish because of Eq. (2.143). In detail, we used
that

Ψ̄L/R(x)iγµDµΨR/L(x) = Ψ̄(x)PR/LiγµDµPR/LΨ(x) = Ψ̄(x)PR/LPL/RiγµDµΨ(x) = 0 ,

Ψ̄L/R(x)mΨL/R(x) = Ψ̄(x)PR/LmPL/RΨ(x) = 0 ,
(2.146)

where we used the definitions (2.142), (6.29), and the fact that the projection operators project onto or-
thogonal subspaces, i.e., the first relation in Eq. (2.143). It is obvious, that the mass term in the QCD
Lagrangian mixes the left- and right-handed quark fields, while the derivative term separates the quark fields

5 The coupling of the ghosts to physical particles depends on the chosen gauge.
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of opposite chirality. In the following discussion, we start with the case of vanishing quark masses, m = 0.
Then, the quark part of the QCD Lagrangian becomes

LQuark = Ψ̄L(x)iγµDµΨL(x) + Ψ̄R(x)iγµDµΨR(x) . (2.147)

In the above Lagrangian, it is possible to rotate the left- and right-handed quark fields separately in flavor
space. Therefore, the symmetry group of the Lagrangian (2.147) is given by U(Nf )L×U(Nf )R. This global
symmetry of the QCD Lagrangian in the chiral limit, i.e., the limit m = 0, is called chiral symmetry. In
general, the group of unitary (N×N)-matrices U(N) can be decomposed into the direct product of two of its
subgroups. One of these subgroups is given by the unitary group of (N×N)-matrices with unit determinant,
SU(N). The other subgroup is given by the group of complex phase transformations U(1). Therefore the
group of unitary (N ×N)-matrices can be written as U(N) = SU(N) × U(1). Now, it is possible to write
the chiral symmetry group as U(Nf )L × U(Nf )R = SU(Nf )L × SU(Nf )R × U(1)L × U(1)R. The elements
of U(Nf )L and U(Nf )R are given by

UL/R = e−iα
a
L/RTa , a = 0, . . . , N2

f − 1 . (2.148)

In the above equation, we used that the generator T0 of U(1)L/R is proportional to the (Nf×Nf ) unit matrix
1Nf×Nf . The possible proportionality constant of this generator can be absorbed in the group parameter
α0
L/R. For a = 1, . . . , N2

f − 1, we have the usual SU(Nf ) generators Ta = λa/2, where λa denote the

(Nf × Nf ) generalizations of the Gell-Mann matrices. These generators are orthogonal in the sense that
Tr(T aT b) = δab/2 and also satisfy the SU(Nf ) Lie algebra,

[
T a, T b

]
− = ifabcT

c. Note that the previously
mentioned proportionality constant in T0 is chosen in way that the orthogonality relation is also fulfilled for
the whole set of U(Nf ) generators. Now, the left- and right-handed quark fields transform as

ΨL/R(x)
U(Nf )L/R−→ Ψ′L/R(x) = UL/RΨL/R(x) = e−iα

a
L/RTaΨL/R(x) , (2.149)

while the Dirac-adjoint fields transform as

Ψ̄L/R(x)
U(Nf )L/R−→ Ψ̄′L/R(x) = Ψ̄L/R(x)U†L/R = Ψ̄L/R(x)eiα

a
L/RTa , (2.150)

where we used that the generators of unitary groups are hermitian and that the group parameters are real.
According to Noether’s theorem Sec. [2.1.2], the invariance of Eq. (2.147) under the chiral rotations (2.149)
and (2.150) implies the appearance of 2N2

f conserved Noether currents. Two of these currents are associated

with the left- and right-handed phase transformations U(1)L × U(1)R, the remaining 2(N2
f − 1) arise from

the SU(Nf )L × SU(Nf )R symmetry. For the calculation of the conserved Noether currents (2.21) we need
the infinitesimal forms of Eqs. (2.149) and (2.150). These infinitesimal forms can be obtained by expanding
the left- and right-handed rotations (2.149) and (2.150) up to first order into a Taylor polynomial

UL/RΨL/R(x) ≈ ΨL/R(x)− iαaL/RTaΨL/R(x) = ΨL/R(x) + δΨL/R(x) ,

Ψ̄L/R(x)U†L/R ≈ Ψ̄L/R(x) + Ψ̄L/R(x)iαaL/RTa = Ψ̄L/R(x) + δΨ̄L/R(x) .
(2.151)

Using the above formulas, Noether’s theorem (2.21), and the Lagrangian (2.147), the conserved left-handed
current becomes

JµL =
∂LQuark

∂(∂µΨL)
δΨL + δΨ̄L

∂LQuark

∂(∂µΨ̄L)

= Ψ̄Liγ
λ ∂(∂λΨL)

∂(∂µΨL)
(−iαaLTaΨL)

= Ψ̄Lγ
µαaLTaΨL

≡ αaLJ
µ
a,L , (2.152)

where we used that the partial derivative of the Lagrangian with respect to ∂µΨ̄L vanishes. The right-handed
current can be obtained by a similar calculation

JµR =
∂LQuark

∂(∂µΨR)
δΨR + δΨ̄R

∂LQuark

∂(∂µΨ̄R)

= Ψ̄Riγ
λ ∂(∂λΨR)

∂(∂µΨR)
(−iαaRTaΨR)

= Ψ̄Rγ
µαaRTaΨR

≡ αaRJ
µ
a,R . (2.153)
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For a = 1, . . . , N2
f −1, the N2

f −1 left-handed currents transform as a (N2
f −1, 1)-multiplet under SU(Nf )L×

SU(Nf )R transformations, while the N2
f − 1 right-handed currents transform as a (1, N2

f − 1)-multiplet. Of
course, the above currents are conserved, because they follow from the exact symmetry of Eq. (2.147) under
the chiral transformations (2.149) and (2.150). The conservation of the left- and right-handed currents
(2.152) and (2.153) can also be checked explicitly

∂µJ
µ
L/R = ∂µ

{
∂LQuark

∂(∂µΨL/R)
δΨL/R + δΨ̄L/R

∂LQuark

∂(∂µΨ̄L/R)

}
=
∂LQuark

∂ΨL/R
δΨL/R +

∂LQuark

∂(∂µΨL/R)
(∂µδΨL/R) + (∂µδΨ̄L/R)

∂LQuark

∂(∂µΨ̄L/R)
+ δΨ̄L/R

∂LQuark

∂Ψ̄L/R

= −igΨ̄L/Rγ
λAλα

a
L/RTaΨL/R + Ψ̄L/Rγ

µ
(
∂µα

a
L/RTaΨL/R

)
− Ψ̄L/Rα

a
L/RTaγ

λ(∂λ − igAλ)ΨL/R

= 0 , (2.154)

where we used the Euler-Lagrange equations (2.8) for the left- and right-handed quark fields. It is convenient
not to consider the left- and right-handed conserved currents Jµa,L/R, but linear combinations of them. The

so-called vector current is defined by the sum of Eqs. (2.152) and (2.153)

Jµa,V = Jµa,L + Jµa,R = Ψ̄Lγ
µTaΨL + Ψ̄Rγ

µTaΨR

= Ψ̄PRγµTaPLΨ + Ψ̄PLγµTaPRΨ

= Ψ̄
1 + γ5

2
γµTaΨ + Ψ̄

1− γ5

2
γµTaΨ

≡ Ψ̄γµTaΨ , (2.155)

where we used Eq. (2.143) and the anticommutator relation (6.29). This current is called vector current,
because it transforms as a vector under Lorentz transformations. We shall come back to this point in a
moment. By taking the difference of Eqs. (2.152) and (2.153) we obtain another structure with distinct
transformation behavior under Lorentz transformations

Jµa,A = Jµa,R − J
µ
a,L = Ψ̄Rγ

µTaΨR − Ψ̄Lγ
µTaΨL

= Ψ̄PLγµTaPRΨ− Ψ̄PRγµTaPLΨ

= Ψ̄
1− γ5

2
γµTaΨ− Ψ̄

1 + γ5

2
γµTaΨ

≡ Ψ̄γµγ5TaΨ , (2.156)

where we used the same methods as before. This current transforms as an axial-vector under Lorentz
transformations, so that it is referred to as axial-vector current. Now, we can check the transformation
behavior of Eqs. (2.155) and (2.156) explicitly. Under spatial reflections, the quark and anti-quark fields
transform as

Ψ(t, r)
P−→ γ0Ψ(t,−r), Ψ̄(t, r)

P−→ Ψ̄(t,−r)γ0 . (2.157)

Then, the vector current transforms as

Jµa,V (t, r)
P−→ Jµ′a,V (t, r) = Ψ̄(t,−r)γ0γµTaγ

0Ψ(t,−r)

= (−1)(µ)Ψ̄(t,−r)γµTaΨ(t,−r)

= (−1)(µ)Jµa,V (t,−r) , (2.158)

where we used the anticommutation (6.28) satisfied by the Dirac matrices. We have to note that the factor
(−1)(µ) is not a tensorial structure, so that (µ) does not describe a Lorentz index. This factor is defined to
be equal to 1, if (µ) = 0 and to be equal to −1, if (µ) = 1, 2, 3. Obviously, the vector current (2.155) actually
transforms as a vector under parity transformations. Now, we consider the transformation behavior of the
axial-vector current

Jµa,A(t, r)
P−→ Jµ′a,A(t, r) = Ψ̄(t,−r)γ0γµγ5Taγ

0Ψ(t,−r)

= −(−1)(µ)Ψ̄(t,−r)γµγ5TaΨ(t,−r)

= −(−1)(µ)Jµa,A(t,−r) , (2.159)

where we again used the anticommutation relations [γµ, γν ]+ = 2gµν and [γµ, γ5]+ = 0. We recognize that
this current truly transforms as an axial-vector under parity transformations. These 2N2

f currents correspond
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to the symmetry group U(Nf )V ×U(Nf )A = SU(Nf )V ×SU(Nf )A×U(1)V ×U(1)A, which is isomorphic to
the chiral group U(Nf )R ×U(Nf )L = SU(Nf )R × SU(Nf )L ×U(1)R ×U(1)L. The vector and axial-vector
transformations are given by

UV/A = e−iα
a
V/ATa , a = 0, . . . , N2

f − 1 , (2.160)

where αaV = αaR + αaL and αaA = αaR − αaL. It turns out that the axial-vector symmetry is explicitly broken
by the quark mass term. To study the reason for this phenomenon, we will now consider the full QCD
Lagrangian (2.145). It is obvious that the left- and right-handed currents will not change by the presence
of the mass terms. Therefore, the vector and axial-vector currents will also stay the same. But, not all of
these currents will be conserved anymore, because the mass terms will now add a contribution. In order to
see this, we start with the divergence of the left- and right-handed currents. For the left-handed currents,
we obtain

∂µJ
µ
L =

∂LQuark

∂ΨL
δΨL +

∂LQuark

∂(∂µΨL)
(∂µδΨL) +

(
∂µδΨ̄L

) ∂LQuark

∂(∂µΨ̄L)
+ δΨ̄L

∂LQuark

∂Ψ̄L

=
[
gΨ̄Lγ

λAλ − Ψ̄Rm
]

(−i)αaLTaΨL + Ψ̄Liγ
λg µλ (−i)αaLTa∂µΨL + iΨ̄Lα

a
LTa

[
iγλDλΨL −mΨR

]
= iΨ̄Rmα

a
LTaΨL − iΨ̄Lα

a
LTamΨR

= αaLi
(
Ψ̄RmTaΨL − Ψ̄LTamΨR

)
≡ αaL∂µJ

µ
a,L , (2.161)

where we again used the Euler-Lagrange equations (2.8). Similarly, we obtain the 4-divergence of the right-
handed currents

∂µJ
µ
R =

∂LQuark

∂ΨR
δΨR +

∂LQuark

∂(∂µΨR)
(∂δΨR) +

(
∂δΨ̄R

) ∂LQuark

∂(∂µΨ̄R)
+ δΨ̄R

∂LQuark

∂Ψ̄R

=
[
gΨ̄Rγ

λAλ − Ψ̄Lm
]

(−i)αaRTaΨR + Ψ̄Riγ
λg µλ (−i)αaRTa∂µΨR + iΨ̄Rα

a
RTa

[
iγλDλΨR −mΨL

]
= iΨ̄Lmα

a
RTaΨR − iΨ̄Rα

a
RTamΨL

= αaRi
(
Ψ̄LmTaΨR − Ψ̄RTamΨL

)
≡ αaR∂µJ

µ
a,R . (2.162)

Now, using the results (2.161) and (2.162), we are able to calculate the 4-divergences of the vector currents

∂µJ
µ
a,V = ∂µ

(
Jµa,L + Jµa,R

)
= i
(
Ψ̄RmTaΨL − Ψ̄LTamΨR

)
+ i
(
Ψ̄LmTaΨR − Ψ̄RTamΨL

)
= iΨ̄

1− γ5

2
[m,Ta]−Ψ + iΨ̄

1 + γ5

2
[m,Ta]−Ψ

= iΨ̄ [m,Ta]−Ψ , (2.163)

and the 4-divergences of the axial-vector currents

∂µJ
µ
a,A = ∂µ

(
Jµa,R − J

µ
a,L

)
= i
(
Ψ̄LmTaΨR − Ψ̄RTamΨL

)
− i
(
Ψ̄RmTaΨL − Ψ̄LTamΨR

)
= iΨ̄

1 + γ5

2
[m,Ta]+ Ψ− iΨ̄1− γ5

2
[m,Ta]+ Ψ

= iΨ̄ [m,Ta]+ γ5Ψ , (2.164)

where we used the relations (2.143) and the definitions of the left- and right-handed fields (2.144). In the
above equations, we only used the currents Jµa,L and Jµa,Rwithout group parameters. These equations require
that αaR = αaL. But, if we take equation (2.160) into account, we see that this requirement leads to vanishing
group parameters for the axial-vector transformations. This fact shows that the symmetry of Eq. (2.145)
under vector transformations is explicitly broken by the quark mass terms.

Now, we are able to discuss the results (2.155), (2.156), (2.163), and (2.164). To this end, we start
with the vector currents (2.155), which follow from the invariance of Eq. (2.145) under SU(Nf )V × U(1)V
transformations. It is obvious that those currents are only conserved, if the commutator [m,Ta]− in Eq.
(2.163) vanishes. In general, there are only three cases in which this commutator can be equal to zero:

(i) The quark mass matrix vanishes,

(ii) The generators are proportional to the (Nf ×Nf ) unit matrix,
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(iii) The quark mass matrix is proportional to the (Nf ×Nf ) unit matrix.

Case (i) corresponds to the chiral limit of the QCD Lagrangian. We already studied this case in Eq. (2.147)
and the following discussion. We showed that this case leads to conserved currents, because in this limit the
chiral symmetry becomes an exact symmetry of the QCD Lagrangian, compare Eq. (2.154).

Let us come to the second case (ii). This scenario is only satisfied for the generator T0 of the U(1)V
transformations. As mentioned in the discussion of Eq. (2.148), the remaining N2

f − 1 generators are
proportional to (Nf ×Nf ) generalizations of the Gell-Mann matrices and are therefore not proportional to
the identity in flavor space. Obviously, the vector current

Jµ0,V = Ψ̄(x)γµΨ(x) . (2.165)

originating from the U(1)V transformations, is always conserved. A conserved charge of this form is well
known from the Dirac theory. The corresponding conserved charge Q0,V is given by the baryon number.

Now, we turn to the last case (iii). This case is obtained by the assumption that all quark masses are
equal. Then, the mass matrix becomes proportional to the unit matrix in flavor space, i.e., (mij)→ m(δij).
The U(Nf ) generators will, of course, commute with the unit matrix and we obtain N2

f conserved currents.
In nature, the assumption of equal quark masses is only legitimate in the light quark sector, see Tab. [2.1],
where the differences of the quark masses are negligible in contrast to a typical hadronic mass scale. If we
just consider the two lightest quark flavors, up and down, the assumption of equal quark masses is very well
satisfied, because the difference δm = md −mu is small compared to a mass scale of mH ∼ 1 GeV. This
leads to the so-called SU(2)V isospin symmetry of strong interactions. If we also include the strange quark,
the mass differences δmsu = ms −mu and δmsd = ms −md become larger than in the isospin case. But
in comparison with the 1 GeV scale, these differences are of order 10%, therefore this SU(3)V symmetry is
also approximately fulfilled. This leads to the so-called flavor symmetry introduced by Gell-Mann, Ne’eman,
and Zweig. We will come back to this scenario later.

For the moment, we turn back to the axial-vector currents. According to Eq. (2.164), the divergences of
the axial-vector currents are proportional to the anticommutator of the quark mass matrix and the U(Nf )A
generators. In order to obtain conserved axial-vector currents, this anticommutator has to vanish. In general,
this is only possible, if the quark mass matrix is equal to zero. Therefore, we conclude that the axial-vector
currents are only conserved, if we consider the QCD Lagrangian in the chiral limit, m = 0. But this
statement is only valid, when we consider the QCD Lagrangian (2.145) at the classical level. At quantum
level, the U(1)A symmetry is never conserved as a consequence of non-perturbative quantum effects. Such a
symmetry which is only present at the classical level and disturbed at the quantum level is called anomaly.
Therefore, at quantum level, the full symmetry group of the QCD Lagrangian in the chiral limit is given by
SU(Nf )V × SU(Nf )A × U(1)V .

At the end of this section, we want to discuss the SU(3)V flavor symmetry of QCD. To this end, we
only consider three flavors QCD. As mentioned above, the masses of up, down, and strange quark are small
compared to a hadronic mass scale of ∼ 1 GeV, so that the QCD Lagrangian exhibits an approximate
SU(3)V ×SU(3)A×U(1)V symmetry. But then, this symmetry is also present in the QCD Hamiltonian, so
that HQCD commutes with the charge operators Qa,V , Qa,A and Q0,V , a = 1, . . . , 8, acting on the Hilbert
space of the system. Now, the vector and axial-vector charges have opposite parity, compare Eqs. (2.158)
and (2.159). Thus, the commutation relations of Qa,V and Qa,A with HQCD imply the existence of degen-
erate states with positive and negative parity, but with equal baryon number, strangeness, and spin. This
phenomenon of parity doubling is not observed in the hadron spectrum.

A second interesting point is that, due to the symmetry of LQCD, we would expect that the light hadrons
can be arranged into irreducible representations of SU(3)V × SU(3)A × U(1)V . As stated previously, the
U(1)V symmetry corresponds to the conservation of baryon number. This conservation law implies that the
obtained multiplets can be divided into SU(3)V ×SU(3)A multiplets of different baryon number. For B = 0
we would obtain the multiplets of mesons and for B = 1 we would obtain those for baryons. But in nature
we do not observe the multiplets of SU(3)V ×SU(3)A, but only those of SU(3)V . These two points indicate
a spontaneous breakdown of the chiral SU(3)V × SU(3)A symmetry down to its SU(3)V subgroup.

The spontaneous breakdown of chiral symmetry is exhibited by the octet of pseudoscalar mesons. Ac-
cording to the discussion of Sec. [2.2.3], we expect the appearance of eight Nambu-Goldstone bosons corre-
sponding to the eight broken generators of SU(3)A. Now, the pseudoscalar octet contains the pion isotriplet



CHAPTER 2. INTRODUCTION 33

{
π−, π0, π+

}
, two kaon isodoublets

{
K+,K0

}
and

{
K−, K̄0

}
, and the isosinglet {η}. These eight mesons

are much lighter than all other mesons and are considered as the Nambu-Goldstone bosons of spontaneous
chiral symmetry breaking. Strictly spoken, these mesons are pseudo-Nambu-Goldstone bosons, because they
obtain nonzero masses. Those masses arises from the fact that the chiral symmetry is not an exact, but
explicitly broken global symmetry of the QCD Lagrangian.

The symmetry under the SU(3)V subgroup of the chiral group is called flavor symmetry. The quark and
antiquark fields build the fundamental triplet [3]f and antitriplet [3̄]f of SU(3)V . For mesons, i.e., qq̄-states,
we can couple the antitriplet with the triplet to obtain a singlet and an octet, [3]f ⊗ [3̄]f = [1]f ⊕ [8]f .
In the case of baryons, we couple three quark triplets to obtain a singlet, two octets, and one decuplet,
[3]f ⊗ [3]f ⊗ [3]f = [1]f ⊕ [8]f ⊕ [8]f ⊕ [10]f . The general forms of those multiplets, represented in the strong
isospin-hypercharge plane, are depicted in Figs. [2.8] and [2.9].

(a) (b)

Figure 2.8: Flavor-multiplets for mesons in the (T3, Y )-plane. In this figure, we neglect the quark content of the different
meson resonances.

(a) (b) (c)

Figure 2.9: Flavor-multiplets for baryons in the (T3, Y )-plane. Again, we neglect the quark content of the different baryon
resonances.
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Chapter 3

Chiral Perturbation Theory

The last Section [2.3] of the past chapter was dedicated to the theory of strong interactions, Quantum
Chromodynamics. We constructed the QCD Lagrangian by using the gauge principle and investigated the
so-called chiral symmetry of QCD. In addition to that, we argued that this symmetry must be spontaneously
broken. This spontaneous chiral symmetry breaking will be a central topic of the upcoming chapter.

At this point, we could start to investigate strong processes in the framework of QCD by using a per-
turbative expansion in powers of the strong coupling αS ≡ g2/4π. This approach is valid as long as the
coupling αS is small, so that the interaction can be treated as a perturbation. In the high-energy end of the
QCD spectrum, where the interactions are mostly dominated by quarks and gluons, this method works very
well - while in the low-energy regime the situation changes. For small energies, the strong coupling becomes
very large, so that the interaction cannot be treated as a perturbation. Since we are interested in an analysis
of the low-energy properties of QCD, we need to find a technique, which does not rely on a perturbative
expansion in powers of the QCD coupling αS .

In fact, there exist two non-perturbative methods. The first is given by numerical simulations on a lattice,
where the whole theory is discretized on a four-dimensional hypercube. The second approach is given by
the framework of Effective Field Theory (EFT), which simplifies the initial theory by considering only those
degrees of freedom that are important at the energy scale one is interested in. This second approach will be
the focus of this work.

The main objective of this chapter is to introduce Chiral Perturbation Theory (ChPT) as a powerful tool
to investigate the low-energy regime of strong interactions. Therefore, we start with the basic ideas of ChPT
in Sec. [3.1]. This Section includes a brief overview of the basic ingredients of ChPT: the hadronic n-point
functions and the Ward-Fradkin-Takahashi identities. It turns out, that the low-energy dynamics of QCD
is fully determined by the interaction of the Nambu-Goldstone bosons of chiral symmetry breaking among
themselves. The aim of Sec. [3.2] is to introduce the basic mathematical formalism which will be needed
to build an effective Lagrangian of a theory with spontaneous symmetry breaking. Finally, in Sec. [3.3], we
will combine the results of Sec. [3.1] and [3.2] to construct the next-to-leading order (NLO) Lagrangian of
ChPT.

3.1 The Basic Concepts of Chiral Perturbation Theory

In order to outline the basic concepts of ChPT, we start with a short summary of some important results of
Sec. [2.3]. To this end, we start with the classical QCD Lagrangian and switch quark masses off. We saw that
in this case, the fermionic part of the QCD Lagrangian possesses a global SU(Nf )L × SU(Nf )R × U(1)L ×
U(1)R symmetry which originated from the fact that the left- and the right-handed parts of the quark spinors
can be rotated independently of each other. As already mentioned, this symmetry is called chiral symmetry.
However, this symmetry group is isomorphic to the SU(Nf )V ×SU(Nf )A ×U(1)V ×U(1)A group of vector
and axial-vector transformations. The 2N2

f conserved currents which are associated with these symmetry
transformations are given by Eqs. (2.155) and (2.156). If we now consider the QCD Lagrangian at the
quantum level, it turns out that the U(1)A symmetry does not survive quantization. This anomaly results
from non-perturbative quantum effects which are associated with instantons. Therefore, at the quantum
level, the full symmetry group of the QCD Lagrangian is given by SU(Nf )V × SU(Nf )A × U(1)V . In the
following step, we allow the quarks to have non-vanishing masses and consider the full QCD Lagrangian. As
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already seen in Eqs. (2.163) and (2.164), the vector and axial-vector currents are not conserved anymore.
In particular, when we consider Eq. (2.164), we find that for nonvanishing quark masses, there is no chance
that the remaining N2

f − 1 axial-vector currents are conserved. From Eq. (2.163), we obtain that the

N2
f −1 currents of the vector transformations are only conserved, if the different quark flavors have identical

masses. In addition to that, we realize that the current associated with the U(1)V transformations is always
conserved, as it must be, since this current expresses the conservation of the baryon number. However,
this symmetry is not important for the following discussion, so that we restrict ourselves to the remaining
SU(Nf )V ×SU(Nf )A group. Now, let us turn to the light quark sector, in particular to that part of the QCD
Lagrangian, which includes the two lightest quark flavors up and down. Compared to a typical hadronic
mass scale ΛHadron = 1 GeV, the masses of the up and the down quark can be assumed to be identical,
since the difference δmud = md −mu ≈ 2.5 MeV of their masses is vanishingly small compared to ΛHadron.
Therefore, in the case of the two lightest quark flavors, we obtain an approximate SU(Nf = 2)V symmetry.
This symmetry is well known as the isotopic spin symmetry or isospin symmetry of strong interactions. At
this point, it is important to recognize that not only the mass difference δmud is very small compared to
ΛHadron, but also the masses mu and md itself. Therefore, we extend our assumption to the case in which up
and down quark not only have identical, but vanishing masses. This assumption gives rise to an approximate
SU(2)V ×SU(2)A symmetry, since the three axial-vector currents are also conserved in the case of vanishing
quark masses. In the discussion of Sec. [2.3], we already mentioned that there are strong arguments that
this chiral SU(2)V ×SU(2)A symmetry must be spontaneously broken down to its isospin subgroup SU(2)V .
An important object in this context is the vacuum expectation value of the singlet scalar quark condensate

〈Ω|Ψ̄Ψ|Ω〉 . (3.1)

In fact, it can be shown that a non-vanishing singlet scalar quark condensate is a sufficient condition for
spontaneous chiral symmetry breaking. We will return to this important point in Sec. [3.1.2]. For the
moment, we interrupt this discussion and turn to other important quantities in Quantum Field Theory,
which also play a crucial role in the framework of ChPT, the n-point Green’s functions.

3.1.1 n-Point Green’s Functions and Pion Pole Dominance

The n-point Green’s functions1 are defined as the time-ordered vacuum expectation values of Heisenberg
operators Oi(xi). The great importance of these n-point functions arises from the fact that the so-called
Lehmann-Symanzik-Zimmermann (LSZ) reduction formalism relates them to scattering matrix elements and
therefore to physical processes. In our case, we are interested in hadronic processes, in particular in low-
energy hadronic processes. The n-point functions corresponding to hadronic processes cannot be formed
with the field operators which are included in the QCD Lagrangian, since Eq. (2.139) does not contain
field operators describing hadrons, but only field operators describing the fundamental particles of strong
interactions, namely quarks and gluons. The relevant n-point functions for our purpose are those which are
formed with the time-ordered products of color neutral and hermitian bilinear forms. To be more precise,
we are interested in n-point functions formed with the following objects

Jµ,aV (x) = Ψ̄(x)γµT aΨ(x) , (3.2)

Jµ,aA (x) = Ψ̄(x)γµγ5T
aΨ(x) , (3.3)

JaS(x) = Ψ̄(x)T aΨ(x) , (3.4)

JaP (x) = iΨ̄(x)γ5T
aΨ(x) , (3.5)

where a = 0, 1, 2, 3 and Ψ(x) = (u(x), d(x))
T

. The generators are defined as T 0 = 1/2, T i = τ i/2, where
τ i, i = 1, 2, 3, denote the usual Pauli matrices, compare [6.1.1] and [6.1.2]. The assignment of the scalar
(3.4), the pseudoscalar (3.5), the vector (3.2), and the axial-vector (3.3) bilinear forms to physical mesons
which we want to describe, depends on the quantum numbers of the physical states. In order to investigate
the low-energy behavior of these n-point functions, we consider a general momentum-space n-point function
which involves the time-ordered product of arbitrary operators Oi(xi)

G(n)(p1, . . . , pn) =

∫ n∏
j=1

d4xj e
ipjxj 〈Ω|T {O1(x1) · · ·On(xn)} |Ω〉 . (3.6)

1 We will often call them n-point functions, instead of n-point Green functions.
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The vacuum expectation value in the above expression can be rewritten as

〈Ω|T {O1(x1) · · ·On(xn)} |Ω〉
= Θ

(
min(x0

1, . . . , x
0
m)−max(x0

m+1, . . . , x
0
n)
)
〈Ω|T {O1(x1) · · ·Om(xm)}T {Om+1(xm+1) · · ·On(xn)} |Ω〉

+ . . .

=
∑
s

∫
d3k

(2π)3

1

2ωk
Θ
(
min(x0

1, . . . , x
0
m)−max(x0

m+1, . . . , x
0
n)
)

× 〈Ω|T {O1(x1) · · ·Om(xm)} |ψs,k〉 〈ψs,k|T {Om+1(xm+1) · · ·On(xn)} |Ω〉+ . . . , (3.7)

where we inserted an on-shell single particle state of mass M and spin s. It is clear that the inserted complete
set of states involves all multi-particle states, not just only the one-particle state. Therefore, the ”. . .” of the
second line stand for all possible multi-particle states including all possible time-orderings, while the ”. . .” of
the first line only denote the other possible time-orderings. In addition to that, we assume that the matrix
elements

〈Ω|T {O1(x1) · · ·Om(xm)} |ψs,k〉 and 〈ψs,k|T {Om+1(xm+1) · · ·On(xn)} |Ω〉 (3.8)

are different from zero. Now, exploiting the space-time translational invariance2 of the Heisenberg operators
Oi(xi), i.e.,

eiaµP
µ

Oi(xi)e
−iaµPµ = Oi(xi + a) , (3.9)

the first matrix element in Eq. (3.8) can be rewritten as

〈Ω|T {O1(x1) · · ·Om(xm)} |ψs,k〉
= 〈Ω|T

{
eix1P e−ix1PO1(x1)eix1P · · · e−ix1POm(xm)eix1P e−ix1P

}
|ψs,k〉

= e−ix1k 〈Ω|T {O1(0)O2(x2 − x1) · · ·Om(xm − x1)} |ψs,k〉 , (3.10)

where we suppressed the space-time indices in the exponentials and used that the vacuum and the one-
particle state are eigenstates of the four-momentum operator. In an analogous way, the second matrix
element in Eq. (3.8) can be written as

〈ψs,k|T {Om+1(xm+1) · · ·On(xn)} |Ω〉
= 〈ψs,k|T

{
eixm+1P e−ixm+1POm+1(xm+1)eixm+1P · · · e−ixm+1POn(xn)eixm+1P e−ixm+1P

}
|Ω〉

= eixm+1k 〈ψs,k|T {Om+1(0)Om+2(xm+2 − xm+1) · · ·On(xn − xm+1)} |Ω〉 . (3.11)

Combining Eqs. (3.10) and (3.11) with Eq. (3.7) and inserting this result into Eq. (3.6), we obtain

G(n)(p1, . . . , pn)

=

∫ n∏
j=1

d4xj e
ipjxj

∑
s

∫
d3k

(2π)3

1

2ωk
Θ
(
min(x0

1, . . . , x
0
m)−max(x0

m+1, . . . , x
0
n)
)
e−ix1keixm+1k

× 〈Ω|T {O1(0)O2(x2 − x1) . . . Om(xm − x1)} |ψs,k〉
⊗ 〈ψs,k|T {Om+1(0)Om+2(xm+2 − xm+1) . . . On(xn − xm+1)} |Ω〉+ . . . . (3.12)

The above expression can be simplified by introducing new variables

ξj =

{
xj − x1 , j = 2, . . . ,m ,

xj − xm+1 , j = m+ 2, . . . , n ,
(3.13)

while x1 and xm+1 remain unchanged. In order to see how Eq. (3.12) changes under the coordinate
transformation (3.13), we consider each part of the n-point function separately. First of all, we note that
the Jacobian associated with the above change of variables is equal to one. Then, the exponentials in Eq.
(3.12) become

n∏
j=1

eipjxje−ix1keixm+1k = ei(p1−k)x1ei(pm+1+k)xm+1

m∏
j=2

eipj(ξj+x1)
n∏

j=m+2

eipj(ξj+xm+1)

= ei(p1+...+pm−k)x1ei(pm+1+...+pn+k)xm+1

n∏
j=2,
j 6=m+1

eipjξj . (3.14)

2Translational invariance with respect to space-time translations implies that the Heisenberg operators fulfill [Pµ, Oi(xi)]− =

−i∂xiµ Oi(xi). Using eXY e−X = Y + [X,Y ]− + . . . in combination with the commutation relations, satisfied by the Heisenberg
operators, leads to Eq. (3.9).
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The next object in Eq. (3.12) we turn our attention to is the Θ-function. Using Eq. (3.13), we obtain

Θ
(
min(x0

1, . . . , x
0
m)−max(x0

m+1, . . . , x
0
n)
)

= Θ
(
min(x0

1, ξ
0
2 + x0

1, . . . , ξ
0
m + x0

1)−max(x0
m+1, ξ

0
m+2 + x0

m+1, . . . , ξ
0
n + x0

m+1)
)

= Θ
(
x0

1 − x0
m+1 + min(0, ξ0

2 , . . . , ξ
0
m)−max(0, ξ0

m+2, . . . , ξ
0
n)
)

=

∫
dω

2π

i

ω + iε
e−iω(x0

1−x
0
m+1+min(0,ξ0

2 ,...,ξ
0
m)−max(0,ξ0

m+2,...,ξ
0
n)) , (3.15)

where we used the Fourier representation of the Θ-function

Θ(τ) =

∞∫
−∞

dω

2π

i

ω + iε
e−iωτ . (3.16)

Finally, the matrix elements (3.8) simplify to

〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,k〉 and 〈ψs,k|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉 . (3.17)

Combining the results (3.14), (3.15), and (3.17), we obtain

G(n)(p1, . . . , pn)

=
∑
s

∫
d3k

(2π)3

1

2ωk

∫
dω

2π

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj

∫
d4x1d4xm+1 e

i(p1+...+pm−k)x1ei(pm+1+...+pn+k)xm+1

× e−iω(x0
1−x

0
m+1+min(0,ξ0

2 ,...,ξ
0
m)−max(0,ξ0

m+2,...,ξ
0
n)) i

ω + iε

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,k〉 〈ψs,k|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . .

=
∑
s

∫
d3k

(2π)3

1

2ωk

∫
dω

2π

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj

∫
d4x1d4xm+1 e

−i(p1+...+pm−k)·x1e−i(pm+1+...+pn+k)·xm+1

× ei(p
0
1+...+p0

m−ωk−ω)x0
1ei(p

0
m+1+...+p0

n+ωk+ω)x0
m+1

ie−iω(min(0,ξ0
2 ,...,ξ

0
m)−max(0,ξ0

m+2,...,ξ
0
n))

ω + iε

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,k〉 〈ψs,k|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . .

= (2π)4
∑
s

∫
d3k

1

2ωk

∫
dω

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj δ

(
p0

1 + . . .+ p0
m − ωk − ω

)
δ
(
p0
m+1 + . . .+ p0

n + ωk + ω
)

× δ(3) (p1 + . . .+ pm − k) δ(3)
(
pm+1 + . . .+ pn + k

) ie−iω(min(0,ξ0
2 ,...,ξ

0
m)−max(0,ξ0

m+2,...,ξ
0
n))

ω + iε

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,k〉 〈ψs,k|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . . . (3.18)

It is obvious that an integration over d3k gives a three-dimensional delta-distribution which expresses the
conservation of the 3-momentum. In addition to that, the energy ωk of the on-shell intermediate state
becomes ωp1+...+pm =

√
(p1 + . . .+ pm)2 +M2. Defining pµ = p1,µ+ . . .+pm,µ, this energy can be written

as ωp =
√
p2 +M2, so that

G(n)(p1, . . . , pn)

=
(2π)4

2ωp

∑
s

∫
dω

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj δ

(
p0

1 + . . .+ p0
m − ωp − ω

)
δ
(
p0
m+1 + . . .+ p0

n + ωp + ω
)

× δ(3) (p1 + . . .+ pn)
ie−iω(min(0,ξ0

2 ,...,ξ
0
m)−max(0,ξ0

m+2,...,ξ
0
n))

ω + iε

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,p〉 〈ψs,p|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . . . (3.19)

Apparently, the above expression of the n-point function has a pole at ω = 0. Near this pole, the contribution
of the exponential in the numerator is one, so that we are able to drop it. This allows us to solve the ω
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integration in order to obtain

G(n)(p1, . . . , pn)

=
(2π)4

2ωp

∑
s

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj δ(4) (p1 + . . .+ pn)

i

p0
1 + . . .+ p0

m − ωp + iε

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,p〉 〈ψs,p|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . . . (3.20)

The fraction in Eq. (3.20) can be rewritten as follows

i

p0
1 + . . .+ p0

m − ωp + iε
=

i

p0
1 + . . .+ p0

m −
√

(p1 + . . .+ pm)
2

+M2 + iε

=
i
(
p0 +

√
p2 +M2

)
(p0)

2 − (p2 +M2) + iε

=
2ωpi

p2 −M2 + iε
, (3.21)

where we frequently redefined ε, which is valid, since ε is an arbitrary positive infinitesimal real number. In
addition to that, we used in the last line that in the vicinity of the pole, p0 is equal to ωp. Inserting (3.21)
into (3.20), we finally obtain

G(n)(p1, . . . , pn)

=
(2π)4

2ωp

∑
s

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj δ(4) (p1 + . . .+ pn)

2ωpi

p2 −M2 + iε

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,p〉 〈ψs,p|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . .

= (2π)4δ(4) (p1 + . . .+ pn)
i

p2 −M2 + iε

∑
s

∫ n∏
j=2,
j 6=m+1

d4ξj e
ipjξj

× 〈Ω|T {O1(0)O2(ξ2) . . . Om(ξm)} |ψs,p〉 〈ψs,p|T {Om+1(0)Om+2(ξm+2) . . . On(ξn)} |Ω〉+ . . . . (3.22)

First of all, it should be emphasized that the equal signs in Eqs. (3.20) - (3.22) are only valid in the vicinity
of the pole, so that Eq. (3.22) determines the residue of the pole of the initial n-point function. Considering
(3.22), we conclude that, for pµ = p1,µ+ . . .+pm,µ = −pm+1,µ− . . .−pn,µ and non-vanishing matrix elements
(3.17), n-point functions always have poles when on-shell intermediate particles can be created. In order to
understand the great importance of this result, we have to turn back to the previous discussion, namely to
the spontaneous chiral symmetry breaking in QCD: According to the Goldstone theorem, Sec. [2.2.3], this
spontaneously broken symmetry gives rise to the occurrence of dim (SU(2)V × SU(2)A)−dim (SU(2)V ) = 3
massless pseudoscalar bosons. But, since the SU(2)V × SU(2)A chiral symmetry is only an approximate
symmetry, these bosons acquire small but nonzero masses, so that they are often referred to as pseudo-
Nambu-Goldstone bosons. These pseudo-Nambu-Goldstone bosons are identified as the three pions, since
they are significantly lighter than all other particles of the hadronic spectrum and have these quantum
numbers we are looking for, i.e., they are spin-0 bosons with negative parity and transform as a triplet under
the unbroken isospin subgroup. Especially the fact that the pions are the lightest particles of the QCD
spectrum is important for us, since they are the first degrees of freedom which we observe at low energies.
Therefore, at low energies, the hadronic n-point functions formed with Eqs. (3.2) - (3.5) are dominated by
a pole, Eq. (3.22), which is generated by the pions. Or formulated differently: While the high-energy end
of the QCD spectrum is dominated by quarks and gluons, the low-energy dynamics of strong interactions is
governed by the exchange of the pseudo-Nambu-Goldstone bosons of chiral symmetry breaking, i.e., by the
exchange of pions.

3.1.2 The Singlet Scalar Quark Condensate

In the introduction of Sec. [3.1], we stated that a non-vanishing vacuum expectation value of the singlet
scalar quark condensate is a sufficient condition for the spontaneous breakdown of the chiral symmetry of
QCD. In order to prove this statement, we start with the zero-component of the axial-vector current (2.156)

QaA(t, r) =

∫
d3r Ψ̄(t, r)γ0γ5T

aΨ(t, r) , (3.23)
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the definitions of the scalar and pseudoscalar bilinear forms (3.4) and (3.5) and consider the chiral limit of
QCD. In addition to that, we assume the vacuum expectation value of the singlet scalar quark bilinear to
be different from zero, i.e.,

〈Ω|J0
S(x)|Ω〉 = 〈Ω|Ψ̄(x)T 0Ψ(x)|Ω〉 =

1

2
〈Ω|Ψ̄(0)Ψ(0)|Ω〉 ≡ 1

2
〈Ω|Ψ̄Ψ|Ω〉 6= 0 , (3.24)

where we used the translational invariance of J0
S(x). Now, we evaluate the equal-time commutation relation

of Eq. (3.23) and the pseudoscalar quark bilinear form (3.5)

i [QaA(t, r), P a(t, r′)]−

= i

∫
d3r

[
Ψ̄(t, r)γ0γ5T

aΨ(t, r), iΨ̄(t, r′)γ5T
aΨ(t, r′)

]
−

= i

∫
d3r

[
Ψ†(t, r)α,i (γ5)

αβ
(T a)

ij
Ψ(t, r)β,j , iΨ

†(t, r′)α′,i′ (γ0)
α′β′

(γ5)β′γ′ (T
a)
i′j′

Ψ(t, r′)γ
′

j′

]
−

= i2 (γ5)
αβ

(T a)
ij

(γ0)
α′β′

(γ5)β′γ′ (T
a)
i′j′
∫

d3r
[
Ψ†(t, r)α,iΨ(t, r)β,j ,Ψ

†(t, r′)α′,i′Ψ(t, r′)γ
′

j′

]
−

, (3.25)

where we explicitly denote the spinor and isospin indices. In addition to that, it should be taken into account
that no summation over a is implied in the above equation. Furthermore, the index a runs only from one
to three, since the singlet axial-vector current carries an anomaly. The commutator in Eq. (3.25) can be
evaluated by using

[AB,CD]− = A [B,C]+D −AC [B,D]+ + [A,C]+DB − C [A,D]+B (3.26)

and the usual equal-time anticommutation relations3 of the quark operators[
Ψ(t, r)α,i,Ψ

†(t, r′)β,j
]
+

= δαβδijδ
(3)(r− r′) , [Ψ(t, r)α,i,Ψ(t, r′)β,j ]+ =

[
Ψ†(t, r)α,i,Ψ

†(t, r′)β,j
]
+

= 0 .

(3.27)
Then, Eq. (3.25) becomes

i [QaA(t, r), P a(t, r′)]− = i2
∫

d3r
[
Ψ†(t, r)α,i (T a)

i
i′ (γ5)

α
α′ (γ0)

α′β′
(γ5)β′γ′ (T

a)
i′j′

Ψ(t, r′)γ
′

j′

− Ψ†(t, r′)α′,i′ (T
a)
i′

i (γ0)
α′β′

(γ5)β′α (γ5)
αβ

(T a)
ij

Ψ(t, r)β,j

]
δ(3) (r− r′)

= i2Ψ†(t, r) [γ5T
a, γ0γ5T

a]−Ψ(t, r)

=
1

2
Ψ̄(t, r)Ψ(t, r)

= J0
S(t, r) , for a = 1, 2, 3 , (3.28)

where we used Eq. (6.29) and (T a)
2

= 12×2/4, for a = 1, 2, 3. The above equation obviously relates the
singlet scalar quark condensate to the triplet axial-vector charge operator QaA. Now, we can evaluate the
vacuum expectation value of the commutator (3.28) and obtain

〈Ω|i [QaA(t, r), P a(t, r′)]− |Ω〉 = 〈Ω|J0
S(t, r)|Ω〉 ∝ 〈Ω|Ψ̄Ψ|Ω〉 . (3.29)

Since we started with the assumption (3.24), it follows that the triplet axial-vector charge operator does not
annihilate the vacuum. Therefore, we conclude that a non-vanishing vacuum expectation value of the singlet
scalar quark condensate is a sufficient condition for the spontaneous breakdown of chiral symmetry.

3.1.3 Ward-Fradkin-Takahashi Identities, Gauge Invariance, and the Generat-
ing Functional

In Sec. [3.1.1], we saw that at low energies the strong processes are dominated by the exchange of pions.
This behavior arises from the fact that the n-point functions formed with (3.2)-(3.5) exhibit a pole which is
generated by the pions. Now, the physical amplitudes and therefore also the n-point functions are affected
by the symmetries of the physical system in question. In the case of QCD, these constraints originate from
chiral symmetry. And in fact, it turns out that chiral symmetry does not only determine the transfor-
mation behavior of the n-point functions, but also relates the n-point functions among themselves. These

3In general, the quark operators also carry color-space indices, but since the bilinear forms (3.2) - (3.5) describe color neutral
objects, it is possible to omit those indices.
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symmetry relations are the so-called Ward-Fradkin-Takahashi (WFT) identities. These identities relate the
4-divergence of a symmetry current to a linear combination of other n-point functions.

In the case of QCD, this means that the 4-divergence of an arbitrary n-point function formed with a least
one factor of Jµ,aV or Jµ,aA can be related to a sum of other n-point functions of the theory. In general, this
sum involves one n-point function which will contain the 4-divergence of the symmetry current. For an exact
symmetry, this term obviously vanishes. The other terms of the sum each contain an equal-time commutator
of the charge density of the symmetry current with one of the remaining operators. These equal-time com-
mutation relations result from the derivatives of the Θ-functions which are contained in the time-ordered
product of the n-point functions. In principle, these equal-time commutators are determined by the algebra
which is formed by the symmetry currents and are therefore fully governed by the underlying symmetries
of the theory. Generally speaking, this algebra relates the equal-time commutator to another current4.
Therefore, we conclude that the 4-divergence of the initial n-point function, in general, is related to another
n-point function which expresses the current conservation and a linear combination of (n−1)-point functions.

Before we illustrate these considerations by means of an example, we come to another important object
which is closely connected to the n-point functions, the so-called generating functional. At the begin-
ning of Sec. [2.2.1], using the example of a scalar theory containing N fields φa(x), a = 1, . . . , N , we

already saw that all n-point functions of the theory are included in the generating functional Z[ ~J ], with
~J(x) = (J1(x), . . . , JN (x))T . In addition to that, the n-point functions of the theory can be obtained from

the generating functional by taking the functional derivatives of Z[ ~J ] with respect to the classical sources
Ja(x), a = 1, . . . , N , see Eq. (2.64). The connection of the generating functional and the WFT identities is
given by the fact that the complete set of all WFT identities is contained as an invariance property of the
generating functional. To be particular: In the absence of anomalies, the WFT identities Eare equivalent to
the invariance of the generating functional under local transformations of the symmetry group in question.
This invariance property can be understood as the manifestation of the underlying symmetry of the theory
in question at the level of the n-point functions.

In order to illustrate these general meditations, we consider a complex scalar theory which is described
by the following classical Lagrangian

L
(
ϕ†(x), ϕ(x), ∂µϕ

†(x), ∂µϕ(x)
)

= (∂µϕ)
†

(∂µϕ)− V (ϕ†, ϕ) , V (ϕ†, ϕ) = m2ϕ†ϕ+ λ
(
ϕ†ϕ

)2
. (3.30)

The constants m2 and λ are chosen in way, so that the potential density is bounded from below and possesses
only a single minimum, i.e., λ > 0 and m2 > 0. The importance of the second requirement will become clear
in a moment. At this point, it is appropriate to calculate the canonical momenta associated with the fields
ϕ(x) and ϕ†(x)

π(x) =
∂L

∂ (∂0ϕ(x))
= ∂0ϕ†(x) , π†(x) =

∂L

∂ (∂0ϕ†(x))
= ∂0ϕ(x) . (3.31)

Now, it is obvious that the Lagrangian (3.30) is invariant under global U(1) transformations5 of the fields

ϕ(x)
U(1)−→ ϕ′(x) = e−iαϕ(x) , (3.32)

ϕ†(x)
U(1)−→ ϕ′†(x) = ϕ†(x)eiα , (3.33)

where α ∈ R is the group parameter of U(1). Using the transformation behavior (3.32) of the field ϕ(x) and
its complex conjugate ϕ†(x), Eq. (3.33), the U(1) invariance of Eq. (3.30) is easy to prove

L
U(1)−→ L ′ = (∂µϕ

′)
†

(∂µϕ′)− V (ϕ′†, ϕ′)

= eiαe−iα (∂µϕ)
†

(∂µϕ)− V (ϕ†, ϕ)

= L , (3.34)

where we used that the U(1) transformation is a global transformation and that the potential density only

depends on ϕ†(x)ϕ(x) = |ϕ(x)|2. Now, it becomes clear that the requirement m2 > 0 forbids a spontaneous

4 At this point, one has to be careful, because these equal-time commutators are only determined up to so-called Schwinger-
terms.

5 If we decompose the fields ϕ(x) and ϕ†(x) into their real and imaginary parts, we observe that the global U(1) transfor-
mations corresponds to global SO(2) rotations in the field space of Re(ϕ) and Im(ϕ), compare Sec. [2.2.3].
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breakdown of the U(1) symmetry. According to Noether’s theorem, the invariance of Eq. (3.30) under
the continuous transformations (3.32) and (3.33) gives rise to a conserved current. In order to derive this
conserved Noether current, we need the infinitesimal forms of Eqs. (3.32) and (3.33)

ϕ(x)
U(1)−→ ϕ′(x) ≈ (1− iα)ϕ(x) = ϕ(x) + δϕ(x) , (3.35)

ϕ†(x)
U(1)−→ ϕ′†(x) ≈ ϕ†(x)(1 + iα) = ϕ†(x) + δϕ†(x) . (3.36)

Using the above transformations and Eq. (2.21), the Noether current can be calculated as follows

Jµα =
∂L

∂ (∂µϕ)
δϕ+ δϕ†

∂L

∂ (∂µϕ†)

= −iα
∂
[(
∂λϕ

†) (∂λϕ)]
∂ (∂µϕ)

ϕ+ iαϕ†
∂
[(
∂λϕ

†) (∂λϕ)]
∂ (∂µϕ†)

= iα
[
ϕ†gµλ∂

λϕ− gµλ
(
∂λϕ

†)ϕ]
≡ αJµ , (3.37)

where the Noether current Jµ is given by

Jµ(x) = i
[
ϕ†(x)∂µϕ(x)−

(
∂µϕ†(x)

)
ϕ(x)

]
. (3.38)

According to Eq. (2.22), this Noether current is associated with a conserved charge

Q =

∫
V

d3r J0 = i

∫
V

d3r
[
ϕ†(x)∂0ϕ(x)−

(
∂0ϕ†(x)

)
ϕ(x)

]
= i

∫
V

d3r
[
ϕ†(x)π†(x)− π(x)ϕ(x)

]
, (3.39)

where we used the definitions of the conjugate momenta, Eq. (3.31). Now, we can quantize the theory and
consider Eq. (3.30) at quantum level. To this end, we require the usual equal-time commutation relations
between the fields and their conjugate momenta[

ϕ(t, r), π(t, r′)
]
− =

[
ϕ†(t, r), π†(t, r′)

]
− = iδ(3)(r− r′) , (3.40)[

ϕ(t, r), ϕ†(t, r′)
]
− =

[
π(t, r), π†(t, r′)

]
− =

[
ϕ(t, r), π†(t, r′)

]
− =

[
ϕ†(t, r), π(t, r′)

]
− = 0 . (3.41)

It should be noted that the equal-time commutators of the fields and momenta with itself, of course, also van-
ish. Using the above relations, it is easy to derive the equal-time commutation relations of ϕ(x), ϕ†(x), π(x)
, π†(x), and the charge density J0[
J0(t, r), ϕ(t, r′)

]
− = i

[
ϕ†(t, r)π†(t, r)− π(t, r)ϕ(t, r), ϕ(t, r′)

]
−

= i
{
ϕ†(t, r)

[
π†(t, r), ϕ(t, r′)

]
− +

[
ϕ†(t, r), ϕ(t, r′)

]
− π
†(t, r)− π(t, r)

[
ϕ(t, r), ϕ(t, r′)

]
−

−
[
π(t, r), ϕ(t, r′)

]
−ϕ(t, r)

}
= −δ(3)(r− r′)ϕ(t, r) , (3.42)

[
J0(t, r), ϕ†(t, r′)

]
− = i

[
ϕ†(t, r)π†(t, r)− π(t, r)ϕ(t, r), ϕ†(t, r′)

]
−

= i
{
ϕ†(t, r)

[
π†(t, r), ϕ†(t, r′)

]
− +

[
ϕ†(t, r), ϕ†(t, r′)

]
− π
†(t, r)− π(t, r)

[
ϕ(t, r), ϕ†(t, r′)

]
−

−
[
π(t, r), ϕ†(t, r′)

]
− ϕ(t, r)

}
= δ(3)(r− r′)ϕ†(t, r) , (3.43)

[
J0(t, r), π(t, r′)

]
− = i

[
ϕ†(t, r)π†(t, r)− π(t, r)ϕ(t, r), π(t, r′)

]
−

= i
{
ϕ†(t, r)

[
π†(t, r), π(t, r′)

]
− +

[
ϕ†(t, r), π(t, r′)

]
− π
†(t, r)− π(t, r)

[
ϕ(t, r), π(t, r′)

]
−

−
[
π(t, r), π(t, r′)

]
−ϕ(t, r)

}
= δ(3)(r− r′)π(t, r) , (3.44)
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[
J0(t, r), π†(t, r′)

]
− = i

[
ϕ†(t, r)π†(t, r)− π(t, r)ϕ(t, r), π†(t, r′)

]
−

= i
{
ϕ†(t, r)

[
π†(t, r), π†(t, r′)

]
− +

[
ϕ†(t, r), π†(t, r′)

]
− π
†(t, r)− π(t, r)

[
ϕ(t, r), π†(t, r′)

]
−

−
[
π(t, r), π†(t, r′)

]
− ϕ(t, r)

}
= −δ(3)(r− r′)π†(t, r) , (3.45)

where we frequently used Eqs. (3.40), (3.41), the linearity of the commutator and [AB,C]− = A [B,C]− +
[A,C]−B. At this point, we are in the position to consider the 4-divergence of n-point functions which are

formed with the Noether current (3.38) and the field operators ϕ(x) and ϕ†(x). As an explicit example, we
consider the following 3-point function

G(3),µ(x1, x2, x3) = 〈Ω|T
{
ϕ(x1)Jµ(x2)ϕ†(x3)

}
|Ω〉 . (3.46)

Before we calculate the 4-divergence of Eq. (3.46), we note that the above 3-point function is invariant under
the global U(1) transformations (3.32) and (3.33), since the symmetry current Jµ is invariant itself. This
invariance of the Noether current tells us that it transforms as a singlet under the U(1) phase transformation,
i.e., it transforms as a neutral object with respect to the U(1) charge. This is not a general result, since the
transformation behavior of the fields under the group in question determines in which way the symmetry
current transforms. An example for that are the left- and right-handed currents (2.152) and (2.153). The
left-handed Noether current transforms as a (3, 1) multiplet under SU(2)L×SU(2)R, while the right-handed
current transforms as a (1, 3) multiplet. This beautifully demonstrates that the transformation behavior
of the n-point functions is determined by the underlying symmetry. Now, we are able to calculate the
4-divergence of Eq. (3.46) with respect to x2. Using the short-hand notations ϕ(xi) ≡ ϕi, ϕ

†(xi) ≡
ϕ†i , J

µ(xi) ≡ Jµi as well as Θ(x0
i − x0

j ) ≡ Θij and δ(n)(xi − xj) ≡ δnij = δnji, we find

∂x2
µ G(3),µ(x1, x2, x3) = ∂x2

µ 〈Ω|T
{
ϕ(x1)Jµ(x2)ϕ†(x3)

}
|Ω〉

= ∂x2
µ

[
Θ12Θ23 〈Ω|ϕ1J

µ
2 ϕ
†
3|Ω〉+ Θ13Θ32 〈Ω|ϕ1ϕ

†
3J

µ
2 |Ω〉+ Θ21Θ13 〈Ω|Jµ2 ϕ1ϕ

†
3|Ω〉

+ Θ23Θ31 〈Ω|Jµ2 ϕ
†
3ϕ1|Ω〉+ Θ31Θ12 〈Ω|ϕ†3ϕ1J

µ
2 |Ω〉+ Θ32Θ21 〈Ω|ϕ†3J

µ
2 ϕ1|Ω〉

]
= δ12

[
Θ13 〈Ω|J0

2ϕ1ϕ
†
3|Ω〉 −Θ31 〈Ω|ϕ†3ϕ1J

0
2 |Ω〉

]
+ δ12

[
Θ32 〈Ω|ϕ†3J0

2ϕ1|Ω〉 −Θ23 〈Ω|ϕ1J
0
2ϕ
†
3|Ω〉

]
+ δ23

[
Θ12 〈Ω|ϕ1J

0
2ϕ
†
3|Ω〉 −Θ21 〈Ω|ϕ†3J0

2ϕ1|Ω〉
]

+ δ23

[
Θ31 〈Ω|J0

2ϕ
†
3ϕ1|Ω〉 −Θ13 〈Ω|ϕ1ϕ

†
3J

0
2 |Ω〉

]
, (3.47)

where we used ∂xiµ Θij = −∂xiµ Θji = gµ0δij and the fact that the symmetry current (3.38) is conserved, i.e.,
∂µJ

µ = 0. Now, the delta-distributions δ12 ≡ δ(x0
1−x0

2) and δ23 ≡ δ(x0
2−x0

3) allow us to use the equal-time
commutation relations (3.42) and (3.43). Using these relations and inserting suitable Θ-functions, we observe
that two terms of each square bracket in Eq. (3.47) vanish. Finally, we obtain

∂x2
µ G(3),µ(x1, x2, x3) =

[
δ(4)(x2 − x3)− δ(4)(x1 − x2)

]
〈Ω|T

{
ϕ(x1)ϕ†(x3)

}
|Ω〉 . (3.48)

Using the same manipulations, it is now possible to prepare the complete set of WFT identities of all n-point
functions of the theory. As already mentioned at the beginning of this discussion, we find that the WFT
identities relate the 4-divergence of an n-point function with a linear combination of (n−1)-point functions. In
the case of the above example, the additional n-point function expressing the current conservation vanishes,
since the local U(1) symmetry of Eq. (3.30) is exact. In order to complete this example, we want to study
the WFT identities for all n-point functions instead of only considering the special case of Eq. (3.48). This
will also show us that the symmetry properties at the level of the n-point functions manifest themselves as
an invariance property of the generating functional. Therefore, we start with the path integral expression of
the generating functional of all n-point functions of the theory

Z[j†, j, jµ] =

∫
Dϕ†(x)Dϕ(x) eiS[ϕ†,ϕ,j†,j,jµ] , (3.49)
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where Dϕ(x) ≡
∏
x dϕ(x),Dϕ†(x) ≡

∏
x dϕ

†(x) and

S
[
ϕ†, ϕ, j†, j, jµ

]
= S[ϕ†, ϕ] +

∫
d4x j†(x)ϕ(x) + ϕ†(x)j(x) + jµ(x)Jµ(x)

=

∫
d4x

{
[∂µϕ(x)]

†
∂µϕ(x)− V

(
ϕ†(x), ϕ(x)

)}
+

∫
d4x

[
j†(x)ϕ(x) + ϕ†(x)j(x)

+jµ(x)Jµ(x)] . (3.50)

Now, we want to promote the global U(1) invariance of Eq. (3.30) to a local one of Eq. (3.50). As already
seen in Sec. [2.3.1], the group elements of U(1) may now depend on the space-time, i.e., they correspond to
a mapping from Minkowski space to the group U(1), x 7→ U(x). The transformation properties of the fields
(3.32) and (3.33) then become

ϕ(x)
U(1)−→ ϕ′(x) = e−iα(x)ϕ(x) , (3.51)

ϕ†(x)
U(1)−→ ϕ′†(x) = ϕ†(x)eiα(x) . (3.52)

In addition to that, we require that the classical sources j†(x) and j(x) corresponding to the fields transform
in the same way as the fields, respectively,

j(x)
U(1)−→ j′(x) = e−iα(x)j(x) , (3.53)

j†(x)
U(1)−→ j′†(x) = j†(x)eiα(x) . (3.54)

The transformation behavior of the external field jµ(x) corresponding to the symmetry current Jµ(x) should
stay indefinite for the moment. Then, using Eqs. (3.51)-(3.54), the action including the source terms (3.50)
transforms under local U(1) transformations according to

S
[
ϕ†, ϕ, j†, j, jµ

] U(1)−→ S
[
ϕ′†, ϕ′, j′†, j′, j′µ

]
= S[ϕ′†, ϕ′] +

∫
d4x

[
j′†(x)ϕ′(x) + ϕ′†(x)j′(x) + j′µ(x)Jµ′(x)

]
= S[ϕ′†, ϕ′] +

∫
d4x

[
j†(x)ϕ(x) + ϕ†(x)j(x) + j′µ(x)Jµ′(x)

]
,

(3.55)

where we used that the terms j†(x)ϕ(x) and ϕ†(x)j(x) are trivially invariant due to their transformation
behavior. Now, the transformation behavior of the action S[ϕ†, ϕ] is given by

S[ϕ†, ϕ]
U(1)−→ S[ϕ†′, ϕ′] =

∫
d4x

{
[∂µϕ

′(x)]
†
∂µϕ′(x)− V (ϕ†′, ϕ′)

}
=

∫
d4x

({[
∂µϕ

†(x)
]
eiα(x) + i [∂µα(x)] eiα(x)ϕ†(x)

}
×
{
−i [∂µα(x)] e−iα(x)ϕ(x) + [∂µϕ(x)] e−iα(x)

}
− V (ϕ†, ϕ)

)
= S[ϕ†, ϕ] +

∫
d4x

{
[∂µα(x)] Jµ(x) + [∂µα(x)]

2
ϕ†(x)ϕ(x)

}
, (3.56)

where we used the definition of the Noether current (3.38) and the fact that the potential density only

depends on |ϕ(x)|2. In close analogy to the construction of the QCD Lagrangian in Sec. [2.3.1], the kinetic
term produces an additional term

δS
[
ϕ†, ϕ

]
=

∫
d4x

{
[∂µα(x)] Jµ(x) + [∂µα(x)]

2
ϕ†(x)ϕ(x)

}
, (3.57)

which has to compensated by the transformation behavior of other objects in Eq. (3.50) to obtain a local
U(1) invariance. Another object which we expect to transform in a nontrivial manner is the Noether current
Jµ since it also contains 4-divergences of the fields. We find

Jµ(x)
U(1)−→ Jµ′(x) = i

{
ϕ†′(x)∂µϕ′(x)−

[
∂µϕ†′(x)

]
ϕ′(x)

}
= i
(
ϕ†(x)eiα(x)

{
−i [∂µα(x)] e−iα(x)ϕ(x) + e−iα(x)∂µϕ(x)

}
−
{[
∂µϕ†(x)

]
eiα(x) + i [∂µα(x)] eiα(x)ϕ†(x)

}
e−iα(x)ϕ(x)

)
= Jµ(x) + 2 [∂µα(x)]ϕ†(x)ϕ(x) . (3.58)
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Inserting the results (3.56) and (3.58) into Eq. (3.55), we obtain

S
[
ϕ′†, ϕ′, j′†, j′, j′µ

]
= S[ϕ†, ϕ] +

∫
d4x

(
j†(x)ϕ(x) + ϕ†(x)j(x) + [∂µα(x)] Jµ(x) + [∂µα(x)]

2
ϕ†(x)ϕ(x)

+j′µ(x)
{
Jµ(x) + 2 [∂µα(x)]ϕ†(x)ϕ(x)

})
. (3.59)

In order to eliminate the additional terms in the above equation, we use the same approach as in Sec. [2.3.1].
To this end, we require that the external field jµ transforms as a U(1) gauge field

jµ(x)
U(1)−→ j′µ(x) = U(x)jµ(x)U†(x)− i [∂µU(x)]U†(x)

= jµ(x)− ∂µα(x) , (3.60)

where we used U(x) = e−iα(x). Then, Eq. (3.59) becomes

S
[
ϕ′†, ϕ′, j†′, j′, j′µ

]
= S[ϕ†, ϕ] +

∫
d4x

(
j†(x)ϕ(x) + ϕ†(x)j(x) + [∂µα(x)] Jµ(x) + [∂µα(x)]

2
ϕ†(x)ϕ(x)

+ [jµ(x)− ∂µα(x)]
{
Jµ(x) + 2 [∂µα(x)]ϕ†(x)ϕ(x)

})
= S[ϕ†, ϕ] +

∫
d4x

{
j†(x)ϕ(x) + ϕ†(x)j(x) + jµ(x)Jµ(x)

+2 [∂µα(x)] jµ(x)ϕ†(x)ϕ(x)− [∂µα(x)]
2
ϕ†(x)ϕ(x)

}
= S

[
ϕ†, ϕ, j†, j, jµ

]
+ δS

[
ϕ†, ϕ, j†, j, jµ

]
, (3.61)

where we used Eq. (3.50) and defined

δS
[
ϕ†, ϕ, j†, j, jµ

]
=

∫
d4x

{
2 [∂µα(x)] jµ(x)ϕ†(x)ϕ(x)− [∂µα(x)]

2
ϕ†(x)ϕ(x)

}
. (3.62)

In order to get rid of the above two terms, we have to introduce a new term into the action (3.50). This
term has to be chosen in a way, so that the additional terms arising from its transformation behavior under
local U(1) transformations compensate the two terms in Eq. (3.62). Obviously, this term is given by

S1[ϕ†, ϕ, jµ] =

∫
d4x ϕ†(x)ϕ(x)jµ(x)jµ(x) , (3.63)

since it transforms under local U(1) transformations according to

ϕ†(x)ϕ(x)jµ(x)jµ(x)
U(1)−→ ϕ′†(x)ϕ′(x)j′µ(x)jµ′(x) = ϕ†(x)ϕ(x) [jµ(x)− ∂µα(x)] [jµ(x)− ∂µα(x)]

= ϕ†(x)ϕ(x)jµ(x)jµ(x)− 2 [∂µα(x)] jµ(x)ϕ†(x)ϕ(x)

+ [∂µα(x)]
2
ϕ†(x)ϕ(x) . (3.64)

Finally, combining Eqs. (3.50) and (3.61), we obtain the action of a theory with local U(1) symmetry

S̃
[
ϕ†, ϕ, j†, j, jµ

]
= S[ϕ†, ϕ] + S1[ϕ†, ϕ, jµ] +

∫
d4x

[
j†(x)ϕ(x) + ϕ†(x)j(x) + jµ(x)Jµ(x)

]
=

∫
d4x

{
[Dµϕ(x)]

†
Dµϕ(x)− V (ϕ†, ϕ) + j†(x)ϕ(x) + ϕ†(x)j(x)

}
, (3.65)

where, in close analogy to Sec. [2.3.1], we defined a covariant derivative of the form

Dµ = ∂µ − ijµ(x) . (3.66)

The first term in Eq. (3.65) contains the source term jµ(x)Jµ(x) as well as the additionally inserted term
(3.63). Since Dµϕ(x) and its complex conjugate transform in the same way as the fields (3.51) and (3.52),
the invariance of Eq.(3.65) can be seen easily. Now, we are in the position to prove that also the generating
functional (3.49) is invariant under local U(1) transformations. We obtain

Z[j†, j, jµ]
U(1)−→ Z[j′†, j′, j′µ] =

∫
Dϕ†Dϕ eiS̃[ϕ†,ϕ,j′†,j′,j′µ]

=

∫
Dϕ†′Dϕ′ eiS̃[ϕ′†,ϕ′,j′†,j′,j′µ]

=

∫
Dϕ†Dϕ eiS̃[ϕ′†,ϕ′,j′†,j′,j′µ]
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=

∫
Dϕ†Dϕ eiS̃[ϕ†,ϕ,j†,j,jµ]

= Z[j†, j, jµ] , (3.67)

where we renamed the fields ϕ(x) → ϕ′(x) and ϕ†(x) → ϕ′†(x) in the first line. In addition to that,
we used the invariance of the action and of the functional measures under local U(1) transformations. In
the following, we want to use the invariance of the generating functional, Eq. (3.67), to derive a ”master
equation” which contains the complete set of WFT identities of the theory (3.30). However, it will be useful
to first recall another form of Eq. (3.49), which is given by

Z[j†, j, jµ] = lim
ti→−∞
tf→∞

〈Ω, tf |Ω, ti〉j†,j,jµ

= 〈Ω|Tei
∫

d4x Lext |Ω〉

= 〈Ω|Tei
∫

d4x [j†(x)ϕ(x)+ϕ†(x)j(x)+jµ(x)Jµ(x)]|Ω〉 . (3.68)

Keeping the above definition in mind, we use Eq. (3.67) to obtain

0 = Z[j′†, j′, j′µ]− Z[j†, j, jµ]

=

∫
Dϕ†(x)Dϕ(x)

{
ei

∫
d4x [j′†(x)ϕ(x)+ϕ†(x)j′(x)+j′µ(x)Jµ(x)+j′µ(x)jµ,′(x)ϕ†(x)ϕ(x)]

−ei
∫

d4x [j†(x)ϕ(x)+ϕ†(x)j(x)+jµ(x)Jµ(x)+jµ(x)jµ(x)ϕ†(x)ϕ(x)]
}
eiS[ϕ†,ϕ] . (3.69)

For infinitesimal U(1) transformations, the first exponential in the above equation can be expanded up to
first order in the group parameter α(x)

ei
∫

d4x [j′†(x)ϕ(x)+ϕ†(x)j′(x)+j′µ(x)Jµ(x)+j′µ(x)jµ,′(x)ϕ†(x)ϕ(x)]

= ei
∫

d4x {j†(x)[1+iα(x)]ϕ(x)+ϕ†(x)[1−iα(x)]j(x)+[jµ(x)−∂µα(x)]Jµ(x)+[jµ(x)−∂µα(x)][jµ(x)−∂µα(x)]ϕ†(x)ϕ(x)}

= ei
∫

d4x [j†(x)ϕ(x)+ϕ†(x)j(x)+jµ(x)Jµ(x)+jµ(x)jµ(x)ϕ†(x)ϕ(x)]

×
{

1 +

∫
d4x α(x)

[
ϕ†(x)j(x)− j†(x)ϕ(x)

]
− i[∂µα(x)]

[
Jµ(x) + 2jµ(x)ϕ†(x)ϕ(x)

]
+O(α2)

}
. (3.70)

Inserting Eq. (3.70) into Eq. (3.69), we find

0 =

∫
Dϕ†(x)Dϕ(x)

{∫
d4x α(x)

[
ϕ†(x)j(x)− j†(x)ϕ(x)

]
− i[∂µα(x)]

[
Jµ(x) + 2jµ(x)ϕ†(x)ϕ(x)

]}
eiS[ϕ†,ϕ,j†,j,jµ]

=

∫
Dϕ†(x)Dϕ(x)

{∫
d4x α(x)

[
1

i
j(x)

δ

δj(x)
− 1

i
j†(x)

δ

δj†(x)

]
− i[∂µα(x)]

1

i

δ

δjµ(x)

}
eiS[ϕ†,ϕ,j†,j,jµ]

=

∫
d4x α(x)

[
1

i
j(x)

δ

δj(x)
− 1

i
j†(x)

δ

δj†(x)
+ ∂xµ

δ

δjµ(x)

]
Z[j†, j, jµ] , (3.71)

where we replaced the fields by appropriate functional derivatives in order to interchange the space-time
and the functional integral and to identify the generating functional (3.49). In addition to that, we used an
integration by parts. We obtain[

1

i
j(x)

δ

δj(x)
− 1

i
j†(x)

δ

δj†(x)
+ ∂xµ

δ

δjµ(x)

]
Z[j†, j, jµ] = 0 , (3.72)

since α(x) can be arbitrarily chosen and Eq. (3.71) must hold for all group parameters. In order to show
that Eq. (3.72) is the desired ”master equation” for deriving the complete set of WFT identities, we use it
to replicate the WFT identity of the 3-point function (3.48)

∂x2
µ G(3),µ(x1, x2, x3) =

(
1

i

)3

∂x2
µ

δ3Z[j†, j, jµ]

δj†(x1)δjµ(x2)δj(x3)

∣∣∣∣
j†=j=jµ=0

=

(
1

i

)3{
δ2

δj†(x1)δj(x3)

[
∂x2
µ

δZ[j†, j, jµ]

δjµ(x2)

]}
j†=j=jµ=0

=

(
1

i

)4{
δ2

δj†(x1)δj(x3)

[
j†(x2)

δ

δj†(x2)
− j(x2)

δ

δj(x2)

]
Z[j†, j, jµ]

}
j†=j=jµ=0
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= δ(4)(x1 − x2)
δ2Z[j†, j, jµ]

δj(x3)δj†(x2)

∣∣∣∣
j†=j=jµ=0

− δ(4)(x2 − x3)
δ2Z[j†, j, jµ]

δj†(x1)δj(x2)

∣∣∣∣
j†=j=jµ=0

=
[
δ(4)(x2 − x3)− δ(4)(x1 − x2)

]
〈Ω|T

{
ϕ(x1)ϕ†(x3)

}
|Ω〉 , (3.73)

where we used Eqs. (3.72), (3.68), and the fact that the functional derivatives of the generating functional
in the second to last line correspond, up to a factor of i2, to the respective 2-point functions. It is obvious
that in principle each WFT identity of the theory can easily be obtained by using Eq. (3.72). This example
beautifully demonstrates that the local invariance of the generating functional is equivalent to the WFT
identities of the theory.

At the end of this subsection, we apply this external field method to two-flavor QCD. Since the gauge
part of Eq. (2.139) is not important for the following discussion, we will only consider the quark part (2.133)
of the QCD Lagrangian. In order to generate the hadronic n-point functions, formed with Eqs. (3.2)-(3.5),
we have to modify the quark part of the QCD Lagrangian by an additional term which contains a coupling
of these quadratic forms to external fields. Then, Eq. (2.133) becomes

LQuark −→ L0,Quark + Lext

= Ψ̄(x)iγµDµΨ(x) + Ψ̄γµ
[
vµ(x) + aµ(x)γ5

]
Ψ(x)− Ψ̄(x)

[
s(x)− iγ5p(x)

]
Ψ(x) , (3.74)

where we introduced the external fields vµ(x), aµ(x), s(x), and p(x) as hermitian and color neutral matrices
acting on flavor space

vµ(x) = vµ,i(x)T i , aµ(x) = aµ,i(x)T i , s(x) = sa(x)T a , p(x) = pa(x)T a , (3.75)

where i = 1, 2, 3 and a = 0, . . . , 3. At this point, two important things have to be taken into account: First
of all, in Eq. (3.74), we omitted a coupling to the vector and axial-vector singlet currents in order to avoid
the occurrence of anomalies. Then, secondly, we absorbed the mass matrix in the definition of the external
field

s(x) = m+ s′(x) , m =

(
mu 0
0 md

)
, (3.76)

so that the usual quark part of the QCD Lagrangian can be restored by setting vµ(x) = aµ(x) = p(x) =
s′(x) = 0. If, in analogy to Eq. (3.68), we use the definition of the generating functional as vacuum-to-
vacuum transition amplitude in the presence of external fields, we are able to generate the complete set of
hadronic n-point functions, involving JaS , J

a
P , J

µ,i
V , and Jµ,iA , by taking the functional derivatives of

Z[vµ, aµ, s, p] = 〈Ω|Tei
∫

d4x Lext |Ω〉 (3.77)

with respect to the respective external fields. In order to ensure the validity of the WFT identities, we
promote the global SU(2)L × SU(2)R chiral symmetry of QCD to a local one and require the generating
functional to stay invariant under this modification. From this requirement, we are able to extract the
transformation properties of the external fields (3.75) under local SU(2)L × SU(2)R transformations. To
this end, we rewrite the Lagrangian (3.74) in terms of left- and right-handed quark fields. According to the
discussion of Sec.[2.3.2], the first term L0,Quark can be rewritten as in Eq. (2.147). Omitting the space-time
dependence of the various fields, the second term, Lext, can be expressed as

Lext = Ψ̄γµ
(
vµ + aµγ5

)
Ψ− Ψ̄

(
s− iγ5p

)
Ψ

= Ψ̄ (PR + PL) γµ
(
vµ + aµγ5

)
(PL + PR) Ψ− Ψ̄ (PR + PL)

(
s− iγ5p

)
(PL + PR) Ψ

= Ψ̄Lγ
µ

[
1

2
(lµ + rµ) +

1

2
(rµ − lµ)γ5

]
ΨL + Ψ̄Lγ

µ

[
1

2
(lµ + rµ) +

1

2
(rµ − lµ)γ5

]
ΨR

+ Ψ̄Rγ
µ

[
1

2
(lµ + rµ) +

1

2
(rµ − lµ)γ5

]
ΨL + Ψ̄Rγ

µ

[
1

2
(lµ + rµ) +

1

2
(rµ − lµ)γ5

]
ΨR

− Ψ̄L (s− iγ5p) ΨL − Ψ̄L (s− iγ5p) ΨR − Ψ̄R (s− iγ5p) ΨL − Ψ̄R (s− iγ5p) ΨR

= Ψ̄Lγ
µlµΨL + Ψ̄Rγ

µrµΨR − Ψ̄L (s− ip) ΨR − Ψ̄R(s+ ip)ΨL , (3.78)

where we defined the left- and right-handed external fields as

lµ(x) = vµ(x)− aµ(x) , rµ(x) = vµ(x) + aµ(x) (3.79)



CHAPTER 3. CHIRAL PERTURBATION THEORY 47

and frequently used the properties (2.143) of the left- and right-handed projection operators. Now, combining
the results (2.147) and (3.78), the Lagrangian in terms of the left- and right-handed quark fields is given by

L0,Quark+Lext = Ψ̄Liγ
µDµΨL+Ψ̄Riγ

µDµΨR+Ψ̄Lγ
µlµΨL+Ψ̄Rγ

µrµΨR−Ψ̄L (s− ip) ΨR−Ψ̄R(s+ip)ΨL .
(3.80)

We observe that the scalar and pseudoscalar external fields mix the left- and right-handed quark fields. On
the other hand, this is not a surprising result, since the quark mass matrix which already induced this kind
of mixing in Sec. [2.3.2], is contained in the definition of the scalar external field s(x), Eq. (3.76). Now,
transforming this Lagrangian under local SU(2)L × SU(2)R, we obtain

L0,Quark + Lext
SU(2)L×SU(2)R−→ L ′0,Quark + L ′ext

= Ψ̄LU
†
L(x)iγµDµUL(x)ΨL + Ψ̄RU

†
R(x)iγµDµUR(x)ΨR + Ψ̄LU

†
L(x)γµl′µUL(x)ΨL

+ Ψ̄RU
†
R(x)γµr′µUR(x)ΨR − Ψ̄LU

†
L(x) (s′ − ip′)UR(x)ΨR − Ψ̄RU

†
R(x) (s′ + ip′)UL(x)ΨL

= L0,Quark + Ψ̄Liγ
µU†L(x) [∂µUL(x)] ΨL + Ψ̄Riγ

µU†R(x) [∂µUR(x)] ΨR + Ψ̄LU
†
L(x)γµl′µUL(x)ΨL

+ Ψ̄RU
†
R(x)γµr′µUR(x)ΨR − Ψ̄LU

†
L(x) (s′ − ip′)UR(x)ΨR − Ψ̄RU

†
R(x) (s′ + ip′)UL(x)ΨL .

(3.81)

Using
[
∂µU

†
L/R(x)

]
UL/R(x) = −U†L/R(x)∂µUL/R(x), the invariance of Eq. (3.81) under local SU(2)L ×

SU(2)R chiral transformations is guaranteed, if the external fields transform according to

lµ(x)
SU(2)L×SU(2)R−→ l′µ(x) = UL(x)lµ(x)U†L(x) + iUL(x)∂µU

†
L(x) , (3.82)

rµ(x)
SU(2)L×SU(2)R−→ r′µ(x) = UR(x)rµ(x)U†R(x) + iUR(x)∂µU

†
R(x) , (3.83)

s(x) + ip(x)
SU(2)L×SU(2)R−→ s′(x) + ip′(x) = UR(x)

[
s(x) + ip(x)

]
U†L(x) , (3.84)

s(x)− ip(x)
SU(2)L×SU(2)R−→ s′(x)− ip′(x) = UL(x)

[
s(x)− ip(x)

]
U†R(x) . (3.85)

Obviously, the left- and right-handed external fields have to transform as gauge fields under the local chiral
rotations. This transformation behavior of external fields which are associated with symmetry currents is
not new. In the previous example of a complex scalar theory, Eq. (3.30), it was already shown that the
invariance of the generating functional under local symmetry transformations is connected to a gauge field-
like transformation behavior of the external field jµ. Now, the external fields (3.75) are also subject to other
symmetries, since the complete QCD Lagrangian is also invariant under Lorentz and CPT transformations.
The SU(3)C color symmetry is trivially satisfied, because the external fields are introduced as color neutral
matrices, i.e., they transform as a singlet under SU(3)C . In order to determine the transformation behavior
of the external fields under Lorentz and CPT transformations, we proceed in the same manner as for the
chiral rotations. Under proper orthochronous Lorentz transformations6, the quark fields transform in the
(1/2, 0)⊕ (0, 1/2) representation of the Lorentz group, i.e., they transform according to

Ψ(x)
SO+(1,3)−→ Ψ′(x′) = S(Λ)Ψ(Λ−1x) , (3.86)

Ψ̄(x)
SO+(1,3)−→ Ψ̄′(x′) = Ψ̄(Λ−1x)S−1(Λ) , (3.87)

where

S(Λ) = e−
i
4ωµνσ

µν

, σµν =
i

2
[γµ, γν ]− , (3.88)

and ωµν contains the group parameters of SO+(1, 3). Again omitting the space-time dependence of the fields
and using Eqs. (3.86) and (3.87), the Lagrangian of the external fields transforms according to

Lext
SO+(1,3)−→ L ′ext = Ψ̄S−1(Λ)γµ

(
v′µ + γ5a

′
µ

)
S(Λ)Ψ− Ψ̄S−1(Λ) (s′ − iγ5p

′)S(Λ)Ψ

= Ψ̄S−1(Λ)γµS(Λ)
(
v′µ + γ5a

′
µ

)
Ψ− Ψ̄S−1(Λ)S(Λ) (s′ − iγ5p

′) Ψ

= Ψ̄Λµνγ
ν
(
v′µ + γ5a

′
µ

)
Ψ− Ψ̄ (s′ − iγ5p

′) Ψ , (3.89)

6 The proper orthochronous Lorentz group SO+(1, 3) =
{

Λ ∈ O(1, 3)|Λ0
0 ≥ 1, det(Λ) = 1

}
forms a subgroup of the Lorentz

group O(1, 3).
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where we used S−1(Λ)γµS(Λ) = Λµνγ
ν and the fact that [γ5, S(Λ)]− = 0. Requiring the SO+(1, 3) invariance

of Eq. (3.89), we obtain

vµ(x)
SO+(1,3)−→ v′µ(x′) = Λ ν

µ vν(Λ−1x) , (3.90)

aµ(x)
SO+(1,3)−→ a′µ(x′) = Λ ν

µ aν(Λ−1x) , (3.91)

s(x)
SO+(1,3)−→ s′(x′) = s(Λ−1x) , (3.92)

p(x)
SO+(1,3)−→ p′(x′) = p(Λ−1x) . (3.93)

Finally, we have to determine the transformation behavior of the external fields under C-, P- and T-
transformations. Due to the CPT-Theorem, we only have to check parity and charge conjugation, because
the symmetry under time-reversal is then automatically satisfied. Under parity, the quark fields transform
as

Ψ(x)
P−→ Ψ′(x′) = γ0Ψ(t,−r) , (3.94)

Ψ̄(x)
P−→ Ψ̄′(x′) = Ψ̄(t,−r)γ0 . (3.95)

Then, using Eqs. (3.94) and (3.95), the Lagrangian involving the external fields transforms according to

Lext
P−→ L ′ext = Ψ̄γ0γµ

(
v′µ + a′µγ5

)
γ0Ψ− Ψ̄γ0 (s′ − iγ5p

′) γ0Ψ

= (−1)(µ)Ψ̄γµ
(
v′µγ

0 + a′µγ
0γ5

)
γ0Ψ− Ψ̄

(
s′γ0 − iγ0γ5p

′) γ0Ψ

= (−1)(µ)Ψ̄γµ
(
v′µ − a′µγ5

)
Ψ− Ψ̄ (s′ + iγ5p

′) Ψ , (3.96)

where we again omitted the arguments of the fields. Furthermore, we used the anticommutation relations
[γµ, γ5]+ = 0 and

[
γ0, γi

]
+

= 0, for i = 1, 2, 3 and introduced the factor (−1)(µ). This factor is defined to

be equal to 1 for µ = 0 and −1 for µ = 1, 2, 3 and originates from the permutation of γ0 and γµ in the
first term of the second line of Eq. (3.96). Now, requiring the invariance of the Lagrangian under parity
transformations, we find

vµ(x)
P−→ v′µ(x′) = (−1)(µ)vµ(t,−r) = vµ(t,−r) , (3.97)

aµ(x)
P−→ a′µ(x′) = −(−1)(µ)aµ(t,−r) = −aµ(t,−r) , (3.98)

s(x)
P−→ s′(x′) = s(t,−r) , (3.99)

p(x)
P−→ p′(x′) = −p(t,−r) . (3.100)

In order to complete the discussion of the transformation behavior of the external fields, we come to charge
conjugation. To this end, it will be useful to consider the transformation behavior of the i-th component of
the quark fields in isospin space. We have

Ψi(x)
C−→ CΨ̄t

i(x) , (3.101)

Ψ̄i(x)
C−→ Ψt

i(x)C , (3.102)

where the transposition t acts in spinor space and the charge conjugation operator is defined as C = iγ2γ0.
Then, omitting the space-time dependence of the fields, the Lagrangian transforms as

Lext
C−→ L ′ext = Ψt

iCγ
µ
(
vij′µ + aij′µ γ5

)
CΨ̄t

j −Ψt
iC
(
sij′ − iγ5p

ij′)CΨ̄t
j

= Ψt
iCγ

µC
(
vij′µ + aij′µ γ

t
5

)
Ψ̄t
j −Ψt

iCC
(
s′,i
′j′ − iγt5pij′

)
Ψ̄t
j

=
{
−Ψ̄j

(
aij′µ γ5 + vij′µ

)
γµΨi

}t
+
{
−Ψ̄j

(
−iγ5p

ij′ + sij′
)

Ψi

}t
= Ψ̄jγ

µ
(
−vij′µ + aij′µ γ5

)
Ψi − Ψ̄j

(
sij′ − iγ5p

ij′)Ψi , (3.103)

where we used [γ5, C]− = 0, [γµ, γ5]+ = 0 as well as γ5 = γt5, Cγ
µC = (γµ)

t
and CC = −14×4. The

additional minus sign in the third line arises from the fact that we interchanged the quark fields which obey
Fermi-Dirac statistics. Furthermore, we are able to drop the t, since the quadratic form is contracted to a
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scalar in spinor space. Finally, using Eq. (3.103), we are able to read off the transformation behavior of the
external fields

vµ(x)
C−→ v′µ(x) = −vTµ (x) , (3.104)

aµ(x)
C−→ a′µ(x) = aTµ (x) , (3.105)

s(x)
C−→ s′(x) = sT (x) , (3.106)

p(x)
C−→ p′(x) = pT (x) , (3.107)

where the T refers to transposition in isospin space.

3.2 The Nonlinear Realization of a Symmetry

In Sec. [2.2.2] we introduced the concept of a spontaneously broken symmetry at hand of the example of a
simple toy model with a discrete internal symmetry, Eq. (2.82). In the Nambu-Goldstone realization, the
potential density developed two distinct minima which correspond to two degenerate vacuum states in the
quantized theory. Then, we decomposed the initial field variable ϕ(x) into a constant part, corresponding
to one of the minima of the potential density and a dynamic part, describing the fluctuations of the field
around the minima, Eq. (2.87). In terms of the fluctuation field σ(x), the potential density developed a
new cubic term. Due to this new term, it seemed that the Z2-symmetry was not present anymore, since

the Lagrangian (2.88) is not invariant under a Z2-transformation of the fluctuation field σ(x)
Z2−→ −σ(x).

Actually, the Lagrangian (2.88) is still Z2-symmetric, because Eq. (2.87) requires that the fluctuation field

transforms according to σ(x)
Z2−→ −σ(x) ∓ 2ϕ0. Based on this observation, we concluded that the initial

symmetry is not broken but hidden, since the symmetry is now realized in a nontrivial way.

It is possible to extend these considerations to models with continuous symmetries and in general, it
turns out that the new realization of the symmetry is a nonlinear one. The aim of this section will be a brief,
but also quite general introduction to the concept of nonlinearly realized symmetries. Since this framework
is closely connected to the spontaneous breakdown of a continuous symmetry, it is not surprising that the
Nambu-Goldstone bosons will play a crucial role in the following discussion. In fact, this approach allows a
systematic expansion of the Lagrangian in powers of Nambu-Goldstone boson momenta, which makes the con-
cept of nonlinearly realized symmetries a powerful tool in the construction of phenomenological Lagrangians.

In order to keep the discussion general, we consider a theory whose Lagrangian L (φa(x)) is invariant
under the space-time independent transformations of an arbitrary compact, connected, semisimple Lie group
G, acting linearly on the fields

φa(x)
G−→ φ′a(x) = gabφ

b(x) , for g ∈ G . (3.108)

Now, we expect that this symmetry group G is spontaneously broken down to a continuous subgroup H ⊂ G.
In addition to that, we require the symmetry transformations h ∈ H to leave the vacuum expectation values
φ0,a invariant, i.e.,

φ0,a
H−→ φ′0,a = habφ

b
0 = φ0,a ∀ h ∈ H . (3.109)

Finally, we denote the generators of the subgroup H as T
(H)
i , i = 1, . . . ,dim(H). The remaining generators

of G shall be denoted as T
(G\H)
i′ , i′ = 1, . . . ,dim(G) − dim(H), and should be chosen in a way that the{

T
(H)
i , T

(G\H)
i′

}
form a complete set of all generators of G. Since G is a compact Lie group, it is possible to

choose a basis for the generators, in which the structure constants flmn are totally antisymmetric. Without
the loss of generality, it is possible to choose this basis in a way, so that we are working with a real
representation of G. This implies that the generators are purely imaginary and antisymmetric. Additionally,
the generators fulfill the following commutation relations7[

T
(H)
i , T

(H)
j

]
−

= if k
ij T

(H)
k , (3.110)[

T
(H)
i , T

(G\H)
j′

]
−

= if k′

ij′ T
(G\H)
k′ , (3.111)[

T
(G\H)
i′ , T

(G\H)
j′

]
−

= if k′

i′j′ T
(G\H)
k′ + if k

i′j′ T
(H)
k . (3.112)

7 From now on, we use the indices i, j, k, . . . to label objects connected to the subgroup H, while the primed indices i′, j′, k′, . . .
label objects which are connected to the coset space G\H.
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Relation (3.110) originates from the fact that H is a subgroup of G, so that the generators
{
T

(H)
i

}
of H

form a closed subalgebra. From this commutation relation also follows that the fijk′ are equal to zero, as
they would otherwise appear on the right-hand side of Eq. (3.110). The antisymmetry of the structure
constants requires that the fik′j also vanish, so that we obtain Eq. (3.111). The last commutation relation

(3.112) is a general expression, since the
{
T

(G\H)
i′

}
in general do not need to form a closed algebra.

Following Ref. [Wei2], we express an arbitrary field configuration ~φ(x) as a transformation Σ(x) ∈ G

acting on a field configuration ~̄φ(x) from which the Nambu-Goldstone modes have been eliminated

φa(x) = Σ(x)abφ̄
b(x) . (3.113)

The condition that ~̄φ(x) does not contain Nambu-Goldstone boson fields can be formulated as follows. First
of all, we have to remember the discussion of the Goldstone theorem in Sec. [2.2.3]. In this context, we
concluded that the massless excitations, i.e., the Nambu-Goldstone bosons, are contained in the linearly

independent eigenvectors T (G\H)i′ ~φ0 of the mass matrix with vanishing eigenvalues. Then, if the ~̄φ(x) do
not contain the Nambu-Goldstone ”directions” in field space, they should be orthogonal to the massless
eigenvectors. Thus, this condition may be written as

φ̄a(x)(T (G\H)i′)abφ0,b = 0 , (3.114)

where the index i′ labels the respective generator which does not annihilate the vacuum. Therefore, the
number of independent conditions (3.114) is given by the dimension of the coset space G\H. The validity
of Eq. (3.114) can be illustrated by considering an explicit example: At the beginning of the discussion of
Goldstone’s theorem, we started with a scalar field theory (2.99), whose initial SO(2) symmetry was spon-
taneously broken by picking a non-vanishing vacuum expectation value (2.108). This vacuum expectation

value can be interpreted as ~̄φ. The spontaneous breakdown of the SO(2) symmetry generated one Nambu-
Goldstone boson associated with one broken generator (2.117). The massless eigenvector corresponding to
this Nambu-Goldstone mode was given by Eq. (2.118). It is obvious that the condition (3.114) is satisfied
by Eqs. (2.108) and (2.118). It should be mentioned that it is always possible to find a suitable Σ(x) ∈ G
such that Eq. (3.114) is satisfied.8 Another important observation is that Eq. (3.114) is not only satisfied

by ~̄φ, since

φ̄a(x)→ φ̄′a(x) =
[
δab + iΛi

(
T (H)i

)
ab

]
φ̄b(x) (3.115)

is also a solution. This statement can be proven by inserting Eq. (3.115) into Eq. (3.114). Omitting the
matrix indices in field space, we obtain9

~̄φ′T (x)T (G\H)j′ ~φ0 =
[
~̄φT (x)− iΛi ~̄φT (x)T (H)i

]
T (G\H)j′ ~φ0

= ~̄φT (x)T (G\H)j′ ~φ0 − iΛi ~̄φT (x)T (H)iT (G\H)j′ ~φ0

= −iΛi ~̄φT (x)
[
T (H)i, T (G\H)j′

]
−
~φ0

= 0 , (3.116)

where we used the antisymmetry of the generators in the first line and eliminated the first term of the
second line by exploiting Eq. (3.114). The expression in the third line can be obtained by inserting

iΛi
~̄φT (x)T (G\H)j′T (H)i~φ0, which is obviously equal to zero, because the generators of H annihilate the

vacuum expectation value. Finally, we can use the commutation relation (3.111), which yields an expression
proportional to Eq. (3.114). The importance of this result is based on the fact that Eq. (3.115) is the

infinitesimal form of an H transformation of ~̄φ. Therefore, using Eqs. (3.113) and (3.115), we conclude that
Σ(x) is only determined up to a right multiplication by an element h(x) ∈ H.

This allows us to arrange the group elements of G into so-called equivalence classes10. Each of those
equivalence classes contains those elements of G, which only differ by a right multiplication of an h(x) ∈ H.
This is exactly the definition of the right cosets of H in G. Therefore, in order to find a parametrization
of Σ(x), we have to find a parametrization for the coset space G\H. The discussion of the Goldstone

8 A proof of this statement can be found in Ref. [Wei2].
9 Here the T stands for the transposition of the respective vector in field space.

10 This is possible, because the Σ’s fulfill equivalence relations, i.e., Σi(x) and Σj(x) are equivalent, if Σi(x) = Σj(x)h(x). It
is obvious that this relation is reflexive, transitive, and symmetric.
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theorem showed that the number of the Nambu-Goldstone bosons is given by the dimension of the coset
space G\H. Therefore, we are able to use the fields, describing the Nambu-Goldstone bosons, as the
coordinates of the coset space. In fact, it is not surprising that the Nambu-Goldstone bosons arise in the
parametrization of Σ(x). This information was already contained in Eq. (3.113), because we expressed a
general field configuration as a transformation of Σ(x) acting on a field, from which the Nambu-Goldstone

modes have been eliminated. Since the field ~̄φ(x) does not contain the information about the massless
excitations, these degrees of freedom must be contained in the transformation Σ(x). In order to obtain a
possible parametrization of Σ(x), we can use the fact that in the vicinity of the identity an arbitrary element
g(x) ∈ G can be decomposed as

g(x) = eiπ(x)l′T
(G\H)l′

eiζ(x)iT
(H)i

, (3.117)

where the π(x)l′ and the ζ(x)i are a set of group parameters. Since we know that Σ(x) is only determined
up to a right multiplication of a h(x) ∈ H, a possible parametrization of Σ(x) is given by

Σ(x) = eiπ(x)l′T
(G\H)l′

≡ Σ(πl′(x)) . (3.118)

Up to normalization factors, the group parameters π(x)l′ can be identified as the Nambu-Goldstone boson
fields. The definition Σ(x) ≡ Σ(πl′(x)) shall remind us that the transformation Σ is in principle a continuous
function of the Nambu-Goldstone fields. It should be mentioned that Eq. (3.118) provides only one possible
parametrization of the coset space G\H. In order to investigate the transformation properties of Σ(πl′(x))
under G and H transformations, we have to come back to the linear transformation properties of the fields
φa(x) under the group G. Inserting Eq. (3.113) into Eq. (3.108), we obtain

φa(x)
G−→ φ′a(x) = gabφ

b(x) = gadΣ
dc(πl′(x))φ̄c(x) . (3.119)

It is obvious that the transformation gadΣ
dc(πl′(x)) is an element of G. Therefore, this transformation must

be in the same right coset as Σ′ab ≡ Σab(π
′
l′(x)), so that

gadΣ
dc(πl′(x)) = Σae(π

′
l′(x))hec(πl′(x), g) . (3.120)

This transformation can be rewritten by multiplying Eq. (3.120) with the inverse H transformation from
the right. The transformation behavior of Σ(πl′(x)) can therefore be written as

Σab(πl′(x))
G−→ Σab(π

′
l′(x)) = gacΣ

cd(πl′(x))h−1
db (πl′(x), g) . (3.121)

Before we illustrate Eq. (3.121) by means of an explicit example, we use the above results to show that
the transformation behavior of the massive fields φ̄a(x) under G is fully determined by their transformation
properties under the unbroken subgroup H. To this end, we start again at the left-hand side of Eq. (3.119)
and write the transformation of a general field configuration φa(x) as

φa(x)
G−→ φ′a(x) = Σab(π

′
l′(x))φ̄′,b(x) , (3.122)

where we used Eq. (3.113). On the other hand, we can use Eq. (3.120) in Eq. (3.119) to obtain

φa(x)
G−→ φ′a(x) = Σae(π

′
l′(x))hec(πl′(x), g)φ̄c(x) . (3.123)

Since the above equations should describe the same transformation, we are able to identify the transformation
properties of the massive fields by comparing Eqs. (3.122) and (3.123)

φ̄a(x)
G−→ φ̄′a(x) = hab(πl′(x), g)φ̄b(x) . (3.124)

Obviously, under global G transformations, the massive field configuration φ̄a(x) transforms linearly under
a local transformation of the unbroken subgroup H.

As mentioned before, we now consider an explicit example to illustrate the abstract transformation be-
havior (3.120). To this end, we consider the rotation of a three-dimensional real vector in space and set
G = SO(3) and H = SO(2). In this case, the coset space G\H = SO(3)\SO(2) is isomorphic to the 2-sphere
S2 which is a curved manifold. Now, we consider a vector ~ϕM of unit length, pointing onto the point M .

This vector can be interpreted as the vector ~̄φ(x). In order to obtain an arbitrary 3-vector of unit length
~ϕA, we can rotate the vector ~ϕM by applying an SO(3)\SO(2) transformation. It is obvious that the vector

~ϕA is associated with the arbitrary field configuration ~φ(x), while the SO(3)\SO(2) rotation plays the part
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of the transformation Σ(πl′(x)). Finally, we can apply a second transformation and rotate the vector from
A to another point T , which is described by the unit vector ~ϕT . In the context of the above discussion, this
second rotation is given by the space-time independent G transformation acting on ~φ(x), Eq. (3.119).

But instead of rotating the vector from M to A and then to T , we are able to find a rotation that directly
rotates the vector from M to T . These two cases are depicted in Fig. [3.1]. The direct rotation can be
understood as the transformation Σ(π′l′(x)). In general, the transformations, describing the two different
ways of rotating the vector from M to T are different. However, it is possible to express the rotation from
M to A to T as an SO(2) transformation which rotates the vector ~ϕM about itself, followed by the direct
rotation from M to T . This compensating H = SO(2) transformation ensures, that the two transformations
become the same, as already indicated by Eq. (3.120).

S' gS

S

T

M A

Figure 3.1: Two ways of rotating the vector ~ϕM from M to T .

Up to now, we investigated the transformation behavior of Σ(πl′(x)) under general G transformations.
In the following step, we can turn to the case where the G transformation is also an element of H, i.e.,
g = h ∈ H ⊂ G. To this end, we consider the transformation of the broken generators under global H
transformations

hT
(G\H)
j′ h−1 =

(
1 + iαiT

(H)i
)
T

(G\H)
j′

(
1− iαkT (H)k

)
= T

(G\H)
j′ + iαi

[
T (H)i, T

(G\H)
j′

]
−

= R(h)j′k′T
(G\H)k′ , (3.125)

where we used Eq. (3.111) and neglected terms of order O(α2
i ). Obviously, the broken generators transform

according to a linear representation R(h)j′k′ of H. It is also possible to choose the πl′(x), describing the
Nambu-Goldstone boson fields, in a way that they transform according to a linear representation of H under
global H transformations. Using the parametrization (3.118) of the coset space and exploiting the total
antisymmetry of the structure constants, we find

hΣ(πl′(x))h−1 =
(
1 + iαjT

(H)j
)(

1 + iπk′(x)T (G\H)k′
)(

1− iαkT (H)k
)

= 1− αjπk′(x)
[
T (G\H)k′ , T (H)j

]
−

+ iπk′(x)T (G\H)k′

= 1 + iR(h)j′k′π
k′(x)T (G\H),j′

= Σ(R(h)j′k′π
k′(x)) , (3.126)

where we again used Eq. (3.111) and neglected terms of order O(α2
i ). Comparing this result with Eq. (3.121)



CHAPTER 3. CHIRAL PERTURBATION THEORY 53

and remembering the derivation of Eq. (3.124), we obtain

πl′(x)
H−→ π′l′(x) = R(h)l′k′π

k′(x) , φ̄a(x)
H−→ φ̄′a(x) = habφ̄

b(x) . (3.127)

It is quite obvious that the transformation behavior of πl′(x) and φ̄a(x) simplifies enormously, when we
consider the case g = h ∈ H ⊂ G. As mentioned above, we see that the Nambu-Goldstone boson fields
transform linearly under a representation R(h) of the unbroken subgroup H. In addition to that, Eq. (3.127)
shows that the massive field configuration transforms according to h ∈ H itself.

Up to now we investigated the transformation behavior of Σ(πl′(x)) and ~̄φ(x) under general G transfor-
mations and under transformations of the unbroken subgroup H. Another important point is the question
how the Nambu-Goldstone bosons enter the Lagrangian. At the beginning of this section, we started with
a Lagrangian L (φa(x)) which is invariant under global G transformations. In general, such a Lagrangian
contains terms involving derivatives of the fields φa(x) and terms without derivatives. Using Eq. (3.113), we
are able to replace the general field configurations φa(x) by the local G transformation Σab(πl′(x)) acting on
the matter fields φ̄b(x). Since the initial Lagrangian is globally G invariant, the transformation Σab(πl′(x))
and therefore the Nambu-Goldstone bosons will not enter the Lagrangian through terms without derivatives.
Obviously, the terms we are interested in are those involving derivatives of the field configurations φa(x).
With Eq. (3.113), the 4-gradient of the fields φa(x) can be written as

∂µφa(x) = ∂µ
(
Σab(πl′(x))φ̄b(x)

)
= [∂µΣab(πl′(x))] φ̄b(x) + Σab(πl′(x))∂µφ̄

b(x)

= Σab(πl′(x))
[
∂µφ̄

b(x) +
(
Σ−1

)bc
(πl′(x)) [∂µΣcd(πl′(x))] φ̄d(x)

]
. (3.128)

It is obvious that the Lagrangian becomes a function of the matter fields φ̄a(x) and their derivatives ∂µφ̄a(x).
In addition to that, the matrix Σ−1(πl′(x)) [∂µΣ(πl′(x))] enters the Lagrangian. Since this matrix is an object
defined in the algebra of G, it can be decomposed as

Σ−1(πl′(x))∂µΣ(πl′(x)) = iT
(G\H)
i′ C(G\H)i′

µ + iT
(H)
i C(H)i

µ , (3.129)

where the coefficients of the above expansion are given by

C(G\H)i′

µ = C(G\H)i′j′(πl′(x))∂µπj′(x) , (3.130)

C(H)i
µ = C(H)ij′(πl′(x))∂µπj′(x) . (3.131)

This means that the Nambu-Goldstone boson fields πl′(x) enter the Lagrangian through the appearance of
the matrix Σ−1(πl′(x))∂µΣ(πl′(x)). More precisely, the coefficients (3.130), (3.131) are responsible for the
occurrence of the Nambu-Goldstone boson fields.

An important point is that for exact broken symmetries each term of the Lagrangian containing Nambu-
Goldstone bosons involves at least one derivative of the respective fields. The physical meaning of this fact
can be understood, if we translate the derivative terms of the Lagrangian into momentum space. There, the
derivatives become momenta and we are able to conclude that the interaction of Nambu-Goldstone bosons
among themselves and among matter fields becomes arbitrarily weak for small momenta and vanishes for
zero momentum.

Another important consequence is that mass terms for the Nambu-Goldstone bosons are forbidden by the
symmetry of the Lagrangian, since each term must involve at least one derivative. At this point, it should be
taken into account that this situation changes, when the spontaneously broken symmetry was not exact. In
this case, the Nambu-Goldstone bosons are able to generate terms without derivatives, so that mass terms
and interaction terms without derivatives are possible. It will also turn out that the masses, generated by
the Nambu-Goldstone bosons, are small.

An example for this phenomenon is given by Quantum Chromodynamics: If we consider the QCD La-
grangian for the two lightest quark flavors up and down, the symmetry group is given by G = SU(2)V ×
SU(2)A.11 However, this symmetry is not an exact symmetry, since the masses of the up and down quark are
different. Therefore, an explicit symmetry breaking is introduced quite naturally into the QCD Lagrangian.

11Note that there is also a U(1)V symmetry which is associated with the baryon number conservation, compare the discussion
at the end of Sec. [2.3.2].
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As mentioned in Sec. [2.3.2], this approximate symmetry is spontaneously broken down to its diagonal
subgroup H = SU(2)V . The Nambu-Goldstone bosons, associated with this symmetry breaking pattern, are
the three pions

{
π±, π0

}
. Since the initial symmetry group G = SU(2)V ×SU(2)A was not exact, the pions

are not massless, but significantly lighter than all other hadrons of the QCD spectrum. Later in Chapter [4]
we will see other examples for this phenomenon.

Now, let us turn back to the situation where the initial symmetry under G is exact. We saw that the
Nambu-Goldstone boson fields and their derivatives enter the Lagrangian through the expansion coefficients
(3.130) and (3.131). Therefore, the transformation properties of these objects under global transformations
of the group G become interesting. In order to investigate their transformation behavior, we transform
the matrix Σ−1(πl′(x))∂µΣ(πl′(x)) under global G transformations. Using Eq. (3.121) and omitting the
space-time dependence of the Nambu-Goldstone boson fields, we find

Σ−1(πl′)∂µΣ(πl′)
G−→ Σ−1(π′l′)∂µΣ(π′l′)

=
[
gΣ(πl′)h

−1(πl′ , g)
]−1

∂µ
[
gΣ(πl′)h

−1(πl′ , g)
]

= h(πl′ , g)Σ−1(πl′)g
−1g

{
[∂µΣ(πl′)]h

−1(πl′ , g) + Σ(πl′)∂µh
−1(πl′ , g)

}
= h(πl′ , g)

[
Σ−1(πl′)∂µΣ(πl′)

]
h−1(πl′ , g) + h(πl′ , g)∂µh

−1(πl′ , g)

= h(πl′ , g)
[
Σ−1(πl′)∂µΣ(πl′)

]
h−1(πl′ , g)− [∂µh(πl′ , g)]h−1(πl′ , g) , (3.132)

where we used 0 = ∂µ
[
h(πl′ , g)h−1(πl′ , g)

]
= h(πl′ , g)∂µh

−1(πl′ , g) + [∂µh(πl′ , g)]h−1(πl′ , g) in the last line.
Now, we can insert the decomposition (3.129) into the left- and the right-hand sides of Eq. (3.132)

iT
(G\H)
i′ C ′(G\H)i′

µ + iT
(H)
i C ′(H)i

µ = h(πl′ , g)
[
iT

(G\H)
i′ C(G\H)i′

µ + iT
(H)
i C(H)i

µ

]
h−1(πl′ , g)

− [∂µh(πl′ , g)]h−1(πl′ , g)

= ih(πl′ , g)T
(G\H)
i′ C(G\H)i′

µ h−1(πl′ , g) + ih(πl′ , g)T
(H)
i C(H)i

µ h−1(πl′ , g)

− [∂µh(πl′ , g)]h−1(πl′ , g) . (3.133)

In order to obtain the transformation behavior of C
(G\H)i′

µ and C
(H)i
µ , we have to compare the coefficients of

the generators T
(G\H)
i′ and T

(H)
i . This procedure is valid since these two sets of generators are independent

of each other. We find

T
(G\H)
i′ C(G\H)i′

µ
G−→ T

(G\H)
i′ C ′(G\H)i′

µ = h(πl′ , g)T
(G\H)
i′ C(G\H)i′

µ h−1(πl′ , g) , (3.134)

T
(H)
i C(H)i

µ
G−→ T

(H)
i C ′(H)i

µ = h(πl′ , g)T
(H)
i C(H)i

µ h−1(πl′ , g) + i [∂µh(πl′ , g)]h−1(πl′ , g) . (3.135)

The above transformation properties can be studied in more detail. Using the commutation relation (3.111),
Eq. (3.134) can be written as

T
(G\H)
i′ C ′(G\H)i′

µ = h(πl′ , g)T
(G\H)
i′ h−1(πl′ , g)C(G\H),i′

µ

=
[
1 + iαi(πl′ , g)T (H)i

]
T

(G\H)
i′

[
1− iαj(πl′ , g)T (H)j

]
C(G\H)i′

µ

=

{
T

(G\H)
i′ + iαi(πl′ , g)

[
T (H)i, T

(G\H)
i′

]
−

}
C(G\H)i′

µ

= Ri′j′ (h(πl′ , g))C(G\H)i′

µ T (G\H)j′ , (3.136)

where we neglected terms of order O(α2
i ). It is also possible to rewrite Eq. (3.135). Using the commutation

relation (3.110), one finds

T
(H)
i C ′(H)i

µ = h(πl′ , g)T
(H)
i C(H)i

µ h−1(πl′ , g) + i [∂µh(πl′ , g)]h−1(πl′ , g)

= h(πl′ , g)T
(H)
i h−1(πl′ , g)C(H)i

µ − T (H)
l C l

µ

=
[
1 + iαj(πl′ , g)T (H)j

]
T

(H)
i

[
1− iαk(πl′ , g)T (H)k

]
C(H)i
µ − T (H)

l C l
µ

=

{
T

(H)
i + iαk(πl′ , g)

[
T (H)k, T

(H)
i

]
−

}
C(H)i
µ − T (H)

l C l
µ

= R̃ij (h(πl′ , g))C(H)i
µ T (H)j − T (H)

l C l
µ . (3.137)
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In the second line of the above calculation, we decomposed the object [∂µh(πl′ , g)]h−1(πl′ , g) similarly to
Eq. (3.129)

[∂µh(πl′ , g)]h−1(πl′ , g) = iT
(H)
i C i

µ = iT
(H)
i C ij(πl′(x))∂µπj(x) . (3.138)

Obviously, the quantity (3.130) transforms in a similar way as the massive field configuration ~̄φ(x). More
precisely, the transformation behavior under global G transformations is determined by a local H trans-
formation h(πl′ , g), even though in a different representation of this transformation. In the transformation
behavior of Eq. (3.131) arises an additional term which is proportional to the 4-gradient of the local H
transformation. Finally, we can study the transformation properties of the 4-gradient of the massive field

configuration ~̄φ(x). Using Eq. (3.124), we find

∂µ
~̄φ(x)

G−→ ∂µ
~̄φ′(x)

= [∂µh(πl′ , g)] ~̄φ(x) + h(πl′ , g)∂µ
~̄φ(x)

= h(πl′ , g)
{
∂µ
~̄φ(x) + h−1(πl′ , g) [∂µh(πl′ , g)] ~̄φ(x)

}
. (3.139)

The last term of the above equation is of the same form as the additional term in Eq. (3.135). Therefore,

this term can be compensated by defining an appropriate covariant derivative of the matter fields ~̄φ(x). We
choose

Dµ
~̄φ(x) = ∂µ

~̄φ(x) + iT
(H)
i C(H)i

µ
~̄φ(x) . (3.140)

It is obvious that this object transforms in an analogous manner as Eq. (3.124) under global G transforma-
tions

Dµ
~̄φ(x)

G−→
(
Dµ

~̄φ(x)
)′

= ∂µ
~̄φ′(x) + iT

(H)
i C ′(H)i

µ
~̄φ′(x)

= h(πl′ , g)
{
∂µ
~̄φ(x) + h−1(πl′ , g) [∂µh(πl′ , g)] ~̄φ(x)

}
+ i
{
h(πl′ , g)T

(H)
i C(H)i

µ h−1(πl′ , g) + i [∂µh(πl′ , g)]h−1(πl′ , g)
}
h(πl′ , g)~̄φ(x)

= h(πl′ , g)
[
∂µ
~̄φ(x) + iT

(H)
i C(H)i

µ
~̄φ(x)

]
= h(πl′ , g)Dµ

~̄φ(x) , (3.141)

where we used the results (3.135) and (3.139). It should be mentioned that it is possible to construct higher
covariant derivatives which transform in the same manner, see Ref. [Wei2].

The important point is now that an H invariant theory which is constructed from the massive field

vector ~̄φ(x), its covariant derivative Dµ
~̄φ(x), and the coefficients C

(G\H)i′

µ , is automatically invariant under
the whole symmetry group G. This means that the theory ”remembers” its initial spontaneously broken
symmetry group, so that the only difference between the broken and the unbroken symmetry group is given
by the realization of the symmetry. For the unbroken subgroup H this realization is linear, while on the
Nambu-Goldstone boson manifold, i.e., the coset space G\H, the realization is nonlinear.

At the end of this section, we apply this formalism to the case of two-flavor QCD. In Sec. [2.3.2], we
already introduced the chiral symmetry of Quantum Chromodynamics. We saw that the fermionic part of
the QCD Lagrangian with Nf quark-flavors has a global SU(Nf )V × SU(Nf )A × U(1)V symmetry for van-
ishing quark masses. Since the U(1)V symmetry is related to the conservation of the baryon number and not
important for the current discussion, we restrict ourselves to the remaining SU(Nf )V ×SU(Nf )A symmetry.
Now, in the real world, the quarks are not massless. But in case of two-flavor QCD the masses of the up
and down quark are vanishingly small compared to a typical energy scale ΛQCD ≈ 1 GeV. Therefore, we are
dealing with an approximate SU(2)V × SU(2)A chiral symmetry of the quark part of the QCD Lagrangian
(2.133). In the previous discussion of Sec. [2.3.2] of the chiral symmetry, we started by projecting the quark
field onto its left- and right-handed components. We saw that these left- and right-handed quark fields can
be rotated independently of each other, resulting in an SU(2)L × SU(2)R

12 symmetry which is isomorphic
to SU(2)V × SU(2)A.

12From now on, we will take the general results of Sec. [2.3.2] for the special case Nf = 2.
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In this section, we will take a slightly different way in order to obtain the desired results. First of all,
we recognize, that in the chiral limit m = 0, the fermionic part (2.133) is invariant under the following
transformation of the quark field

Ψ(x)
SU(2)V ×SU(2)A−→ Ψ′(x) = e−iαV,aT

a
V −iαA,bT

b
AΨ(x) , a, b = 1, 2, 3 , (3.142)

where Ψ(x) = (u(x), d(x))T . In addition to that, the vector and axial-vector generators are defined as

T aV = τa/2 , (3.143)

T aA = γ5T
a
V , (3.144)

where τa are the usual Pauli matrices. The numerical factor 1/2 is chosen, so that Tr
(
T aV/AT

b
V/A

)
= δab/2.

Using Noether’s theorem (2.21), we obtain the same conserved currents (2.155) and (2.156) as in the previous
discussion in Sec. [2.3.2]. Now, we define new generators which project only on the left- and right-handed
parts of the quark field Ψ(x)

T aL = PLT aV , (3.145)

T aR = PRT aV , (3.146)

where PL and PR are the left- and right-handed projection operators, cf. Eq. (2.142). These generators
fulfill the SU(2)L × SU(2)R Lie algebra, since[

T aL, T
b
L

]
− = iεabcTL,c , (3.147)[

T aR, T
b
R

]
− = iεabcTR,c , (3.148)[

T aL, T
b
R

]
− = 0 . (3.149)

The relations (3.147) and (3.148) follow from Eq. (2.143) and the SU(2) Lie algebra which is satisfied by
the Pauli matrices, compare App. [6.1.2]. The last commutation relation follows from the fact that the
projection operators project onto orthogonal subspaces, i.e., PLPR = PRPL = 0. It is obvious that the
vector and axial-vector generators (3.143), (3.144) are connected to the left- and right-handed generators
(3.145), (3.146)

T aV = T aL + T aR , T aA = T aR − T aL . (3.150)

Using the commutation relations (3.147) - (3.149), we can show that[
T aV , T

b
V

]
− = iεabcTV,c , (3.151)[

T aV , T
b
A

]
− = iεabcTA,c , (3.152)[

T aA, T
b
A

]
− = iεabcTV,c . (3.153)

The above commutation relations form the Lie algebra of SU(2)V × SU(2)A. These relations are of the
same form as those we started with in our general discussion at the beginning of this section. Comparing
Eqs. (3.151) - (3.153) with Eqs. (3.110) - (3.112), we see that the fi′j′k′ vanish in the case of chiral
SU(2)V × SU(2)A. Therefore, the coset space SU(2)V × SU(2)A\SU(2)V is called a symmetric space.
Following the same steps as before in the general case, we write a general SU(2)V ×SU(2)A transformation
g(x) as

g(x) = e−iπa(x)TaAe−iαV,aT
a
V . (3.154)

Since the second exponential in Eq. (3.154) is a transformation of the unbroken SU(2)V subgroup, we
identify

Σ(x) = e−iπa(x)TaA (3.155)

as the transformation which represents each right coset of SU(2)V × SU(2)A\SU(2)V . Again, the group
parameters πa(x) are, up to a normalization factor, identified with the Nambu-Goldstone bosons fields,
i.e., the fields describing the pion triplet

{
π±, π0

}
. The transformation behavior of Eq. (3.155) is fully

determined by Eq. (3.120), so that

e−iαV,aT
a
V −iαA,bT

b
Ae−iπa(x)TaA = e−iπ

′
a(x)TaAe−iαV,aT

a
V . (3.156)

Using Eq. (3.150), we are able to rewrite the above equation as follows

e−iαL,aT
a
L−iαR,aT

a
Re−iπa(x)(TaR−T

a
L) = e−iπ

′
a(x)(TaR−T

a
L)e−iαV,a(x)(TaL+TaR) . (3.157)
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According to Eq. (3.149), the left- and right-handed generators commute, so that the four exponentials in
Eq. (3.157), involving linear combinations of those generators, can be factorized. Then, in general, each of
the eight exponentials is of the following form

ŨL/R(x) = e−iα̃a(x)TaL/R , (3.158)

where the α̃a denote the different group parameters. Using Eq. (2.143), the above exponential can be written
as

ŨL/R(x) = (PL + PR) ŨL/R(x)

= (PL + PR)
(
1− iα̃aPL/RT aV − . . .

)
= PL/Re−iα̃aT

a
V + PR/L , (3.159)

where we used Eqs. (3.145), (3.146), and the fact that the PL/R project onto orthogonal subspaces. Applying
this general consideration to Eq. (3.157), we obtain[

PLe−iαL,aT
a
V + PRe−iαR,aT

a
V

] [
PLeiπa(x)TaV + PRe−iπa(x)TaV

]
=
[
PLeiπ

′
a(x)TaV + PRe−iπ

′
a(x)TaV

] [
PLe−iαV,a(x)TaV + PRe−iαV,a(x)TaV

]
. (3.160)

The above equation can be divided into two parts, one part proportional to PL and another part proportional
to PR. The left-handed part of Eq. (3.160) is given by

e−iαL,aT
a
V eiπa(x)TaV = eiπ

′
a(x)TaV e−iαV,a(x)TaV . (3.161)

For the right-handed part, we obtain a similar expression

e−iαR,aT
a
V e−iπa(x)TaV = e−iπ

′
a(x)TaV e−iαV,a(x)TaV . (3.162)

In order to solve Eq. (3.162) for the exponential including the transformed Nambu-Goldstone boson fields,
we multiply Eq. (3.162) from the right by the inverse of Eq. (3.161). Defining

U(x) = e−2iπa(x)TaV , (3.163)

we obtain the following transformation behaviour of U(x)

U(x)
SU(2)V ×SU(2)A−→ U ′(x) = URU(x)U†L , (3.164)

where we used Eq. (2.148) to identify the left- and right-handed transformations. It should be taken into
account that the canonical parametrization (3.163) of the coset space is only one possible parametrization.
In the special case of Nf = 2, the coset space can also be parametrized by

U(x) =
1

fπ

[
σ(x) + iπi(x)τ i

]
, (3.165)

where σ(x) = fπ
√

1− π2
i (x)/f2

π and fπ ' 93 MeV is the so-called pion decay constant. This parametriza-
tion originates from the fact that the unit sphere embedded in 4-dimensional Euclidean space, S3 ={
x ∈ R4|xTx = 1

}
, is diffeomorphic13 to the group space of SU(2). Then, we can use that every unitary, uni-

modular (2×2)-matrix U can be decomposed as U = U012×2 + iUiτ
i, in which ~U = (U0,U1,U2,U3)

T ∈ R4

defines a unit vector. Finally, identifying (σ, π1, π2, π3)
T

= fπ (U0,U1,U2,U3)
T

and solving ~U T ~U = 1 for
σ, we are left with Eq. (3.165). A very important point in this context is that the physical quantities, i.e.,
the scattering matrix elements as well as the n-point functions, are not affected by the choice of the coset
parametrization, compare Ref. [ScSc].

3.3 The Chiral Lagrangian up to O(p4)

To conclude this chapter about ChPT, we finally have to use the results of the previous sections in order to
illustrate the construction of the chiral Lagrangian. To this end, we begin to introduce the main building
blocks of the chiral Lagrangian. In general, it will be possible to construct an infinite sequence of terms
which satisfy the required symmetries of QCD. Therefore, we have to introduce a classification scheme for
these terms, which will lead us to the so-called chiral expansion. Then, using this approach, we construct
the leading and next-to-leading order terms of the chiral Lagrangian.

13 A mapping f : M 7→ N between two manifolds M and N is said to be a diffeomorphism, if f is a bijection with the
property that f and its inverse f−1 are differentiable. If such a diffeomorphism exists, then the manifolds M and N are said
to be diffeomorphic.
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3.3.1 Basic Objects and Chiral Expansion

As a starting point for the motivation of the main building blocks of the chiral Lagrangian, we have to go
back to the hadronic n-point functions. In the first section of this chapter, we introduced two important
properties of these n-point functions, which will help us to understand the emergence of the basic objects of
the chiral Lagrangian. In Sec. [3.1.1], we studied the pole structure of an arbitrary n-point function. It was
shown that these functions will always develop a pole, whenever it is possible to create an on-shell intermedi-
ate particle. Furthermore, this pole can be interpreted as a propagator of the intermediate particle, compare
Eq. (3.22). In the language of QCD this means that in the low-energy regime, all hadronic n-point functions
are dominated by the pole which arises from the existence of the pion. The physical interpretation of this
fact is that, at low energies, all hadronic processes are determined by the exchange of pions. Therefore, it
seems to be quite intuitive to describe the low-energy regime of QCD by an effective field theory with pionic
fields as dynamical variables.

The implementation of the pion fields is realized by using the formalism of Sec. [3.2], namely by using
the nonlinear realization of SU(2)V ×SU(2)A. At this point, we do not want to restrict ourselves to a special
parametrization of the coset space SU(2)V × SU(2)A\SU(2)V , so that the SU(2) matrix, containing the
pion fields will be simply denoted as U(x). Since the chiral Lagrangian should fulfill the same symmetries as
the original QCD Lagrangian, it will be useful to study the transformation behavior of U(x) under local14

SU(2)L × SU(2)R transformations, under proper orthochronous Lorentz transformations, and under CP-
transformations15. In addition to that, there is the local SU(3)C color symmetry of the QCD Lagrangian.
But this symmetry is trivially fulfilled, since the dynamical variables of ChPT are mesonic fields, which
transform as color singlets under the QCD gauge group.
The transformation behavior of U(x) under local chiral rotations is given by

U(x)
SU(2)L×SU(2)R−→ U ′(x) = UR(x)U(x)U†L(x) , (3.166)

which simply describes a generalization of Eq. (3.164) to local left- and right-handed rotations. For proper
orthochronous Lorentz transformations, the transformation behavior becomes quite simple, since the matrix
U(x) describes pseudoscalar fields. We find, cf. Eq. (3.93),

U(x)
SO+(1,3)−→ U ′(x′) = U(Λ−1x) . (3.167)

Finally, the transformation properties under the discrete symmetries are given by, cf. Eqs. (3.100), (3.101),

U(x)
C−→ U ′(x) = UT (x) , (3.168)

U(t, r)
P−→ U ′(t, r′) = U†(t,−r) . (3.169)

In order to illustrate the above relations, we consider the canonical parametrization (3.163) of the coset
space SU(2)V × SU(2)A\SU(2)V and define Φ(x) ≡ −2πa(x)T aV . Since the pionic fields are pseudoscalar
fields, the SU(2) matrix Φ(x) should have the same transformation properties like the pseudoscalar current

Φij(x) =̂ Ψ̄jiγ5Ψi . (3.170)

Under charge conjugation and parity transformations, this object transforms as Φ
C−→ ΦT and Φ

P−→ −Φ.
Inserting these relations back into the exponential, we finally end up with Eqs. (3.168) and (3.169).

At the beginning of the discussion concerning the transformation behavior of the matrix U(x), we stated
that the chiral Lagrangian should be invariant under local chiral rotations. This statement requires some
explanations which automatically will lead us to further main building blocks of the chiral Lagrangian. To
this end, we remember that the hadronic n-point functions not only have an important pole structure, but
also fulfill symmetry relations among themselves, the so-called WFT identities. In Sec. [3.1.3], we used an
explicit example to show that these symmetry relations manifest themselves as an invariance property of the
generating functional, i.e., they hold if and only if the generating functional remains invariant under local
transformations of the symmetry group in question.

14 The necessity of local chiral transformations originates from the WFT identities which have to be fulfilled by the hadronic
n-point functions. This important point will be discussed in more detail in a moment.

15 Of course, the QCD Lagrangian is also invariant under time-reversal transformations, but due to the CPT-theorem, we
will only focus on CP-transformations.
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At the end of this section, we saw that the application of this approach requires the appearance of
additional terms in the QCD Lagrangian, see Eq. (3.74). These additional terms contain quark/anti-
quark bilinear forms which are coupled to external fields (3.75) and enable us to derive the hadronic n-point
functions directly from the new generating functional of QCD (3.77). Finally, it was shown that the resulting
Lagrangian admits a local chiral symmetry, so that we are able to analyze the chiral WFT identities. It
is therefore not surprising that these external fields should also enter the chiral Lagrangian. And in fact,
besides the matrix U(x), they form the main building blocks of the chiral Lagrangian. To this end, we define
the field-strength tensors for the left- and right-handed external fields

f (L)
µν (x) = ∂µlν(x)− ∂ν lµ(x)− i [lµ(x), lν(x)]− , (3.171)

f (R)
µν (x) = ∂µrν(x)− ∂νrµ(x)− i [rµ(x), rν(x)]− . (3.172)

The scalar and pseudoscalar external fields will be summarized as

χ(x) = 2B0 [s(x) + ip(x)] , (3.173)

where the constant B0 is proportional to the scalar quark condensate, compare Ref. [ScSc]. The transfor-
mation properties of Eqs. (3.171)-(3.173) under the various symmetry transformations follow immediately
from those of the external fields. Using Eqs. (3.82) and (3.83), we find

f (L)
µν (x)

SU(2)L×SU(2)R−→ f (L)′
µν (x) = ∂µ

[
UL(x)lν(x)U†L(x) + iUL(x)∂νU

†
L(x)

]
− ∂ν

[
UL(x)lµ(x)U†L(x) + iUL(x)∂µU

†
L(x)

]
− i
[
UL(x)lµ(x)U†L(x) + iUL(x)∂µU

†
L(x), UL(x)lν(x)U†L(x) + iUL(x)∂νU

†
L(x)

]
−

= UL(x)
[
∂µlν(x)− ∂ν lµ(x)− i [lµ(x), lν(x)]−

]
U†L(x)

= UL(x)f (L)
µν (x)U†L(x) (3.174)

and similarly

f (R)
µν (x)

SU(2)L×SU(2)R−→ f (R)′
µν (x) = ∂µ

[
UR(x)rν(x)U†R(x) + iUR(x)∂νU

†
R(x)

]
− ∂ν

[
UR(x)rµ(x)U†R(x) + iUR(x)∂µU

†
R(x)

]
− i
[
UR(x)rµ(x)U†R(x) + iUR(x)∂µU

†
R(x), UR(x)rν(x)U†R(x) + iUR(x)∂νU

†
R(x)

]
−

= UR(x)
[
∂µrν(x)− ∂νrµ(x)− i [rµ(x), rν(x)]−

]
U†R(x)

= UR(x)f (R)
µν (x)U†R(x) , (3.175)

where we frequently used that (∂µU
†
L/R(x))UL/R(x) = −U†L/R(x)∂µUL/R(x). Under proper orthochronous

Lorentz transformations, the left- and right-handed field-strength tensors transform as a Lorentz tensor, i.e.,

f (L/R)
µν

SO+(1,3)−→ f (L/R)′
µν (x′) = Λ α

µ Λ β
ν f

(L/R)
αβ (Λ−1x) , (3.176)

where we used the definitions (3.79) in combination with Eqs. (3.90) and (3.91). In order to derive the
transformation behavior under charge conjugation and parity transformations, we have to start from the
left- and right-handed external fields. From Eqs. (3.79) and (3.104), (3.105), respectively (3.97), (3.98) we
find

lµ(x)
C−→ l′µ(x) = −rTµ (x) , (3.177)

rµ(x)
C−→ r′µ(x) = −lTµ (x) (3.178)

and

lµ(t, r)
P−→ l′µ(t, r′) = (−1)(µ)rµ(t,−r) = rµ(t,−r) , (3.179)

rµ(t, r)
P−→ r′µ(t, r′) = (−1)(µ)lµ(t,−r) = lµ(t,−r) . (3.180)

Combining the results (3.177)-(3.180), we finally obtain

f (L/R)
µν (x)

C−→ f (L/R)′
µν (x) = −f (R/L)T

µν (x) , (3.181)

f (L/R)
µν (t, r)

P−→ f (L/R)′
µν (t, r′) = f (R/L)µν(t,−r) (3.182)
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as transformation properties of the left- and right-handed field-strength tensors. Finally, we are left with
the transformation behavior of the scalar/pseudoscalar matrix χ(x). According to Eq. (3.84), this object
transforms in the same manner as the matrix U(x) under local chiral rotations, i.e.,

χ(x)
SU(2)L×SU(2)R−→ χ′(x) = UR(x)χ(x)U†L(x) . (3.183)

The transformation behavior under proper orthochronous Lorentz transformations can be obtained from
Eqs. (3.92) and (3.93). We find

χ(x)
SO+(1,3)−→ χ′(x′) = χ(Λ−1x) . (3.184)

Finally, under the discrete symmetry operations, the scalar/pseudoscalar matrix transforms according to

χ(x)
C−→ χ′(x) = χT (x) , (3.185)

χ(t, r)
P−→ χ′(t, r′) = χ†(t,−r) , (3.186)

where we used Eqs. (3.106), (3.107) and (3.99), (3.100). Now, the space-time dependence of the left- and
right-handed rotations requires the definition of a covariant derivative in order to construct chirally invariant
terms involving derivatives. This covariant derivative should be defined in a way that it transforms in the
same way as the object it acts on. In the case of the pion matrix U(x) and the scalar/pseudoscalar matrix
χ(x), this covariant derivative should transform from the left with a right-handed chiral rotation and from
the right with an adjoint left-handed transformation matrix. To this end, we define

DµO(x) = ∂µO(x)− irµ(x)O(x) + iO(x)lµ(x) (3.187)

as the covariant derivative for an object O(x) transforming as O(x)
SU(2)L×SU(2)R−→ UR(x)O(x)U†L(x) under

local chiral rotations. It is now easy to verify that Eq. (3.187) transforms in the desired way. Using Eqs.
(3.82) and (3.83), we obtain

DµO(x)
SU(2)L×SU(2)R−→ (DµO(x))

′
= ∂µ

[
UR(x)O(x)U†L

]
− i
[
UR(x)rµ(x)U†R(x) + iUR(x)∂µU

†
R(x)

]
UR(x)O(x)U†L

+ iUR(x)O(x)U†L

[
UL(x)lµ(x)U†L(x) + iUL(x)∂µU

†
L(x)

]
= UR(x) [∂µO(x)− irµ(x)O(x) + iO(x)lµ(x)]U†L(x)

= UR(x)DµO(x)U†L(x) . (3.188)

If we now identify the object O(x) with U(x) or χ(x), the transformation properties of the covariant derivative
under proper orthochronous Lorentz transformations and CP -transformations immediately follow from the
previous results. We obtain

DµO(x)
SO+(1,3)−→ (DµO(x))

′
= Λ α

µ DαO(Λ−1x) , (3.189)

DµO(x)
C−→ (DµO(x))

′
= (DµO(x))

T
, (3.190)

DµO(t, r)
P−→ (DµO(t, r))

′
= (DµO(t,−r))

†
. (3.191)

At this point, it has to be taken into account that we are also able to define covariant derivatives for objects

that do not transform according to O(x)
SU(2)L×SU(2)R−→ UR(x)O(x)U†L(x) under local SU(2)L × SU(2)R

transformations. Therefore, we consider an object Õ(x) which transforms according to Õ(x)
SU(2)L×SU(2)R−→

UL(x)Õ(x)U†R(x). Using the same manipulations as in Eq. (3.188), we are able to show that the covariant
derivative

DµÕ(x) = ∂µÕ(x) + iÕ(x)rµ(x)− ilµ(x)Õ(x) (3.192)

has the same transformation properties as the object Õ(x) itself. If we identify this object with U†(x)
or χ†(x), the transformation properties under the proper orthochronous Lorentz group and under CP -
transformations follow immediately from Eqs. (3.189)-(3.191). In addition to that, we are able to define ob-

jects OL(x) and OR(x), that transform like OL(x)
SU(2)L×SU(2)R−→ UL(x)OL(x)U†L(x) or OR(x)

SU(2)L×SU(2)R−→
UR(x)OR(x)U†R(x), respectively. An example for objects of this type is given by the left- and right-handed
field-strength tensors. The covariant derivatives of these objects read

DµOL(x) = ∂µOL(x)− ilµ(x)OL(x) + iOL(x)lµ(x) , (3.193)

DµOR(x) = ∂µOR(x)− irµ(x)OR(x) + iOR(x)rµ(x) . (3.194)
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It turns out that the above covariant derivatives will only play a minor role for our purposes, therefore we
do not give their transformation behavior under proper orthochronous Lorentz transformations and under
CP -transformations.

Before we start with the construction of invariant terms, we have to find a systematic way which will
help us to organize the terms of the chiral Lagrangian. To this end, we have to go back to the level of the
hadronic n-point functions. The complete set of these n-point functions as well as their symmetry relations
are collected in the generating functional of QCD (3.77). Now, the low-energy analysis of QCD in the
framework of ChPT relies on a simultaneous expansion of the ”true” generating functional in powers of
Nambu-Goldstone boson momenta, i.e., pion momenta and quark masses. In this so-called chiral expansion,
the pion matrix corresponds to an object of order one, i.e.,

U(x) ∼ O(1) , (3.195)

while the covariant derivative of U(x) as well as the left- and right-handed external fields are counted as
objects of O(p)

DµU(x) ∼ O(p) , (3.196)

lµ(x), rµ(x) ∼ O(p) . (3.197)

This assignment seems to be quite intuitive, since the derivative acting on U(x) can be translated into pion
momenta. Furthermore, the left- and right-handed external fields will only enter the chiral Lagrangian in
combination with a space-time derivative. At order O(p2), there are three fundamental objects which may
enter the chiral Lagrangian, namely the scalar/pseudoscalar matrix χ(x) as well as the left- and right-handed
field-strength tensors

χ(x) ∼ O(p2) , (3.198)

f (L/R)
µν (x) ∼ O(p2) . (3.199)

3.3.2 Constructing the Chiral Lagrangian up to O(p4)

After introducing the basic objects of the chiral Lagrangian, we are now in the position to construct the
leading order and next-to-leading order (NLO) terms of ChPT. To this end, denoting the powers of pion
momenta and quark masses as n, we recognize that the full chiral Lagrangian must be of the form

LχPT =
∑
n=0

L2n , (3.200)

since parity conservation requires an even number of derivatives. For n = 0, we are only able to construct
one term

Tr
{
U†U

}
, (3.201)

which is obviously a trivial term, since the pion matrix U(x) is unitary, so that the trace is equal to two16

and therefore a constant. For n ≥ 1, it is possible to construct nontrivial interactions. The number of all
possible terms increases rapidly for large n. For example, in the case of Nf = 2, there are only two possible
terms at leading order, i.e., for n = 1. At NLO (n = 2) the number of possible terms increases to ten,
while at NNLO n = 3, there already exist 56 independent interaction terms17. Before, we start with the
construction of the leading-order term, we want to illustrate the general way of constructing invariant terms.
To this end, we recognize that two objects O1(x) and O2(x) which transform according to

Oi(x)
SU(2)L×SU(2)R−→ O ′i(x) = UR(x)Oi(x)U†L(x) , for i = 1, 2 , (3.202)

under local chiral transformations can easily be combined to form an invariant, because

Tr
{

O1(x)O†2(x)
}
SU(2)L×SU(2)R−→ Tr

{
O1(x)O†2(x)

}′
= Tr

{
UR(x)O1(x)U†L(x)

[
UR(x)O2(x)U†L(x)

]†}
= Tr

{
O1(x)O†2(x)

}
, (3.203)

16 In the case of two quark flavors.
17 In the case of Nf = 3, the number of possible terms is again different. At NLO, there are twelve possible terms, while at

NNLO, the number increases to 98, compare Ref. [BiEc] and refs. therein. The number of possible terms varies for different
numbers of quark flavors, because there exist different techniques in order to eliminate redundant terms.
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where we used the cyclic property of the trace. This procedure can be expanded to arbitrarily high powers
of Oi(x)O†j (x) operators under the trace, since

Tr
{

O1(x)O†2(x) · · ·On−1(x)O†n(x)
}
SU(2)L×SU(2)R−→ Tr

{
O1(x)O†2(x) · · ·On−1(x)O†n(x)

}′
= Tr

{
UR(x)O1(x)U†L(x)

[
UR(x)O2(x)U†L(x)

]†
· · ·UR(x)On−1(x)U†L(x)

[
UR(x)On(x)U†L(x)

]†}
= Tr

{
UR(x)O1(x)O†2(x)U†R(x) · · ·UR(x)On−1(x)O†n(x)U†R(x)

}
= Tr

{
O1(x)O†2(x) · · ·On−1(x)O†n(x)

}
, (3.204)

where we again used the cyclic property of the trace. In order to construct further terms, we can use two or
more traces which are constructed in the way described above and build products of them. In general, these
terms are of the following form

Tr
{

Oi1(x)O†i2(x) · · ·Oin−1
(x)O†in(x)

}
· · ·Tr

{
Oj1(x)O†j2(x) · · ·Ojm−1

(x)O†jm(x)
}

. (3.205)

Now, we can use this approach for the construction of the leading-order term of the chiral Lagrangian.
The first step consists of combining the fundamental building blocks (3.166), (3.171)-(3.173), and (3.187)
to objects which transform according to Eq. (3.202) under local SU(2)R × SU(2)L transformations. Up to
O(p2) in the chiral expansion, the complete list of those objects is given by

U(x), DµU(x), DµDνU(x),U(x)f (L)
µν (x), f (R)

µν (x)U(x), and χ(x) . (3.206)

Now, the second step consists of building invariant terms in the fashion of Eqs. (3.204) and (3.205). Due
to the latter equation, we have to collect all invariant traces starting from chiral order O(1) up to O(p2).
As already mentioned before, the lowest-order term is given by a constant Eq. (3.201). Therefore, we start
with the first-order terms. At O(p), there are only two possible structures which we can construct by using
the objects listed in Eq. (3.206)

Tr
{

[DµU(x)]U†(x)
}
, Tr

{
U(x) [DµU(x)]

†
}

. (3.207)

In the following we want to show that (i) both traces are, up to a sign, equivalent and that (ii) both traces
vanish identically. In order to show the first claim, we leave the traces out and add up both expressions

[DµU(x)]U†(x) + U(x) [DµU(x)]
†

= [∂µU(x)− irµ(x)U(x) + iU(x)lµ(x)]U†(x) + U(x)
[
∂µU† + iU†(x)rµ(x)− ilµ(x)U†(x)

]
= ∂µ

[
U(x)U†(x)

]
− irµ(x)

[
U(x)U†(x)

]
+ i
[
U(x)U†(x)

]
rµ(x)

= Dµ

[
U(x)U†(x)

]
= 0 , (3.208)

where we used Eq. (3.194) and the fact that U(x) is unitary. Taking the trace of the above equation
completes the proof of (i). According to (i), it will be sufficient to show the second claim for the first trace
in Eq. (3.207). Using the canonical parametrization (3.163), we find

Tr
{

[DµU(x)]U†(x)
}

= Tr
{

[∂µU(x)]U†(x)
}

= Tr

{[
∂µ

(
12×2 − iπi(x)τ i +

1

2
(iπi(x)τ i)2 − . . .

)]
U†(x)

}
= −Tr

{
i (∂µπi(x)) τ i

[
12×2 − iπj(x)τ j + . . .

]
U†(x)

}
= 0 , (3.209)

where we used that the Pauli matrices and therefore the external fields are traceless, compare Eq. (3.75).
Furthermore, we made use of the fact that the matrices πiτ

i and U†(x) commute. The results (3.208) and
(3.209) ensure that, at leading order, a product of two traces may not enter the Lagrangian. Therefore, we
have to use the objects (3.206) in order to construct terms which contain only one trace. The possible terms
with respect to local chiral rotations are given by

(a) Tr
{

[DµDνU(x)]U†(x)
}

, Tr
{

[DνU(x)] [DµU(x)]
†
}

, Tr
{
U(x) [DνDµU(x)]

†
}

,
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(b) Tr
{
U(x)f

(L)
µν (x)U†(x)

}
, Tr

{
f

(L)
µν (x)

}
, Tr

{
U†(x)f

(R)
µν (x)U(x)

}
, Tr

{
f

(R)
µν (x)

}
,

(c) Tr
{
χ(x)U†(x)

}
and Tr

{
U(x)χ†(x)

}
.

It is evident that not all of the above terms may enter the chiral Lagrangian at leading order. In order to
reduce the amount of possible terms, we start with those listed in (a). First of all, we want to show that all
three terms are not independent of each other. We have

Tr
{

[DµDνU(x)]U†(x)
}

= Tr
{

[∂µ (DνU(x))− irµ(x)DνU(x) + i (DνU(x)) lµ(x)]U†(x)
}

= ∂µTr
{

[DνU(x)]U†(x)
}
− Tr

{
(DνU(x))

[
∂µU†(x) + iU†(x)rµ(x)− ilµ(x)U†(x)

]}
= −Tr

{
[DνU(x)] [DµU(x)]

†
}

, (3.210)

where we used the product rule in combination with Eq. (3.209) and the definition of the covariant derivative
(3.192). On the other hand, we obtain

Tr
{
U(x) [DνDµU(x)]

†
}

= Tr
{
U(x)

[
∂ν (DµU(x))

†
+ i (DµU(x))

†
rν(x)− ilν(x) (DµU(x))

†
]}

= ∂νTr
{
U(x) (DµU(x))

†
}
− Tr

{
[∂νU(x)− irν(x)U(x) + iU(x)lν(x)] (DµU(x))

†
}

= −Tr
{

[DνU(x)] [DµU(x)]
†
}

, (3.211)

where we used similar manipulations as in the previous calculation. In addition to that, all space-time indices
have to be contracted, since the Lagrangian has to be Lorentz invariant, so that we are left with

Tr
{

[DµU(x)] [DµU(x)]
†
}

. (3.212)

All terms in (b) are proportional to the left- or right-handed field-strength tensors. It is quite obvious, using
the cyclic property of the trace and the unitarity of U(x), that the first two terms and the last two terms
are identical, respectively. Furthermore, we can use that the field-strength tensors are traceless tensors, i.e.,

Tr
{
f (L)
µν (x)

}
= Tr

{
∂µlν(x)− ∂ν lµ(x)− i [lµ(x), lν(x)]−

}
= 0 , (3.213)

Tr
{
f (R)
µν (x)

}
= Tr

{
∂µrν(x)− ∂νrµ(x)− i [rµ(x), rν(x)]−

}
= 0 , (3.214)

where we used that the left- and right-handed external fields are traceless. In addition to that, the trace of
the commutator term vanishes, due to the Lie algebra of SU(2). Therefore, all terms in (b) vanish identically
and do not have to be considered. The last two terms in (c) are independent of each other, so that we can
build two linear combinations

Tr
{
χ(x)U†(x)± U(x)χ†(x)

}
(3.215)

from them. Since both objects in Eq. (3.215) are Lorentz scalars, it is easy to see that both linear combina-
tions are symmetric under proper orthochronous Lorentz transformations. Therefore, we have to check the
transformation behavior of Eq. (3.215) under C- and P -transformations. We find

Tr
{
χ(x)U†(x)± U(x)χ†(x)

} C−→ Tr
{
χ(x)U†(x)± U(x)χ†(x)

}′
= Tr

{
χ(x)T

(
U†(x)

)T ± UT (x)
(
χ†(x)

)T}
= Tr

{
χ(x)U†(x)± U(x)χ†(x)

}
(3.216)

and

Tr
{
χ(t, r)U†(t, r)± U(t, r)χ†(t, r)

} P−→ Tr
{
χ(t, r)U†(t, r)± U(t, r)χ†(t, r)

}′
= Tr

{
χ(t,−r)†U(t,−r)± U†(t,−r)χ(t,−r)

}
= Tr

{
±χ(t,−r)U†(t,−r) + U(t,−r)χ†(t,−r)

}
, (3.217)

where we used the transformation properties of the previous section and the cyclic property of the trace.
Obviously, the negative linear combination breaks the symmetry under parity transformations, because it
transforms with the wrong sign. Combining this result with Eq. (3.212), the leading-order chiral Lagrangian
is given by

L2 =
f2
π

4
Tr
{

[DµU(x)] [DµU(x)]
†
}

+
f2
π

4
Tr
{
χ(x)U†(x) + U(x)χ†(x)

}
, (3.218)
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where fπ denotes the pion decay constant. At leading order, the chiral Lagrangian includes only two free
parameters, the pion decay constant and the constant B0 which is contained in the definition of χ(x).
Furthermore, in the case of three-flavor ChPT, we would end up with the same result. At this point, we
could use the same techniques that lead to Eq. (3.218) in order to construct the NLO Lagrangian. In this
case the whole procedure becomes a bit more involved, since there are much more invariants with respect to
local chiral transformations. Furthermore, one has to use more trace identities and the equation of motion
to identify terms which are not independent of each other. For the sake of brevity, we skip the technical
details18 and only quote the final results in the case of two and three quark flavors. In the case of Nf = 2
ChPT, one obtains

L4 =
`1
4

(
Tr
{

[DµU(x)] [DµU(x)]
†
})2

+
`2
4

Tr
{

[DµU(x)] [DνU(x)]
†
}

Tr
{

[DµU(x)] [DνU(x)]
†
}

+
h1 − h3 + `3

16

(
Tr
{
χ(x)U†(x) + U(x)χ†(x)

})2
+
`4
4

Tr
{

[DµU(x)] [Dµχ(x)]
†

+ [Dµχ(x)] [DµU(x)]
†
}

+ `5Tr
{
f (R)
µν (x)U(x)f (L)µν(x)U†(x)

}
−
(
`5
2

+ 2h2

)
Tr
{
f (L)
µν (x)f (L)µν(x) + f (R)

µν (x)f (R)µν(x)
}

+ i
`6
2

Tr
{
f (R)
µν [DµU(x)] [DνU(x)]

†
+ f (L)

µν [DµU(x)]
†

[DνU(x)]
}

+
h1 − h3 − `7

16

(
Tr
{
χ(x)U†(x)− U(x)χ†(x)

})2
+
h1 + h3

4
Tr
{
χ(x)χ†(x)

}
− h1 − h3

8
Tr
{
χ(x)U†(x)χ(x)U†(x) + U(x)χ†(x)U(x)χ†(x)

}
. (3.219)

The above NLO term contains seven low-energy constants (LECs), `i, i = 1, . . . , 7, and three constants
belonging to contact interactions, hj , j = 1, 2, 3. In the case of three quark flavors, the NLO term of the
chiral Lagrangian reads

L4 = L1

(
Tr
{

[DµU(x)] [DµU(x)]
†
})2

+ L2Tr
{

[DµU(x)] [DνU(x)]
†
}

Tr
{

[DµU(x)] [DνU(x)]
†
}

+ L3Tr
{

[DµU(x)] [DµU(x)]
†

[DνU(x)] [DνU(x)]
†
}

+ L4Tr
{

[DµU(x)] [DµU(x)]
†
}

Tr
{
χ(x)U†(x) + U(x)χ†(x)

}
+ L5Tr

{
[DµU(x)] [DµU(x)]

† [
χ(x)U†(x) + U(x)χ†(x)

]}
+ L6

(
Tr
{
χ(x)U†(x) + U(x)χ†(x)

})2
+ L7Tr

{
χ(x)U†(x)− U(x)χ†(x)

}2
+ L8Tr

{
U(x)χ†(x)U(x)χ†(x) + χ(x)U†(x)χ(x)U†(x)

}
− iL9Tr

{
f (R)
µν (x) [DµU(x)] [DνU(x)]

†
+ f (L)

µν (x) [DµU(x)]
†

[DνU(x)]
}

+ L10Tr
{
U(x)f (L)

µν (x)U†(x)f (R)µν(x)
}

+H1Tr
{
f (R)
µν (x)f (R)µν(x) + f (L)

µν (x)f (L)µν(x)
}

+H2Tr
{
χ(x)χ†(x)

}
. (3.220)

As already mentioned in Ref. [17], the number of possible terms and therefore the number of LECs increases,
when we include the strange quark. In this case, we obtain ten LECs, Li, i = 1, . . . , 10, and two constants,
H1, H2, which couple terms that only involve external fields. In general and not depending on the number
of included quark flavors, the LECs can be understood as measure for the inability to solve QCD in the
low-energy regime. Nevertheless, it is possible to fix their values, for example with lattice calculations,
empirical data, or QCD inspired models. If one is interested in a low-energy analysis beyond tree-level, the
LECs also open up a practical use: When considering Eq. (3.218) at one-loop order, the resulting vertices
are of order O(p4), so that the resulting divergences cannot be absorbed by an appropriate renormalization
of the LECs of L2. At this point, the LECs of L4 come into play. The NLO term was constructed in a way
that it represents the most general chiral Lagrangian at order O(p4) in the chiral expansion. Therefore, it
is possible to renormalize the LECs as well as the constants from the contact interactions in a way that all
divergences of the one-loop graphs can be absorbed.

3.3.3 Four-Pion Interaction Vertices

In the last part of this chapter, we want to use the results (3.218) and (3.219) in order to identify all four-
pion interaction terms which arise up to NLO in the chiral Lagrangian. The use of this step will become
apparent in Sec. [4.3.1], when we introduce our approach for the determination of the low-energy coupling
constants of the extended linear sigma model. The desired four-pion interaction terms can easily be found
by expanding the pion matrix U(x). To this end, we choose from now on

U(x) =
1

fπ

[
σ(x) + iπi(x)τ i

]
, σ(x) = fπ

√
1− π2

i (x)/f2
π , (3.221)

18 For more details, see Refs. [ScSc], [FeSc].
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as a parametrization of the coset space. Expanding the square root in inverse powers of the pion decay
constant, we find

σ(x) = fπ

{
1− 1

2

(
~π

fπ

)2

− 1

8

(
~π2

f2
π

)2

+O(π6)

}
. (3.222)

Furthermore, it will be useful to determine the expansion of the 4-gradient of σ(x), since the chiral Lagrangian
contains a lot of derivatively coupled interaction terms. We find

∂µσ(x) = − 1

fπ

~π · ∂µ~π√
1− π2

i (x)/f2
π

= − 1

fπ
~π · (∂µ~π)

{
1 +

1

2

(
~π

fπ

)2

+
3

8

(
~π2

f2
π

)2

+O(π6)

}
. (3.223)

In addition to that, we set the left- and right-handed external fields to zero

lµ(x) = rµ(x) = 0 (3.224)

and define the scalar/pseudoscalar matrix χ(x) as

χ(x) = M2
12×2 , (3.225)

where M2 defines a mass parameter of dimension
[
Energy2

]
. As a consequence of these definitions, the NLO

chiral Lagrangian simplifies to

LχPT =
f2
π

4
Tr
{

[∂µU(x)] [∂µU(x)]
†
}

+
f2
π

4
M2Tr

{
U†(x) + U(x)

}
+
`1
4

(
Tr
{

[∂µU(x)] [∂µU(x)]
†
})2

+
`2
4

Tr
{

[∂µU(x)] [∂νU(x)]
†
}

Tr
{

[∂µU(x)] [∂νU(x)]
†
}

+
h1 − h3 + `3

16
M4

(
Tr
{
U†(x) + U(x)

})2
+
h1 − h3 − `7

16
M4

(
Tr
{
U†(x)− U(x)

})2
− h1 − h3

8
M4Tr

{
U†(x)U†(x) + U(x)U(x)

}
+
h1 + h3

2
M4 +O(p6) . (3.226)

Now, using the coset parametrization (3.221) and the expansions (3.222), (3.223), we are able to obtain an
explicit expression of the above Lagrangian in terms of the pion fields. In order to keep track of all terms,
we now expand all terms of Eq. (3.226) order by order in the chiral expansion. At LO, we are left with only
two terms

L2 =
f2
π

4
Tr
{

[∂µU(x)] [∂µU(x)]
†
}

+
f2
π

4
M2Tr

{
U†(x) + U(x)

}
. (3.227)

Dropping the space-time arguments and using Eqs. (3.222), (3.223) and (6.10), we find

L2 =
1

4
Tr
{

(∂µσ)
2

+ (∂µπi) (∂µπj) τ
iτ j
}

+
M2fπ

4
Tr {2σ}

=
1

2
(∂µ~π)

2 − 1

2
M2~π2 − M2

8f2
π

(
~π2
)2

+
1

2f2
π

(~π · ∂µ~π)
2

+M2f2
π +O

(
π6
)

. (3.228)

From the above result, we make two observations: On the one hand, the mass parameter M2 corresponds to
the full tree-level mass of the pion at LO in the chiral expansion. In a moment, we will see that at NLO, the
tree-level mass of the pion gets another contribution. On the other hand, we find that this mass parameter is

also contained in the coefficient of the
(
~π2
)2

interaction term. But, in the discussion of Sec. [3.2], we argued
that Nambu-Goldstone bosons may only interact through derivatively coupled terms among each other. In
order to resolve this problem, we have to remember that the previous statement is only true, if we consider
an exact chiral symmetric Lagrangian. In the case of Eq. (3.228), chiral symmetry is explicitly broken by
the occurrence of the mass parameter M2. Therefore, we have to take the chiral limit, M2 −→ 0, in order
to show that the pion-interaction terms always have to contain derivatives. At NLO, we have to deal with
five possible terms

L4 =
`1
4

(
Tr
{

[∂µU(x)] [∂µU(x)]
†
})2

+
`2
4

Tr
{

[∂µU(x)] [∂νU(x)]
†
}

Tr
{

[∂µU(x)] [∂νU(x)]
†
}

+
h1 − h3 + `3

16
M4

(
Tr
{
U†(x) + U(x)

})2
+
h1 − h3 − `7

16
M4

(
Tr
{
U†(x)− U(x)

})2
− h1 − h3

8
M4Tr

{
U†(x)U†(x) + U(x)U(x)

}
+
h1 + h3

2
M4 +O(p6) . (3.229)
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For the sake of simplicity, we consider each NLO term individually. The expansion of the first term in (3.229)
yields

`1
4

(
Tr
{

[∂µU ] [∂µU ]
†
})2

=
`1

4f4
π

(
Tr
{

(∂µσ)
2

+ (∂µπi) (∂µπj) τ
iτ j
})2

=
`1
f4
π

(∂µ~π)
2

(∂ν~π)
2

+O
(
π6
)

, (3.230)

where we made use of Eqs. (3.223) and (6.10). Using the same techniques, we find a similar result for the
second term

`2
4

Tr
{

[∂µU ] [∂νU ]
†
}

Tr
{

[∂µU ] [∂νU ]
†
}

=
`2

4f4
π

Tr
{

(∂µσ) ∂νσ + (∂µπi) ∂νπjτ
iτ j
}

× Tr
{

(∂µσ) ∂νσ + (∂µπi) ∂
νπjτ

iτ j
}

=
`2
f4
π

[(∂µ~π) · ∂ν~π]
2

+O
(
π6
)

. (3.231)

As already mentioned before, at NLO, the tree-level mass of the pion gets a second contribution. This new
contribution originates from the third and the fifth term in Eq. (3.229)

h1 − h3 + `3
16

M4
(
Tr
{
U†(x) + U(x)

})2 − h1 − h3

8
M4Tr

{
U†(x)U†(x) + U(x)U(x)

}
=
h1 − h3 + `3

16f2
π

M4 (Tr {2σ})2 − h1 − h3

4f2
π

M4Tr
{
σ2 − πiπjτ iτ j

}
= (h1 − h3 + `3)M4 − (h1 − h3 + `3)M4

f2
π

~π2 − h1 − h3

2
M4 +

h1 − h3

f2
π

M4~π2 +O
(
π6
)

= −`3M
4

f2
π

~π2 +

(
h1 − h3

2
+ `3

)
M4 +O

(
π6
)

, (3.232)

where we used (3.222). The fourth term vanishes exactly, since the trace of a Pauli matrix vanishes. Normally,
this term shifts the masses of the charged and the neutral pions. Since the chiral expansion of the ”true”
generating functional of QCD involves all terms which are allowed by symmetry, the chiral expansion quite
naturally introduces the explicit breaking of the isospin symmetry at NLO. In our case, this term has to
vanish, since the definition (3.225) corresponds to the isospin symmetric limit where all pions have the same
mass. Therefore, the NLO term of the chiral Lagrangian becomes

L4 =
`1
f4
π

(∂µ~π)
2

(∂ν~π)
2

+
`2
f4
π

[(∂µ~π) · (∂ν~π)]
2 − `3M

4

f2
π

~π2 + (h1 + `3)M4 +O
(
π6
)

. (3.233)

Finally, combining the results (3.228) and (3.233), the chiral Lagrangian up to NLO is given by

LχPT = L2 + L4

=
1

2
(∂µ~π)

2 − 1

2
M2
π~π

2 + C1,χPT

(
~π2
)2

+ C2,χPT (~π · ∂µ~π)
2

+ C3,χPT (∂µ~π)
2

(∂ν~π)
2

+ C4,χPT [(∂µ~π) · ∂ν~π]
2

+O
(
π6
)

, (3.234)

where we introduced

M2
π = M2 +

2`3
f2
π

M4 (3.235)

as the tree-level mass of the pion. Furthermore, we defined the following coupling constants of the different
four-pion interaction terms

C1,χPT = −M
2

8f2
π

, (3.236)

C2,χPT =
1

2f2
π

, (3.237)

C3,χPT =
`1
f4
π

, (3.238)

C4,χPT =
`2
f4
π

. (3.239)

These coefficient will be important in the discussion of Chapter [4], when we calculate the LECs of the
extended linear sigma model.
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Chapter 4

Calculation of the Low Energy
Constants

After introducing the technical basics and approaches in the last chapters, we are now in the position to
apply these concepts. To this end, we start with a very detailed introduction to the techniques which we
want to use later, in order to determine the tree-level LECs of the eLSM at the hand of a simple example,
see Sec. [4.1]. Then, in Sec. [4.2], we finally consider the eLSM. During this section, we introduce the
physical content which is described by the eLSM and illustrate how it is technically realized. Then, we study
all terms of the eLSM in detail and finally derive expressions for the LECs in terms of the various coupling
constants of the model.

4.1 A Toy-Model Introduction

The aim of this first section is, on the one hand, to introduce the basic concepts of the upcoming sections,
but on the other hand, also to show the technical methods which we will use to determine the LECs of the
eLSM. To this end, we consider a simple toy model describing the interaction of a light scalar field ϕl(x)
with a heavy scalar field ϕH(x) and study the important properties of this theory in detail. In Sec. [4.1.1],
we therefore focus on the very basic properties of the theory and derive the generating functional of the
theory. Based on the explicit form of the generating functional, we also derive the perturbative expansion
up to first order in the coupling constants of the theory and introduce the position-space Feynman rules.
The necessity of this step will be become apparent in Sec. [4.1.2], when we integrate the heavy field out of
the theory in order to find a low-energy description of the theory.

4.1.1 General Considerations

As mentioned above, we want to consider a toy model describing the interaction of two scalar particles. The
classical action of this theory shall be given by

Stoy[ϕl, ϕH ] =

∫
d4x Ltoy (ϕl, ϕH , ∂µϕl, ∂µϕH)

=

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Lint(ϕl, ϕH)] , (4.1)

where the free parts of the Lagrangian Ltoy are given by the free Klein-Gordon Lagrangians

L0,i(ϕi, ∂µϕi) =
1

2
(∂µϕi) (∂µϕi)−

m2
i

2
ϕ2
i , i = l,H . (4.2)

The interaction part of the Lagrangian shall be given by

Lint(ϕl, ϕH) = −g1

4
ϕ2
Hϕ

2
l −

g2

2
ϕHϕ

2
l , (4.3)

where we introduced the coupling constants g1 and g2. In order to quantize the theory, we remember the
discussion of Sec. [2.2.1]. Comparing the above Lagrangian with the general approach in Eq. (2.63), we are
immediately able to write down the generating functional of the toy model

Z[Jl, JH ] = N
∫

Dϕl(x)DϕH(x) exp

{
i

∫
d4x [Ltoy (ϕl, ϕH , ∂µϕl, ∂µϕH) + Jlϕl + JHϕH ]

}
, (4.4)
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where we introduced the classical sources Jl(x) and JH(x). The normalization constant N is fixed by the
requirement Z[0, 0] = 1, so that

N−1 =

∫
Dϕl(x)DϕH(x) exp

{
i

∫
d4x Ltoy (ϕl, ϕH , ∂µϕl, ∂µϕH)

}
. (4.5)

For later purposes, it will be useful to bring Eq. (4.4) into another form which is easier to handle. Therefore,
we recognize that the generating functional of the interaction-free theory, i.e., g1 = g2 = 0, would factorize
into two Gaussian functional integrals which can be solved analytically. But this observation would also
be useful for nonzero coupling constants, if we were able to eliminate the interaction terms (4.3) from the
functional integral. And in fact, by using a simple trick, we are able to rewrite Eq. (4.4) in the desired way.
First of all, we factorize the free and the interacting part of the Lagrangian

Z[Jl, JH ] = N
∫

Dϕl(x)DϕH(x) exp

{
i

∫
d4x [Ltoy (ϕl, ϕH , ∂µϕl, ∂µϕH) + Jlϕl + JHϕH ]

}
= Nint

∫
Dϕl(x)DϕH(x) exp

{
i

∫
d4x Lint(ϕl, ϕH)

}
×N0 exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
= Nint

∫
Dϕl(x)DϕH(x)

∞∑
n=0

(−i)n

n!

[∫
d4x

(g1

4
ϕ2
Hϕ

2
l +

g2

2
ϕHϕ

2
l

)]n
×N0 exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
= Nint

∫
Dϕl(x)DϕH(x)

∞∑
n=0

(−i)n

n!

n∑
k=0

(
n
k

)(
g1

4

∫
d4x ϕ2

Hϕ
2
l

)n−k (
g2

2

∫
d4x′ ϕHϕ

2
l

)k
×N0 exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
, (4.6)

where we also factorized the normalization constant N ≡ NintN0 and rewrote the first exponential factor
into its power-series representation and used the binomial theorem. Now, we can use the same trick as in the
discussion of Eq. (3.71), i.e., we replace the fields in the series expansion with functional derivatives with
respect to the respective fields. This trick is based on the observation that

1

i

δ

δJi(x′)
exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
=

1

i

{
i

δ

δJi(x′)

∫
d4x [Jlϕl + JHϕH ]

}
exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
= ϕi(x

′) exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
, (4.7)

where we used δJj(x)/δJi(x
′) = δijδ

(4)(x − x′) for i, j = l,H. The importance of Eq. (4.7) arises from the
fact that the functional derivatives with respect to the classical sources can be pulled out of the functional
integral, since they do not depend on the fields itself. Using Eq. (4.7) in order to substitute each field in the
interaction part of the Lagrangian, Eq. (4.6) can be written as

Z[Jl, JH ] = Nint
∞∑
n=0

(−i)n

n!

n∑
k=0

(
n
k

)[
g1

4

∫
d4x

(
1

i

δ

δJH(x)

)2(
1

i

δ

δJl(x)

)2
]n−k

×

[
g2

2

∫
d4x′

(
1

i

δ

δJH(x′)

)(
1

i

δ

δJl(x′)

)2
]k

×N0

∫
Dϕl(x)DϕH(x) exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
= Nint exp

{
i

∫
d4x Lint

(
1

i

δ

δJl(x)
,

1

i

δ

δJH(x)

)}
Z0[Jl, JH ] , (4.8)
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where we defined the free generating functional as

Z0[Jl, JH ] = N0

∫
Dϕl(x)DϕH(x) exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + L0,H(ϕH , ∂µϕH) + Jlϕl + JHϕH ]

}
= Nl

∫
Dϕl(x) exp

{
i

∫
d4x [L0,l(ϕl, ∂µϕl) + Jlϕl]

}
×NH

∫
DϕH(x) exp

{
i

∫
d4x [L0,H(ϕH , ∂µϕH) + JHϕH ]

}
≡ Z0,l[Jl]Z0,H [JH ] , (4.9)

with N0 ≡ NlNH . As mentioned before, we obtain a free generating functional which is given by the product
of two Gaussian functional integrals. In order to simplify Eq. (4.9), we have to evaluate these Gaussian
integrals. Since both integrals are exactly of the same form, it is sufficient to evaluate only one of them.
Integrating the kinetic part of the Klein-Gordon Lagrangian by parts, we find for i = l,H

Z0,i[Ji] = Ni
∫

Dϕi(x) exp

{
i

∫
d4x

[
1

2
(∂µϕi) (∂µϕi)−

m2
i

2
ϕ2
i + Jiϕi

]}
= Ni

∫
Dϕi(x) exp

{
− i

2

∫
d4x

[
ϕi
(
� +m2

i

)
ϕi + Jiϕi

]}
= Ni

∫
Dϕi(x) exp

{
− i

2

∫
d4xd4y ϕi(x)Oi(x, y)ϕi(y) + i

∫
d4x Jiϕi

}
, (4.10)

where we defined the operator
Oi(x, y) =

(
�x +m2

i

)
δ(4)(x− y) , (4.11)

where the index x reminds us that the d’Alembertian acts on the space-time variable x. At this point, it is
important to stress that the convergence of the Gaussian functional integral (4.10) is not guaranteed, since
the integrand is a strongly oscillating function for large arguments. This problem can be resolved, if we
perform an analytic continuation to imaginary times, i.e., if we set

x0 ≡ t→ −iτ , τ ∈ R . (4.12)

Geometrically, the above identification can be understood as a clockwise rotation of the time-integration
contour about π/2 into the complex plane, since e−i(π/2)τ = −iτ . This situation is illustrated in Fig. [4.1].
It should be noted that this so-called Wick rotation is only possible, if there are no singularities in that part

Re(t)

Im(t)

(a)

Re(τ)

Im(τ)

(b)

Figure 4.1: The diagram [(a)] shows the initial time-integration contour in Minkowski space-time (red dashed line), which
is rotated clockwise into the complex time-plane (red line). The second diagram [(b)] shows the Euclidean time-integration
contour, which corresponds to the Minkowski case of [(a)].

of the complex time-plane we are integrating over. The result of the Wick rotation is that the integrand
in Eq. (4.10) gets a real part which dampens the oscillation of the exponential, so that convergence is
guaranteed. In order to see this, we have to evaluate, which consequences are caused by the Wick rotation.
First of all, we define a Euclidean 4-vector

xµE = (τ, r) , (4.13)

so that
xµxµ = t2 − r2 = −τ2 − r2 = −xµExµ,E . (4.14)
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Obviously, the analytic continuation to imaginary times transforms the Minkowski space-time into a four-
dimensional Euclidean space-time. This transformation occurs because of the additional i-factor which
compensates the different signs of the time and the spatial variables in Minkowski space-time. Since the
metric of this four-dimensional Euclidean space-time is given by the four-dimensional identity matrix, in
principle we do not have to distinguish between co- and contravariant indices. But, in order to indicate the
summation over the contracted indices, we will keep the co- and contravariant notation. Furthermore, it is
also convenient to introduce a Euclidean momentum space by setting

k0 → iκ , κ ∈ R , (4.15)

such that
kµkµ =

(
k0
)2 − k2 = −κ2 − k2 = −kµEkµ,E , (4.16)

where we defined the four-dimensional Euclidean momentum-space vector

kµE = (κ,k) . (4.17)

The transformation (4.15) corresponds to a counterclockwise rotation of the k0-axis about π/2 into the
complex k0-plane, compare Fig. [4.2]. It is clear that the variable transformations (4.13) and (4.15) give rise

Re(k0)

Im(k0)

(a)

Re(κ)

Im(κ)

(b)

Figure 4.2: The diagram [(a)] shows the initial k0-integration contour in Minkowski momentum-space (blue dashed line), which
is counterclockwise rotated into the complex k0-plane (blue line). The second diagram [(b)] shows the Euclidean κ-integration
contour which corresponds to the Minkowski case of [(a)].

to the existence of a Jacobian,

d4x = det

(
∂ (t, r)

∂ (τ, r)

)
d4xE = −id4xE , d4k = det

(
∂
(
k0,k

)
∂ (κ,k)

)
d4kE = id4kE . (4.18)

Due to Eq. (4.13), it is obvious that also differential operators which involve the time variable will change
under this transformation. The Minkowski 4-gradient becomes

(∂µ) = (∂0,∇) =

(
∂

∂(−iτ)
,∇
)

= (i∂τ ,∇) = ∂µ,E , (4.19)

so that the d’Alembertian can be written as

� = ∂µ∂µ = ∂2
t −∆ = −∂2

τ −∆ = −
(
∂2
τ + ∆

)
= −∂µE∂µ,E = −�E . (4.20)

Finally, we have to find the Euclidean representation of the delta-distribution. Using its Fourier representa-
tion, we obtain

δ(4)(x− y) =

∫
d4k

(2π)4
e−i(x−y)k

=

∫
d3k

(2π)3
ei(x−y)k

∫
dk0

2π
e−i(x0−y0)k0

=

∫
d3k

(2π)3
ei(x−y)k i

∫
dκ

2π
e−i(τx−τy)κ

= i

∫
d4kE
(2π)4

e−i[(τx−τy)κ−(x−y)k]
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= i

∫
d4kE
(2π)4

e−i(xE−yE)kE

= iδ(4)(xE − yE) , (4.21)

where we substituted k→ −k in the fourth step. At this point, we are able to rewrite the functional integral
(4.10)

Z0,i[Ji] = Ni
∫

Dϕi(x) exp

{
−1

2

∫
d4xEd4yE ϕi(xE)OE(xE , yE)ϕi(yE) +

∫
d4xE Ji(xE)ϕi(xE)

}
,

(4.22)
where we defined the Euclidean operator

Oi,E(xE , yE) =
(
−�x,E +m2

i

)
δ(4)(xE − yE) . (4.23)

By considering Eq. (4.22), it is now evident that the Wick rotation induces a damped real part in the
exponential, so that the convergence of the integral is ensured. Applying Eq. (6.39) to the above functional
integral, we obtain

Z0,i[Ji] = NiÑi
(

detOi,E(xE , yE)

)−1/2

exp

{
1

2

∫
d4xEd4yE Ji(xE)O−1

i,E(xE , yE)Ji(yE)

}
. (4.24)

The usual normalization requirement, Z0,i[0] = 1, fixes the normalization constant as

N−1
i = Ñi

(
detOi,E(xE , yE)

)−1/2

, (4.25)

so that the factor involving the functional determinant of the operator Oi,E(xE , yE), cancels. In the following
subsection, we will see that this result is quite advantageous, since the functional determinant in Eq. (4.24)
corresponds to an infinite constant. But in general it turns out that these functional determinants have a
physical meaning. An example for this will be presented in the upcoming Sec. [4.1.2]. Before we consider the
above functional determinant in detail, it will be useful to determine the inverse operator O−1

i,E(xE , yE) in Eq.

(4.24). To this end, we remember that the inverse of an (N ×N)-matrix is defined by A−1A = 1N×N . Since
the operator (4.23) can be considered as an infinite-dimensional matrix, we have to consider a generalized
version of this definition

δ(4)(xE − x′E) =

∫
d4yE Oi,E(xE , yE)O−1

i,E(yE , x
′
E)

=

∫
d4yE

(
−�x,E +m2

i

)
δ(4)(xE − yE)O−1

i,E(yE , x
′
E)

=
(
−�x,E +m2

i

)
O−1
i,E(xE , x

′
E) , (4.26)

which shows that the inverse operator is a Green function of the Euclidean Klein-Gordon operator, since
it fulfills the Euclidean Klein-Gordon equation with a delta-distribution as inhomogeneity. In order to
determine the explicit form of this Green function, it will be useful to switch to Euclidean momentum space
and consider the Fourier transform of Eq. (4.26). We have∫

d4kE
(2π)4

e−i(xE−x
′
E)kE =

∫
d4kE
(2π)4

d4k′E
(2π)4

(
−�x,E +m2

i

)
e−ixEkE Õ−1

i,E(kE , k
′
E)eix

′
Ek
′
E

!
=

∫
d4kE
(2π)4

d4k′E
(2π)4

(
k2
E +m2

i

)
Õ−1
i,E(kE , k

′
E)e−i(kExE−k

′
Ex
′
E) , (4.27)

which is obviously fulfilled for

Õ−1
i,E(kE , k

′
E) = (2π)4δ(4)(kE − k′E)

1

k2
E +m2

i

. (4.28)

Finally, we have to transform this result back to position space. We find

O−1
i,E(xE , x

′
E) =

∫
d4kE
(2π)4

d4k′E
(2π)4

e−ixEkE (2π)4δ(4)(kE − k′E)
1

k2
E +m2

i

eix
′
Ek
′
E

=

∫
d4kE
(2π)4

1

k2
E +m2

i

e−i(xE−x
′
E)kE

≡ ∆E,F (xE − x′E) , (4.29)
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where we defined the Euclidean Feynman propagator. Now, from Eq. (4.29), we observe that the Euclidean
Feynman propagator only depends on the difference of the Euclidean space-time points xE , x

′
E . This fact

reflects the space-time translation invariance of the theory. Furthermore, it is obvious that the Feynman
propagator is a symmetric function under the transposition of its arguments. This function defines only one
special example of a whole class of Lorentz-invariant propagation functions which are Green’s functions of
the Euclidean Klein-Gordon operator. The distinction between these propagators arises from the integra-
tion contour in the k0-plane, which we select to rewrite the four-dimensional Fourier representation of the
propagator into a three-dimensional one. In the case of Eq. (4.29) this integration contour is fixed, because
the poles of the above propagator are given by

κ1/2 = ±i
√

k2 +m2
i ≡ ±iωi,k , (4.30)

so that they are not located on the integration contour from −∞ to ∞ along the real κ-axis, compare Fig.
[4.3]. At this point, we are able to perform the analytic continuation of Eq. (4.29) back to Minkowski

Re(κ)

Im(κ)

+ωi

-ωi

Figure 4.3: Poles and integration contour (red line) of the Euclidean Feynman propagator.

space-time. Using Eqs. (4.13) and (4.15) as well as (4.18), we obtain

∆E,F (xE − x′E) =

∫
d4kE
(2π)4

1

k2
E +m2

i

e−i(xE−x
′
E)kE

= i

∫
d4k

(2π)4

1

k2 −m2
i

e−i[(x0−x′0)k0−(r−r′)·k]

= i

∫
d4k

(2π)4

1

k2 −m2
i

e−i(x−x
′)k

≡ i∆F (x− x′) , (4.31)

where we substituted k→ −k in the second line. Obviously we obtain, up to a phase-factor, the well-known
Feynman propagator ∆F (x−y) in Minkowski space-time as analytic continuation of the Euclidean Feynman
propagator. In this case, the poles are given by

k0
1/2 = ±

√
k2 +m2

i ≡ ±ωi,k , (4.32)

so that they lie on the real k0 axis. Again, we have a fixed integration contour, since the transformation
κ→ −ik0 in Eq. (4.30) requires an integration along the complex k0-axis. But due to the residue theorem,
we are able to deform this integration contour to the well-known Feynman contour CF , since there are no
further poles on the complex k0-plane. These two equivalent integration contours are depicted in Fig. [4.4].
Instead of using CF as integration contour, it is quite convenient to push the poles (4.32) from the real
k0-axis into the complex k0-plane. This can be obtained by adding a small imaginary part of the squared
mass m2

i in the denominator of Eq. (4.31)

∆F (x− x′) =

∫
d4k

(2π)4

1

k2 −m2
i + iε+

e−i(x−x
′)k . (4.33)

The poles of the Feynman propagator are now given by

k0
1/2 = ±

√
ω2
i,k − iε ≈ ±ωi,k ∓ iδ , (4.34)
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Re(k0)

Im(k0)

+ωi

-ωi

(a)

Re(k0)

Im(k0)

+ωi

-ωi

(b)

Figure 4.4: The diagram [(a)] shows the fixed integration contour in the complex k0-plane. The second diagram [(b)] shows
the usual Feynman integration contour CF , which can be obtained by deforming the inital contour of [(a)].

where we expanded the square root up to first order in ε/ω2
i,k and defined δ ≡ ε/2ωi,k. Since the poles of Eq.

(4.33) are in the complex k0-plane, it is possible to integrate along the real k0-axis in order to obtain the
desired Feynman propagator. The shifted poles and the new integration contour are illustrated in Fig. [4.5].
Using the results (4.31), (4.33) we are in the position to write down the final expression for the Gaussian

Re(κ)

Im(κ)

+δ

-δ

+ω

-ω

Figure 4.5: Poles and integration contour (red line) of the Feynman-Propagator after shifting this poles (4.32) into the
complex plane (4.34).

functional integral (4.24). We find

Z0,i[Ji] = exp

{
− i

2

∫
d4xd4y Ji(x)∆F,i(x− y)Ji(y)

}
, (4.35)

where we used the normalization (4.25) and also performed an analytic continuation of the space-time
integration measures inside the exponential. Then, the generating functional of the interaction-free toy
model takes the following form

Z0[Jl, JH ] = Z0,l[Jl]Z0,H [JH ]

= exp

{
− i

2

∫
d4xd4y Jl(x)∆F,l(x− y)Jl(y)

}
exp

{
− i

2

∫
d4xd4y JH(x)∆F,H(x− y)JH(y)

}

= exp

− i2
∫

d4xd4y
∑
i=l,H

Ji(x)∆F,i(x− y)Ji(y)

 . (4.36)

Inserting this result into Eq. (4.8), the generating functional of the full theory is given by

Z[Jl, JH ] = Nint exp

{
i

∫
d4x Lint

(
1

i

δ

δJl(x)
,

1

i

δ

δJH(x)

)}
exp

− i2
∫

d4xd4y
∑
i=l,H

Ji(x)∆F,i(x− y)Ji(y)

 .

(4.37)
In order to fix the normalization constant Nint, we again require that Z[0, 0] = 1, which leads to

N−1
int = exp

{
i

∫
d4x Lint

(
1

i

δ

δJl(x)
,

1

i

δ

δJH(x)

)}
Z0[Jl, JH ]

∣∣∣∣
Jl=JH=0

. (4.38)
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Before we continue with the derivation of the position-space Feynman rules for the toy model (4.1), we
interrupt this discussion and turn back to the functional determinant arising from the Gaussian functional
integration. In the discussion of Eqs. (4.24) and (4.25), we stated that this functional determinant corre-
sponds to an infinite constant. In order to prove this statement, we start from the definition of the operator
(4.11) and use the Fourier representation of the delta-distribution

Oi(x, y) =
(
�x +m2

i

)
δ(4)(x− y) =

(
�x +m2

i

) ∫ d4k

(2π)4
eik(x−y)

=

∫
d4k

(2π)4

(
−k2 +m2

i

)
eik(x−y) . (4.39)

Now, we know that the factor involving the functional determinant can be rewritten as(
detO(x, y)

)−1/2

= exp

{
−1

2
Tr ln O(x, y)

}
, (4.40)

where we used that ln detO(x, y) = Tr ln O(x, y). In order to rewrite the logarithm of the Fourier represen-
tation (4.39), we remember that the logarithm of a matrix M is, in general, defined by a power series of the
form lnM =

∑
j cjM

j . In principle, we know the exact form of the series representation of the logarithm,
but for the following discussion it will be very useful to consider this general form. Then, the logarithm of
the operator O(x, y) is given by

ln O(x, y) = ln

∫
d4k

(2π)4

(
−k2 +m2

i

)
eik(x−y)

=
∑
j

cj

[∫
d4k

(2π)4

(
−k2 +m2

i

)
eik(x−y)

]j
. (4.41)

Now, we consider the m-th term of this power series, which can be written as[∫
d4k

(2π)4

(
−k2 +m2

i

)
eik(x−y)

]m
=

∫
d4x1 · · · d4xm−1

∫
d4k1

(2π)4
· · · d

4km
(2π)4

(
−k2

1 +m2
i

)
· · ·
(
−k2

m +m2
i

)
eik1(x−x1)eik2(x1−x2) · · · eikm(xm−1−y)

=

∫
d4x1 · · · d4xm−1

∫
d4k1

(2π)4
· · · d

4km
(2π)4

(
−k2

1 +m2
i

)
· · ·
(
−k2

m +m2
i

)
e−ik1xeikmyeix1(k1−k2)eix2(k2−k3)

× · · · eixm−1(km−1−km)

=

∫
d4k1

(2π)4
· · · d

4km
(2π)4

(
−k2

1 +m2
i

)
· · ·
(
−k2

m +m2
i

)
e−ik1xeikmy(2π)4δ(4)(k1 − k2)(2π)4δ(4)(k2 − k3)

× · · · (2π)4δ(4)(km−1 − km)

=

∫
d4k1

(2π)4

(
−k2

1 +m2
i

)m
e−ik1(x−y) . (4.42)

Applying these steps to each term of the power series, the logarithm of the operator (4.11) is given by

ln O(x, y) =

∫
d4k

(2π)4
ln
(
−k2 +m2

i

)
e−ik(x−y) (4.43)

Inserting this result into Eq. (4.40), we are left with(
detO(x, y)

)−1/2

= exp

{
−1

2

∫
d4x

∫
d4k

(2π)4
ln
(
−k2 +m2

i

)}
, (4.44)

which tends to zero, since the operator trace of the logarithm diverges. As already mentioned before, this
divergent constant factor is not important for us, because the normalization of the functional integral is
chosen in a way that this factor cancels out. The reason why we showed the divergence of this functional
determinant becomes clear in the following Subsection, when have to consider another functional determi-
nant. Then, it will turn out that functional determinants may also have a physical meaning.
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After this short excursion we have to continue with the derivation of the Feynman rules. In order to
define these rules for the toy model (4.1), we have to expand the full generating functional (4.37) into a
perturbative series of the coupling constants g1, g2. In principle, we are able to calculate this perturbative
series order by order in the coupling constants by rewriting the exponential in Eq. (4.37) into its series
representation. For our purpose, it will be sufficient to consider this perturbative series only up to first order
in g1, g2. It should be taken into account that the expansion of the full generating functional involves the
expansion of the exponential in Eq. (4.37) as well as the expansion of the normalization constant (4.38).
In order to simplify the book-keeping of this calculation, we start with the expansion of the exponential, so
that

Z[Jl, JH ]

Nint
= exp

{
i

∫
d4x Lint

(
1

i

δ

δJl(x)
,

1

i

δ

δJH(x)

)}
Z0[Jl, JH ]

=

∞∑
n=0

(−i)n

n!

n∑
k=0

(
n
k

)[
g1

4

∫
d4x

(
1

i

δ

δJH(x)

)2(
1

i

δ

δJl(x)

)2
]n−k [

g2

2

∫
d4x′

1

i

δ

δJH(x′)

(
1

i

δ

δJl(x′)

)2
]k

× Z0[Jl, JH ]

=

{
1− ig1

4

∫
d4x

(
1

i

δ

δJH(x)

)2(
1

i

δ

δJl(x)

)2

− ig2

2

∫
d4x

1

i

δ

δJH(x)

(
1

i

δ

δJl(x)

)2

+O(g2
1 , g

2
2 , g1g2)

}
× Z0[Jl, JH ] . (4.45)

The action of the curly bracket on the interaction-free generating functional now produces the different terms
of the expansion of the full generating functional. The zeroth-order term just reproduces the free generating
functional, which is an expected result, since the zeroth order of a perturbative expansion corresponds to the
unperturbed case, i.e., to the interaction-free case. The first-order corrections can be obtained by calculating
the action of the terms proportional to g1 and g2 on the free generating functional. In order to simplify
matters, we consider both terms separately. Using the abbreviation ∆F,i(x− y) ≡ ∆F,i(x, y), the first term
yields

− ig1

4

∫
d4x

(
1

i

δ

δJH(x)

)2(
1

i

δ

δJl(x)

)2

Z0[Jl, JH ]

= −ig1

4

∫
d4x

(
1

i

δ

δJH(x)

)2
1

i

δ

δJl(x)

[
−
∫

d4z1 ∆F,l(x, z1)Jl(z1)

]
Z0[Jl, JH ]

= −ig1

4

∫
d4x

(
1

i

δ

δJH(x)

)2 [
i∆F,l(0) +

∫
d4z1d4z2 ∆F,l(x, z1)∆F,l(x, z2)Jl(z1)Jl(z2)

]
Z0[Jl, JH ]

= −ig1

4

∫
d4x

1

i

δ

δJH(x)

[
−i∆F,l(0)

∫
d4z1 ∆F,H(x, z1)JH(z1)

−
∫

d4z1d4z2d4z3 ∆F,l(x, z1)∆F,l(x, z2)∆F,H(x, z3)Jl(z1)Jl(z2)JH(z3)

]
Z0[Jl, JH ]

=

{
−ig1

4

∫
d4x i∆F,l(0)i∆F,H(0)− ig1

4

∫
d4x i∆F,l(0)

∫
d4z1d4z2 i∆F,H(x, z1)i∆F,H(x, z2)iJH(z1)iJH(z2)

− ig1

4

∫
d4x i∆F,H(0)

∫
d4z1d4z2 i∆F,l(x, z1)i∆F,l(x, z2)iJl(z1)iJl(z2)

−ig1

4

∫
d4x

∫
d4z1d4z2d4z3d4z4 i∆F,l(x, z1)i∆F,l(x, z2)i∆F,H(x, z3)i∆F,H(x, z4)iJl(z1)iJl(z2)iJH(z3)iJH(z4)

}
× Z0[Jl, JH ] , (4.46)

where we frequently used the symmetry of the Feynman propagator and inserted additional i-factors in the
last line. The second term gives

− ig2

2

∫
d4x

1

i

δ

δJH(x)

(
1

i

δ

δJl(x)

)2

Z0[Jl, JH ]

= −ig2

2

∫
d4x

1

i

δ

δJH(x)

1

i

δ

δJl(x)

[
−
∫

d4z1 ∆F,l(x, z1)Jl(z1)

]
Z0[Jl, JH ]

= −ig2

2

∫
d4x

1

i

δ

δJH(x)

[
i∆F,l(0) +

∫
d4z1d4z2 ∆F,l(x, z1)∆F,l(x, z2)Jl(z1)Jl(z2)

]
Z0[Jl, JH ]
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=

{
−ig2

2

∫
d4x i∆F,l(0)

∫
d4z1 i∆F,H(x, z1)iJH(z1)

−ig2

2

∫
d4x

∫
d4z1d4z2d4z3 i∆F,l(x, z1)i∆F,l(x, z2)i∆F,H(x, z3)iJl(z1)iJl(z2)iJH(z3)

}
Z0[Jl, JH ] ,

(4.47)

where we again introduced additional i-factors. When we compare both expressions, we are able to introduce
a consistent diagrammatic language in order to substitute the cumbersome mathematical expressions. To
this end, we consider the different mathematical elements of Eqs. (4.46) and (4.47) and introduce a dia-
grammatical equivalent for each of those elements. First of all, we observe that the Feynman propagators for
both fields are present in all expressions. The physical meaning of these objects is simply the propagation
of a particle of the species l or H from one space-time point to another. Therefore, it is quite natural to
introduce

i∆F,l(x, y) =
x y

, i∆F,H(x, y) =
x y

(4.48)

as diagrammatic equivalent of the different propagators. In addition to that, the expressions (4.46) and
(4.47) involve Feynman propagators with vanishing argument, which will be identified with

i∆F,l(x, x) ≡ i∆F,l(0) =

x

, i∆F,H(x, x) ≡ i∆F,H(0) =

x

. (4.49)

Furthermore, each expression involves a factor of the respective coupling constant and a space-time integra-
tion over x. These vertices can be represented as

− ig1

∫
d4x =

x
, − ig2

∫
d4x =

x
. (4.50)

Finally, we are left with the external sources which are always contracted with a Feynman propagator. In this
context, the ”contraction” has to be understood with respect to the space-time variable which is integrated
over. This has to be understood as an infinite-dimensional generalization of a matrix-vector product. In our
diagrammatic language, these external sources shall be illustrated by∫

d4z iJl(z) =
z

,

∫
d4z iJH(z) =

z
. (4.51)

Using these Feynman rules, we are able to translate the mathematical expressions (4.46), (4.47) into a
diagrammatic language. We find

− ig1

4

∫
d4x

(
1

i

δ

δJH(x)

)2(
1

i

δ

δJl(x)

)2

Z0[Jl, JH ]

=
1

4

 x
+

z1 z2x
+

z1 z2x
+

z2

z1

z4

z3
x

Z0[Jl, JH ] (4.52)

and

− ig2

2

∫
d4x

1

i

δ

δJH(x)

(
1

i

δ

δJl(x)

)2

Z0[Jl, JH ] =
1

2

 z1x
+

z2

z1
z3x

Z0[Jl, JH ] . (4.53)

In order to obtain the full expression of the generating functional up to first order in the coupling constants,
we also have to evaluate the normalization constant (4.38). It is quite obvious that the normalization
constant will give us the same terms as in Eqs. (4.46) and (4.47), since we have to calculate the same
functional derivatives of the free generating functional. But in contrast to Eq. (4.39) we have to evaluate
these terms for vanishing external sources Jl = JH = 0, so that only the first term of Eq. (4.46) survives.
Therefore, the normalization constant can be written as

N−1
int = exp

{
i

∫
d4x Lint

(
1

i

δ

δJl(x)
,

1

i

δ

δJH(x)

)}
Z0[Jl, JH ]

∣∣∣∣
Jl=JH=0



CHAPTER 4. CALCULATION OF THE LOW ENERGY CONSTANTS 77

=

{
1− ig1

4

∫
d4x

(
1

i

δ

δJH(x)

)2(
1

i

δ

δJl(x)

)2

− ig2

2

∫
d4x

1

i

δ

δJH(x)

(
1

i

δ

δJl(x)

)2

+O(g2
1 , g

2
2 , g1g2)

}

× Z0[Jl, JH ]

∣∣∣∣
Jl=JH=0

=

{
1− ig1

4

∫
d4x i∆F,l(0)i∆F,H(0) +O(g2

1 , g
2
2 , g1g2)

}
Z0[Jl, JH ]

=

1 +
1

4 x
+O(g2

1 , g
2
2 , g1g2)

Z0[Jl, JH ] , (4.54)

where we used the results (4.39), (4.46), and (4.47) and substituted the mathematical expression of the
non-vanishing term by its Feynman diagram. The final expression of the full generating functional (4.37),
up to first order in g1, g2, can now easily be stated by collecting the results (4.39), (4.52), (4.53), and (4.54)
and inserting them into Eq. (4.37). Since the mathematical expressions are quite long and cumbersome, it
will be easier to perform this calculation in the shape of the corresponding Feynman diagrams. We obtain

Z[Jl, JH ] =

1 +
1

4


x

+
z1 z2x

+
z1 z2x

+

z2

z1

z4

z3
x

+
1

2


z1x

+

z2

z1
z3x




1 +
1

4 x

× Z0[Jl, JH ] +O(g2
1 , g

2
2 , g1g2)

=

1 +
1

4


x

+
z1 z2x

+
z1 z2x

+

z2

z1

z4

z3
x

+
1

2


z1x

+

z2

z1
z3x




×

1− 1

4 x

Z0[Jl, JH ] +O(g2
1 , g

2
2 , g1g2)

=

1 +
1

4


z1 z2x

+
z1 z2x

+

z2

z1

z4

z3
x

+
1

2


z1x

+

z2

z1
z3x


Z0[Jl, JH ]

+O(g2
1 , g

2
2 , g1g2) , (4.55)

where we expanded the denominator according to (1 + x)−1 ≈ 1 − x in the second step. Obviously, the
normalization constant ensures that the two-loop vacuum diagram cancels from the generating functional.
This is not a coincidence, since one can show to all orders in perturbation theory that the vacuum diagrams,
i.e., those diagrams without external legs, have to cancel, if the generating functional is normalized. A vivid
proof of this statement for ordinary ϕ4-theory can be found in Ref. [PeSc]. In principle, using Eq. (2.64),
it would now be possible to calculate the first-order corrections of the n-point functions of our toy model.
Then, the whole procedure, presented in this subsection could be used to calculate higher-order corrections
of the full generating functional and of the n-point functions. Of course, these calculations become more and
more tedious for higher orders in the perturbative expansion. But since this analysis is not important for
the following sections, we stop the perturbative expansion at this point and turn to the low-energy analysis
of our scalar field theory.

4.1.2 Low-Energy Effective Model

The basic considerations of the previous subsection were intended as a brief introduction into the functional
treatment of a scalar quantum field theory, but also as a starting point of the low-energy analysis of this
Subsection. To be particular, starting from the toy model (4.1), we want to find an effective model which
describes the dynamics and phenomena of our scalar field theory at low energies. The basic idea of this kind
of analysis is the simple observation that each physical process involves many energy scales. The starting
point of a low-energy analysis of such a process is now based on the fact that, in general, these energy scales
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are widely separated. This allows us to find an approximate low energy description of the physical system
without including the details of high-energy phenomena. To this end, one has to identify the relevant degrees
of freedom at low energies. Other parameters and degrees of freedom which are large compared to the chosen
energy scale can be sent to infinity. In order to improve this approximation, it is possible to introduce the
interactions of the neglected energy scales as small perturbations of the low-energy description. As already
mentioned in the introduction of this section, our toy model describes the interaction of a light scalar field
ϕl(x) with a heavy scalar field ϕH(x). From now on, we assume that the mass of the heavy field excitations
mH is very large compared to the light particle mass ml, i.e., mH � ml. Now, at energies smaller than the
heavy particle mass, we expect that the dynamics of the toy model is fully determined by the self-interaction
of light scalar field ϕl(x). In order to derive an effective field theory for the low energy regime of the theory,
we have to integrate the heavy field out of the action (4.1) of our model. The starting point for this analysis
is given by the functional integral

〈ϕl,f , ϕH,f ,∞|ϕl,i, ϕH,i,−∞〉 = N
∫

Dϕl(x)DϕH exp {iStoy[ϕl, ϕH ]}

= N
∫

Dϕl(x) exp

{
i

∫
d4x

[
1

2
(∂µϕl) ∂

µϕl −
m2
l

2
ϕ2
l

]}
×
∫

DϕH(x) exp

{
i

∫
d4x

[
1

2
(∂µϕH) ∂µϕH −

m2
H

2
ϕ2
H −

g1

4
ϕ2
Hϕ

2
l −

g2

2
ϕHϕ

2
l

]}
= N

∫
Dϕl(x) exp

{
i

∫
d4x

[
1

2
(∂µϕl) ∂

µϕl −
m2
l

2
ϕ2
l

]}
× IH [ϕl] , (4.56)

where we used Eq. (2.52) and defined the functional integral of the heavy field as

IH [ϕl] =

∫
DϕH(x) exp

{
i

∫
d4x

[
1

2
(∂µϕH) ∂µϕH −

m2
H

2
ϕ2
H −

g1

4
ϕ2
Hϕ

2
l −

g2

2
ϕHϕ

2
l

]}
. (4.57)

Since the interactions between both fields only involve at most quadratic powers of the respective fields, the
above functional integral can be solved analytically. According to the discussion of the previous subsection,
we rewrite this functional integral as

IH [ϕl] =

∫
DϕH(x) exp

{
i

∫
d4x

[
−1

2
ϕH�ϕH −

m2
H

2
ϕ2
H −

g1

4
ϕ2
Hϕ

2
l −

g2

2
ϕHϕ

2
l

]}
=

∫
DϕH(x) exp

{
− i

2

∫
d4x

[
ϕH

(
� +m2

H +
g1

2
ϕ2
l

)
ϕH + g2ϕHϕ

2
l

]}
=

∫
DϕH(x) exp

{
− i

2

∫
d4xd4y ϕH(x)Oϕl(x, y)ϕH(y) + i

∫
d4x Jϕl(x)ϕH(x)

}
, (4.58)

where we integrated the kinetic term by parts and defined the operator

Oϕl(x, y) =
[
�x +m2

H +
g1

2
ϕ2
l (x)

]
δ(4)(x− y) (4.59)

and the ”source”
Jϕl(x) = −g2

2
ϕ2
l (x) . (4.60)

In order to ensure the convergence of the Gaussian functional integral (4.58), we have to perform the Wick
rotation of the integrand. Using Eqs. (4.12)-(4.21) we find

IH [ϕl] =

∫
DϕH(xE) exp

{
−1

2

∫
d4xEd4yE ϕH(xE)Oϕl,E(xE , yE)ϕH(yE) +

∫
d4xE Jϕl(xE)ϕH(xE)

}
,

(4.61)
where we defined the Euclidean operator

Oϕl,E(xE , yE) =
[
−�x,E +m2

H +
g1

2
ϕ2
l (xE)

]
δ(4)(xE − yE) . (4.62)

Again, we obtain a damped real part of the integrand, so that the convergence of the functional integral is
guaranteed. Finally, using Eq. (6.39), the functional integral is given by

IH [ϕl] = NH
(

detOϕl,E(xE , yE)

)−1/2

exp

{
1

2

∫
d4xEd4yE Jϕl(xE)O−1

ϕl,E
(xE , yE)Jϕl(yE)

}
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= NH
(

detOϕl(x, y)

)−1/2

exp

{
i

2

∫
d4xd4y Jϕl(x)O−1

ϕl
(x, y)Jϕl(y)

}
= NH

(
detOϕl(x, y)

)−1/2

exp

{
i

∫
d4xd4y

g2
2

8
ϕ2
l (x)

[
�x +m2

H +
g1

2
ϕ2
l (x)

]−1

δ(4)(x− y)ϕ2
l (y)

}
= NH

(
detOϕl(x, y)

)−1/2

exp

{
i

∫
d4x

g2
2

8
ϕ2
l (x)

[
� +m2

H +
g1

2
ϕ2
l (x)

]−1

ϕ2
l (x)

}
, (4.63)

where we performed the analytic continuation back to Minkowski space-time and introduced the inverse
operator

O−1
ϕl

(x, y) =
[
�x +m2

H +
g1

2
ϕ2
l (x)

]−1

δ(4)(x− y) (4.64)

in the third line. This result can now be inserted into the transition amplitude (4.56), so that

〈ϕl,f , ϕH,f ,∞|ϕl,i, ϕH,i,−∞〉

= N
∫

Dϕl(x) exp

{
i

∫
d4x

[
1

2
(∂µϕl) ∂

µϕl −
m2
l

2
ϕ2
l

]}
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(
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(
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l

}
= Neff
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(
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(∂µϕl) ∂
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l +
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8
ϕ2
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(
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H +
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2
ϕ2
l

)−1

ϕ2
l

]}
,

(4.65)

with Neff = NNH . The inverse operator in the above exponential can be expanded as follows[
� +m2

H +
g1

2
ϕ2
l (x)

]−1

=
{(

� +m2
H

) [
1 +

g1

2

(
� +m2

H

)−1
ϕ2
l (x)

]}−1

=

∞∑
m=0

(−1)m
[g1

2

(
� +m2

H

)−1
ϕ2
l (x)

]m 1

m2
H

∞∑
n=0

(−1)n
(

�
m2
H

)n
=

1

m2
H

∞∑
n=0

(−1)n
(

�
m2
H

)n
+ terms involving two or more ϕl fields , (4.66)

where we only took the m = 0 term of the second sum. The reason for this step will become apparent, when
we apply the methods of this section to the extended Linear Sigma Model in the following sections. Since,
by assumption, the mass of the heavy-field excitations is very large in comparison with the other parameters
of the model, we are able to neglect terms of order O(m−6

H ). Then, the action of the low-energy effective
theory for our toy model is given by

S
(1)
toy,eff =

∫
d4x

[
1

2
(∂µϕl)

2 − m2
l

2
ϕ2
l +

g2
2

8m2
H

ϕ2
l

(
1− �

m2
H

)
ϕ2
l

]
=

∫
d4x

[
1

2
(∂µϕl)

2 − m2
l

2
ϕ2
l +

g2
2

8m2
H

ϕ4
l +

g2
2

2m4
H

ϕ2
l (∂µϕl)

2

]
, (4.67)

where the superscript (1) refers to the fact that we expanded the inverse operator (4.66) only up to n = 1.
Furthermore, we integrated the last term of the above equation by parts. Before we want to interpret this
result, we turn back to the transition amplitude (4.65). After integrating the heavy field ϕH(x) out of the
theory, we are left with an exponential including the low-energy effective action of our toy model times
the functional determinant of Eq. (4.59). In the following, we want to find the physical interpretation of
this functional determinant. To this end, we first have to rewrite the operator (4.59). The basic idea is to
represent this operator as a generalized matrix-matrix product of two other operators, i.e.,

Oϕl(x, x
′) =

[
�x +m2

H +
g1

2
ϕ2
l (x)

]
δ(4)(x− x′)

=
(
�x +m2

H

)
δ(4)(x− x′) +

g1

2

(
�x +m2

H

)
∆F,H(x, x′)ϕ2

l (x
′)

=

∫
d4y

[(
�x +m2

H

)
δ(4)(x− y)δ(4)(y − x′) +

g1

2

(
�x +m2

H

)
δ(4)(x− y)∆F,H(y, x′)ϕ2

l (x
′)
]

=

∫
d4y O0(x, y)Oϕl,I(y, x

′) , (4.68)
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where we used that the heavy-particle Feynman propagator is a Green function of the respective Klein-
Gordon operator. Furthermore, we defined

O0(x, y) =
(
�x +m2

H

)
δ(4)(x− y) , (4.69)

Oϕl,I(y, x
′) = δ(4)(y − x′) +

g1

2
∆F,H(y, x′)ϕ2

l (x
′) . (4.70)

The reason why we wanted to represent the operator (4.59) as a product of two other operators becomes
apparent, when we insert Eq. (4.68) into the functional determinant. Since the determinant of a product
of matrices is equal to the product of the determinants of the respective matrices, we are able to rewrite
the determinant of the expression (4.59) as the product of the determinants of Eqs. (4.69) and (4.70). At
this point, we remember the discussion of the functional determinant of the previous subsection. There,
we showed that the functional determinant of Eq. (4.11), which is identical to Eq. (4.69), corresponds to
an infinite constant. Now, since we are able to factorize this infinite factor, we are can absorb it into the
normalization constant. Using these considerations, we find(

detOϕl(x, x
′)

)−1/2

=

(
detO0(x, y)detOϕl,I(y, x

′)

)−1/2

= Ndet exp

{
−1

2
Tr ln Oϕl,I(y, x

′)

}
, (4.71)

where we again used that the logarithm of the determinant of a matrix is equal to the trace over the logarithm
of this matrix. As mentioned before, the infinite factor Ndet can be absorbed into the overall normalization
constant. At this point, we are able to study the physical meaning of the above exponential. To this end,
we have to expand the matrix logarithm into its series representation

ln(1 + x) =

∞∑
n=1

(−1)n+1

n
xn . (4.72)

In contrast to the discussion of the previous subsection, it will be advantageous to consider the above series
representation instead of the general case (4.41), since the operator (4.70) is already in the right form to use
Eq. (4.72). We find

exp

{
−1

2
Tr ln Oϕl,I(x, x

′)

}
= exp

{
−1

2
Tr ln

[
δ(4)(x− x′) +
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2
∆F,H(x, x′)ϕ2
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]}

= exp

{
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2
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(−1)n+1

n
Tr
(g1

2
∆F,H(x, x′)ϕ2

l (x
′)
)n}

, (4.73)

where we renamed the space-time variable y → x. In order to interpret this result, we consider the m-th
term of the above series

(−1)m+1

m
Tr
(g1

2
∆F,H(x, x′)ϕ2

l (x
′)
)m

=
(−1)m+1

m
Tr
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d4x1d4x2 · · · d4xm−1∆F,H(x, x1)ϕ2

l (x1)∆F,H(x1, x2)ϕ2
l (x2) · · ·∆F,H(xm−1, x

′)ϕ2
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]
=
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m

(g1

2

)m ∫
d4xd4x1 · · · d4xm−1∆F,H(x, x1)ϕ2

l (x1)∆F,H(x1, x2)ϕ2
l (x2) · · ·∆F,H(xm−1, x)ϕ2

l (x)

=
−1

m

(
−ig1

2

)m ∫
d4xd4x1 · · · d4xm−1i∆F,H(x, x1)i2ϕ2

l (x1)i∆F,H(x1, x2)i2ϕ2
l (x2) · · · i∆F,H(xm−1, x)i2ϕ2

l (x) .

(4.74)

The reason why we introduced the additional i-factors in the last line is that we are now able to use the
Feynman rules of the last section in order to translate the above expression into a Feynman diagram. The
external sources of the previous discussion are now given by the light fields ϕl(x), because we are able to
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interpret them as external fields in this context. Translating Eq. (4.74) into a Feynman diagram, we find

(−1)m+1

m
Tr
(g1

2
∆F,H(x, x′)ϕ2

l (x
′)
)m

= (−1)

x2

x

x3

xm−1

x1 . (4.75)

Obviously, this term describes a connected one-loop diagram with m vertices. When we naively compare the
left- and the right-hand side of Eq. (4.75), it seems that the constant factor 1/(2mm) is missing. But in fact,
this is not the case, since this factor exactly cancels out because of the symmetry properties of the diagram.
To be particular, at each of the m vertices, the external light fields can be interchanged, which gives a factor
of 2m. Furthermore, the diagram is symmetric under the cyclic group of rank m, Zm, i.e., there are m
possibilities to rotate a distinct vertex into a neighboring vertex, yielding another factor of m. Combining
both factors, we end up with a symmetry factor of the diagram, which is equivalent to the constant factor
of the logarithm series. Finally, translating each term of the logarithmic series into a Feynman diagram, Eq.
(4.73) becomes
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∆F,H(x, x′)ϕ2
l (x
′)
)2]

+ . . .
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 , (4.76)

where we used that each diagram contains one factor of (−1), so that the exponential gets a positive sign.
Obviously, the factor containing the functional determinant, Eq. (4.71), corresponds to the one-loop correc-
tions of the 2n-point functions of the light scalar field ϕl(x).

Before we discuss the consequences of this result, we turn back to Eq. (4.65). After integrating the
heavy field out of the theory, the low-energy effective theory contains an infinite series of interaction terms
for the light field. Each of these terms is coupled with a so-called Low Energy Constant (LEC), which in
principle contains all the information about the heavy particles which have been removed from the theory.
An explicit example for these LECs is given by Eq. (4.67), where we neglected all interaction terms involving

more than four light fields and all terms of order O(m−6
H ). The remaining interaction terms in S

(1)
toy,eff are

coupled by the LECs g2
2/8m

2
H and g2

2/2m
4
H . These constants can also be obtained in another way. In order

to see this, we observe that the action (4.1) is symmetric under the Z2 transformation ϕl → −ϕl. At low
energies, this symmetry must be conserved, so that it also must be present in the corresponding effective
theory. Therefore, a possible ansatz for the low-energy effective theory would be given by the most general
Z2 symmetric Lagrangian

Stoy,eff [ϕl] =

∫
d4x

[
L0,l(ϕl, ∂µϕl) + `1ϕ

4
l + `2ϕ

2
l�ϕ

2
l + . . .

]
, (4.77)

with coefficients `i to be determined. These LECs can be obtained by matching the effective theory to the
initial theory, since both theories must be identical, i.e., must yield the same scattering matrix elements,
at high energy scales. The matching condition for `1 and `2 is depicted in Fig. [4.6] and shows how, at
tree-level, the effective theory must be matched to the full theory. To be particular, one has to calculate the
scattering matrix element of the s-, t-, and u-channel diagrams of the full theory and expand the resulting
expression for large mH . This is possible, since the heavy particle mass is very large compared to the
energy scale at which our effective theory should be valid. Then, we calculate the same expressions for the
effective field theory and compare both expressions in order to determine the LECs `1 and `2. This matching



CHAPTER 4. CALCULATION OF THE LOW ENERGY CONSTANTS 82

Figure 4.6: Tree-level contributions to ϕlϕl → ϕlϕl of the full and the effective field theory.

procedure can also be extended to loop diagrams, which will result in loop corrections of the LECs of the
theory. At this point, the importance of the functional determinant (4.76) comes into play, since it includes
the one-loop contributions to the 2n-point functions of the light fields. But in this work, we will only focus
on the determination of tree-level LECs, so that we do not have to consider the functional determinants of
the theory.

4.2 The Extended Linear Sigma Model (eLSM)

As already mentioned in the introduction of this chapter, we now turn to the eLSM. In the following
Subsections, we present the eLSM in detail. In Sec. [4.2.1], we introduce the physical content of the model.
Then, in Sec. [4.2.2], we focus on the mathematical implementation of this physical content and introduce
the main building blocks of the eLSM. Furthermore, we will use these basic objects to construct the relevant
interaction terms of the model.

4.2.1 The Physical Content of the eLSM

In Sec. [2.3], we briefly introduced Quantum Chromodynamics by deriving the QCD Lagrangian. It was
shown that the quark part of this Lagrangian possesses an approximate SU(Nf )V × SU(Nf )A symmetry,
the so-called chiral symmetry. In the third Chapter, it turned out that chiral symmetry plays an essential
role in the non-perturbative treatment of the low-energy regime of strong interactions. The framework
of Chiral Perturbation Theory basically relies on the analysis of the hadronic n-point functions and their
symmetry relations. Furthermore, it can be shown that ChPT yields the most general solution of the chiral
WFT identities, see Ref. [Leut]. In this approach, the dynamical fields enter the Lagrangian through a
nonlinear realization of the underlying chiral symmetry, compare Sec. [3.2]. An important characteristic
of this nonlinear realization is that the scalar hadronic degrees of freedom are already integrated out, so
that only the Nambu-Goldstone bosons, i.e., pseudoscalar objects, enter the Lagrangian. This is beautifully
demonstrated by Eq. (3.165), where the zeroth component of the Euclidean unit vector ~U is eliminated
by solving the normalization constraint. In Sec. [3.2], we also saw that, in the case of an exact underlying
symmetry, the interaction terms of these fields always have to involve space-time derivatives. The physical
meaning of this circumstance can be understood, when we translate the space-time derivatives into momenta
of the Nambu-Goldstone bosons. Then, we recognize that their interaction becomes arbitrarily weak at small
momenta, which is a basic feature of Nambu-Goldstone bosons. In addition to that, the derivative couplings
offer a way for a systematic expansion of the scattering-matrix elements in powers of Nambu-Goldstone boson
momenta. Another possibility to realize chiral symmetry in an effective field theory containing hadronic
degrees of freedom is given by a linear realization. In these so-called linear sigma models, scalar and
pseudoscalar fields enter the Lagrangian. In addition to that, it is possible to extend this linear sigma model
in a way that also vector and axial-vector degress of freedom can be included, see also Ref. [Par2]. In the
following, we want to introduce these degrees of freedom for the case of two quark flavors.

4.2.1.1 Scalar Mesons

Mesons with spin quantum number S = 1 and angular momentum L = 1, coupled to a total angular
momentum of J = 0, are called scalar mesons. The term ”scalar” derives from two important properties
of the corresponding field. On the one hand, the vanishing total angular momentum requires that the
corresponding field transforms as a singlet (or a scalar) under proper orthochronous Lorentz transformations.
On the other hand, using

P = (−1)L+1 , (4.78)

we obtain a positive parity, which ensures that the scalar field does not change its sign under spatial reflec-
tions. Furthermore, using

C = (−1)L+S , (4.79)
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we obtain that scalar mesons also have a positive sign under charge conjugation transformations. It is
conventional to summarize the above properties by classifying

I(JPC) , (4.80)

where I denotes the isospin quantum number. In this convention, the scalar mesons are classified as I(0++)
mesons. The possible values of the isospin quantum number can be derived as follows: In the case of Nf = 2,
the QCD Lagrangian possesses an approximate global SU(2)V symmetry, compare Sec. [2.3.2]. The quark
and anti-quark fields arise as irreducible representations of the isospin group. In particular, the quark field
Ψ(x) defines an isodoublet, denoted as [2]f , while the anti-quark field emerges as an anti-doublet. Now, the
quark/anti-quark nature of a meson requires the coupling of the doublet with the anti-doublet. According
to the usual coupling rules, one finds

[2]f ⊗ [2̄]f = [1]f ⊕ [3]f , (4.81)

i.e., a singlet, I = 0, and a triplet, I = 1. The eLSM contains both, a singlet scalar meson, denoted as σN ,
and a triplet of scalar mesons, which will be described by the isospin vector ~a0 = (a0,1, a0,2, a0,3)

T
. Especially

the singlet σN will be of great importance in the analysis of Sec. [4.3]. This significance originates from the
fact that a singlet scalar meson has the same quantum numbers as the vacuum, so that the σN -field will be
allowed to acquire a non-vanishing vacuum expectation value. This fact will be used in Sec. [4.3] to model
the spontaneous breakdown of chiral symmetry in the framework of the eLSM. Now, we have to identify these
fields with physical particles1. This allows a certain scope, since there are various possibilities. For example
in the isotriplet sector, there is the a0(980) meson with a mass of ma0(980) = (980±20) MeV and in addition
to that, there is the a0(1450) meson with a mass of ma0(1450) = (1474± 19) MeV. In the singlet sector, the
situation is more involved, since many 0(0++) states were found by the experimentalists: The f0(500) with
a mass of mf0(500) = (400− 550) MeV; the f0(980) with a mass of mf0(980) = (990± 20) MeV; the f0(1370)
with a mass of mf0(1370) = (1200 − 1500) MeV; the f0(1500) with a mass of mf0(1500) = (1508 ± 6) MeV

and the f0(1710) with a mass of mf0(1710) = 1722+6
−5 MeV. In addition to that, there is another ambiguity

concerning the scalars, which arises from the inner structure of these resonances. To be particular, some
of these resonances, like the f0(980), are sometimes considered as exotic objects like multiquark states,
glueballs, or meson-meson bound states. But the discussion of these possibilities lies beyond the aim of
this work, so that we, for example, refer to Ref. [Par2] for a more detailed summary of the singlet scalar
mesons and to the literature for more information concerning the exotic objects. Throughout this work, we
will interpret the σN -field as well as the ~a0-fields as quark/anti-quark states, so that all four fields can be
combined to a four-vector in isospin space, which can be assigned to the following quadratic form

Sa =
√

2Ψ̄(x)T aV Ψ(x) , a = 0, . . . , 3 , (4.82)

where the generators are given by Eqs. (6.13) and (6.15). In the following, we want to study the transfor-
mation behavior of Eqs. (4.82) with respect to infinitesimal vector- and axial-vector transformations and
show that Sa really transforms like a scalar meson. To this end, we also check the transformation proper-
ties of Eq. (4.82) with respect to proper orthochronous Lorentz transformations, C-transformations, and
P -transformations.

Before we are able to determine the transformation behavior of Eq. (4.82) under infinitesimal SU(2)V -
and SU(2)A-transformations, we have to find the respective transformation properties of the quark and
anti-quark fields. From Eq. (3.142), we obtain

Ψ(x)
SU(2)V−→ Ψ′(x) =

(
1− iαV,iT iV

)
Ψ(x) , (4.83)

Ψ(x)
SU(2)A−→ Ψ′(x) =

(
1− iαA,iγ5T

i
V

)
Ψ(x) , . (4.84)

Then, the transformation behavior of the anti-quark fields follows immediately

Ψ̄(x)
SU(2)V−→ Ψ̄′(x) =

[(
1− iαV,iT iV

)
Ψ(x)

]†
γ0 = Ψ̄(x)

(
1 + iαV,iT

i
V

)
, (4.85)

Ψ̄(x)
SU(2)A−→ Ψ̄′(x) =

[(
1− iαA,iγ5T

i
V

)
Ψ(x)

]†
γ0 = Ψ̄(x)

(
1− iαA,iγ5T

i
V

)
, (4.86)

where we used Eqs. (4.83), (4.84), as well as (6.29). Using the above relations, the a = 0 component of Eq.

1 Unless indicated otherwise, all masses are obtained from Ref. [PDG].



CHAPTER 4. CALCULATION OF THE LOW ENERGY CONSTANTS 84

(4.82) transforms as

S0(x)
SU(2)V−→ S0′(x) =

√
2Ψ̄(x)

(
1 + iαV,iT

i
V

)
T 0
V

(
1− iαV,jT jV

)
Ψ(x)

=
√

2Ψ̄(x)
[
1− iαV,jT jV + iαV,iT

i
V +O(α2

V,i)
]

Ψ(x)

= S0(x) , (4.87)

and

S0(x)
SU(2)A−→ S0′(x) =

√
2Ψ̄(x)

(
1− iαA,iγ5T

i
V

)
T 0
V

(
1− iαA,jγ5T

j
V

)
Ψ(x)

=
√

2Ψ̄(x)T 0
V

[
1− iαA,jγ5T

j
V − iαA,iγ5T

i
V +O(α2

A,i)
]

Ψ(x)

=
√

2Ψ̄(x)T 0
V Ψ(x)− αA,i

√
2Ψ̄(x)iγ5T

i
V Ψ(x)

= S0(x)− ~αA · ~P (x) , (4.88)

where we defined the vector ~P (x) =
√

2Ψ̄(x)iγ5
~TV Ψ(x) and neglected terms of quadratic or higher order

in the group parameters. In the upcoming subsection, we will see that this vector belongs to a similar
four-vector like Eq. (4.82), which can be assigned to pseudoscalar fields. From Eq. (4.87), we observe that
the zeroth component of Eq. (4.82) indeed transforms as an isoscalar. On the other hand, the axial-vector
transformation induce a mixing of the scalar singlet and the pseudoscalar triplet. A similar result can be
found for the triplet component of Eq. (4.82)

Si(x)
SU(2)V−→ Si′(x) =

√
2Ψ̄(x)

(
1 + iαV,jT

j
V

)
T iV

(
1− iαV,kT kV

)
Ψ(x)

=
√

2Ψ̄(x)
[
T iV − iαV,kT iV T kV + iαV,jT

j
V T

i
V +O(α2

V,i)
]

Ψ(x)

=
√

2Ψ̄(x)T iV Ψ(x)−
√

2Ψ̄(x)iαV,j

[
T iV , T

j
V

]
−

Ψ(x)

=
√

2Ψ̄(x)T iV Ψ(x) + εijkαV,j
√

2Ψ̄(x)T kV Ψ(x)

=
(
~S(x) + ~αV × ~S(x)

)i
, (4.89)

Si(x)
SU(2)A−→ Si′(x) =

√
2Ψ̄(x)

(
1− iαA,jγ5T

j
V

)
T iV

(
1− iαA,kγ5T

k
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
T iV − iαA,jγ5T

i
V T

k
V − iαA,jγ5T

j
V T

i
V +O(α2

A,i)
]

Ψ(x)

=
√

2Ψ̄(x)T iV Ψ(x)−
√

2Ψ̄(x)iαA,jγ5

[
T iV , T

j
V

]
+

Ψ(x)

=
√

2Ψ̄(x)T iV Ψ(x)− αiA
√

2Ψ̄(x)iγ5T
0
V Ψ(x)

=
(
~S(x)− ~αAP 0(x)

)i
, (4.90)

where we used Eqs. (6.7), (6.8) in combination with Eqs. (6.13) and (6.15) and defined P 0(x) =
√

2Ψ̄(x)iγ5T
0
V Ψ(x).

This object defines the zeroth component of a four-vector describing the pseudoscalar isosinglet and isotriplet
fields. From Eq. (4.89) we obtain that the transformation behavior of ~S with respect to SU(2)V transforma-
tions looks like the infinitesimal rotation of a vector in isospin space. This result is not surprising, since the
triplet was initially defined as an isovector. Similar to the singlet component of Eq. (4.82), the axial-vector
transformations mix the scalar isotriplet with the pseudoscalar isosinglet.

Using Eqs. (3.86), (3.87), (3.94), (3.95) as well as Eqs. (3.101) and (3.102), it is easy to show that Eq.
(4.82) transforms as a scalar object. For proper orthochronous Lorentz transformations, we find

Sa(x)
SO+(1,3)−→ Sa′(x′) =

√
2Ψ̄(Λ−1x)S−1(Λ)T aV S(Λ)Ψ(Λ−1x) = Sa(Λ−1x) . (4.91)

For the discrete symmetry operations, we obtain

Sa(x)
C−→ Sa′(x) =

√
2Ψt(x)CT aV CΨ̄t(x) =

√
2
(
Ψ̄(x)T aΨ(x)

)t
= Sa(x) , (4.92)

Sa(t, r)
P−→ Sa′(t, r′) =

√
2Ψ̄(t,−r)γ0T

a
V γ0Ψ(t,−r) =

√
2Ψ̄(t,−r)T aV Ψ(t,−r) = Sa(t,−r) , (4.93)



CHAPTER 4. CALCULATION OF THE LOW ENERGY CONSTANTS 85

where we used that the t only acts on spinor space. In addition to that, the second step of Eq. (4.92) involves
two sign changes. The first change of sign originates from the square of the charge conjugation operator,
CC = −1, while the second one arises from the interchange of the two fermionic fields. The above Eqs.
(4.91)-(4.93) show that Eq. (4.82) really describes a JPC = 0++ object.

4.2.1.2 Pseudoscalar Mesons

Similar to the scalar mesons of the previous subsection, the pseudoscalar mesons also carry a total angular
momentum of J = 0. But in contrast to the scalar ones, here this total angular momentum quantum number
arises from a different coupling of the angular momentum L and spin S. To be particular, the pseudoscalar
mesons are particles with spin S = 0 and angular momentum L = 0. Due to Eqs. (4.78) and (4.79), the
pseudoscalar mesons are I(0)−+ particles. In accordance with the discussion of the previous subsection, the
possible isospin quantum numbers are I = 0 and I = 1. The isosinglet pseudoscalar field that enters the
eLSM will be denoted as ηN , while the isotriplet will be described by ~π = (π1, π2, π3)T . Again, we have to
identify these fields with physical particles. The possible 0(0−+) states are given by the η-meson which has a
mass of mη = (547.862±0.018) MeV; the η′(958) with a mass of mη′(958) = (957.78±0.06) MeV; the η(1295)
with a mass of mη(1295) = (1294± 4) MeV; the η(1405) with a mass of mη(1405) = (1408.8± 1.8) MeV and
finally the η(1475) with a mass mη(1475) = (1476 ± 4) Mev. In this work, we want to identify the ηN field
with the lightest η-mesons. In this context, the strange/non-strange isoscalar mixing has to be taken into
account, since the mixing in the pseudoscalar sector is not negligible. This implies that ηN -field contains
information about the η-meson as well as the η′(958). For further information concerning the η-η′-mixing,
see Ref. [Par2] and refs. therein.

Now, we turn to the 1(0−+) states. The isovector ~π shall be identified with the pion triplet
{
π0, π±

}
2.

Due to isospin-breaking and electromagnetic effects, the masses of the neutral and the charged pions are
slightly different. While the neutral pion has a mass of mπ0 = (134.9766± 0.0006) MeV, the mass of
the charged pions is given by mπ± = (139.57018± 0.00035) MeV. As already mentioned several times,
the three pions are considered as the (pseudo-)Nambu-Goldstone bosons of spontaneous chiral symmetry
breaking. Therefore, they will play a key role in the low-energy analysis of the eLSM in Sec. [4.3]. For
the sake of completeness, we want to summarize the two remaining 1(0−+) resonances which could be de-
scribed by ~π: The π(1300) with a mass of mπ(1300) = (1300 ± 100) MeV and the π(1800) with a mass of
mπ(1800) = (1812± 12) MeV.

As already introduced in the previous subsection, the pseudoscalar fields can be assigned to a quark/anti-
quark bilinear form

P a(x) =
√

2Ψ̄(x)iγ5T
a
V Ψ(x) , (4.94)

which describes the isosinglet for a = 0 and the isotriplet for a = i = 1, 2, 3. In analogy to the scalar case,
we want to derive the transformation behavior of Eq. (4.94) under vector and axial-vector transformations.
Using Eqs. (4.83)-(4.86), the singlet component transforms as

P 0(x)
SU(2)V−→ P 0′(x) =

√
2Ψ̄(x)

(
1 + iαV,iT

i
V

)
iγ5T

0
V

(
1− iαV,jT jV

)
Ψ(x)

=
√

2Ψ̄(x)
[
iγ5T

0
V − iγ5T

0
V iαV,jT

j
V + iαV,iT

i
V iγ5T

0
V +O(α2

V,i)
]

Ψ(x)

= P 0(x) , (4.95)

and

P 0(x)
SU(2)A−→ P 0′(x) =

√
2Ψ̄(x)

(
1− iαA,iγ5T

i
V

)
iγ5T

0
V

(
1− iαA,jγ5T

j
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
iγ5T

0
V − iγ5T

0
V iαA,jγ5T

j
V − iαA,iγ5T

i
V iγ5T

0
V +O(α2

A,i)
]

Ψ(x)

=
√

2Ψ̄(x)iγ5T
0
V Ψ(x) + αA,j

√
2Ψ̄(x)T jV Ψ(x)

= P 0(x) + ~αA · ~S(x) , (4.96)

where we used γ2
5 = 14×4 as well as

[
T 0
V , T

i
V

]
− = 0, for i = 1, 2, 3. Again, we find that the zeroth component

transforms as a singlet with respect to vector transformations. Furthermore, the axial-vector transformations

2 This formulation is a bit inaccurate, since the isovector ~π consists of neutral pseudoscalar fields. The physical pion fields
can be obtained as linear combinations of the components of the isovector ~π. The same statement holds for all other charged
resonances.
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induce a mixing of a pseudoscalar object with a scalar one. The triplet components transform according to

P i(x)
SU(2)V−→ P i′(x) =

√
2Ψ̄(x)

(
1 + iαV,jT

j
V

)
iγ5T

i
V

(
1− iαV,kT kV

)
Ψ(x)

=
√

2Ψ̄(x)
[
iγ5T

i
V − iγ5T

i
V iαV,kT

k
V + iαV,jT

j
V iγ5T

i
V +O(α2

V,i)
]

Ψ(x)

=
√

2Ψ̄(x)iγ5T
i
V Ψ(x) + αV,j

√
2Ψ̄(x)γ5

[
T iV , T

j
V

]
−

Ψ(x)

=
√

2Ψ̄(x)iγ5T
i
V Ψ(x) + εijkαV,j

√
2Ψ̄(x)iγ5T

k
V Ψ(x)

=
(
~P (x) + ~αV × ~P (x)

)i
, (4.97)

and

P i(x)
SU(2)A−→ P i′(x) =

√
2Ψ̄(x)

(
1− iαA,jγ5T

j
V

)
iγ5T

i
V

(
1− iαA,kγ5T

k
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
iγ5T

i
V − iγ5T

i
V iαA,kγ5T

k
V − iαA,jγ5T

j
V iγ5T

i
V +O(α2

A,i)
]

Ψ(x)

=
√

2Ψ̄(x)iγ5T
i
V Ψ(x) + αA,j

√
2Ψ̄(x)

[
T iV , T

j
V

]
+

Ψ(x)

=
√

2Ψ̄(x)iγ5T
i
V Ψ(x) + αjA

√
2Ψ̄(x)T 0

V Ψ(x)

=
(
~P (x) + ~αAS

0(x)
)i

, (4.98)

where we made use of the commutation and anticommutation relations of the Pauli-matrices, Eqs. (6.7),
(6.8). Finally, we want turn to the space-time transformations. Using similar manipulations as in Eqs.
(4.91)-(4.93), we find

P a(x)
SO+(1,3)−→ P a′(x′) =

√
2Ψ̄(Λ−1x)S−1(Λ)iγ5T

a
V S(Λ)Ψ(Λ−1x) = P a(Λ−1x) , (4.99)

P a(x)
C−→ P a′(x) =

√
2Ψt(x)Ciγ5T

a
V CΨ̄t(x) =

√
2
(
Ψ̄(x)iγ5T

a
V Ψ(x)

)t
= P a(x) , (4.100)

P a(t, r)
P−→ P a′(t, r′) =

√
2Ψ̄(t,−r)γ0iγ5T

a
V γ0Ψ(t,−r) = −P a(t,−r) . (4.101)

4.2.1.3 Vector Mesons

As already mentioned in the introduction of this subsection, the usual linear sigma models can be extended
in order to include vector and axial-vector degrees of freedom. This possibility is quite important for a
meaningful description of QCD in terms of a hadronic model, since it is well known that the scalar and pseu-
doscalar degrees of freedom not only interact among themselves, but also with the vector and axial-vector
ones. In Sec. [4.3], it will be shown that these interactions also have strong influences on the low-energy
properties of the eLSM.

Before we turn to the axial-vector mesons in the upcoming Subsection, we want to consider the vector
mesons. These mesons are characterized as I(1−−) particles, where the total angular momentum J = 1 is
obtained by the coupling of angular momentum L = 0 with spin S = 1. The negative parity and charge
conjugation then follows from Eqs. (4.78) and (4.79). Similar to the scalar and pseudoscalar mesons,
the eLSM includes an isosinglet vector meson, denoted as ωµN , as well as an isotriplet of vector mesons,
which will be denoted as ~ρµ. The latter fields can be identified with the ρ(770) mesons which have a mass of
mρ(770) = (775.26±0.25) MeV. Similar to the previous subsections, it is possible to find heavier vector mesons
with the same quantum numbers. Those are given by the ρ(1450) with a mass of mρ(1450) = (1465±25) MeV
and the ρ(1700) with a mass of mρ(1700) = (1720 ± 20) MeV. In the isosinglet sector, the ωN will be iden-
tified with the ω(782) which has a mass of mω(782) = (782.65± 0.12) MeV. Other possible isosinglet states
are given by the φ(1020) with a mass of mφ(1020) = (1019.461 ± 0.019) MeV; the ω(1420) with a mass of
mω(1420) = (1400 − 1450) MeV; the ω(1650) with a mass of mω(1650) = (1670 ± 30) MeV and the φ(2170)
with a mass of mφ(2170) = (2175± 15) MeV. At this point, it has to be taken into account that we neglect
the small strange/non-strange mixing in the isosinglet sector, so that the ω(782) will be considered as a
purely non-strange state.

Also the vector mesons can be assigned to a quark/anti-quark quadratic form which will be defined as

V µa(x) =
√

2Ψ̄(x)γµT aV Ψ(x) , (4.102)
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where the a = 0 component represents the isosinglet, while the isovector is described by the a = i = 1, 2, 3
components. In analogy to the previous subsections, we now want to study the transformation behavior of
the singlet and triplet components of Eq. (4.102) with respect to vector and axial-vector transformations.
While the singlet transforms according to

V µ0(x)
SU(2)V−→ V µ0′(x) =

√
2Ψ̄(x)

(
1 + iαV,iT

i
V

)
γµT 0

V

(
1− iαV,jT jV

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµT 0

V − γµT 0
V iαV,jT

j
V + iαV,iT

i
V γ

µT 0
V +O(α2

V,i)
]

Ψ(x)

= V µ0(x) , (4.103)

and

V µ0(x)
SU(2)A−→ V µ0′(x) =

√
2Ψ̄(x)

(
1− iαA,iγ5T

i
V

)
γµT 0

V

(
1− iαA,jγ5T

j
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµT 0

V − γµT 0
V iαV,jγ5T

j
V − iαA,iγ5T

i
V γ

µT 0
V +O(α2

A,i)
]

= V µ0(x) , (4.104)

the transformation behavior of the triplet components is given by

V µi(x)
SU(2)V−→ V µi′(x) =

√
2Ψ̄(x)

(
1 + iαV,jT

j
V

)
γµT iV

(
1− iαV,kT kV

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµT iV − iαV,kγµT iV T kV + iαV,jγ

µT jV T
i
V +O(α2

V,i)
]

Ψ(x)

=
√

2Ψ̄(x)γµT iV Ψ(x)− iαV,j
√

2Ψ̄(x)γµ
[
T iV , T

j
V

]
−

Ψ(x)

=
√

2Ψ̄(x)γµT iV Ψ(x)− εijkαV,j
√

2Ψ̄(x)γµT kV Ψ(x)

=
(
~V µ(x) + ~αV × ~V µ(x)

)i
, (4.105)

V µi(x)
SU(2)A−→ V µi′(x) =

√
2Ψ̄(x)

(
1− iαA,jγ5T

j
V

)
γµT iV

(
1− iαA,kγ5T

k
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµT iV − iαA,kγµT iV γ5T

k
V − iαA,jγ5T

j
V γ

µT iV +O(α2
A,i)
]

Ψ(x)

=
√

2Ψ̄(x)γµT iV Ψ(x)− iαA,j
√

2Ψ̄(x)γµγ5

[
T iV , T

j
V

]
−

Ψ(x)

=
√

2Ψ̄(x)γµT iV Ψ(x) + εijkαA,j
√

2Ψ̄(x)γµγ5T
k
V Ψ(x)

=
(
~V µ(x) + ~αA × ~Aµ

)i
, (4.106)

where we defined the quark/anti-quark quadratic form ~Aµ =
√

2Ψ̄(x)γµγ5
~TV Ψ(x). In the upcoming sub-

section we will see that this object describes the triplet components of a four-vector (Aµa), which can be
assigned to axial-vector mesons. In contrast to Eqs. (4.88) and (4.96), the axial-vector transformations do
not induce a mixing of the singlet component of Eq. (4.103) with the triplet components of another bilinear
form. In the triplet sector, we obtain a similar transformation behavior as in the previous cases. Finally, we
have to check the space-time transformations. Using S−1(Λ)γµS(Λ) = Λµνγ

ν , the transformation property
of the vector current (4.102) is given by

V µa(x)
SO+(1,3)−→ V µa′(x′) =

√
2Ψ̄(Λ−1x)S−1(Λ)γµT aV S(Λ)Ψ(Λ−1x) = ΛµνV

νa(Λ−1x) , (4.107)

which shows that the vector current indeed transforms as a Lorentz vector with respect to proper or-
thochronous Lorentz transformations. Furthermore, using similar manipulations as in the previous Subsec-
tions, the transformation behavior under charge-conjugation and parity transformations can be obtained
as

V µa(x)
C−→ V µa′(x) =

√
2Ψt(x)CγµT aV CΨ̄t(x) =

√
2Ψt(x)γµ,tT aV Ψ̄t(x) = −

√
2
(
Ψ̄(x)γµT aV Ψ(x)

)t
= −V µa(x) , (4.108)

V µa(t, r)
P−→ V µa′(t, r′) =

√
2Ψ̄(t,−r)γ0γµT aV γ

0Ψ(t,−r ) = (−1)(µ)V µa(t,−r) , (4.109)

where we used C−1 = C† = −C and CγµC† = −γµ,t. The factor (−1)(µ) was already introduced in the
discussion of Eq. (3.96) and indicates that the time-like and space-like components of Eq. (4.102) transform
with a different sign with respect to spatial reflections.
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4.2.1.4 Axial-Vector Mesons

The last type of mesons, which is included in the eLSM, is given by the axial-vector mesons. As already
indicated at the beginning of the last subsection, the interaction of scalars and pseudoscalars with axial-
vector mesons is well known, so that these degrees of freedom also have to be taken into account. In the
usual convention, the axial-vector mesons are classified as I(1++) states. In contrast to the vector mesons
of the last subsection, the total angular momentum of J = 1 of the axial-vector mesons is obtained by
the coupling of the angular momentum L = 1 with the spin S = 1. Then, these angular-momentum and
spin quantum numbers immediately lead to a positive parity and charge conjugation. The isosinglet state,
denoted as fµ1,N , will be identified with the f1(1285) which has a mass of mf1(1285) = (1281.9 ± 0.5) MeV.
Like in the previous subsection, we neglect the small strange/non-strange mixing of axial-vector isosinglets.
Thus, f1(1285) will be regarded as a purely non-strange state. This implies that the heavier f1(1420), with
a mass of mf1(1420) = (1426.4 ± 0.9) MeV, will be identified as a purely strange state. The isotriplet fields
which enter the eLSM will be denoted by ~aµ1 . These fields will be identified with the a1(1260) which has a
mass of ma1(1260) = (1230± 40) MeV.

The triplet axial-vector current ~Aµ which we already introduced in the previous part can also be extended
to a four-vector that also involves the axial-vector isosinglet state. This four-vector is given by

Aµa(x) =
√

2Ψ̄(x)γµγ5T
a
V Ψ(x) . (4.110)

The singlet and triplet components transform in an analogous manner as those of the vector current (4.102).
We obtain

Aµ0(x)
SU(2)V−→ Aµ0′(x) =

√
2Ψ̄(x)

(
1 + iαV,iT

i
V

)
γµγ5T

0
V

(
1− iαV,jT jV

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµγ5T

0
V − iαV,jγµγ5T

0
V T

j
V + iαV,iT

i
V γ

µγ5T
0
V +O(α2

V,i)
]

Ψ(x)

= Aµ0(x) , (4.111)

Aµ0(x)
SU(2)A−→ Aµ0′(x) =

√
2Ψ̄(x)

(
1− iαA,iγ5T

i
V

)
γµγ5T

0
V

(
1− iαA,jγ5T

j
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµγ5T

0
V − iαA,jγµγ5T

0
V γ5T

j − iαA,iγ5T
i
V γ

µγ5T
0
V +O(α2

A,i)
]

Ψ(x)

= Aµ0(x) , (4.112)

and

Aµi(x)
SU(2)V−→ Aµi′(x) =

√
2Ψ̄(x)

(
1 + iαV,jT

j
V

)
γµγ5T

i
V

(
1− iαV,kT kV

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµγ5T

i
V − iαV,kγµγ5T

i
V T

k
V + iαV,jT

j
V γ

µγ5T
i
V +O(α2

V,i)
]

Ψ(x)

=
√

2Ψ̄(x)γµγ5T
i
V Ψ(x)− iαV,j

√
2Ψ̄(x)γµγ5

[
T iV , T

j
V

]
−

Ψ(x)

=
√

2Ψ̄(x)γµγ5T
i
V Ψ(x) + εijkαV,j

√
2Ψ̄(x)γµγ5T

k
V Ψ(x)

=
(
~Aµ(x) + ~αV × ~Aµ(x)

)i
, (4.113)

Aµi(x)
SU(2)A−→ Aµi′(x) =

√
2Ψ̄(x)

(
1− iαA,jγ5T

j
V

)
γµγ5T

i
V

(
1− iαA,kγ5T

k
V

)
Ψ(x)

=
√

2Ψ̄(x)
[
γµγ5T

i
V − iαA,kγµγ5T

i
V γ5T

k
V − iαA,jγ5T

j
V γ

µγ5T
i
V +O(α2

A,i)
]

Ψ(x)

=
√

2Ψ̄(x)γµγ5T
i
V Ψ(x)− iαA,j

√
2Ψ̄(x)γµ

[
T iV , T

j
V

]
−

Ψ(x)

=
√

2Ψ̄(x)γµγ5T
i
V Ψ(x) + εijkαA,j

√
2Ψ̄(x)γµT kV Ψ(x)

=
(
~Aµ(x) + ~αA × ~V µ(x)

)i
. (4.114)

The transformation behavior of the axial-vector current with respect to the different space-time transforma-
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tions can be obtained in a similar way as in the previous case. We find

Aµa(x)
SO+(1,3)−→ Aµa′(x′) =

√
2Ψ̄(Λ−1x)S−1(Λ)γµγ5T

a
V S(Λ)Ψ(Λ−1x) = ΛµνA

ν,a(Λ−1x) , (4.115)

Aµa(x)
C−→ Aµa′(x) =

√
2Ψt(x)Cγµγ5T

a
V CΨ̄t(x) =

√
2Ψt(x)γµtγt5T

a
V Ψ̄t(x) =

√
2
(
Ψ̄(x)γµγ5T

a
V Ψ(x)

)t
= Aµa(x) , (4.116)

Aµa(t, r)
P−→ Aµa′(t, r′) =

√
2Ψ̄(t,−r)γ0γµγ5T

aγ0Ψ(t,−r) = −(−1)(µ)Aµ,a(t,−r) , (4.117)

where we again made use of the factor (−1)(µ).

4.2.2 Terms of the eLSM

In the previous Section, we briefly introduced the physical content of the eLSM. In addition to that, we
assigned different quark/anti-quark currents which can be used to represent the different kinds of mesons.
The main focus of this section lies on the theoretical implementation of these fields into the eLSM. Therefore,
we define the main building blocks of the eLSM Lagrangian and show that these objects are related to the
quark/anti-quark quadratic forms of the previous section. In addition to that, we will use these objects to
construct all terms of the eLSM.

4.2.2.1 The Basic Objects of the eLSM

In order to introduce the main building blocks of the eLSM, we will proceed in a similar manner as in the
discussion of Sec. [3.3]. To be particular, we start with the introduction of the basic objects of the eLSM
Lagrangian. Then, we will use these objects to construct the most general mesonic Lagrangian with global
chiral symmetry up to order four in the fields. Since this model should describe the dynamics of strong
interactions, it has to contain the basic properties of QCD. The main feature of QCD is given by its SU(3)C
color gauge symmetry. This symmetry will be trivially fulfilled, since the fields that enter the Lagrangian
describe mesons which are colorless objects by definition. Therefore, the fields transform as singlets under
SU(3)C . As already introduced in Sec. [2.3.2], the quark part of the two-flavor QCD Lagrangian possesses
a global U(2)L × U(2)R symmetry. We already showed that this symmetry is only exact, if the quarks are
considered as massless particles. In the ”real” world, the different quark flavors are massive fermions, which
leads to an explicit breaking of the U(2)L × U(2)R symmetry. Furthermore, we argued that, in addition to
the explicit breaking, chiral symmetry must be spontaneously broken down to its diagonal subgroup SU(2)V ,
compare Sec. [2.3.2]. Finally, we mentioned that the U(1)A symmetry of the classical QCD Lagrangian is
not present anymore at quantum level. This so-called U(1)A anomaly arose from non-perturbative quantum
effects due to instantons. In order to model the anomaly as well as the explicit symmetry breaking, we have
to introduce special term structures which are able to describe these properties. The spontaneous breakdown
of chiral symmetry will be obtained by a specific choice of a model parameter which realizes the potential
density in its Nambu-Goldstone configuration, compare Sec. [2.2.2]. Before we discuss those term structures
in detail, we have to introduce the basic building blocks of the eLSM, i.e., the mathematical objects that
describe the different mesonic fields. To this end, we introduce the matrix

Φij(x) =
√

2Ψ̄j,R(x)Ψi,L(x) , (4.118)

where the ΨL/R(x) define the left- and right-handed quark and anti-quark fields. In the following, we want
to show that Eq. (4.118) contains the scalar and the pseudoscalar current (4.82), (4.94) of the previous
subsections. To this end, we first rewrite the above expression by using the left-handed projection operator

Φij(x) =
√

2Ψ̄j(x)PLPLΨi(x) =
√

2Ψ̄j(x)
14×4 − γ5

2
Ψi

= Sij(x) + iPij(x) , (4.119)

where we defined the scalar and pseudoscalar matrices

Sij(x) =
1√
2

Ψ̄j(x)Ψi(x) , Pij(x) =
1√
2

Ψ̄j(x)iγ5Ψi(x) . (4.120)

Since the above matrices as well as Eq. (4.118) are hermitian, we are able to expand them in the algebra of
U(2), so that

Φ(x) = Φa(x)T a = [Sa(x) + iPa(x)]T a . (4.121)
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In order to find explicit expressions for the coefficients of the above expansion, we use Eqs. (4.119), (4.120)
and multiply Eq. (4.121) from the right by T b

[Sa(x) + iPa(x)] (T a)ij
(
T b
)j
k

= [Sij(x) + iPij(x)]
(
T b
)j
k

=

[
1√
2

Ψ̄j(x)Ψi(x) + i
1√
2

Ψ̄j(x)iγ5Ψi(x)

] (
T b
)j
k

=
1√
2

Ψ̄j(x)
(
T b
)j
k

Ψi(x) + i
1√
2

Ψ̄j(x)iγ5

(
T b
)j
k

Ψi(x) . (4.122)

Taking the trace of Eq. (4.122) finally yields the desired coefficients

Sa(x) =
√

2Ψ̄(x)T aΨ(x) , P a(x) =
√

2Ψ̄(x)iγ5T
aΨ(x) , (4.123)

which are obviously identical to Eqs. (4.82) and (4.94). The transformation behavior of Eq. (4.118) with
respect to global U(2)L ×U(2)R transformations can easily be obtained from the transformation properties
of the left- and right-handed quark fields (2.149) and (2.150). We find

Φ(x)
U(2)L×U(2)R−→ Φ′(x) = ULΦ(x)U†R . (4.124)

The transformation behavior of Φ(x) with respect to SO+(1, 3)- as well as to CP -transformations can be ob-
tained in the same manner as in the previous subsections. For proper orthochronous Lorentz transformations,
we find

Φij(x)
SO+(1,3)−→ Φ′ij(x

′) =
√

2Ψ̄j(Λ
−1x)S−1(Λ)PLPLS(Λ)Ψi(Λ

−1x)

= Φij(Λ
−1x) , (4.125)

where we made use of [γµ, γ5]+ = 0. For the transformation properties with respect to the discrete symmetry
operations, we obtain

Φij(x)
C−→ Φ′ij(x) =

√
2Ψt

j(x)CPLPLCΨ̄t
i(x)

= −
√

2Ψt
j(x)PtLPtLΨ̄t

i(x)

=
√

2
[
Ψ̄i(x)PLPLΨj(x)

]t
= Φji(x) , (4.126)

where we used CC = −14×4 and the fact that the interchange of two fermionic fields causes an additional
change of sign. In the case of spatial reflections, we are left with

Φij(t, r)
C−→ Φ′ij(t, r

′) =
√

2Ψ̄j(t,−r)γ0PLPLγ0Ψi(t,−r)

=
√

2Ψ̄j(t,−r)PRPRΨi(t,−r)

=
(
Φ†
)
ij

(t,−r) , (4.127)

where the last equality can easily be seen by using Eq. (4.119). As already mentioned in Secs. [4.2.1.1]
and [4.2.1.2], we want to identify the quark/anti-quark currents with fields which describe physical particles.
Then, using (4.121) and the discussion of the previous Subsections, Eq. (4.118) can also be written as

Φ(x) = [Sa(x) + iPa(x)]T a

= [S0(x) + iP0(x)]T 0 + [Si(x) + iPi(x)]T i

= [σN (x) + iηN (x)]T 0 + [a0,i(x) + iπi(x)]T i . (4.128)

Since the scalar and pseudoscalar fields are now implemented in the meson matrix Φ(x), we have to find
similar objects which are able to describe the vector and axial-vector degrees of freedom. Similar to Eq.
(4.118), we define the left- and the right-handed vector currents

Lµij(x) =
√

2Ψ̄j,L(x)γµΨi,L(x) , (4.129)

Rµij(x) =
√

2Ψ̄j,R(x)γµΨi,R(x) . (4.130)
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In analogy to the discussion of Φ(x), we want to relate the above currents to the vector- and axial-vector
quadratic forms of the previous Subsections, Eqs. (4.102), (4.110). To this end, we begin with Eq. (4.129)
and use the left- and right-handed projection operators in order to find

Lµij(x) =
√

2Ψ̄j(x)PRγµPLΨi(x) =
√

2Ψ̄j(x)γµ
14×4 − γ5

2
Ψi(x)

= V µij (x)−Aµij(x) , (4.131)

with

V µij (x) =
1√
2

Ψ̄j(x)γµΨi(x) , Aµij(x) =
1√
2

Ψ̄j(x)γµγ5Ψi(x) . (4.132)

Using the above definitions, the right-handed current can be written as

Rµij(x) =
√

2Ψ̄j(x)PLγµPRΨi(x) =
√

2Ψ̄j(x)γµ
14×4 + γ5

2
Ψi(x)

= V µij (x) +Aµij(x) . (4.133)

It is quite obvious, that Eqs. (4.129) and (4.130) are also hermitian matrices. Therefore, we are able to
write them in terms of U(2) generators

Lµ(x) = Lµa(x)T a = [V µa (x)−Aµa(x)]T a , Rµ(x) = Rµa(x)T a = [V µa (x) +Aµa(x)]T a . (4.134)

The coefficients of these expansions can be obtained similarly to the previous case. In order to determine
the left-handed coefficient, we use Eqs. (4.134) and (4.131) and multiply the complete equation from the
right by T b

[V µa (x)−Aµa(x)] (T a)ij
(
T b
)j
k

=
[
V µij (x)−Aµij(x)

] (
T b
)j
k

=

[
1√
2

Ψ̄j(x)γµΨi(x)− 1√
2

Ψ̄j(x)γµγ5Ψi(x)

] (
T b
)j
k

=
1√
2

Ψ̄j(x)γµ
(
T b
)j
k

Ψi(x)− 1√
2

Ψ̄j(x)γµγ5

(
T b
)j
k

Ψi(x) . (4.135)

The trace of the above equation finally yields

V µa(x) =
√

2Ψ̄(x)γµT aΨ(x) , Aµa(x) =
√

2Ψ̄(x)γµγ5T
aΨ(x) . (4.136)

But these are exactly the vector and axial-vector quadratic forms which we introduced in Secs. [4.2.1.3] and
[4.2.1.4]. At this point it is clear that we would have obtained the same results, if we had used the expansion
of the right-handed current instead of the left-handed one. The transformation behavior of the two currents
(4.129) and (4.130) follows immediately from those of the left- and right-handed quark fields

Lµ(x)
U(2)L×U(2)R−→ Lµ,′(x) = ULL

µ(x)U†L , (4.137)

Rµ(x)
U(2)L×U(2)R−→ Rµ,′(x) = URR

µ(x)U†R . (4.138)

Again, the transformation properties of these objects with respect to proper orthochronous Lorentz trans-
formations and CP -transformations can be obtained in a similar way as in Secs. [4.2.1.3] and [4.2.1.4].
Therefore, we only present the calculation for the transformation properties of Lµij(x) and simply quote the

final results for the right-handed current Rµij(x). In the case of SO+(1, 3), we obtain

Lµij(x)
SO+(1,3)−→ Lµ′ij (x′) =

√
2Ψ̄j(Λ

−1x)S−1(Λ)PRγµPLS(Λ)Ψi(Λ
−1x)

=
√

2Ψ̄j(Λ
−1x)PRS−1(Λ)γµS(Λ)PLΨi(Λ

−1x)

= ΛµνL
ν
ij(Λ

−1x) , (4.139)

and similarly

Rµij(x)
SO+(1,3)−→ Rµ′ij (x′) = ΛµνR

ν
ij(Λ

−1x) . (4.140)

For charge-conjugation transformations, we find

Lµij(x)
C−→ Lµ′ij (x) =

√
2Ψt

j(x)CPRγµPLCΨ̄t
i(x)

=
√

2Ψt
j(x)PRγµ,tPLΨ̄t

i(x)

= −
√

2
[
Ψ̄i(x)PLγµPRΨj(x)

]t
= −Rµji(x) (4.141)
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and similarly

Rµij(x)
C−→ Rµ′ij (x) = −Lµij(x) . (4.142)

And finally, under spatial reflections, the left- and right-handed currents transform as

Lµij(t, r)
P−→ Lµ,′ij (t, r′) =

√
2Ψ̄j(t,−r)γ0PRγµPLγ0Ψi(t,−r)

= (−1)(µ)
√

2Ψ̄j(t,−r)PLγµPRΨi(t,−r)

= Rµ,ij(t,−r) (4.143)

and
Rµij(t, r)

P−→ Rµ,′ij (t, r′) = Lµ,ij(t,−r) . (4.144)

Similar to the scalar/pseudoscalar case, we want to relate the left- and right-handed currents with vector
and axial-vector fields which will describe the physical particles. Using the discussion of Secs. [4.2.1.3] and
[4.2.1.4] as well as Eqs. (4.133) and (4.134), we identify

Lµ(x) =
[
ωµN (x) + fµ1,N (x)

]
T 0 +

[
ρµi (x) + aµ1,i(x)

]
T i , (4.145)

Rµ(x) =
[
ωµN (x)− fµ1,N (x)

]
T 0 +

[
ρµi (x)− aµ1,i(x)

]
T i . (4.146)

Now3, with Eqs. (4.118) and (4.129), (4.130), we have the basic building blocks for the eLSM. In the following
Subsections, we will use them to construct chirally invariant terms with a maximum of four fields in each
term.

4.2.2.2 Kinetic and Mass Terms

In this Subsection, we want to write down the kinetic and mass terms for all types of mesonic fields. In
addition to that, we also derive the explicit expressions of these terms, since we will need them in the
upcoming sections.

4.2.2.2.1 Kinetic Term of Scalar and Pseudoscalar Mesons

In order to define a kinetic part for the scalar and pseudoscalar degrees of freedom, one could use the simplest
possibility and use

Tr
{

[∂µΦ(x)]
†
∂µΦ(x)

}
(4.147)

as kinetic term. With Eq. (4.124), it can be immediately seen that this term is globally chiral invariant.
But, as already mentioned at the beginning of this section, it is well known that the scalar and pseudoscalar
mesons interact with the vector and axial-vector degrees of freedom. Therefore, it seems to be quite natural
to introduce a covariant derivative which directly couples the different types of mesons,

DµΦ(x) = ∂µΦ(x)− ig1 [Lµ(x)Φ(x)− Φ(x)Rµ(x)] , (4.148)

where the coupling constant g1 has dimension one. Another advantage of the above definition is given by
the fact that one can use this covariant derivative to construct a gauged linear sigma model. For details of
this approach, see Ref. [Par1]. Furthermore, it is possible to extend this covariant derivative in order to
include electromagnetic interactions. For details, compare Ref. [Par2]. This covariant derivative, of course
transforms in the same manner as the scalar/pseudoscalar matrix Φ(x)

DµΦ(x)
U(2)L×U(2)R−→ [DµΦ(x)]

′
= ∂µ

[
ULΦ(x)U†R

]
− ig1

[
ULLµ(x)U†LULΦ(x)U†R − ULΦ(x)U†RURΦ(x)Rµ(x)U†R

]
= ULDµΦ(x)U†R . (4.149)

Now, with this covariant derivative, the simplest term is given by a straightforward extension of Ref. (4.147)

Tr
{

[DµΦ(x)]
†
DµΦ(x)

}
. (4.150)

From Eq. (4.148) it is clear that this expression not only involves the usual kinetic terms for the scalar and
pseudoscalar fields, but also contains derivative interactions of those fields with vector and axial-vector fields.
This can be shown by deriving the explicit expression of Eq. (4.150). To this end, it will be advantageous to

3In the above equation we used the convention of Ref. [Par2] in order to define the left- and right-handed fields.
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first write down the explicit expressions of the covariant derivatives. Since these expressions become quite
long, we suppress the space-time dependence of the different fields from now on. Using Eqs. (4.128), (4.145),
and (4.146) we find

DµΦ = ∂µ (σN + iηN )T 0 + ∂µ (a0,i + iπi)T
i − ig1

{[
(ωN,µ + f1N,µ)T 0 + (ρµ,j + a1µ,j)T

j
]

×
[
(σN + iηN )T 0 + (a0,k + iπk)T k

]
−
[
(σN + iηN )T 0 + (a0,j + iπj)T

j
] [

(ωN,µ − f1N,µ)T 0 + (ρµ,k − a1µ,k)T k
]}

= (∂µσN + i∂µηN )T 0 + (∂µa0,i + i∂µπi)T
i − ig1

{
f1N,µ

[
(σN + iηN )T 0 + (a0,i + iπi)T

i
]

+a1µ,i

[
(σN + iηN )T i + (a0,j + iπj) δ

ijT 0
]

+ iρµ,i (a0,j + iπj) ε
ij
kT

k
}

, (4.151)

where we used Eqs. (6.17), (6.18) and the antisymmetry of the Levi-Civita tensor. By simply taking the
hermitian conjugate of the above result, we obtain

[DµΦ]
†

= (∂µσN − i∂µηN )T 0 + (∂µa0,i − i∂µπi)T i + ig1

{
fµ1N

[
(σN − iηN )T 0 + (a0,i − iπi)T i

]
+aµ1,i

[
(σN − iηN )T i + (a0,j − iπj) δijT 0

]
− iρµi (a0,j − iπj) εijkT

k
}

. (4.152)

In the following, we have to calculate the product of Eq. (4.151) with (4.152) and finally take the trace
of the resulting expression. Since this calculation is quite tedious and not very enlightening, we only want
to illustrate the calculational steps and quote the final result. First of all, it is clear that the product of
the above will result in terms that are either proportional to T 0T 0, to T iT j , or to T 0T i. The latter terms
will vanish by taking the trace, since the trace of a Pauli matrix is equal to zero. Using the trace relations
of the U(2) generators, Eqs. (6.17) - (6.20), the remaining terms can be ordered by using simple algebraic
operations, so that we are finally left with

Tr
{

[DµΦ(x)]
†
DµΦ(x)

}
=

1

2
{∂µσN + g1 (f1N,µηN + ~a1µ · ~π)}2 +

1

2
{∂µηN − g1 (f1N,µσN + ~a1µ · ~a0)}2

+
1

2
{∂µ~a0 + g1 (f1N,µ~π + ~a1µηN + ~ρµ × ~a0)}2 +

1

2
{∂µ~π − g1 (f1N,µ~a0 + ~a1µσN + ~π × ~ρµ)}2 . (4.153)

4.2.2.2.2 Kinetic Term of Vector and Axial-Vector Mesons

In order to write down a kinetic term for the left- and right-handed currents, Eqs. (4.129) and (4.130),
we have to define left- and right-handed field-strength tensors. In the case of global chiral symmetry, these
field-strength tensors are given by

Lµν(x) = ∂µLν(x)− ∂νLµ(x) , (4.154)

Rµν(x) = ∂µRν(x)− ∂νRµ(x) . (4.155)

In the case of local chiral symmetry, these field-strength tensors have to be extended by a third term which
is proportional to the commutator of two left- or right-handed fields, see Ref. [Par1]. On the other hand,
if a global chiral symmetry is sufficient, but we want study electromagnetic interactions, the field-strength
tensors have to be extended in a completely different way, compare Ref. [Par2]. The transformation behavior
of the above field strength tensors with respect to global chiral rotations follows immediately from that of
the left- and right-handed currents

Lµν(x)
U(2)L×U(2)R−→ L′µν(x) = ULLµν(x)U†L , (4.156)

Rµν(x)
U(2)L×U(2)R−→ R′µν(x) = URRµν(x)U†R . (4.157)

The kinetic term of the vector and axial-vector fields then has the usual form, i.e.,

− 1

4
Tr {Lµν(x)Lµν(x) +Rµν(x)Rµν(x)} . (4.158)

In order to derive the explicit expression of the above kinetic term, it will be advantageous to first write
down the explicit expressions for the square of the left- and right-handed field-strength tensors. Using the
antisymmetry of the field-strength tensors as well as Eqs. (4.145) and (4.146), we find

LµνLµν = 2 (∂µLν) (∂µLν − ∂νLµ)

= 2
{

(∂µωνN + ∂µfν1N ) (∂µωN,ν + ∂µf1N,ν)T 0T 0 − (∂µωνN + ∂µfν1N ) (∂νωN,µ + ∂νf1N,µ)T 0T 0

+
(
∂µρνi + ∂µaν1,i

)
(∂µρν,j + ∂µa1ν,i)T

iT j −
(
∂µρνi + ∂µaν1,i

)
(∂νρµ,j + ∂νa1µ,i)T

iT j + terms ∝ T 0T i
}

,

(4.159)
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where we again suppressed the space-time dependence of the fields. In addition to that, we neglected the
terms which are proportional to only one Pauli matrix since these terms vanish by taking the trace. For the
right-handed fields, we analogously obtain

RµνRµν = 2 (∂µRν) (∂µRν − ∂νRµ)

= 2
{

(∂µωνN − ∂µfν1N ) (∂µωN,ν − ∂µf1N,ν)T 0T 0 − (∂µωνN − ∂µfν1N ) (∂νωN,µ − ∂νf1N,µ)T 0T 0

+
(
∂µρνi − ∂µaν1,i

)
(∂µρν,j − ∂µa1ν,i)T

iT j −
(
∂µρνi − ∂µaν1,i

)
(∂νρµ,j − ∂νa1µ,i)T

iT j + terms ∝ T 0T i
}

.

(4.160)

Inserting these results into Eq. (4.158) and using Eqs. (6.17), (6.18), we obtain

−1

4
Tr {Lµν(x)Lµν(x) +Rµν(x)Rµν(x)} = −1

4

{
(∂µωN,ν − ∂νωN,µ)

2
+ (∂µf1N,ν − ∂νf1N,µ)

2
+ (∂µ~ρν − ∂ν~ρµ)

2

+ (∂µ~a1,ν − ∂ν~a1,µ)
2
}

= −1

4
{ωµνN ωN,µν + fµν1Nf1N,µν + ~ρµν · ~ρµν + ~aµν1 · ~a1,µν} , (4.161)

where we defined the field-strength tensors of the particular fields in the last line.

4.2.2.2.3 Mass Term of Scalar and Pseudoscalar Mesons

After defining kinetic terms for both types of mesons, we now have to find mass terms for the scalar/pseudoscalar
and vector/axial-vector mesons. Later, it will be shown that the tree-level masses of all mesons will have
further contributions which arise from the spontaneous breakdown of chiral symmetry. The simplest term
which is allowed by all symmetry constraints is given by

−m2
0Tr

{
Φ†(x)Φ(x)

}
, (4.162)

where the mass parameter m2
0 is of dimension [Energy2]. For the moment, we will not fix the sign of this

parameter. In the discussion of the next Section, we will see that a particular choice of the sign can be
used to model the spontaneous breakdown of global chiral symmetry. By calculating the expression (4.162)
explicitly, we find the usual mass terms for neutral scalar/pseudoscalar fields, i.e.,

−m2
0Tr

{
Φ†Φ

}
= −m2

0Tr
{[

(σN − iηN )T 0 + (a0,i − iπi)T i
] [

(σN + iηN )T 0 + (a0,j + iπj)T
j
]}

= −m
2
0

2
Tr
{
σ2
N + η2

N + ~a2
0 + ~π2

}
. (4.163)

4.2.2.2.4 Mass Term of Vector and Axial-Vector Mesons

Similar to the previous paragraph, the simplest choice of a mass term for the vector/axial-vector mesons is
given by a trace which contains the square of both, the left- and the right-handed, field matrices. In contrast
to the scalar/pseudoscalar case, the mass term of a massive vector field needs another sign in order to lead
to the correct equations of motion. Therefore, the mass term for the vector particles is given by

Tr

{
m2

1

2
12×2 [Lµ(x)Lµ(x) +Rµ(x)Rµ(x)]

}
, (4.164)

where the mass parameterm2
1 is a positive real number of dimension [Energy2]. Opposite to the scalar/pseudoscalar

case, we have to require that this mass parameter is larger than zero, because a negative value will, in a
special case, lead to imaginary masses for the ρ- and the a1-meson. In the upcoming section we will come
back to this point.

For the moment, we return to Eq. (4.164). The reason why we incorporated the mass parameter in
this unusual way is that the above mass term will be extended in Sec. [4.2.2.6], when we introduce an
additional object under the trace, in order to model the explicit breaking of global chiral symmetry in the
vector/axial-vector sector. The explicit form of this mass term is given by

Tr

{
m2

1

2
12×2 [LµLµ +RµRµ]

}
=
m2

1

2
Tr
{[

(ωµN + fµ1N )T 0 +
(
ρµi + aµ1,i

)
T i
] [

(ωN,µ + f1N,µ)T 0 + (ρµ,j + a1µ,j)T
j
]

+
[
(ωµN − f

µ
1N )T 0 +

(
ρµi − a

µ
1,i

)
T i
] [

(ωN,µ − f1N,µ)T 0 + (ρµ,j − a1µ,j)T
j
]}

=
m2

1

2

{
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
}

(4.165)
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4.2.2.3 Scalar and Pseudoscalar Self-Interaction Terms

After defining the basic terms to obtain a free theory for all four types of mesons of the previous Subsection,
we now have to define interaction terms4. To this end, we start with interactions that only involve scalar
and pseudoscalar degrees of freedom.

4.2.2.3.1 First Self-Interaction Term of Scalar and Pseudoscalar Mesons

The first possible interaction term which only involves scalar and pseudoscalar fields is given by a straight-
forward extension of the mass term (4.162)

− λ1

(
Tr
{

Φ†(x)Φ(x)
})2

, (4.166)

where the coupling constant λ1 is a dimensionless parameter. This coupling also has to satisfy a special
constraint, in order to obtain a bounded potential. However, it will be more meaningful to fix this constraint
in the next section, since there are many more possible interaction terms which contribute to the potential
density of the eLSM. Using Eq. (4.163), we immediately obtain

−λ1

(
Tr
{

Φ†Φ
})2

= −λ1

4

{
σ4
N + η4

N +
(
~a2

0

)2
+
(
~π2
)2

+ 2σ2
Nη

2
N + 2σ2

N~a
2
0 + 2σ2

N~π
2 + 2η2

N~a
2
0 + 2η2

N~π
2 + 2~a2

0~π
2
}

(4.167)

as explicit expression for Eq. (4.166).

4.2.2.3.2 Second Self-Interaction Term of Scalar and Pseudoscalar Mesons

Another possible term structure which is consistent with all required symmetries can be obtained by first
taking the square of Φ†Φ and then calculating the trace, i.e.,

− λ2Tr
{[

Φ†(x)Φ(x)
]2}

, (4.168)

where λ2 defines a positive coupling constant with energy dimension one. The explicit form of the above
interaction term is given by

−λ2Tr
{[

Φ†Φ
]2}

= −λ2Tr
{[

(σN − iηN )T 0 + (a0,i − iπi)T i
] [

(σN + iηN )T 0 + (a0,j + iπj)T
j
]

×
[
(σN − iηN )T 0 + (a0,k − iπk)T k

] [
(σN + iηN )T 0 + (a0,l + iπl)T

l
]}

= −λ2

8

{
σ4
N + η4

N +
(
~a2

0

)2
+
(
~π2
)2

+ 2σ2
Nη

2
N + 2σ2

N~π
2 + 2η2

N~a
2
0 − 4 (~a0 · ~π)

2

+ 6σ2
N~a

2
0 + 6η2

N~π
2 + 6~a2

0~π
2 + 8σNηN (~a0 · ~π)

}
, (4.169)

where we used Eqs. (6.17)-(6.20) and the antisymmetry of the Levi-Civita tensor.

4.2.2.4 Vector and Axial-Vector Self-Interaction Terms

After introducing the self-interaction terms for the scalar and pseudoscalar degrees of freedom, we now turn
to interaction terms which only involve vector particles.

4.2.2.4.1 Derivatively Coupled Self-Interaction Term of Vector and Axial-Vector Mesons

In contrast to the scalar and pseudoscalar mesons, we now have the possibility to define interaction terms
which only involve three field variables. In the previous case, such a term was not possible since chiral
invariance always requires powers of Φ†Φ. In the case of the left- and right-handed fields matrices (4.145),
(4.146) this situation changes, due to the definition of the left- and right-handed field-strength tensors (4.154),
(4.155). This fact then leads to derivatively coupled interaction terms which can be trivially seen from the
definition of the field-strength tensors. On the other hand, the emergence of derivatives in interaction terms
with only three vector fields is required by Lorentz symmetry. Now, the derivatively coupled vector/axial-
vector interation term is given by

i
g2

2

[
Tr
{
Lµν(x) [Lµ(x), Lν(x)]−

}
+ Tr

{
Rµν(x) [Rµ(x), Rν(x)]−

}]
, (4.170)

4This statement is actually not true, since the kinetic term (4.150) also contains interactions, due to the covariant derivative
(4.148).
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where g2 is a dimensionless coupling constant. In a moment it will be shown that the i-factor will be needed
to compensate an additional i-factor that arises from the trace relation (6.19). In order to calculate the
expression (4.170) explicitly, it will be useful to consider both traces separately. Using the antisymmetry of
the left-handed field-strength tensor we find

i
g2

2
Tr
{
Lµν [Lµ, Lν ]−

}
= ig2Tr

{
(∂µLν) [Lµ, Lν ]−

}
= ig2Tr

{[
(∂µωνN + ∂µfν1N )T 0 +

(
∂µρνi + ∂µaν1,i

)
T i
] {[

(ωN,µ + f1N,µ)T 0 + (ρµ,j + a1µ,j)T
j
]

×
[
(ωN,ν + f1N,ν)T 0 + (ρν,k + a1ν,k)T j

]
−
[
(ωN,ν + f1N,ν)T 0 + (ρν,j + a1ν,j)T

j
]

×
[
(ωN,µ + f1N,µ)T 0 + (ρµ,k + a1µ,k)T k

]}}
=
g2

2
{(∂µ~ρν) · (~ρν × ~ρµ + ~ρν × ~a1,µ + ~a1,ν × ~ρµ + ~a1,ν × ~a1,µ)

+ (∂µ~aν1) · (~ρν × ~ρµ + ~ρν × ~a1,µ + ~a1,ν × ~ρµ + ~a1,ν × ~a1,µ)} , (4.171)

where we used Eq. (6.19). In a similar way, we find

i
g2

2
Tr
{
Rµν [Rµ, Rν ]−

}
= ig2Tr

{
(∂µRν) [Rµ, Rν ]−

}
= ig2Tr

{[
(∂µωνN − ∂µfν1N )T 0 +

(
∂µρνi − ∂µaν1,i

)
T i
] {[

(ωN,µ − f1N,µ)T 0 + (ρµ,j − a1µ,j)T
j
]

×
[
(ωN,ν − f1N,ν)T 0 + (ρν,k − a1ν,k)T j

]
−
[
(ωN,ν − f1N,ν)T 0 + (ρν,j − a1ν,j)T

j
]

×
[
(ωN,µ − f1N,µ)T 0 + (ρµ,k − a1µ,k)T k

]}}
=
g2

2
{(∂µ~ρν) · (~ρν × ~ρµ − ~ρν × ~a1,µ − ~a1,ν × ~ρµ + ~a1,ν × ~a1,µ)

+ (∂µ~aν1) · (−~ρν × ~ρµ + ~ρν × ~a1,µ + ~a1,ν × ~ρµ − ~a1,ν × ~a1,µ)} . (4.172)

Combining the above results, we finally obtain

i
g2

2

[
Tr
{
Lµν(x) [Lµ(x), Lν(x)]−

}
+ Tr

{
Rµν(x) [Rµ(x), Rν(x)]−

}]
= g2 {(∂µ~ρν) · (~ρν × ~ρµ + ~a1,ν × ~a1,µ) + (∂µ~aν1) · (~ρν × ~a1,µ + ~a1,ν × ~ρµ)} . (4.173)

4.2.2.4.2 Second Self-Interaction Term of Vector and Axial-Vector Mesons

Another chirally invariant structure can be obtained by combining four left- or right-handed field matri-
ces. This kind of interaction then involves four vector/axial-vector fields without derivatives. A possible
realization of such a term is given by

g3 [Tr {Lµ(x)Lν(x)Lµ(x)Lν(x)}+ Tr {Rµ(x)Rν(x)Rµ(x)Rν(x)}] , (4.174)

with the dimensionless coupling constant g3. At this point it has to taken into account that the order of
the Lorentz indices is important, since the commutator of two left- or right-handed field matrices is different
from zero. Since the interaction terms of the following three paragraphs have similar structures like Eq.
(4.174), it will be useful to analyze the explicit expressions of those interactions term by term. Then, at the
end of this subsection, we collect all expressions and simplify them as much as possible. To this end, we
start with the first term in Eq. (4.174)

g3Tr {LµLνLµLν} = g3Tr
{[

(ωµN + fµ1N )T 0 +
(
ρµi + aµ1,i

)
T i
] [

(ωνN + fν1N )T 0 +
(
ρνj + aν1,j

)
T j
]

×
[
(ωN,µ + f1N,µ)T 0 + (ρµ,k + a1µ,k)T j

] [
(ωN,ν + f1N,ν)T 0 + (ρν,l + a1ν,l)T

l
]}

=
g3

8

{
(ωN,µ + f1N,µ)

2
(ωN,ν + f1N,ν)

2
+ 4 (ωµN + fµ1N ) (ωνN + fν1N ) (~ρµ + ~a1,µ) · (~ρν + ~a1,ν)

+ 2 (ωN,µ + f1N,µ)
2

(~ρν + ~a1,ν)
2

+ 2 (~ρµ + ~aµ1 ) · (~ρν + ~aν1) (~ρµ + ~a1,µ) · (~ρν + ~a1,ν)

− (~ρµ + ~a1,µ)
2

(~ρν + ~a1,ν)
2
}

, (4.175)

where we again made use of the antisymmetry of the Levi-Civita tensor. The explicit expression for the
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second part of Eq. (4.174) is obtained by using the same techniques. We find

g3Tr {RµRνRµRν} = g3Tr
{[

(ωµN − f
µ
1N )T 0 +

(
ρµi − a

µ
1,i

)
T i
] [

(ωνN − fν1N )T 0 +
(
ρνj − aν1,j

)
T j
]

×
[
(ωN,µ − f1N,µ)T 0 + (ρµ,k − a1µ,k)T j

] [
(ωN,ν − f1N,ν)T 0 + (ρν,l − a1ν,l)T

l
]}

=
g3

8

{
(ωN,µ − f1N,µ)

2
(ωN,ν − f1N,ν)

2
+ 4 (ωµN − f

µ
1N ) (ωνN − fν1N ) (~ρµ − ~a1,µ) · (~ρν − ~a1,ν)

+ 2 (ωN,µ − f1N,µ)
2

(~ρν − ~a1,ν)
2

+ 2 (~ρµ − ~aµ1 ) · (~ρν − ~aν1) (~ρµ − ~a1,µ) · (~ρν − ~a1,ν)

− (~ρµ − ~a1,µ)
2

(~ρν − ~a1,ν)
2
}

. (4.176)

4.2.2.4.3 Third Self-Interaction Term of Vector and Axial-Vector Mesons

As already mentioned in the previous paragraph, the order of the left- and right-handed field matrices in Eq.
(4.174) can be interchanged in order to obtain an independent term structure which also fulfills all symmetry
constraints. Therefore, another possible four-vector/axial-vector interaction is given by

g4 [Tr {Lµ(x)Lµ(x)Lν(x)Lν(x)}+ Tr {Rµ(x)Rµ(x)Rν(x)Rν(x)}] . (4.177)

Again, the coupling constant g4 has energy dimension one. The explicit expression of the left-handed part
can be calculated as

g4Tr {LµLµLνLν} = g4Tr
{[

(ωµN + fµ1N )T 0 +
(
ρµi + aµ1,i

)
T i
] [

(ωN,µ + f1N,µ)T 0 + (ρµ,j + a1µ,j)T
j
]

×
[
(ωνN + fν1N )T 0 +

(
ρνk + aν1,k

)
T j
] [

(ωN,ν + f1N,ν)T 0 + (ρν,l + a1ν,l)T
l
]}

=
g4

8

{
(ωN,µ + f1N,µ)

2
(ωN,ν + f1N,ν)

2
+ 4 (ωµN + fµ1N ) (ωνN + fν1N ) (~ρµ + ~a1,µ) · (~ρν + ~a1,ν)

+ 2 (ωN,µ + f1N,µ)
2

(~ρν + ~a1,ν)
2

+ (~ρµ + ~a1,µ)
2

(~ρν + ~a1,ν)
2
}

. (4.178)

The right-handed part yields

g4Tr {RµRµRνRν} = g4Tr
{[

(ωµN − f
µ
1N )T 0 +

(
ρµi − a

µ
1,i

)
T i
] [

(ωN,µ − f1N,µ)T 0 + (ρµ,j − a1µ,j)T
j
]

×
[
(ωνN − fν1N )T 0 +

(
ρνk − aν1,k

)
T j
] [

(ωN,ν − f1N,ν)T 0 + (ρν,l − a1ν,l)T
l
]}

=
g4

8

{
(ωN,µ − f1N,µ)

2
(ωN,ν − f1N,ν)

2
+ 4 (ωµN − f

µ
1N ) (ωνN − fν1N ) (~ρµ − ~a1,µ) · (~ρν − ~a1,ν)

+ 2 (ωN,µ − f1N,µ)
2

(~ρν − ~a1,ν)
2

+ (~ρµ − ~a1,µ)
2

(~ρν − ~a1,ν)
2
}

. (4.179)

4.2.2.4.4 Fourth Self-Interaction Term of Vector and Axial-Vector Mesons

Furthermore, it is possible to combine left- and right-handed field matrices in one interaction term. Since the
left-handed field matrices only transform with left-handed U(2) rotations, Eq. (4.137), and the right-handed
fields only transform with right-handed U(2) matrices, Eq. (4.138), the only way to combine them is given
by

g5Tr {Lµ(x)Lµ(x)}Tr {Rν(x)Rν(x)} , (4.180)

with the dimensionless coupling constant g5. The explicit form of the above interaction term is then given
by

g5Tr {LµLµ}Tr {RνRν} = g5Tr
{[

(ωµN + fµ1N )T 0 +
(
ρµi + aµ1,i

)
T i
] [

(ωN,µ + f1N,µ)T 0 + (ρµ,j + a1µ,j)T
j
]}

× Tr
{[

(ωνN − fν1N )T 0 +
(
ρνi − aν1,i

)
T i
] [

(ωN,ν − f1N,ν)T 0 + (ρν,j − a1ν,j)T
j
]}

=
g5

4

{
(ωN,µ + f1N,µ)

2
(ωN,ν − f1N,ν)

2
+ (~ρµ + ~a1,µ)

2
(~ρν − ~a1,ν)

2

+ (ωN,µ + f1N,µ)
2

(~ρν − ~a1,ν)
2

+ (ωN,ν − f1N,ν)
2

(~ρµ + ~a1,µ)
2
}

. (4.181)

4.2.2.4.5 Fifth Self-Interaction Term of Vector and Axial-Vector Mesons

The last possible interaction term which contains four vector/axial-vector fields can be contructed by com-
bining the techniques of the last two paragraphs. To be particular, we can construct terms which contain
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either four left- or right-handed fields, but instead of using one trace, we use the product of two invariant
traces. The resulting interaction term is then given by

g6 [Tr {Lµ(x)Lµ(x)}Tr {Lν(x)Lν(x)}+ Tr {Rµ(x)Rµ(x)}Tr {Rν(x)Rν(x)}] , (4.182)

where we introduced the dimensionless coupling parameter g6. The explicit form of this interaction term
immediately follows from Eq. (4.181), so that

g6 [Tr {LµLµ}Tr {LνLν}+ Tr {RµRµ}Tr {RνRν}]

=
g6

4

{
(ωN,µ + f1N,µ)

2
(ωN,ν + f1N,ν)

2
+ (ωN,µ − f1N,µ)

2
(ωN,ν − f1N,ν)

2
+ 2 (ωN,µ + f1N,µ)

2
(~ρν + ~a1,ν)

2

+ 2 (ωN,µ − f1N,µ)
2

(~ρν − ~a1,ν)
2

+ (~ρµ + ~a1,µ)
2

(~ρν + ~a1,ν)
2

+ (~ρµ − ~a1,µ)
2

(~ρν − ~a1,ν)
2
}

. (4.183)

4.2.2.4.6 Complete Interaction Part of Vector and Axial-Vector Mesons

For later purposes, we want to summarize the four vector/axial-vector interaction terms in a separate part
of the Lagrangian. This also results in a simplification of these terms, since all of these interaction terms
are of a similar form. Then, due to the explicit expressions (4.174), (4.177), (4.180), and (4.182), this term
can be written as

Lg3,g4,g5,g6

=
(g3

8
+
g4

8
+
g6

4

){
(ωN,µ + f1N,µ)

2
(ωN,ν + f1N,ν)

2
+ (ωN,µ − f1N,µ)

2
(ωN,ν − f1N,ν)

2
+ 2 (ωN,µ + f1N,µ)

2
(~ρν + ~a1,ν)

2

+ 2 (ωN,µ − f1N,µ)
2

(~ρν − ~a1,ν)
2
}

+
(g3

2
+
g4

2

){
(ωµN + fµ1N ) (ωνN + fν1N ) (~ρµ + ~a1,µ) · (~ρν + ~a1,ν) + (ωµN − f

µ
1N ) (ωνN − fν1N ) (~ρµ − ~a1,µ) · (~ρν − ~a1,ν)

}
+
(
−g3

8
+
g4

8
+
g6

4

){
(~ρµ + ~a1,µ)

2
(~ρν + ~a1,ν)

2
+ (~ρµ − ~a1,µ)

2
(~ρν − ~a1,ν)

2
}

+
g3

4

{
(~ρµ + ~aµ1 ) · (~ρν + ~aν1) (~ρµ + ~a1,µ) · (~ρν + ~a1,ν) + (~ρµ − ~aµ1 ) · (~ρν − ~aν1) (~ρµ − ~a1,µ) · (~ρν − ~a1,ν)

}
+
g5

4

{
(ωN,µ + f1N,µ)

2
(ωN,ν − f1N,ν)

2
+ (~ρµ + ~a1,µ)

2
(~ρν − ~a1,ν)

2
+ (ωN,µ + f1N,µ)

2
(~ρν − ~a1,ν)

2

+ (ωN,ν − f1N,ν)
2

(~ρµ + ~a1,µ)
2
}

. (4.184)

4.2.2.5 Scalar/Pseudoscalar and Vector/Axial-Vector Interaction Terms

Finally, the last type of possible interactions is given by terms which contain Φ(x) and Φ†(x) as well as
the left- and right-handed matrices Lµ(x), Rµ(x). These terms can again be realized as a product of two
invariant traces or as a single trace. After introducing the three possible interaction terms, we want to
summarize them in a separate part of the Lagrangian.

4.2.2.5.1 First Mixed-Interaction Term of Scalar, Pseudoscalar, Vector, and Axial-Vector
Mesons

As already mentioned, one possibility to write down an invariant term which contains scalar and pseudoscalar
as well as vector and axial-vector degrees of freedom is given by the product of two invariant traces. Since
we are only interested in terms which contain four field matrices, there is only one possible term structure

h1

2
Tr
{

Φ†(x)Φ(x)
}

Tr {Lµ(x)Lµ(x) +Rµ(x)Rµ(x)} , (4.185)

where we introduced the dimensionless coupling h1. Using Eqs. (4.163) and (4.165), the explicit form of the
above interaction term can be written as

h1

2
Tr
{

Φ†Φ
}

Tr {LµLµ +RµRµ} =
h1

4

(
σ2
N + η2

N + ~a2
0 + ~π2

) [
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
]

.

(4.186)
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4.2.2.5.2 Second Mixed-Interaction Term of Scalar, Pseudoscalar, Vector, and Axial-Vector
Mesons

Another possible structure is given by

h2Tr
{
|Lµ(x)Φ(x)|2 + |Φ(x)Rµ(x)|2

}
, (4.187)

where h2 is a coupling parameter of energy dimension one. In order to find the explicit expression (4.187),
we rewrite the above interaction term according to

h2Tr
{
|Lµ(x)Φ(x)|2 + |Φ(x)Rµ(x)|2

}
= h2Tr

{
[Lµ(x)Φ(x)]

†
Lµ(x)Φ(x) + [Φ(x)Rµ(x)]

†
Φ(x)Rµ(x)

}
= h2Tr

{
Φ(x)Φ†(x)Lµ(x)Lµ(x) + Φ†(x)Φ(x)Rµ(x)Rµ(x)

}
, (4.188)

where we used the cyclic property of the trace in the last line. Now, for the sake of simplicity, we consider
both terms in Eq. (4.188) separately. The explicit expression of the first term is then given by

h2Tr
{

ΦΦ†LµLµ
}

= h2Tr
{[

(σN + iηN )T 0 + (a0,i + iπi)T
i
] [

(σN − iηN )T 0 + (a0,j − iπj)T j
]

×
[
(ωµN + fµ1N )T 0 +

(
ρµk + aµ1,k

)
T k
] [

(ωN,µ + f1N,µ)T 0 + (ρµ,l + a1µ,l)T
l
]}

=
h2

8

{[
(ωN,µ + f1N,µ)

2
+ (~ρµ + ~a1,µ)

2
] (
σ2
N + η2

N + ~a2
0 + ~π2

)
+4 (ωN,µ + f1N,µ) (~ρµ + ~a1,µ) · (σN~a0 + ηN~π + ~a0 × ~π)

}
. (4.189)

Similarly, we find

h2Tr
{

Φ†ΦRµRµ
}

= h2Tr
{[

(σN − iηN )T 0 + (a0,i − iπi)T i
] [

(σN + iηN )T 0 + (a0,j + iπj)T
j
]

×
[
(ωµN − f

µ
1N )T 0 +

(
ρµk − a

µ
1,k

)
T k
] [

(ωN,µ − f1N,µ)T 0 + (ρµ,l − a1µ,l)T
l
]}

=
h2

8

{[
(ωN,µ − f1N,µ)

2
+ (~ρµ − ~a1,µ)

2
] (
σ2
N + η2

N + ~a2
0 + ~π2

)
+4 (ωN,µ − f1N,µ) (~ρµ − ~a1,µ) · (σN~a0 + ηN~π + ~π × ~a0)

}
. (4.190)

4.2.2.5.3 Third Mixed-Interaction Term of Scalar, Pseudoscalar, Vector, and Axial-Vector
Mesons

Finally, the last invariant term structure which includes all mesonic degrees of freedom is given by

2h3Tr
{

Φ(x)Rµ(x)Φ†(x)Lµ(x)
}

, (4.191)

where h3 defines a dimensionless coupling constant. The explicit form of the above term can be calculated
as

2h3Tr
{

ΦRµΦ†Lµ
}

= 2h3Tr
{[

(σN + iηN )T 0 + (a0,i + iπi)T
i
] [

(ωµN − f
µ
1N )T 0 +

(
ρµj − a

µ
1,j

)
T j
]

×
[
(σN − iηN )T 0 + (a0,k − iπk)T k

] [
(ωN,µ + f1N,µ)T 0 + (ρµ,l + a1µ,l)T

l
]}

=
h3

4

{[
(ωN,µ)

2 − (f1N,µ)
2

+ (~ρµ)
2 − (~a1,µ)

2
] (
σ2
N + η2

N + ~a2
0 + ~π2

)
+ 4 (ωµN~ρµ − f

µ
1N~a1,µ) · (σN~a0 + ηN~π) + 4 (ωµN~a1,µ − fµ1N~ρµ) · (~a0 × ~π)

+ 4 (σN~π − ηN~a0) · (~aµ1 × ~ρµ) + 2
[
(~a0 × ~a1,µ)

2
+ (~π × ~a1,µ)

2 − (~a0 × ~ρµ)
2 − (~π × ~ρµ)

2
]}

,

(4.192)

where we made use of the well-known Lagrange identity(
~a×~b

)
·
(
~c× ~d

)
=
(
~a · ~c

)(
~b · ~d

)
−
(
~b · ~c

)(
~a · ~d

)
. (4.193)
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4.2.2.5.4 Complete Mixed-Interaction Part of Scalar, Pseudoscalar, Vector, and Axial-Vector
Mesons

Again, for later purposes, it will be useful to summarize the three mixed-interaction terms of the previous
paragraphs. Using the results (4.186), (4.189), (4.190) and (4.192), we find

Lh1,h2,h3 =

(
h1

4
+
h2

4

){(
σ2
N + η2

N + ~a2
0 + ~π2

) [
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
]}

+ (h2 + h3)ωµN [~ρµ · (σN~a0 + ηN~π) + ~a1,µ · (~a0 × ~π)] + (h2 − h3) fµ1N [~a1,µ · (σN~a0 + ηN~π) + ~ρµ · (~a0 × ~π)]

+
h3

4

{[
(ωN,µ)

2 − (f1N,µ)
2

+ (~ρµ)
2 − (~a1,µ)

2
] (
σ2
N + η2

N + ~a2
0 + ~π2

)
+4 (σN~π − ηN~a0) · (~aµ1 × ~ρµ) + 2

[
(~a0 × ~a1,µ)

2
+ (~π × ~a1,µ)

2 − (~a0 × ~ρµ)
2 − (~π × ~ρµ)

2
]}

.

(4.194)

4.2.2.6 Explicit Symmetry Breaking and Anomaly Terms

In the previous subsections, we introduced the basic terms of the eLSM. As already mentioned, these terms
describe the kinetics, contributions to the tree-level masses and the different types of interactions of all four
types of mesons, which are contained in the eLSM. In this section, we want to introduce another impor-
tant class of terms, which is very important for a realistic description of strong hadronic processes. To be
particular, the aim of this subsection is the introduction of different symmetry breaking terms. While the
spontaneous breakdown of chiral symmetry can easily be modeled by a particular choice of the mass param-
eter m2

0, the explicit breaking of this symmetry can only be modeled by introducing new term structures.
Furthermore, we have to introduce another term in order to describe the U(1)A anomaly.

4.2.2.6.1 Explicit Symmetry Breaking in the Scalar/Pseudoscalar Sector

The explicit breaking of SU(2)L × SU(2)R influences the scalar/pseudoscalar as well as the vector/axial-
vector sector. Therefore, we introduce an explicit symmetry breaking term for each sector. In the case of
the scalar/pseudoscalar mesons, this term is of the form

Tr
{
H
[
Φ†(x) + Φ(x)

]}
, (4.195)

where

H = hN,0T
0 = diag

(
hN,0

2
,
hN,0

2

)
(4.196)

and hN,0 ∼ mu = md, so that this parameter has dimension [Energy]. By using Eq. (4.128) and its hermitian
conjugate, we recognize that this term in principle tilts the potential density into the σN -direction

Tr
{
H
[
Φ† + Φ

]}
= Tr

{
H
[
(σN − iηN )T 0 + (a0,i − iπi)T i + (σN + iηN )T 0 + (a0,j + iπj)T

j
]}

= hN,0σN ,
(4.197)

where we made use of the fact that the trace of a Pauli matrix vanishes. In general, the definition of the
symmetry-breaking matrix could also be H = hN,aT

a. But, as already indicated in Sec.[4.2.1.1], the σN field
has the same quantum numbers as the vacuum. Therefore, the σ-meson is allowed to acquire a nonvanishing
vacuum expectation value. The remaining indices, a = i = 1, 2, 3, refer to the ~a0-field and allow to tilt the
potential also in the ~a0-direction. However, this field describes an isotriplet state which has isospin quantum
number I = 1. Therefore, these fields are not allowed to have a non-vanishing vacuum expectation value,
since the vacuum has isospin quantum number I = 0. These considerations suggest to set the parameters
hN,i, i = 1, 2, 3 to zero, so that we are finally left with Eq. (4.196).

4.2.2.6.2 Explicit Symmetry Breaking in the Vector/Axial-Vector Sector

In order to model the explicit breaking of chiral symmetry in the vector and axial-vector sector, we introduce
the following symmetry breaking term

Tr {∆ [Lµ(x)Lµ(x) +Rµ(x)Rµ(x)]} , (4.198)

where the matrix ∆ is given by
∆ = 2δNT

0 = diag (δN , δN ) , (4.199)
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with δN ∼ m2
u = m2

d. Thus, the physical dimension of this parameter is
[
Energy2

]
. Now, the symmetry

breaking term (4.198) is of a similar form as the mass term (4.164). Therefore, we are able to summarize
them into only one term which incorporates a mass contribution of the vector/axial-vector mesons as well
as the explicit symmetry breaking in this sector. The resulting term is given by

Tr

{(
m2

1

2
+ ∆

)
[Lµ(x)Lµ(x) +Rµ(x)Rµ(x)]

}
. (4.200)

With a similar calculation as in Eq. (4.165), the explicit expression of this term can be written as

Tr

{(
m2

1

2
+ ∆

)
(LµLµ +RµRµ)

}
=

(
m2

1

2
+ δN

)[
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
]

. (4.201)

4.2.2.6.3 Modelling the U(1)A Anomaly

Another form of a broken symmetry is given by a so-called anomaly. This term refers to a symmetry which
is present at the classical level of theory, but not at the quantum level. In the case of QCD, the classical
U(1)A symmetry does not survive quantization. As already mentioned in Sec. [2.3.2], this anomaly is due to
nonperturbative quantum effects which are associated with instantons. Since the eLSM has to describe the
dynamics of QCD, we also have to model this type of broken symmetry. As already shown in Ref. [tHoo],
the U(1)A anomaly may be described by

c1
{

det
[
Φ†(x)

]
+ det [Φ(x)]

}
, (4.202)

where the parameter c1 has dimension
[
Energy2

]
. Reference [Par2] also introduces another term structure

that can be used to model the U(1)A anomaly. This work also discusses the implications and consequences
of both terms. In the present work, we only consider Eq. (4.202) as anomaly term. In order to derive the
explicit form of the above anomaly term, we use the fact that the i-th Pauli matrix can be written as

σi =

(
δi3 δi1 − iδi2

δi1 + iδi2 −δi3

)
. (4.203)

Then, the matrix form of (4.128) and its hermitian conjugate can easily be obtained

Φ(x) =
1

2

(
σN (x) + a0,3(x) + i [ηN (x) + π3(x)] a0,1(x) + π2(x)− i [a0,2(x)− π1(x)]
a0,1(x)− π2(x) + i [a0,2(x) + π1(x)] σN (x)− a0,3(x) + i [ηN (x)− π3(x)]

)
, (4.204)

Φ†(x) =
1

2

(
σN (x) + a0,3(x)− i [ηN (x) + π3(x)] a0,1(x)− π2(x)− i [a0,2(x) + π1(x)]
a0,1(x) + π2(x) + i [a0,2(x)− π1(x)] σN (x)− a0,3(x)− i [ηN (x)− π3(x)]

)
. (4.205)

Finally, we only have to calculate the determinants of the above matrices,

c1
{

det
[
Φ†
]

+ det [Φ]
}

=
c1
2

(
σ2
N − η2

N − ~a2
0 + ~π2

)
, (4.206)

in order to obtain an explicit expression for the anomaly term. From Eq. (4.206), we recognize that this
term gives another contribution to the tree-level masses of the scalar and pseudoscalar mesons. In the next
section, we will see that this contribution has an important effect on the tree-level masses of the ηN and ~π
fields. To be particular, the different signs in front of those fields in Eq. (4.206) will shift their masses with
respect to each other. While the positive sign decreases the tree-level pion mass, the tree-level mass of the
η-meson increases due to the negative sign. Finally, we want to show that Eq. (4.202) indeed breaks the
U(1)A symmetry. To this end, we remember that the group parameters of the left- and right-handed U(2)
transformations are connected to those of the vector and axial-vector transformations

αL,a =
αV,a − αA,a

2
, αR,a =

αV,a + αA,a
2

. (4.207)

Then, the left- and right-handed chiral rotations (2.148) may be rewritten as

UL/R = exp

{
−iαV,a ∓ αA,a

2
T a
}

= exp

{
−iαV,0 ∓ αA,0

2
T 0

}
exp

{
−iαV,i ∓ αA,i

2
T i
}

, (4.208)
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where we used that U(2) = SU(2) × U(1). Using Eq. (4.124), the transformation behavior of the anomaly
term with respect to U(2)L × U(2)R is given by

c1
{

det
[
Φ†(x)

]
+ det [Φ(x)]

} U(2)L×U(2)R−→ c1
{

det
[
Φ†′(x)

]
+ det [Φ′(x)]

}
= c1

{
det
[
URΦ†(x)U†L

]
+ det

[
ULΦ(x)U†R

]}
= c1

{
det [UR] det

[
Φ†(x)

]
det
[
U†L

]
+ det [UL] det [Φ(x)] det

[
U†L

]}
= c1

{
det
[
e−iαA,0T

0

Φ†(x)
]

+ det
[
eiαA,0T

0

Φ(x)
]}

, (4.209)

where we used that the left- and right-handed SU(2) transformations have a unit determinant. By identifying
the complex phases in Eq. (4.209) as U(1)A transformations, we finally recognize that the anomaly term
breaks the U(1)A invariance of the theory.

4.2.2.7 The Full eLSM Lagrangian

At the end of this Section, we want to collect all terms of the previous Subsections in order to write down
the full mesonic Lagrangian of the eLSM. Omitting all space-time dependences and using the trace notation,
the full Lagrangian is given by

LeLSM = Tr
{

[DµΦ]
†
DµΦ

}
−m2

0Tr
{

Φ†Φ
}
− λ1

(
Tr
{

Φ†Φ
})2 − λ2Tr

{[
Φ†Φ

]2}
− 1

4
Tr {LµνLµν +RµνRµν}+ Tr

{(
m2

1

2
+ ∆

)
[LµLµ +RµRµ]

}
+ Tr

{
H
[
Φ† + Φ

]}
+ c1

[
detΦ + detΦ†

]
+ i

g2

2

[
Tr
{
Lµν [Lµ, Lν ]−

}
+ Tr

{
Rµν [Rµ, Rν ]−

}]
+
h1

2
Tr
{

Φ†Φ
}

Tr {LµLµ +RµRµ}+ h2Tr
{
|LµΦ|2 + |ΦRµ|2

}
+ 2h3Tr

{
ΦRµΦ†Lµ

}
+ g3 [Tr {LµLνLµLν}+ Tr {RµRνRµRν}] + g4 [Tr {LµLµLνLν}+ Tr {RµRµRνRν}]
+ g5Tr {LµLµ}Tr {RµRµ}+ g6 [Tr {LµLµ}Tr {LνLν}+ Tr {RµRµ}Tr {RνRν}] . (4.210)

In the above form, the eLSM Lagrangian contains 13 parameters, which were already introduced in previous
subsections

g1,m
2
0,m

2
1, λ1, λ2, g2, g3, g4, g5, g6, h1, h2, h3 . (4.211)

In the case of three dynamical quark flavors, the number of parameters increases to 15, since the symmetry
breaking matrices H and ∆ then contain an additional parameter which corresponds to the strange degree
of freedom. The numerical values of all parameters have been determined in Ref. [PKWGR] by considering
the decay processes of the scalar/pseudoscalar and vector/axial-vector degrees of freedom. The numerical
input which we will use for the calculations of upcoming Section can be found in Sec. [4.3.6]. An important
property of these parameter is given by their large-NC behavior, because this scaling behavior allows us
to draw conclusions about the quark/anti-quark nature of the states which are included in the eLSM. The
large-NC scaling of the parameters (4.211) can be determined by using the fact that a vertex of n q̄q-mesons

scales as N
1−n2
C , compare Refs. [tHWC]. We obtain

hN,0 ∼ N
1
2

C , (4.212)

m2
0,m

2
1, δN ∼ N0

C , (4.213)

g1, g2 ∼ N
− 1

2

C , (4.214)

λ2, h2, h3, g3, g4, c1 ∼ N−1
C , (4.215)

λ1, h1, g5, g6 ∼ N−2
C . (4.216)

For more details of the scaling of these parameters compare Ref. [Par2]. At the end of this section, we want
to quote the explicit expression of the mesonic eLSM Lagrangian (4.210). Combining all results of Secs.
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[4.2.2.2]-[4.2.2.6], we find

LeLSM =
1

2
[∂µσN + g1 (f1N,µηN + ~a1µ · ~π)]

2
+

1

2
[∂µηN − g1 (f1N,µσN + ~a1µ · ~a0)]

2

+
1

2
[∂µ~a0 + g1 (f1N,µ~π + ~a1µηN + ~ρµ × ~a0)]

2
+

1

2
[∂µ~π − g1 (f1N,µ~a0 + ~a1µσN + ~π × ~ρµ)]

2

+

(
c1
2
− m2

0

2

)(
σ2
N + ~π2

)
+

(
−c1

2
− m2

0

2

)(
η2
N + ~a2

0

)
− 1

4
(ωµνN ωN,µν + fµν1Nf1N,µν + ~ρµν · ~ρµν

+~aµν1 · ~a1,µν) +

(
m2

1

2
+ δN

)[
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
]

+

(
−λ1

4
− λ2

8

)[
σ4
N + η4

N

+
(
~a2

0

)2
+
(
~π2
)2

+ 2σ2
Nη

2
N + 2σ2

N~π
2 + 2η2

N~a
2
0

]
+

(
−λ1

2
− 3λ2

4

)(
σ2
N~a

2
0 + η2

N~π
2 + ~a2

0~π
2
)

− λ2

8

[
8σNηN~a0 · ~π − 4 (~a0 · ~π)

2
]

+ hN,0σN + g2 [(∂µ~ρν) · (~ρν × ~ρµ + ~a1,ν × ~a1,µ)

+ (∂µ~aν1) · (~ρν × ~a1,µ + ~a1,ν × ~ρµ)] + Lh1,h2,h3
+ Lg3,g4,g5,g6

, (4.217)

where we used Eqs. (4.184) and (4.194).

4.3 The Low-Energy Constants of the Extended Linear Sigma
Model

In the previous section, we briefly introduced the mesonic part of the eLSM Lagrangian. Now, we want
to investigate the low-energy regime of the model by calculating the LECs of the eLSM. To this end, we
want to introduce the basic ideas of our approach in the upcoming Sec. [4.3.1]. But before we are able to
calculate the LECs of the eLSM, we have to perform different preliminary manipulations of the Lagrangian
(4.210). To be particular, we first have to model the spontaneous breakdown of chiral symmetry. Then, as a
consequence of this operation, we will find that the resulting Lagrangian contains non-diagonal contributions
to the kinetic part of the η-meson and the pion, which can be removed by performing a suitable shift of the
axial-vector fields f1N,µ and ~a1,µ. The details of this calculation will be in the focus of Sec. [4.3.2]. Then,
in Secs. [4.3.3]-[4.3.5], we want to consider different versions of the eLSM and calculate the respective LECs
as functions of the model parameters (4.211). Finally, in the last Sec. [4.3.6], we use the results of Secs.
[4.3.3]-[4.3.5] in order to obtain numerical values for the LECs of the eLSM.

4.3.1 The Basic Idea

As already mentioned in the introduction of this section, in this Subsection we introduce the basic idea
behind the approach which we use for the determination of the LECs. To this end, we have to remember
the discussion of Sec. [3.3.3] where we expanded the NLO chiral Lagrangian (3.218), (3.219) up to O(π6) in
pion fields. The resulting Lagrangian (3.234) includes all possible types of interaction terms which include
exactly four pions and up to four space-time derivatives. These interaction terms are coupled by five coupling
constants (3.236)-(3.239). The goal of our approach is now to bring the Lagrangian of the eLSM in the same
form as Eq. (3.234). From this Lagrangian, we are then able to obtain five constants Ci,eLSM , i = 1, . . . 5,
that are in principle functions of the model parameters (4.211). Finally, we have to compare these constants
to those obtained from ChPT. This procedure will make a statement, how well - at tree-level - the low-energy
regime of QCD can be described by the eLSM.

In order to bring the eLSM Lagrangian into the desired form (3.234) we have to integrate all heavy fields
out of the theory. This aim can be reached by considering the transition amplitude 〈f,∞|f,−∞〉, where
f = {σN , ηN ,~a0, ~π, ωN,µ, f1N,µ, ~ρµ,~a1,µ}. Using the techniques of Sec. [2.2.1], this transition amplitude can
be written as a functional integral with respect to all field variables. According to the discussion of Sec.
[4.1.2], we then solve the functional integrals in order to obtain a low-energy effective description of the
eLSM. In contrast to the simple toy model of Sec. [4.1], the Lagrangian of the eLSM contains a much more
complicated term structure, so that, in general, the various functional integrals are coupled and not in the
form of a Gaussian integral. At first sight, this does not allow an analytic approach to solve the functional
integrals. But the fact that we are only interested in interaction terms which contain exactly four pion fields
and not more than four space-time derivatives allows us to make three assumptions, which simplify the eLSM
Lagrangian remarkably. To be particular, we assume that neglecting all interaction terms that contain

(A1) less than two ~π-fields,
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(A2) exactly three ~π-fields, and

(A3) exactly two ~π-fields and two fields which correspond to different resonances

does not influence the structure of the constants Ci,eLSM at tree-level. It is clear that these assumptions
have to be supported by physical arguments.

The first assumption affects all interaction terms that either contain one or zero ~π-fields. The latter terms,
of course, will not affect a four-pion interaction term, since they do not contain free pion legs. Therefore, we
are able to neglect them. Then, with H1, H2, H3 ∈ {σN , ηN ,~a0, ωN,µ, f1N,µ, ~ρµ,~a1,µ}, a term that contains
exactly one pion field can, in general, be written as H1H2H3~π. It is clear that the ”heavy” fields Hi have
to be chosen in a way that all symmetries are fulfilled and all indices are contracted. Then, we can consider
the case where all three heavy fields are identical. Neglecting such a term corresponds to a saddle-point
expansion around the minimum of the potential. On the other hand, this type of interaction term does
not contribute to four-pion interaction terms, so we are able to neglect it. Furthermore, we have the case
where two heavy fields are identical, i.e., a term of the form H1H1H3~π. Then, depending on the masses
of H1 and H3, we have to consider two scenarios. In the first scenario, we assume that the mass of H1 is
larger than the mass of H3. In this case, we first have to integrate H1 out of the Lagrangian. It is obvious
that the H1H1H3~π term itself cannot contribute to a four-pion interaction, so that we have to combine
two of these terms by connecting the H1 legs in order to obtain a process which is of higher order in the
respective coupling constant. This term obviously corresponds to a one-loop contribution of H3π-scattering.
If we now integrate H1 out of the theory, the two H1 propagators shrink together, so that the resulting
interaction vertex then corresponds to contact interaction term. It is clear that the contribution of such a
term is strongly suppressed, since each frozen propagator is proportional to the inverse square of the heavy
particle mass. Nevertheless, if we then combine two of these interaction terms, we finally obtain a one-loop
contribution to four-pion interactions. This situation is also illustrated at the level of Feynman diagrams in
Figs. [4.7] and [4.8].

Figure 4.7: In the first step, we have two four-point interaction vertices of the type H1H1H3~π. Here, the double lines
correspond to H1, the ordinary line corresponds to H3, and the dashed line describes the ~π-field. In the second step, we
combine both diagrams to a one-loop correction to H3π-scattering. Finally, if we integrate out H1, the loop freezes to a new
vertex for the H3π-scattering.

Figure 4.8: Two H3π-scattering vertices can be combined to a one-loop contribution to ππ-scattering.

In the second case, we assume H3 to be the heavier resonance. When we integrate this field out of the
theory, the resulting contact interaction vertex contains four H1-fields and two ~π-fields. Then, combining
two of those vertices gives rise to higher-order loop contributions to four-pion interactions.

In addition to that, we have to consider the case where all heavy fields correspond to different resonances.
Again, we first have to integrate the heaviest resonance out of the theory. To this end, we declare the fol-
lowing mass ordering mH1

> mH2
> mH3

. Similar to the previous case, only one H1H2H3~π term does not
contribute to four-pion interactions, so that we have to consider processes of higher order in the coupling
constant. If we then connect two of those vertices via the two H1legs and integrate H1 out of the Lagrangian,
the H1 propagator will shrink. The resulting vertex will be given by a contact interaction of two H2, two H3,
and two π-fields. Even without integrating the remaining heavy degrees of freedom out of the theory, it is
clear that this type of interaction will not have a tree-level contribution to four-pion interactions. Therefore,
the first assumption seems to be verified.
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Now, we consider the second assumption (A2) that effects all terms with exactly three ~π-fields and an
arbitrary heavy field, i.e., H1~π~π~π terms. Integrating the H1-field out of the theory will result in a 6~π contact
interaction term which does not contribute to tree-level four-pion interactions. This situation is depicted in
Fig. [4.9].

Figure 4.9: H1H2H3~π-interaction terms will lead to a tree-level 6-point function.

Finally, we have to discuss the third assumption (A3). This assumption affects all terms that are of the
following form H1H2~π~π, with H1 6= H2. Again, it is clear, that these terms have to fulfill all symmetry
constraints. Furthermore, we assume that H1 corresponds to the heavier resonance, so that this field has to
be integrated out of the theory first. Similar to the previous cases, we have to consider a process which is
at least quadratic in the respective coupling constant. To be particular, we consider the process that can
be obtained by combining two H1H2~π~π diagrams by closing the respective H1 lines. If we now eliminate
the H1-field from the theory, the H1 propagrator freezes, so that we obtain a contact interaction term of six
fields, which also does not contribute to tree-level four-pion interactions. This situation is illustrated in Fig.
[4.10].

Figure 4.10: The third assumption eliminates one-loop contributions to the 8-point function of the pion.

Obviously, the three assumptions do not influence the four-pion interaction terms which we are interested
in. In the upcoming sections, we will see that these assumptions simplify the Lagrangian of the eLSM in a
way, so that all functional integrals of the heavy fields decouple from each other. Furthermore, all of these
integrals will be of a Gaussian type, which permits an analytic solution of them. But before we are in the
position to apply the simplifications (A1)-(A3), we have to perform some preliminary manipulations of the
Lagrangian, which are due to the spontaneous breakdown of chiral symmetry. These manipulations will
recast the Lagrangian (4.217) in a completely different form and allow new interaction terms.

4.3.2 Prerequisites

After introducing the basic ideas of our approach in the previous subsection, we now turn back to Eq.
(4.217). As already mentioned in the discussion of the various terms of eLSM, we are able to model the
spontaneous breakdown of chiral symmetry by choosing the sign of the mass parameter m2

0. But this is
nothing new, since in principle we did the same in the discussion of Secs. [2.2.2] and [2.2.3]. There, we
choose the mass parameter m2 in a way that the potential density of the toy models was transformed to its
Nambu-Goldstone realization. This means that the potential densities are in a configuration, which allows
them to have degenerate vacuum states. In the case of the eLSM, we want to proceed in the same manner.
The only difference to these simple toy models arises from the much more complicated term structure of the
eLSM which will lead to non-diagonal contributions to the kinetic terms of the ηN - and the ~π-fields. But
before we are able to see this, we have to reorder the terms of the eLSM Lagrangian. By calculating the
squares of the kinetic parts of Eq. (4.217), the Lagrangian can be recast into the form

LeLSM = Lkin. + Lderiv. − V . (4.218)

In this notation, the first term only contains the canonically normalized kinetic terms of all resonances which
are present in the eLSM

Lkin. =
1

2

[
(∂µσN )

2
+ (∂µηN )

2
+ (∂µ~a0)

2
+ (∂µ~π)

2
]
− 1

4

(
ωµνN ωN,µν + fµν1Nf1N,µν + ~ρµν · ~ρµν + ~aµν1 · ~a1,µν

)
.

(4.219)
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The second and third term of Eq. (4.218) then contain the tree-level mass contributions of all fields and the
different types of interactions. For later convenience, we collected all derivatively coupled interaction terms
in Lderiv.

Lderiv. = g1 (∂µσN ) (f1N,µηN + ~a1,µ · ~π)− g1 (∂µηN ) (f1N,µσN + ~a1,µ · ~a0)

+ g1 (∂µ~a0) · (f1N,µ~π + ~a1,µηN + ~ρµ × ~a0)− g1 (∂µ~π) · (f1N,µ~a0 + ~a1,µσN + ~π × ~ρµ)

+ g2 [(∂µ~ρν) · (~ρν × ~ρµ + ~a1,ν × ~a1,µ) + (∂µ~aν1) · (~ρν × ~a1,µ + ~a1,ν × ~ρµ)] . (4.220)

Then, the ”potential density” V is given by

V = −
(
c1
2
− m2

0

2

)(
σ2
N + ~π2

)
−
(
−c1

2
− m2

0

2

)(
η2
N + ~a2

0

)
−
(
m2

1

2
+ δN

)[
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
]

− g2
1

2
(f1N,µ~π + ~a1,µηN + ~ρµ × ~a0)

2 − g2
1

2
(f1N,µ~a0 + ~a1,µσN + ~π × ~ρµ)

2 − g2
1

2
(f1N,µηN + ~a1,µ · ~π)

2

− g2
1

2
(f1N,µσN + ~a1,µ · ~a0)

2 −
(
−λ1

4
− λ2

8

)[
σ4
N + η4

N +
(
~a2

0

)2
+
(
~π2
)2

+ 2σ2
Nη

2
N + 2σ2

N~π
2 + 2η2

N~a
2
0

]
−
(
−λ1

2
− 3λ2

4

)(
σ2
N~a

2
0 + η2

N~π
2 + ~a2

0~π
2
)

+
λ2

8

[
8σNηN~a0 · ~π − 4 (~a0 · ~π)

2
]
− hN,0σN

−Lh1,h2,h3 −Lg3,g4,g5,g6 . (4.221)

Now, in order to realize the above potential density in its Nambu-Goldstone mode, we choose the mass
parameter m2

0 to be negative, i.e.,
m2

0 −→ −m2
0 , (4.222)

with m2
0 > 0. With this choice, only two terms of the potential density change

V = −
(
c1
2

+
m2

0

2

)(
σ2
N + ~π2

)
−
(
−c1

2
+
m2

0

2

)(
η2
N + ~a2

0

)
− . . . , (4.223)

where the ”. . .” stand for all other terms of the potential density, that remain unchanged under the replace-
ment (4.222). At this point, it will be useful to remember the discussion of the first scalar/pseudoscalar
meson self-interaction term Sec. [4.2.2.3.1]. In this paragraph, we mentioned that the coupling constant λ1

has to fulfill a constraint in order to obtain a bounded potential density. When we now look at Eq. (4.221),
this constraint can easily be read off,

λ1 > −
λ2

2
. (4.224)

Without the above requirement, the last term of the third line of Eq. (4.221) would be allowed to have
a positive sign, so that the quartic powers of scalar/pseudoscalar fields would lead to a potential density
that is not bounded from below. With the choice (4.222), the potential density now has the usual ”mexican
hat”-like shape. But due to the explicit symmetry breaking term (4.197), this ”mexican hat” is tilted in
σN -direction. Therefore, we only have to consider the first derivative of V with respect to σN , in order to
find the minimum of the potential. This minimum then satisfies the following condition

0
!
=

∂V

∂σN

∣∣∣∣
σN=φN ,f=0

= −
(
m2

0 + c1
)
φN +

(
λ1 +

λ2

2

)
φ3
N − hN,0 , (4.225)

where we defined the vacuum expectation value of the σN -field as φN ≡ 〈Ω|σN |Ω〉 and f represents the
remaining fields. Of course, it would be possible to solve this cubic equation in order to obtain a solution
for φN , but it will be shown in a moment that the above condition will be of greater importance.

The vacuum expectation value now represents the ground state of our physical system. At this point, we
could start to quantize the theory around this new ground state. The first excited states would, of course,
be left and the right of φN inside the ”brim” of the mexican hat. But, according to the discussions of Secs.
[2.2.2] and [2.2.3], the usual approach takes place at a classical level. To this end, we decompose the σN -field
into two parts

σN −→ φN + σN . (4.226)

The first contribution is obviously given by the vacuum expectation values itself. This can be seen as the
lowest order of an expansion of the initial σN -field around the minimum of the potential density. The
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second contribution is a bit confusing at first sight, since we also labeled it as σN . This second contribution
describes a fluctuation field which parametrizes the excitations around the ground state. Therefore, this
field incorporates higher orders of this expansion of the initial σN -field. In the following, we have to insert
the decomposition (4.226) into Eq. (4.218). For the sake of clarity, we want to study in detail the changes
of the Lagrangian, that are introduced by Eq. (4.226). As mentioned before, we are able to solve the above
cubic equation for φN . But already from Eq. (4.225), we observe that the solution of this equation will be
a function of the model parameters m2

0, c1, λ1, λ2, and hN,0. It directly follows that the vacuum expectation
value φN is a constant with respect to space-time, so that the kinetic term in Eq. (4.218) does not change
under Eq. (4.226)

Lkin.
σN−→φN+σN−→ L ′kin. =

1

2

{
[∂µ (φN + σN )]

2
+ (∂µηN )

2
+ (∂µ~a0)

2
+ (∂µ~π)

2
}
− 1

4

{
ωµνN ωN,µν + fµν1Nf1N,µν

+~ρµν · ~ρµν + ~aµν1 · ~a1,µν

}
= Lkin. . (4.227)

An important change takes place in Lderiv., since

Lderiv.
σN−→φN+σN−→ L ′deriv. = g1 [∂µ (φN + σN )] (f1N,µηN + ~a1,µ · ~π)− g1 (∂µηN ) (f1N,µ (φN + σN ) + ~a1,µ · ~a0)

+ g1 (∂µ~a0) · [f1N,µ~π + ~a1,µηN + ~ρµ × ~a0]− g1 (∂µ~π) · [f1N,µ~a0 + ~a1,µ (φN + σN )

+~π × ~ρµ] + g2 [(∂µ~ρν) · (~ρν × ~ρµ + ~a1,ν × ~a1,µ) + (∂µ~aν1) · (~ρν × ~a1,µ + ~a1,ν × ~ρµ)]

= Lderiv. − g1φN (∂µηN ) f1N,µ − g1φN (∂µ~π) · ~a1,µ . (4.228)

Obviously, the two additional terms in the transformation of Lderiv. induce a mixing of the ηN - and f1N,µ-
fields and of the ~π- and ~a1,µ-fields. This mixing introduces non-diagonal contributions to the kinetic parts
of the ηN - and ~π-fields, which will result in non-diagonal scattering matrix elements. In a moment, it will
be shown, that we are able to eliminate these terms from the Lagrangian by introducing an appropriate
redefinition of the f1N,µ- and ~a1,µ-fields. But before that we have to study the impacts of Eq. (4.226) on
the potential density V . We find

V
σN−→φN+σN−→ V ′

= −
(
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2
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0

2

)[
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2
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2
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2
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2
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2
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− hN,0 (φN + σN )
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, (4.229)

where

L ′h1,h2,h3
=

(
h1

4
+
h2

4
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(φN + σN )

2
+ η2

N + ~a2
0 + ~π2
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2
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2
+ (~ρµ)

2
+ (~a1,µ)

2
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+ (h2 + h3)ωµN

{
~ρµ · [(φN + σN )~a0 + ηN~π] + ~a1,µ · (~a0 × ~π)

}
+ (h2 − h3) fµ1N
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+
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2
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2 − (~a1,µ)

2
] [

(φN + σN )
2

+ η2
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+4 [(φN + σN )~π − ηN~a0] · (~aµ1 × ~ρµ) + 2
[
(~a0 × ~a1,µ)

2
+ (~π × ~a1,µ)

2 − (~a0 × ~ρµ)
2 − (~π × ~ρµ)

2
]}

(4.230)

and
L ′g3,g4,g5,g6

= Lg3,g4,g5,g6
, (4.231)

which directly follows from the fact that Eq. (4.184) only contains interaction terms that involve four
vector/axial-vector mesons. Obviously, the shift (4.226) introduces new three-point interactions as well as
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new contributions to the tree-level masses of the scalar/pseudoscalar and vector/axial-vector mesons. If we
simplify Eqs. (4.229) and (4.230), we obtain

V ′ =

[
−c1

2
− m2

0

2
+

3

2

(
λ1 +

λ2

2

)
φ2
N

]
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N +
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2
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2
+

1

2
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2

)
φ2
N

]
η2
N +
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2
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0

2
+

1

2

(
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3λ2

2

)
φ2
N

]
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0

+
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−c1

2
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0

2
+

1

2

(
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2

)
φ2
N

]
~π2 −
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m2

1

2
+ δN +

1

4
(h1 + h2 + h3)φ2

N

]
(ωN,µ)

2

−
[
m2

1

2
+ δN +

1

4
(h1 + h2 − h3)φ2

N +
g2

1

2
φ2
N

]
(f1N,µ)

2 −
[
m2

1

2
+ δN +

1

4
(h1 + h2 + h3)φ2

N

]
(~ρµ)

2

−
[
m2

1

2
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1

4
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N +
g2

1

2
φ2
N

]
(~a1,µ)

2 − g2
1

2
(f1N,µηN + ~a1,µ · ~π)

2 − g2
1

2
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1

2
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2 − g2
1

2
(f1N,µ~a0 + σN~a1,µ + ~π × ~ρµ)

2 − g2
1φNf

µ
1N (f1N,µσN + ~a1,µ · ~a0)

− g2
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1

4

(
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λ2

2
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σ4
N + 4φNσ

3
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(
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0

)2
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(
~π2
)2

+ 2σ2
Nη

2
N

+4φNσNη
2
N + 2σ2

N~π
2 + 4φNσN~π

2 + 2η2
N~a

2
0

]
+

1

2

(
λ1 +

3λ2

2
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σ2
N~a

2
0 + 2φNσN~a

2
0 + η2

N~π
2 + ~a2

0~π
2
]

+
λ2

8

[
8σNηN~a0 · ~π + 8φNηN~a0 · ~π − 4 (~a0 · ~π)

2
]
− 1

4
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σ2
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N + ~a2
0 + ~π2
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2
+ (f1N,µ)

2

+ (~ρµ)
2

+ (~a1,µ)
2
]}
− 1

2
(h1 + h2)φNσN

[
(ωN,µ)

2
+ (f1N,µ)

2
+ (~ρµ)

2
+ (~a1,µ)

2
]
− (h2 + h3)ωµN

[
~ρµ · (σN~a0

+ ηN~π + φN~a0

)
+ ~a1,µ · (~a0 × ~π)

]
− (h2 − h3) fµ1N

[
~a1,µ · (σN~a0 + ηN~π + φN~a0) + ~ρµ · (~a0 × ~π)

]
− h3

4

[
(ωN,µ)

2

− (f1N,µ)
2

+ (~ρµ)
2 − (~a1,µ)

2
] (
σ2
N + η2

N + ~a2
0 + ~π2

)
− h3

2
φNσN

[
(ωN,µ)

2 − (f1N,µ)
2

+ (~ρµ)
2 − (~a1,µ)

2
]

− h3 (σN~π − ηN~a0 + φN~π) · (~aµ1 × ~ρµ)− h3

2

[
(~a0 × ~a1,µ)

2
+ (~π × ~a1,µ)

2 − (~a0 × ~ρµ)
2 − (~π × ~ρµ)

2
]
−Lg3,g4,g5,g6

.

(4.232)

At this point, one might ask two questions: (i) What happened to the terms which are linear in σN and (ii)
what happened to the constant contributions which appear due to the shift (4.226) ? The first question can
easily be answered, by considering the explicit form of these terms{

−
(
m2

0 + c1
)
φN +

(
λ1 +

λ2

2

)
φ3
N − hN,0

}
σN . (4.233)

If we now compare the coefficient of the σN -field in Eq. (4.233) with the condition that has to be fulfilled by
the vacuum expectation value φN , Eq. (4.225), we observe that both expressions are equivalent. Therefore,
the linear contributions of the σN -field vanish. Also the second question has an easy answer. The constant
terms of the ”shifted” potential density are given by

V (φN ) = −
(
c1
2

+
m2

0

2

)
φ2
N +

1

4

(
λ1 +

λ2

2

)
φ4
N − hN,0φN . (4.234)

The term ”V (φN )” makes sense, since the constant terms exactly correspond to the case where we evaluate
the potential density at σN = φN with all other fields set to zero, i.e., this contribution is equal to the poten-
tial, evaluated at its minimum. But, as already mentioned, these contributions are constant and therefore
do not affect the equations of motion. The only consequence of this constant term would be a shift of the
zero of the energy scale, so that we are able to neglect the contributions (4.234).

Another important aspect of Eq. (4.232) concerns the tree-level masses of the mesons. At this point, one
might think that the squares of the tree-level masses are, up to a constant factor, given by the square brackets
in the first four lines of Eq. (4.232). But, as we will see in a moment, this is not the case, since the tree-level
masses of two fields will pick up another constant factor. This factor will arise from the manipulations
that are needed to remove the mixing terms (4.228) from the Lagrangian. Using Eqs. (4.227), (4.228), and
(4.232), the complete Lagrangian of the eLSM is given by

LeLSM = Lkin. + Lderiv. − g1φN (∂µηN ) f1N,µ − g1φN (∂µ~π) · ~a1,µ − V ′

= Lkin. + Lderiv. − g1φN (∂µηN ) f1N,µ − g1φN (∂µ~π) · ~a1,µ − V , (4.235)
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where we renamed V ′ → V , since Eq. (4.232) describes the new potential density of the eLSM, that is
obtained by considering the fluctuations around the minimum of the initial potential density (4.221).

Before we proceed, it will be useful to summarize briefly, what we have done so far: In Eq. (4.218), we
started with the explicit form of the eLSM Lagrangian, which we derived in the previous section. Due to
the explicit symmetry breaking term (4.195), the potential density V corresponds to a ”mexican hat”-like
potential that is tilted in the direction of σN in field space. Since the σN -field has the same quantum numbers
as the vacuum, it is allowed to acquire a non-vanishing vacuum expectation value. This vacuum expectation
value is clearly given by the minimum of the potential and was determined in Eq. (4.225). Then, we studied
the fluctuations around this minimum by expanding the initial σN -field around the vacuum expectation
value, compare Eq. (4.226). At this point, it is important to understand that the spontaneous breakdown
of chiral symmetry only occurs, since the vacuum expectation value φN is different from zero. Otherwise,
the fluctuation field σN in Eq. (4.226) would exactly correspond to the initial σN -field. In this case, the
Lagrangian would stay chirally symmetric. As already mentioned in the discussion of Eq. (2.88), the initial
symmetry is not really broken, but hidden. In fact, the eLSM is still symmetric with respect to chiral
transformations, but, in general, in a nonlinear realization of the symmetry, which arises from fluctuation
field σN . The occurrence of this field then introduced new interaction vertices which are proportional to
φN . In addition to these interaction vertices, the decomposition (4.226) also introduced two mixing terms,
see Eq. (4.235). In the following, we want to eliminate these mixing terms. To this end, it will be useful to
reorder the terms of the Lagrangian (4.235) in a different way. If we arrange all terms with respect to their
coupling constants, the Lagrangian (4.235) can be written as

LeLSM = Lkin. + Lmass,g1,g2
+ Lλ1,λ2

+ Lh1,h2,h3
+ Lg3,g4,g5,g6

, (4.236)

where the second part Lmass,g1,g2 also contains the tree-level mass contributions of Eq. (4.232). For the
sake of clarity, we want to quote the explicit expressions of these terms. Since the kinetic part Lkin. and the
four vector/axial-vector meson interaction part Lg3,g4,g5,g6

are given by Eqs. (4.219) and (4.184), the other
three terms have to be defined again. The second part Lmass,g1,g2

is given by

Lmass,g1,g2 = Lmass + Lg1,g2 , (4.237)

with

Lmass = −1
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N

]
(ωN,µ)

2
+

1

2

[
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1

2
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1φ

2
N

]
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]
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+
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1 + 2δN +
1

2
(h1 + h2 − h3)φ2

N + g2
1φ

2
N

]
(~a1,µ)

2

(4.238)

and

Lg1,g2
= −g1φN [(∂µηN ) f1N,µ + (∂µ~π) · ~a1,µ] + g1 (∂µσN ) (f1N,µηN + ~a1,µ · ~π)− g1 (∂µηN ) (f1N,µσN + ~a1,µ · ~a0)

+ g1 (∂µ~a0) · (f1N,µ~π + ~a1,µηN + ~ρµ × ~a0)− g1 (∂µ~π) · (f1N,µ~a0 + ~a1,µσN + ~π × ~ρµ) +
g2

1

2
(f1N,µηN + ~a1,µ · ~π)

2

+
g2

1

2
(f1N,µ~π + ~a1,µηN + ~ρµ × ~a0)

2
+
g2

1

2
(f1N,µσN + ~a1,µ · ~a0)

2
+
g2

1

2
(f1N,µ~a0 + σN~a1,µ + ~π × ~ρµ)

2

+ g2
1φNf

µ
1N (f1N,µσN + ~a1,µ · ~a0) + g2

1φN~a1,µ · (f1N,µ~a0 + σN~a1,µ + ~π × ~ρµ)

+ g2 [(∂µ~ρν) · (~ρν × ~ρµ + ~a1,ν × ~a1,µ) + (∂µ~aν1) · (~ρν × ~a1,µ + ~a1,ν × ~ρµ)] . (4.239)

The third term in Eq. (4.236) only contains the interactions of the scalar and pseudoscalar mesons among
themselves. This term is given by

Lλ1,λ2
= −1

4

(
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λ2

2

)[
σ4
N + 4φNσ

3
N + η4

N +
(
~a2
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)2
+
(
~π2
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+ 2σ2
Nη

2
N + 4φNσNη

2
N + 2σ2

N~π
2 + 4φNσN~π

2 + 2η2
N~a

2
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− 1

2

(
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3λ2

2

)[
σ2
N~a

2
0 + 2φNσN~a

2
0 + η2

N~π
2 + ~a2

0~π
2
]
− λ2

8

[
8σNηN~a0 · ~π + 8φNηN~a0 · ~π − 4 (~a0 · ~π)

2
]

.

(4.240)
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Finally, the fourth term is defined as

Lh1,h2,h3
=

1

4
(h1 + h2)

{(
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N + ~a2
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+ (~ρµ)
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2
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]
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2
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2
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. (4.241)

Now, in order to eliminate the mixing terms in Eq. (4.239), it is clear that we only have to consider the
mass terms (4.238) in Eq. (4.237), since these terms are the only ones that also contain only two fields. It
is therefore quite intuitive to introduce the following shifts of the f1N,µ- and ~a1,µ-fields

f1N,µ −→ f ′1N,µ = f1N,µ + wf1N
∂µηN , (4.242)

~a1,µ −→ ~a′1,µ = ~a1,µ + w~a1
∂µ~π , (4.243)

where the parameters wf1N
and w~a1

will be determined in a moment. As a consequence of the above shifts,
the initial mass terms of the f1N,µ- and ~a1,µ-fields will generate similar mixing terms as in Eq. (4.239). The
basic idea is now to adjust the new parameters wi, i = f1N ,~a1, in a way that all mixing terms cancel out
of the Lagrangian. In order to see this, we have to insert the shifts (4.242) and (4.243) into all parts of the
Lagrangian (4.236) and study their consequences. Using the Schwarz theorem and the antisymmetry of the
field-strength tensors, it is easy to see that the kinetic part (4.219) remains invariant with respect to Eqs.
(4.242), (4.243)

Lkin.

f1N,µ−→f1N,µ+wf1N
∂µηN,
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∂µ~π
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)]}

= Lkin. . (4.244)

Then, the second contribution to Eq. (4.236) can be written as

Lmass,g1,g2

f1N,µ−→f1N,µ+wf1N
∂µηN,
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, (4.245)

where Lmass is given by Eq. (4.238). This mass term is, of course, not invariant with respect to the field
redefinitions (4.242) and (4.243). However, it is possible, to collect the additional contributions to the initial
mass term in a different way. To be particular, the four additional terms are contained in the last four terms
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of Eq. (4.245). In the case of Lg1,g2
such a procedure is not possible, since the shifts of the axial-vector

fields affect all terms of this part of the Lagrangian. In addition to that, we had to pull both contributions
of the shifted mixing terms out of Lg1,g2 and introduce L ′′g1,g2

, which is given by

L ′′g1,g2
= g1 (∂µσN )

[(
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, (4.246)

in order to rewrite Lmass,g1,g2
according to Eq. (4.245). The importance of the form of Eq. (4.245) now

derives from the fact, that the third and fourth term yield conditions for the shape of the parameters wf1N

and w~a1
, which help us to eliminate the mixing terms

wf1N
= w~a1

=
g1φN

m2
1 + 2δN + 1

2 (h1 + h2 − h3)φ2
N + g2

1φ
2
N

≡ w . (4.247)

Using this definition, we are able to simplify the coefficients of the fifth and sixth term in Eq. (4.245). We
find
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(4.248)
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(4.249)

It is quite obvious that these terms describe additional contributions to the kinetic parts of the ηN - and the
~π-fields. The problem with this additional contribution is the interpretation of the creation and annihila-
tion operators which emerge in the Fourier decompositions of these fields. To be particular, these Fourier
decompositions are obtained as general solutions of the free Klein-Gordon equations of these fields. If we
now have an additional contribution to the usual factor of 1/2 in the kinetic part of the free Klein-Gordon
Lagrangian, the Fourier components cannot be interpreted as creation and annihilation operators of normal-
ized one meson states. In order to solve this problem, we summarize Eqs. (4.244) and (4.245) into only one
term

Lkin.,mass,g1,g2
= Lkin.,mass + L ′′g1,g2

, (4.250)

where
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(∂µηN )

2

+
1

2

{
1− g2

1φ
2
N

m2
1 + 2δN + 1

2 (h1 + h2 − h3)φ2
N + g2

1φ
2
N

}
(∂µ~π)

2 − 1

4

{
ωµνN ωN,µν + fµν1Nf1N,µν

+ ~ρµν · ~ρµν + ~aµν1 · ~a1,µν

}
+ Lmass . (4.251)

Now, in order to obtain a canonical normalization of the kinetic terms, we have to introduce a field renor-
malization of the ηN - and the ~π-fields

ηN −→ ZηN ηN , (4.252)

~π −→ Z~π~π , (4.253)
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with

ZηN = Z~π =

[
1− g2

1φ
2
N

m2
1 + 2δN + 1

2 (h1 + h2 − h3)φ2
N + g2

1φ
2
N

]− 1
2

≡ Z . (4.254)

It is quite obvious that the kinetic terms of the renormalized ηN - and ~π-fields now have the right prefactor.
In the following, we have to introduce the renormalized fields in all terms of the eLSM Lagrangian. Starting
with Eq. (4.250), we find

Lkin.,mass,g1,g2

ηN−→ZηN ηN,
~π−→Z~π~π−→ L ′kin.,mass,g1,g2

= L ′kin.,mass + L ′′′g1,g2

≡ Lkin.,mass + Lg1,g2 , (4.255)

where we renamed L ′′′g1,g2
→ Lg1,g2

and with

Lkin.,mass ≡
1

2
(∂µσN )

2 − 1

2
m2
σNσ

2
N +

1

2
(∂µηN )

2 − 1

2
m2
ηN η

2
N +

1

2
(∂µ~a0)

2 − 1

2
m2
~a0
~a2

0 +
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2

− 1

4
ωµνN ωN,µν +

1

2
m2
ωN (ωN,µ)

2 − 1

4
fµν1Nf1N,µν +

1

2
m2
f1N

(f1N,µ)
2 − 1

4
~ρµν · ~ρµν +

1

2
m2
~ρ (~ρµ)

2

− 1

4
~aµν1 · ~a1,µν +

1

2
m2
~a1

(~a1,µ)
2

, (4.256)

where we defined the tree-level masses of the mesons as

m2
σN = −c1 −m2

0 + 3

(
λ1 +

λ2

2

)
φ2
N , (4.257)

m2
ηN =

[
c1 −m2

0 +

(
λ1 +

λ2

2

)
φ2
N

]
Z2 , (4.258)

m2
~a0

= c1 −m2
0 +

(
λ1 +

3λ2

2

)
φ2
N , (4.259)

m2
~π =

[
−c1 −m2

0 +

(
λ1 +

λ2

2

)
φ2
N

]
Z2 , (4.260)

m2
ωN = m2

~ρ = m2
1 + 2δN +

1

2
(h1 + h2 + h3)φ2

N , (4.261)

m2
f1N

= m2
~a1

= m2
1 + 2δN +

1

2
(h1 + h2 − h3)φ2

N + g2
1φ

2
N , (4.262)

and

Lg1,g2 ≡ g1 (∂µσN )
[(
f1N,µ + Zw∂µηN

)
ZηN +

(
~a1,µ + Zw∂µ~π

)
· Z~π

]
− g1Z (∂µηN )

[(
f1N,µ

+Zw∂µηN

)
σN +

(
~a1,µ + Zw∂µ~π

)
· ~a0

]
+ g1 (∂µ~a0) ·

[(
f1N,µ + Zw∂µηN

)
Z~π

+
(
~a1,µ + Zw∂µ~π

)
ZηN + ~ρµ × ~a0

]
− g1Z (∂µ~π) ·

[(
f1N,µ + Zw∂µηN

)
~a0 +

(
~a1,µ + Zw∂µ~π

)
σN

+ Z~π × ~ρµ
]

+
g2

1

2

{(
f1N,µ + Zw∂µηN

)
ZηN +

(
~a1,µ + Zw∂µ~π

)
· Z~π

}2

+
g2

1

2

{(
f1N,µ

+ Z∂µηN

)
Z~π +

(
~a1,µ + Zw∂µ~π

)
ZηN + ~ρµ × ~a0

}2

+
g2

1

2

{(
f1N,µ + Zw∂µηN

)
σN

+
(
~a1,µ + Zw∂µ~π

)
· ~a0

}2

+
g2

1

2

{(
f1N,µ + Zw∂µηN

)
~a0 + σN

(
~a1,µ + Zw∂µ~π

)
+ Z~π × ~ρµ

}2

+ g2
1φN

(
fµ1N + Zw∂µηN

){(
f1N,µ + Zw∂µηN

)
σN +

(
~a1,µ + Zw∂µ~π

)
· ~a0

}
+ g2

1φN

×
(
~aµ1 + Zw∂µ~π

)
·
{(
f1N,µ + Zw∂µηN

)
~a0 + σN

(
~a1,µ + Zw∂µ~π

)
+ Z~π × ~ρµ

}
+ g2

{
(∂µ~ρν) ·

[
~ρν × ~ρµ +

(
~a1,ν + Zw∂ν~π

)
×
(
~a1,µ + Zw∂µ~π

)]
+
[
∂µ
(
~aν1 + Zw∂ν~π

)]
·
[
~ρν ×

(
~a1,µ + Zw∂µ~π

)
+
(
~a1,ν + Zw∂ν~π

)
× ~ρµ

]}
. (4.263)

At this point, it should be mentioned that the definition of the tree-level masses enables us to simplify the
expressions for Eqs. (4.247) and (4.254),

w =
g1φN
m2
f1N

=
g1φN
m2
~a1

, Z = (1− g1φNw)
− 1

2 . (4.264)
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Now, since the ηN/f1N,µ- and ~π/~a1,µ-mixing terms are eliminated from the eLSM Lagrangian and all kinetic
terms are normalized correctly, we can study the influences of the shifts (4.242), (4.243) and the field
renormalizations (4.252), (4.253) on the remaining interaction terms of the eLSM Lagrangian. Since Eq.
(4.240) describes the self-interactions of scalar/pseudoscalar mesons, it is not affected by the shifts in the
axial-vector sector, so that

Lλ1,λ2

(4.242),(4.243),
(4.252),(4.253)−→ L ′λ1,λ2

= −1

4

(
λ1 +

λ2

2

)[
σ4
N + 4φNσ

3
N + Z4η4

N +
(
~a2

0

)2
+ Z4

(
~π2
)2

+ 2Z2σ2
Nη

2
N + 4φNZ

2σNη
2
N

+ 2Z2σ2
N~π

2 + 4φNZ
2σN~π

2 + 2Z2η2
N~a

2
0

]
− 1

2

(
λ1 +

3λ2

2

)[
σ2
N~a

2
0 + 2φNσN~a

2
0 + Z4η2

N~π
2 + Z2~a2

0~π
2
]

− λ2

8

[
8Z2σNηN~a0 · ~π + 8φNZ

2ηN~a0 · ~π − 4Z2 (~a0 · ~π)
2
]

≡ Lλ1,λ2
, (4.265)

where we renamed L ′λ1,λ2
→ Lλ1,λ2

in the last line. Then, there is the mixed interaction term that contains
the interactions of the scalar/pseudoscalar mesons with the vector/axial-vector mesons. This term is, of
course, affected by the shifts as well as the field renormalizations. We find

Lh1,h2,h3

(4.242),(4.243),
(4.252),(4.253)−→ L ′h1,h2,h3

=
1

4
(h1 + h2)

{(
σ2
N + Z2η2

N + ~a2
0 + Z2~π2

) [
(ωN,µ)

2
+
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2

+
(
~a1,µ + Zw∂µ~π

)2
]}

+
1

2
(h1 + h2)φNσN

{
(ωN,µ)

2
+
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2

+
(
~a1,µ + Zw∂µ~π

)2
}

+ (h2 + h3)ωµN

[
~ρµ ·

(
σN~a0 + Z2ηN~π + φN~a0

)
+
(
~a1,µ + Zw∂µ~π

)
· (~a0 × Z~π)

]
+ (h2 − h3)

(
fµ1N + Zw∂µηN

){(
~a1,µ + Zw∂µ~π

)
· [σN~a0

+ Z2ηN~π + φN~a0

]
+ ~ρµ · (~a0 × Z~π)

}
+
h3

4

[
(ωN,µ)

2 −
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2 −

(
~a1,µ

+Zw∂µ~π
)2
] (
σ2
N + Z2η2

N + ~a2
0 + Z2~π2

)
+
h3

2
φNσN

[
(ωN,µ)

2 −
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2

−
(
~a1,µ + Zw∂µ~π

)2
]

+ h3 (ZσN~π − ZηN~a0 + φNZ~π) ·
[(
~aµ1 + Zw∂µ~π

)
× ~ρµ

]
+
h3

2

{[
~a0 ×

(
~a1,µ + Zw∂µ~π

)]2
+
[
Z~π ×

(
~a1,µ + Zw∂µ~π

)]2
− (~a0 × ~ρµ)

2 − (Z~π × ~ρµ)
2

}
≡ Lh1,h2,h3

, (4.266)

where we renamed L ′h1,h2,h3
→ Lh1,h2,h3

in the last line. At this point, it should be mentioned that the
expression ”mixed interaction term” is not very meaningful anymore in order to describe Eq. (4.266), since
the redefinitions (4.242) and (4.243) will also introduce additional interaction vertices in Lg3,g4,g5,g6

. To be
particular, performing all shifts and field renormalizations, (4.184) becomes

Lg3,g4,g5,g6

(4.242),(4.243),
(4.252),(4.253)−→ L ′g3,g4,g5,g6

=
(g3

8
+
g4

8
+
g6

4

) [
(ωN,µ + f1N,µ + Zw∂µηN )

2
(ωN,ν + f1N,ν + Zw∂νηN )

2

+ (ωN,µ − f1N,µ − Zw∂µηN )
2

(ωN,ν − f1N,ν − Zw∂νηN )
2

+ 2 (ωN,µ + f1N,µ + Zw∂µηN )
2

(~ρν + ~a1,ν + Zw∂ν~π)
2

+ 2 (ωN,µ − f1N,µ − Zw∂µηN )
2

(~ρν − ~a1,ν − Zw∂ν~π)
2
]

+
(g3

2
+
g4

2

) [
(ωµN + fµ1N + Zw∂µηN ) (ωνN + fν1N + Zw∂νηN ) (~ρµ + ~a1,µ + Zw∂µ~π)

· (~ρν + ~a1,ν + Zw∂ν~π) + (ωµN − f
µ
1N − Zw∂

µηN ) (ωνN − fν1N − Zw∂νηN )

× (~ρµ − ~a1,µ − Zw∂µ~π) · (~ρν − ~a1,ν − Zw∂ν~π)
]

+
(
−g3

8
+
g4

8
+
g6

4

)
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×
[
(~ρµ + ~a1,µ + Zw∂µ~π)

2
(~ρν + ~a1,ν + Zw∂ν~π)

2
+ (~ρµ − ~a1,µ − Zw∂µ~π)

2

× (~ρν − ~a1,ν − Zw∂ν~π)
2
]

+
g3

4

[
(~ρµ + ~aµ1 + Zw∂µ~π) · (~ρν + ~aν1 + Zw∂ν~π)

× (~ρµ + ~a1,µ + Zw∂µ~π) · (~ρν + ~a1,ν + Zw∂ν~π) + (~ρµ − ~aµ1 − Zw∂µ~π)

· (~ρν − ~aν1 − Zw∂ν~π) (~ρµ − ~a1,µ − Zw∂µ~π) · (~ρν − ~a1,ν − Zw∂ν~π)
]

+
g5

4

[
(ωN,µ + f1N,µ + Zw∂µηN )

2
(ωN,ν − f1N,ν − Zw∂νηN )

2

+ (~ρµ + ~a1,µ + Zw∂µ~π)
2

(~ρν − ~a1,ν − Zw∂ν~π)
2

+ (ωN,µ + f1N,µ + Zw∂µηN )
2

× (~ρν − ~a1,ν − Zw∂ν~π)
2

+ (ωN,ν − f1N,ν − Zw∂νηN )
2

(~ρµ + ~a1,µ + Zw∂µ~π)
2
]

≡ Lg3,g4,g5,g6
, (4.267)

where we renamed L ′g3,g4,g5,g6
→ Lg3,g4,g5,g6

in the last line. Finally, combining the results (4.256), (4.263),
and (4.265)-(4.267), the full eLSM Lagrangian is given by

LeLSM

≡ Lkin.,mass + Lg1,g2
+ Lλ1,λ2

+ Lh1,h2,h3
+ Lg3,g4,g5,g6

=
1

2
(∂µσN )

2 − 1

2
m2
σNσ

2
N +

1

2
(∂µηN )

2 − 1

2
m2
ηN η

2
N +

1

2
(∂µ~a0)

2 − 1

2
m2
~a0
~a2

0 +
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4
ωµνN ωN,µν

+
1

2
m2
ωN (ωN,µ)

2 − 1

4
fµν1Nf1N,µν +

1

2
m2
f1N

(f1N,µ)
2 − 1

4
~ρµν · ~ρµν +

1

2
m2
~ρ (~ρµ)

2 − 1

4
~aµν1 · ~a1,µν +

1

2
m2
~a1

(~a1,µ)
2

+ g1 (∂µσN )
[(
f1N,µ + Zw∂µηN

)
ZηN +

(
~a1,µ + Zw∂µ~π

)
· Z~π

]
− g1Z (∂µηN )

[(
f1N,µ + Zw∂µηN

)
× σN +

(
~a1,µ + Zw∂µ~π

)
· ~a0

]
+ g1 (∂µ~a0) ·

[(
f1N,µ + Zw∂µηN

)
Z~π +

(
~a1,µ + Zw∂µ~π

)
ZηN + ~ρµ × ~a0

]
− g1Z (∂µ~π) ·

[(
f1N,µ + Zw∂µηN

)
~a0 +

(
~a1,µ + Zw∂µ~π

)
σN + Z~π × ~ρµ

]
+
g2

1

2

[(
f1N,µ + Zw∂µηN

)
× ZηN +

(
~a1,µ + Zw∂µ~π

)
· Z~π

]2
+
g2

1

2

[(
f1N,µ + Zw∂µηN

)
Z~π +

(
~a1,µ + Zw∂µ~π

)
ZηN + ~ρµ × ~a0

]2
+
g2

1

2

[(
f1N,µ + Zw∂µηN

)
σN +

(
~a1,µ + Zw∂µ~π

)
· ~a0

]2
+
g2

1

2

[(
f1N,µ + Zw∂µηN

)
~a0 + σN

×
(
~a1,µ + Zw∂µ~π

)
+ Z~π × ~ρµ

]2
+ g2

1φN

(
fµ1N + Zw∂µηN

) [(
f1N,µ + Zw∂µηN

)
σN +

(
~a1,µ

+ Zw∂µ~π
)
· ~a0

]
+ g2

1φN

(
~aµ1 + Zw∂µ~π

)
·
[(
f1N,µ + Zw∂µηN

)
~a0 + σN

(
~a1,µ + Zw∂µ~π

)
+ Z~π × ~ρµ

]
+ g2

{
(∂µ~ρν) ·

[
~ρν × ~ρµ +

(
~a1,ν + Zw∂ν~π

)
×
(
~a1,µ + Zw∂µ~π

)]
+
[
∂µ
(
~aν1 + Zw∂ν~π

)]
·
[
~ρν ×

(
~a1,µ + Zw∂µ~π

)
+
(
~a1,ν + Zw∂ν~π

)
× ~ρµ

]}
− 1

4

(
λ1 +

λ2

2

)[
σ4
N + 4φNσ

3
N + Z4η4

N +
(
~a2

0

)2
+ Z4

(
~π2
)2

+ 2Z2σ2
Nη

2
N + 4φNZ

2σNη
2
N + 2Z2σ2

N~π
2 + 4φNZ

2σN~π
2 + 2Z2η2

N~a
2
0

]
− 1

2

(
λ1 +

3λ2

2

)[
σ2
N~a

2
0

+ 2φNσN~a
2
0 + Z4η2

N~π
2 + Z2~a2

0~π
2
]
− λ2

8

[
8Z2σNηN~a0 · ~π + 8φNZ

2ηN~a0 · ~π − 4Z2 (~a0 · ~π)
2
]

+
1

4
(h1 + h2)

{(
σ2
N + Z2η2

N + ~a2
0 + Z2~π2

) [
(ωN,µ)

2
+
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2

+
(
~a1,µ + Zw∂µ~π

)2
]}

+
1

2
(h1 + h2)φNσN

[
(ωN,µ)

2
+
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2

+
(
~a1,µ + Zw∂µ~π

)2
]

+ (h2 + h3)ωµN

×
[
~ρµ ·

(
σN~a0 + Z2ηN~π + φN~a0

)
+
(
~a1,µ + Zw∂µ~π

)
· (~a0 × Z~π)

]
+ (h2 − h3)

(
fµ1N + Zw∂µηN

)[(
~a1,µ + Zw∂µ~π

)
·
(
σN~a0 + Z2ηN~π + φN~a0

)
+ ~ρµ · (~a0 × Z~π)

]
+
h3

4

[
(ωN,µ)

2 −
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2 −

(
~a1,µ + Zw∂µ~π

)2
]

×
(
σ2
N + Z2η2

N + ~a2
0 + Z2~π2

)
+
h3

2
φNσN

[
(ωN,µ)

2 −
(
f1N,µ + Zw∂µηN

)2

+ (~ρµ)
2 −

(
~a1,µ + Zw∂µ~π

)2
]

+ h3 [ZσN~π − ZηN~a0 + φNZ~π] ·
[(
~aµ1 + Zw∂µ~π

)
× ~ρµ

]
+
h3

2

{[
~a0 ×

(
~a1,µ + Zw∂µ~π

)]2
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+
[
Z~π ×

(
~a1,µ + Zw∂µ~π

)]2
− (~a0 × ~ρµ)

2 − (Z~π × ~ρµ)
2

}
+
(g3

8
+
g4

8
+
g6

4

) [
(ωN,µ + f1N,µ + Zw∂µηN )

2

× (ωN,ν + f1N,ν + Zw∂νηN )
2

+ (ωN,µ − f1N,µ − Zw∂µηN )
2

(ωN,ν − f1N,ν − Zw∂νηN )
2

+ 2 (ωN,µ + f1N,µ + Zw∂µηN )
2

(~ρν + ~a1,ν + Zw∂ν~π)
2

+ 2 (ωN,µ − f1N,µ − Zw∂µηN )
2

× (~ρν − ~a1,ν − Zw∂ν~π)
2
]

+
(g3

2
+
g4

2

) [
(ωµN + fµ1N + Zw∂µηN ) (ωνN + fν1N + Zw∂νηN )

× (~ρµ + ~a1,µ + Zw∂µ~π) · (~ρν + ~a1,ν + Zw∂ν~π) + (ωµN − f
µ
1N − Zw∂

µηN ) (ωνN − fν1N − Zw∂νηN )

× (~ρµ − ~a1,µ − Zw∂µ~π) ·
(
~ρν −

(
~a1,ν − Zw∂ν~π

)]
+
(
−g3

8
+
g4

8
+
g6

4

) [
(~ρµ + ~a1,µ + Zw∂µ~π)

2

× (~ρν + ~a1,ν + Zw∂ν~π)
2

+ (~ρµ − ~a1,µ − Zw∂µ~π)
2

(~ρν − ~a1,ν − Zw∂ν~π)
2
]

+
g3

4

[
(~ρµ + ~aµ1 + Zw∂µ~π)

· (~ρν + ~aν1 + Zw∂ν~π) (~ρµ + ~a1,µ + Zw∂µ~π) · (~ρν + ~a1,ν + Zw∂ν~π) + (~ρµ − ~aµ1 − Zw∂µ~π)

· (~ρν − ~aν1 − Zw∂ν~π) (~ρµ − ~a1,µ − Zw∂µ~π) · (~ρν − ~a1,ν − Zw∂ν~π)
]

+
g5

4

[
(ωN,µ + f1N,µ + Zw∂µηN )

2
(ωN,ν − f1N,ν − Zw∂νηN )

2
+ (~ρµ + ~a1,µ + Zw∂µ~π)

2

× (~ρν − ~a1,ν − Zw∂ν~π)
2

+ (ωN,µ + f1N,µ + Zw∂µηN )
2

(~ρν − ~a1,ν − Zw∂ν~π)
2

+ (ωN,ν − f1N,ν − Zw∂νηN )
2

(~ρµ + ~a1,µ + Zw∂µ~π)
2
]

. (4.268)

At this point, we have made all preparations in order to calculate the tree-level LECs of the eLSM. In the
following three subsections, we will therefore consider three different versions of the eLSM and calculate the
LECs for each of them. In the first version of the eLSM, we set all fields except the σN - and the ~π-fields
to zero. Then, apart from the anomaly and the explicit symmetry breaking term, the eLSM will reduce to
the usual O(4)-model. In the second version, we keep all scalar/pseudoscalar fields and only set the vector
and axial-vector degrees of freedom to zero. In this case, the eLSM model already has its U(2)L × U(2)R
symmetry. And finally in the last subsection, we consider the full eLSM Lagrangian (4.268). This procedure
will show us some kind of ”evolution” for the LECs, depending on the level of ”completeness” of the eLSM.

4.3.3 The O(4) Linear Sigma Model

As mentioned before, we want to use this subsection to calculate the LECs of a reduced version of the eLSM.
To this end, we consider the scalar/pseudoscalar matrix Φ(x) with the scalar isotriplet and the pseudoscalar
isosinglet set to zero, i.e.,

Φ(x) = σN (x)T 0 + iπi(x)T i . (4.269)

In addition to that, we set the left- and right-handed vector/axial-vector matrices to zero, so that

Lµ(x) = Rµ(x) = 0 =⇒ DµΦ(x) −→ ∂µΦ(x) . (4.270)

In this case, the eLSM Lagrangian reduces to

LeLSM = Tr
{

(∂µΦ)
†
∂µΦ

}
−m2

0Tr
{

Φ†Φ
}
− λ1

(
Tr
{

Φ†Φ
})2 − λ2Tr

{(
Φ†Φ

)2}
+ Tr

{
H
(
Φ† + Φ

)}
+ c1

(
detΦ + detΦ†

)
≡ LO(4) . (4.271)

At this point, we can use the discussion of the previous subsection. Normally, we would now derive the explicit
form of the above Lagrangian and then spontaneously break its O(4) symmetry by setting m2

0 → −m2
0, with

m2
0 > 0. Then, we would have to find the minimum of the potential, which is, due to the explicit symmetry

breaking term (4.195), of course, again in σN -direction. It is easy to see that the vacuum expectation value
φN of the σN -field fulfills the same cubic equation as in Eq. (4.225). Finally, we would have to expand
the initial σN -field around its vacuum expectation value φN and insert this expansion into the Lagrangian.
Now, since the covariant derivative reduces to the usual 4-gradient, the mixing terms (4.235) do not enter
the Lagrangian. Therefore, the explicit form of the Lagrangian can be obtained from Eq. (4.268) by setting
all vector/axial-vector fields as well as ~a0 and ηN to zero

LO(4) =
1

2
(∂µσN )

2 − 1

2
m2
σNσ

2
N +

1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4

(
λ1 +

λ2

2

)[
σ4
N + 4φNσ

3
N +

(
~π2
)2

+ 2σ2
N~π

2

+ 4φNσN~π
2
]

, (4.272)
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where we used that g1 = w = 0 and therefore Z = 1. Then, the tree-level masses of the σN - and the ~π-fields
are given by

m2
σN = −c1 −m2

0 + 3

(
λ1 +

λ2

2

)
φ2
N , (4.273)

m2
~π = −c1 −m2

0 +

(
λ1 +

λ2

2

)
φ2
N . (4.274)

At this point, we are able to calculate the LECs of Eq. (4.272). Following the discussion of Sec. [4.3.1], we
use assumption (A1) and neglect the cubic and quartic powers of σN . The functional integral of this theory
is then given by

〈σN , ~π,∞|σN , ~π,−∞〉 = N
∫

DσN (x)D~π(x) exp

{
i

∫
d4x LO(4)

}
= N

∫
D~π(x) exp

{
i

∫
d4x

[
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4

(
λ1 +

λ2

2

)(
~π2
)2]}

IσN [~π] ,

(4.275)

where we defined

IσN [~π] =

∫
DσN (x) exp

{
i

∫
d4x

[
1

2
(∂µσN )

2 − 1

2
m2
σNσ

2
N −

1

4

(
λ1 +

λ2

2

)(
2σ2

N~π
2 + 4φNσN~π

2
)]}

.

(4.276)
The above functional integral is of a Gaussian type and can be solved analytically. To this end, we have to
rewrite the exponential by using an integration by parts

IσN [~π] =

∫
DσN (x) exp

{
− i

2

∫
d4xσN

[
� +m2

σN +

(
λ1 +

λ2

2

)
~π2

]
σN + 2

(
λ1 +

λ2

2

)
φN~π

2σN

}
=

∫
DσN (x) exp

{
− i

2

∫
d4xd4y σN (x)O~π(x, y)σN (y) + i

∫
d4x J~π(x)σN (x)

}
, (4.277)

where we neglected the surface term and defined the operator

O~π(x, y) =

[
�x +m2

σN +

(
λ1 +

λ2

2

)
~π2(x)

]
δ(4)(x− y) (4.278)

and the ”source”

J~π(x) = −
(
λ1 +

λ2

2

)
φN~π

2 . (4.279)

Now, in order to solve Eq. (4.277) by using Eq. (6.39), we have to perform an analytic continuation of the
integral. Using Eqs. (4.18), (4.20), and (4.21), the Euclidean functional integral is given by

IσN [~π] =

∫
DσN (xE) exp

{
−1

2

∫
d4xEd4yE σN (xE)O~π,E(xE , yE)σN (yE) +

∫
d4xE J~π(xE)σN (xE)

}
(4.280)

with the Euclidean operator

O~π,E(xE , yE) =

[
−�x,E +m2

σN +

(
λ1 +

λ2

2

)
~π2(xE)

]
δ(4)(xE − yE) . (4.281)

Using Eq. (6.39), the solution of Eq. (4.280) is given by

IσN [~π] = NσN [detO~π,E(xE , yE)]
−1/2

exp

{
1

2

∫
d4xEd4yE J~π(xE)O−1

~π,E(xE , yE)J~π(yE)

}
= NσN [detO~π(x, y)]

−1/2
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{
i

2

∫
d4xd4y J~π(x)O−1

~π (x, y)J~π(y)

}
= NσN [detO~π(x, y)]

−1/2
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{
i

∫
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(
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2

)2
2

φ2
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2(x)

[
�x +m2

σN +

(
λ1 +

λ2

2

)
~π2(x)

]−1

× δ(4)(x− y)~π2(y)

}

= NσN [detO~π(x, y)]
−1/2

exp

{
i

∫
d4x

(
λ1 + λ2

2

)2
2

φ2
N~π

2

[
� +m2

σN +

(
λ1 +

λ2

2

)
~π2

]−1

~π2

}
,

(4.282)
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where we performed the analytic continuation back to Minkowski space-time in the second line and introduced
the inverse operator

O−1
~π (x, y) =

[
� +m2

σN +

(
λ1 +

λ2

2

)
~π2

]−1

δ(4)(x− y) . (4.283)

Inserting the solution (4.282) back into the transition amplitude (4.275), we find

〈σN , ~π,∞|σN , ~π,−∞〉 = N
∫

D~π(x) exp

{
i

∫
d4x

[
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4

(
λ1 +

λ2

2

)(
~π2
)2]}

×NσN [detO~π(x, y)]
−1/2

exp

{
i

∫
d4x

(
λ1 + λ2

2

)2
2

φ2
N~π

2

[
� +m2

σN +

(
λ1 +

λ2

2

)
~π2

]−1

~π2

}

= Neff
∫

D~π(x) [detO~π(x, y)]
−1/2

exp
{
iSO(4),eff [~π]

}
, (4.284)

with Neff ≡ NNσN and where

SO(4),eff [~π] =

∫
d4x

{
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4

(
λ1 +

λ2

2

)(
~π2
)2

+

(
λ1 + λ2

2

)2
2

φ2
N~π

2

[
� +m2

σN +

(
λ1 +

λ2

2

)
~π2

]−1

~π2

}
(4.285)

defines the tree-level effective action of Eq. (4.272). Now, in order to obtain a local effective action, we
have to expand the inverse operator. According to the discussion of Sec. [4.3.1], we are only interested in
four-pion interaction terms with a maximum number of four space-time derivatives. Keeping this constraint
in mind, the inverse operator is given by[

� +m2
σN +

(
λ1 +

λ2

2

)
~π2

]−1

=

{(
� +m2

σN

) [
1 +

(
� +m2

σN

)−1
(
λ1 +

λ2

2

)
~π2

]}−1

=

∞∑
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(−1)m
[(
� +m2

σN

)−1
(
λ1 +

λ2

2

)
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]m
1

m2
σN

∞∑
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(−1)n
(

�
m2
σN

)n
=

1

m2
σN

∞∑
n=0

(−1)n
(

�
m2
σN

)n
+ terms with two or more ~π-fields . (4.286)

Now, we have to consider all terms of the first sum up to n = 2 in order to obtain terms with four derivatives,
so that the local effective action is given by

Sn=2,m=0
O(4),eff [~π] =

∫
d4x
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1

2
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2 − 1

2
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+
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2
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2
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2

}

=

∫
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[
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 + C1,O(4)

(
~π2
)2

+ C2,O(4) (~π · ∂µ~π)
2

+ C3,O(4) (∂µ~π)
2

(∂ν~π)
2

+ C4,O(4) (∂µ~π · ∂ν~π)
2
]

, (4.287)

where we used ∫
d4x ~π2�~π2 = −

∫
d4x

(
∂µ~π

2
)
∂µ~π2 = −4

∫
d4x (~π · ∂µ~π)

2
(4.288)

as well as ∫
d4x ~π2�2~π2 =

∫
d4x

(
�~π2

)
�~π2

=

∫
d4x

[
(∂µ~π)

2
(∂ν~π)

2 − 2m2
~π~π

2 (∂µ~π)
2

+m4
~π

(
~π2
)2]

=

∫
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[
(∂µ~π)

2
(∂ν~π)

2
+ 4m2

~π (~π · ∂µ~π)
2 −m4

~π

(
~π2
)2]

, (4.289)
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the free Klein-Gordon equation for the ~π-fields, and identified the LECs of the O(4) version of the eLSM as

C1,O(4) =
φ2
N

2m2
σN

(
λ1 +

λ2

2

)2

− 1

4

(
λ1 +

λ2

2

)
−

2φ2
Nm

4
~π

m6
σN

(
λ1 +

λ2

2

)2

, (4.290)

C2,O(4) =
2φ2

N

m4
σN

(
λ1 +

λ2

2

)2

+
8φ2

Nm
2
~π

m6
σN

(
λ1 +

λ2

2

)2

, (4.291)

C3,O(4) =
2φ2

N

m6
σN

(
λ1 +

λ2

2

)2

, (4.292)

C4,O(4) = 0 . (4.293)

At this point, we want to discuss the above results at a qualitative level, since the numerical evaluation of
Eqs. (4.290)-(4.293) is part of the discussion in Sec. [4.3.6]. First of all, we observe that one of the above
constants vanishes. Due to Eq. (4.293), we at least qualitatively conclude that the O(4) version of the eLSM
is not sufficient in order to describe the low-energy regime of QCD in the correct way, because C4,χPT is
different from zero. It should be taken into account that this statement is only verified at tree level. A
more detailed discussion of these results can be found in Sec. [4.3.6]. Finally, before we turn to a more
complete version of the eLSM, we consider the (~π2)2 term: In the discussion of Sec. [3.2], we concluded that,
in the case of an exact symmetry, Nambu-Goldstone bosons may only interact among themselves through
derivatively coupled vertices. Therefore, we want to study the chiral limit of Eq. (4.287) in order to show
that C1,O(4) indeed vanishes in the case of massless pions. To this end, we observe that the ~π and the σN
masses can be written as

m2
σN = m2

~π + 2

(
λ1 +

λ2

2

)
φ2
N , (4.294)

m2
~π =

hN,0
φN

, (4.295)

where we used Eq. (4.225) in the second line and Eq. (4.274) in order to rewrite the σN mass. Now it is
obvious that in the case of an exact O(4) symmetry (hN,0 = 0), the pion becomes massless. In this limit,
the σN mass becomes

m2
σN ,hN,0=0 = 2

(
λ1 +

λ2

2

)
φ2
N . (4.296)

Now, we insert the above σN mass and m~π = 0 into Eq. (4.290) and find

C1,O(4) =
φ2
N

2m2
σN ,hN,0=0

(
λ1 +

λ2

2

)2

− 1

4

(
λ1 +

λ2

2

)
= 0 , (4.297)

i.e., the (~π2)2 interaction term indeed vanishes. This kind of cross-check can be used to show, that our
approach and the assumptions (A1)-(A3) do not destroy the symmetry properties of the effective Lagrangian.

4.3.4 The U(2)L×U(2)R Linear Sigma Model without Vector/Axial-Vector Mesons

In this Subsection, we want to consider a more complete version of the eLSM. To this end, we involve all
scalar and pseudoscalar degrees of freedom in our considerations, i.e., the scalar/pseudoscalar matrix Φ(x)
is then given by

Φ(x) = (σN + iηN )T 0 + (a0,i + iπi)T
i . (4.298)

Similar to the previous subsection, we set all vector and axial-vector mesons to zero

Lµ(x) = Rµ(x) = 0 , (4.299)

so that the covariant derivative (4.148) again reduces to a usual 4-gradient

DµΦ(x) −→ ∂µΦ(x) . (4.300)

Due to Eqs. (4.299) and (4.300), the eLSM Lagrangian takes the same form as in the considerations of the
previous Subsection, i.e.,

LeLSM = Tr
{

(∂µΦ)
†
∂µΦ

}
−m2

0Tr
{

Φ†Φ
}
− λ1

(
Tr
{

Φ†Φ
})2 − λ2Tr

{(
Φ†Φ

)2}
+ Tr

{
H
(
Φ† + Φ

)}
+ c1

(
detΦ + detΦ†

)
≡ LU(2)L×U(2)R . (4.301)
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The important difference to the previous case is now given by the form of the scalar/pseudoscalar ma-
trix Φ(x). While Eq. (4.298) is an object that has a well-defined transformation behavior with respect to
U(2)L×U(2)R, the symmetry of the previous version of the eLSM is smaller. This can be seen by the explicit
expression (4.271). There, it is possible to sort the scalar isosinglet σN and the pseudoscalar isotriplet ~π into
a four-dimensional vector in field space. The resulting Lagrangian is then symmetric with respect to global
O(4) rotations. Now it is well known that O(4) is at least locally isomorphic to SU(2)× SU(2), so that we
have a smaller symmetry as in Eq. (4.301).

Similar to the previous consideration, the absence of the vector/axial-vecotr sector and therefore of the
covariant derivative does not require any shifts of field variables in order to diagonalize the Lagrangian.
Therefore, the explicit form of Eq. (4.301) can be obtained from Eq. (4.268) by neglecting the vector/axial-
vector degrees of freedom as well as their couplings and setting g1 = w = 0, Z = 1

LU(2)L×U(2)R =
1

2
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2
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2
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2
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2
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2
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2
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2
N + 2σ2

N~π
2

+ 4φNσN~π
2 + 2η2

N~a
2
0

]
− 1

2

(
λ1 +

3λ2

2

)[
σ2
N~a

2
0 + 2φNσN~a

2
0 + η2

N~π
2 + ~a2
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8

[
8σNηN~a0 · ~π + 8φNηN~a0 · ~π − 4 (~a0 · ~π)

2
]

, (4.302)

where the vacuum expectation value of the σN -field again fulfills Eq. (4.225). The tree-level masses of the
scalar/pseudoscalar mesons are now given by

m2
σN = −c1 −m2

0 + 3

(
λ1 +

λ2

2

)
φ2
N , (4.303)

m2
ηN = c1 −m2

0 +

(
λ1 +

λ2

2

)
φ2
N , (4.304)

m2
~a0

= c1 −m2
0 +

(
λ1 +

3λ2

2

)
φ2
N , (4.305)

m2
~π = −c1 −m2

0 +

(
λ1 +

λ2

2

)
φ2
N . (4.306)

Again, we can use assumption (A1) in order to eliminate redundant terms from the Lagrangian (4.302).
With f = {σN , ηN ,~a0, ~π}, the transition amplitude can be written as

〈f,∞|f,−∞〉 = N
∫
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(4.307)

where

IσN [~π] =
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(4.308)

IηN [~π] =
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, (4.309)

I~a0
[~π] =
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. (4.310)

Our first observation is that the use of assumption (A1) decouples all Gaussian functional integrals that
correspond to the ”heavy fields”, which of course simplifies the following calculation. Furthermore, due to
Eqs. (4.309) and (4.310), the only functional integral that, at tree-level, will introduce four-pion interaction
terms is given by Eq. (4.308). This directly follows from the fact, that the functional integrals with respect
to ηN and ~a0 are not shifted, so that their solution only corresponds to a functional determinant. We also
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observe that Eq. (4.308) is exactly the same Gaussian functional integral that we already solved in the
previous Subsection. For the sake of completeness, we quote the final result of this integral

IσN [~π] = NσN [detO~π(x, y)]
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exp
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}
.

(4.311)
Now, we focus on the two remaining functional integrals. The ηN integral can be written as

IηN [~π] =
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, (4.312)

where we integrated the kinetic term by parts and introduced the operator

O~π,ηN (x, y) =

[
�x +m2

ηN +

(
λ1 +

3λ2

2

)
~π2(x)

]
δ(4)(x− y) . (4.313)

In order to solve Eq. (4.312), we have to Wick-rotate the functional integral by using Eqs. (4.18), (4.20),
and (4.21). The Euclidean functional integral is then given by

IηN [~π] =

∫
DηN (xE) exp

{
−1

2

∫
d4xEd4yE ηN (xE)O~π,ηN ,E(xE , yE)ηN (yE)

}
= NηN

[
detO~π,ηN ,E(xE , yE)

]−1/2

= NηN
[
detO~π,ηN (x, y)

]−1/2

, (4.314)

where we used Eq. (6.39), introduced the Euclidean operator

O~π,ηN ,E(xE , yE) =

[
−�x,E +m2

ηN +

(
λ1 +

3λ2

2

)
~π2(xE)

]
δ(4)(xE − yE) , (4.315)

and performed the analytic continuation back to Minkowski space-time in the last line of Eq. (4.314). Finally,
we are left with Eq. (4.310). In order to rewrite this functional integral, we have to introduce isospin indices,
since the resulting operator is not diagonal in isospin space. We find

I~a0
[~π] =

∫
D~a0(x) exp

{
− i

2

∫
d4x a0,i

{[
� +m2

~a0
+

1

2

(
λ1 +

3λ2

2

)
πkπ

k

]
gij − λ2π

iπj
}
a0,j

}
=

∫
D~a0(x) exp

{
− i

2

∫
d4xd4y a0,i(x)Oij

~π,~a0
(x, y)a0,j(y)

}
, (4.316)

where

Oij
~π,~a0

(x, y) =

{[
�x +m2

~a0
+

1

2

(
λ1 +

3λ2

2

)
πk(x)πk(x)

]
gij − λ2π

i(x)πj(x)

}
δ(4)(x− y) . (4.317)

In the upcoming Subsection, we will encounter this type of non-diagonal operator again, when we have to
solve the functional integral with respect to the ~ρ-fields. For the moment, we return to Eq. (4.316) and
transform the functional integral to Euclidean space-time

I~a0
[~π] =

∫
D~a0(xE) exp

{
−1

2

∫
d4xEd4yE a0,i(xE)Oij

~π,~a0,E
(xE , yE)a0,j(yE)

}
= N~a0

[
detO~π,~a0,E(xE , yE)

]−1/2

= N~a0

[
detO~π,~a0

(x, y)
]−1/2

, (4.318)

where

O~π,~a0,E(xE , yE) =

{[
�x,E +m2

~a0
+

1

2

(
λ1 +

3λ2

2

)
πk(xE)πk(xE)

]
gij − λ2π

i(xE)πj(xE)

}
δ(4)(xE − yE)

(4.319)
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defines the Euclidean version of the operator (4.317). Finally, combining Eqs. (4.311), (4.314), and (4.318),
the transition amplitude (4.307) becomes

〈f,∞|f,−∞〉 = N
∫

D~π(x) exp

{
i

∫
d4x

[
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4

(
λ1 +

λ2

2

)(
~π2
)2]}

×NσN [detO~π(x, y)]
−1/2

exp

{
i

∫
d4x

(
λ1 + λ2

2

)2
2

φ2
N~π

2

[
� +m2

σN +

(
λ1 +

λ2

2

)
~π2

]−1

~π2

}

×NηN
[
detO~π,ηN (x, y)

]−1/2

N~a0

[
detO~π,~a0

(x, y)
]−1/2

= Neff
∫

D~π(x)
[
detO~π(x, y)

]−1/2[
detO~π,ηN (x, y)

]−1/2[
detO~π,~a0

(x, y)
]−1/2

exp
{
iSU(2)L×U(2)R,eff [~π]

}
,

(4.320)

where the tree-level effective action SU(2)L×U(2)R,eff [~π] is given by Eq. (4.285), since only the σN has a
tree-level contribution to the four-pion interaction terms. Performing the same expansion as in Eq. (4.286)
and using an integration by parts, one finally obtains the same result as in Eq. (4.287)

Sn=2,m=0
U(2)L×U(2)R,eff

[~π]

=

∫
d4x

{
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 − 1

4

(
λ1 +

λ2

2

)(
~π2
)2

+

(
λ1 + λ2

2

)2
2

φ2
N~π

2 1

m2
σN

(
1− �

m2
σN

+
�2

m4
σN

)
~π2

}

=

∫
d4x

{
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 +

[
φ2
N

2m2
σN

(
λ1 +

λ2

2

)2

− 1

4

(
λ1 +

λ2

2

)
−

2φ2
Nm

4
~π

m6
σN

(
λ1 +

λ2

2

)2
] (
~π2
)2

+

[
2φ2

N

m4
σN

(
λ1 +

λ2

2

)2

+
8φ2

Nm
2
~π

m6
σN

(
λ1 +

λ2

2

)2
]

(~π · ∂µ~π)
2

+
2φ2

N

m6
σN

(
λ1 +

λ2

2

)2

(∂µ~π)
2

(∂ν~π)
2

}

=

∫
d4x

[
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 + C1,U(2)L×U(2)R

(
~π2
)2

+ C2,U(2)L×U(2)R (~π · ∂µ~π)
2

+ C3,U(2)L×U(2)R (∂µ~π)
2

(∂ν~π)
2

+ C4,U(2)L×U(2)R (∂µ~π · ∂ν~π)
2
]

, (4.321)

which yields the same tree-level LECs as in the previous discussion

C1,SU(2)L×SU(2)R =
φ2
N

2m2
σN

(
λ1 +

λ2

2

)2

− 1

4

(
λ1 +

λ2

2

)
−

2φ2
Nm

4
~π

m6
σN

(
λ1 +

λ2

2

)2

, (4.322)

C2,SU(2)L×SU(2)R =
2φ2

N

m4
σN

(
λ1 +

λ2

2

)2

+
8φ2

Nm
2
~π

m6
σN

(
λ1 +

λ2

2

)2

, (4.323)

C3,SU(2)L×SU(2)R =
2φ2

N

m6
σN

(
λ1 +

λ2

2

)2

, (4.324)

C4,SU(2)L×SU(2)R = 0 . (4.325)

It is therefore clear that the final discussion of Sec. [4.3.3] concerning the (~π2)2 interaction terms also
applies to this case. Finally, we have to finish this calculation with a brief qualitative discussion of the
results. It is obvious that the extension of the previous O(4) symmetry to U(2)L × U(2)R is not sufficient
in order to describe the low-energy dynamics of QCD at tree-level in an appropriate way, if we neglect the
vector/axial-vector degrees of freedom. But, in contrast to the previous case, at one-loop order, we obtain
more contributions which arise from the inclusion of the ηN - and the ~a0-fields.

4.3.5 The U(2)L × U(2)R Extended Linear Sigma Model

In the last two subsections, we considered slimmed versions of the eLSM and found that, at tree-level, the
absence of vector/axial-vector degrees of freedom leads to a wrong description of the low-energy regime
of QCD. In the following, we therefore include all vector/axial-vector mesons and calculate the LECs for
the complete eLSM. This means that the scalar/pseudoscalar matrix Φ(x) and the left- and right-handed
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matrices Lµ(x) and Rµ(x) are given by

Φ(x) = [σN (x) + iηN (x)]T 0 + [a0,i(x) + iπi(x)]T i , (4.326)

Lµ(x) =
[
ωµN (x) + fµ1,N (x)

]
T 0 +

[
ρµi (x) + aµ1,i(x)

]
T i , (4.327)

Rµ(x) =
[
ωµN (x)− fµ1,N (x)

]
T 0 +

[
ρµi (x)− aµ1,i(x)

]
T i . (4.328)

Therefore, the covariant derivative, defined in Sec. [4.2.2.2.1], takes its usual form, i.e.,

DµΦ(x) = ∂µΦ(x)− ig1 [Lµ(x)Φ(x)− Φ(x)Rµ(x)] . (4.329)

As already introduced in detail in Sec. [4.2.2], the full eLSM Lagrangian is given by

LeLSM = Tr
{

[DµΦ]
†

[DµΦ]
}
−m2

0Tr
{

Φ†Φ
}
− λ1

(
Tr
{

Φ†Φ
})2 − λ2Tr

{[
Φ†Φ

]2}
− 1

4
Tr {LµνLµν +RµνRµν}+ Tr

{(
m2

1

2
+ ∆

)
[LµLµ +RµRµ]

}
+ Tr

{
H
[
Φ† + Φ

]}
+ c1

[
detΦ + detΦ†

]
+ i

g2

2

[
Tr
{
Lµν [Lµ, Lν ]−

}
+ Tr

{
Rµν [Rµ, Rν ]−

}]
+
h1

2
Tr
{

Φ†Φ
}

Tr {LµLµ +RµRµ}+ h2Tr
{
|LµΦ|2 + |ΦRµ|2

}
+ 2h3Tr

{
ΦRµΦ†Lµ

}
+ g3 [Tr {LµLνLµLν}+ Tr {RµRνRµRν}] + g4 [Tr {LµLµLνLν}+ Tr {RµRµRνRν}]
+ g5Tr {LµLµ}Tr {RµRµ}+ g6 [Tr {LµLµ}Tr {LνLν}+ Tr {RµRµ}Tr {RνRν}] . (4.330)

In Sec. [4.3.2], we saw that the modeling of spontaneous chiral symmetry breaking leads to non-diagonal
terms in the eLSM Lagrangian, which had to be eliminated by shifting the axial-vector field variables accord-
ing to Eqs. (4.242) and (4.243). These field redefinitions gave rise to a wrong normalization of the kinetic
terms of the ηN - and the ~π-fields. To this end, we had to renormalize the fields by introducing an appropriate
scaling factor (4.264). After performing these manipulations the explicit form of the eLSM Lagrangian is
given by Eq. (4.268). This Lagrangian now yields the basis for the following discussion.

Similar to the discussions of the previous subsections, we now have to apply the assumptions (A1)-(A3)
in order to get rid of all interaction terms, that are redundant for a tree-level analysis of the LECs. In
principle, we now have to write out all terms of Eq. (4.268) explicitly and then apply (A1)-(A3). Since this
procedure is quite tedious and not very meaningful, we only quote the final result. It can be shown that the
eLSM Lagrangian (4.268) can be cast into the form

LeLSM = Lkin.,mass + LRππ + LRRππ + L4π , (4.331)

where Lkin.,mass is given by Eq. (4.256) and the tree-level masses are given by Eqs. (4.257)-(4.262). The
second and third term in Eq. (4.331) contain interaction terms that include one or two resonances and two
pion fields. The explicit form of these terms is given by

LRππ = −
(
λ1 +

λ2

2

)
φNZ

2σN~π
2 + g1wZ

2 (∂µσN ) (∂µ~π) · ~π +

{[
g2

1φN + (h1 + h2 − h3)
φN
2

]
w2Z2 − g1wZ

2

}
× σN (∂µ~π)

2
+ g2w

2Z2 (∂µ~ρν) · (∂ν~π × ∂µ~π) +
[(
g2

1φN − h3φN
)
wZ2 − g1Z

2
]
~ρµ · (∂µ~π × ~π)

(4.332)

and

LRRππ =

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
w2Z2σ2

N (∂µ~π)
2 − 1

2

(
λ1 +

λ2

2

)
Z2σ2

N~π
2 +

1

2

(
g2

1 − h3

)
Z2 (~π × ~ρµ)

2

+
1

4
(h1 + h2 + h3)Z2~ρ2

µ~π
2 +

(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2~ρ2

µ (∂ν~π)
2

+ (−g3 + g4 − g5 + 2g6)w2Z2

× (~ρµ · ∂µ~π) (~ρν · ∂ν~π) + g3w
2Z2 [(~ρµ · ~ρν) (∂µ~π · ∂ν~π) + (~ρµ · ∂ν~π) (~ρµ · ∂ν~π) + (~ρµ · ∂ν~π) (~ρν · ∂µ~π)]

+

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
w2Z4 (∂µηN )

2
~π2 +

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
w2Z4η2

N (∂µ~π)
2

− 1

2

(
λ1 +

3λ2

2

)
Z4η2

N~π
2 +

(
2g2

1 + h2 − h3

)
w2Z4ηN (∂µηN )~π · (∂µ~π) + (g3 + g4)w4Z4
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× (∂µηN ) (∂νηN ) (∂µ~π) · (∂ν~π) +
(g3

2
+
g4

2
+
g5

2
+ g6

)
w4Z4 (∂µηN )

2
(∂ν~π)

2
+
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2
Z2 (~a0 · ~π)

2

− 1

2

(
λ1 +

3λ2

2

)
Z2~a2

0~π
2 +

1

4
(h1 + h2 − h3)w2Z2~a2

0 (∂µ~π)
2

+
g2

1

2
w2Z2 (~a0 · ∂µ~π)

2
+
h3

2
w2Z2 (~a0 × ∂µ~π)

2

+
1

4
(h1 + h2 + h3)Z2ω2

N,µ~π
2 +

(g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2ω2

N,µ (∂ν~π)
2

+ (g3 + g4)w2Z2

× ωµNω
ν
N (∂µ~π · ∂ν~π) +

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
Z2f2

1N,µ~π
2 +

(g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2

× f2
1N,µ (∂ν~π)

2
+ (g3 + g4)w2Z2fµ1Nf

ν
1N (∂µ~π) · (∂ν~π) +

g2
1

2
Z2 (~a1,µ · ~π)

2
+

1

4
(h1 + h2 − h3)Z2~a2

1,µ~π
2

+
(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2~a2

1,µ (∂ν~π)
2

+
h3

2
Z2 (~a1,µ × ~π)

2
+ (−g3 + g4 + g5 + 2g6)w2Z2

× (~aµ1 · ∂µ~π) (~aν1 · ∂ν~π) + g3w
2Z2 [(~aµ1 · ∂ν~π) (~a1,µ · ∂ν~π) + (~aµ1 · ∂ν~π) (~a1,ν · ∂µ~π) + (~aµ1 · ~aν1) (∂µ~π) · (∂ν~π)] .

(4.333)

Finally, the last term of Eq. (4.331) contains all terms, which contain four pion fields with up to four
space-time derivatives. The explicit form of this term is given by

L4π =
g2

1

2
w2Z4 (~π · ∂µ~π)

2 − 1

4

(
λ1 +

λ2

2

)
Z4
(
~π2
)2

+
1

4
(h1 + h2 − h3)w2Z4~π2 (∂µ~π)

2
+
h3

2
w2Z4 (~π × ∂µ~π)

2

+
(
−g3

4
+
g4

4
+
g5

4
+
g6

2

)
w4Z4 (∂µ~π)

2
(∂ν~π)

2
+
g3

2
w4Z4 (∂µ~π · ∂ν~π) (∂µ~π · ∂ν~π) . (4.334)

From Eq. (4.332) we can make an important observation: In contrast to the previous cases, we now have
another resonance which couples in the form Rππ to two pion fields. This, of course, will result in new
four-pion interaction terms. In addition to that, also the σN -field obtains new interaction vertices with two
pion fields. All other resonances only couple in the form RRππ to the pion field. Therefore, all other mesons
only contribute at one-loop order to the LECs of the eLSM. Another important observation is, that the
assumptions (A1)-(A3) again decouple all heavy-field interactions. Therefore, the functional integrals of the
heavy fields also decouple, so that we are able to solve them independently of each other.

With f = {σN , ηN ,~a0, ~π, ωN,µ, f1N,µ, ~ρµ,~a1,µ}, the transition amplitude can be written as

〈f,∞|f,−∞〉 = N
∫

DσN (x)DηN (x)D~a0(x)D~π(x)DωN,µ(x)Df1N,µ(x)D~ρµ(x)D~a1,µ(x) exp

{
iSeLSM

+ i

∫
d4x LGF

}
, (4.335)

where

SeLSM =

∫
d4x LeLSM

=

∫
d4x (Lkin.,mass + LRππ + LRRππ + L4π) (4.336)

and

LGF = −ξωN
2

(∂µω
µ
N )

2 − ξf1N

2
(∂µf

µ
1N )

2 −
ξ~ρ
2

(∂µ~ρ
µ)

2 − ξ~a1

2
(∂µ~a

µ
1 )

2
(4.337)

defines a gauge-fixing term. In principle, this term is not necessary, since the Lorentz gauge-like condition
(∂µA

µ), with Aµ ∈ {ωµN , f
µ
1N , ~ρ

µ,~aµ1}, which can be obtained from the equation of motion of a Proca field, is
sufficient in order to eliminate the redundant degree of freedom. But it will be shown that the introduction of
this so-called Stueckelberg term will be quite useful, when we consider the differential operator corresponding
to the ~ρµ-fields. Before we continue with the functional integral (4.335), it will be useful to reorganize the
terms in SeLSM . To this end, we use the fact that all heavy fields decouple, so that the eLSM Lagrangian
can be written as

LeLSM = L~π + LσN~π + LηN~π + L~a0~π + LωN~π + Lf1N~π + L~ρ~π + L~a1~π , (4.338)

with

L~π =
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~π2
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2

)
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2
(∂ν~π)

2
+
g3

2
w4Z4 (∂µ~π) · (∂ν~π) (∂µ~π) · (∂ν~π) ,

(4.339)
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LσN~π =
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(4.340)

LηN~π =
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, (4.341)

L~a0~π =
1
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, (4.342)

LωN~π = −1
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N (∂µ~π) · (∂ν~π) , (4.343)

Lf1N~π = −1
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4
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1N,µ~π
2

+
(g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2f2

1N,µ (∂ν~π)
2

+ (g3 + g4)w2Z2fµ1Nf
ν
1N (∂µ~π) · (∂ν~π) , (4.344)

L~ρ~π = −1

4
~ρµν · ~ρµν +

1

2
m2
~ρ~ρ

2
µ −

ξ~ρ
2

(∂µ~ρ
µ)

2
+ g2w

2Z2 (∂µ~ρν) · (∂ν~π × ∂µ~π) +
[(
g2

1φN − h3φN
)
wZ2 − g1Z

2
]

× ~ρµ · (∂µ~π × ~π) +
1

2

(
g2

1 − h3

)
Z2 (~π × ~ρµ)

2
+

1

4
(h1 + h2 + h3)Z2~ρ2

µ~π
2 +

(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2

× ~ρ2
µ (∂ν~π)

2
+ (−g3 + g4 − g5 + 2g6)w2Z2 (~ρµ · ∂µ~π) (~ρν · ∂ν~π) + g3w

2Z2 [(~ρµ · ~ρν) (∂µ~π) · (∂ν~π)

+ (~ρµ · ∂ν~π) (~ρµ · ∂ν~π) + (~ρµ · ∂ν~π) (~ρν · ∂µ~π)] , (4.345)

L~a1~π = −1

4
~aµν1 · ~a1,µν +

1

2
m2
~a1
~a2

1,µ −
ξ~a1

2
(∂µ~a

µ
1 )

2
+
g2

1

2
Z2 (~a1,µ · ~π)

2
+

1

4
(h1 + h2 − h3)Z2~a2

1,µ~π
2

+
(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2~a2

1,µ (∂ν~π)
2

+
h3

2
Z2 (~a1,µ × ~π)

2
+ (−g3 + g4 + g5 + 2g6)w2Z2

× (~aµ1 · ∂µ~π) (~aν1 · ∂ν~π) + g3w
2Z2 [(~aµ1 · ∂ν~π) (~a1,µ · ∂ν~π) + (~aµ1 · ∂ν~π) (~a1,ν · ∂µ~π) + (~aµ1 · ~aν1) (∂µ~π) · (∂ν~π)] .

(4.346)

Then, using (4.338)-(4.346), the functional integral (4.335) can be written as

〈f,∞|f,−∞〉 = N
∫

DσN (x)DηN (x)D~a0(x)D~π(x)DωN,µ(x)Df1N,µ(x)D~ρµ(x)D~a1,µ(x) exp

{
i

∫
d4x [Lkin.,mass

+ LRππ + LRRππ + L4π + LGF ]

}
= N

∫
D~π(x) exp

{
i

∫
d4x L~π

}∫
DσN (x) exp

{
i

∫
d4x LσN~π

}∫
D~ρµ(x) exp

{
i

∫
d4x L~ρ~π

}
×
∫

DηN (x) exp

{
i

∫
d4x LηN~π

}∫
D~a0(x) exp

{
i

∫
d4x L~a0~π

}∫
DωN,µ(x) exp

{
i

∫
d4x LωN~π

}
×
∫

Df1N,µ(x) exp

{
i

∫
d4x Lf1N~π

}∫
D~a1,µ(x) exp

{
i

∫
d4x L~a1~π

}
= N

∫
D~π(x) exp

{
i

∫
d4x L~π

}
IσN [~π]I~ρ[~π]IηN [~π]I~a0

[~π]IωN [~π]If1N
[~π]I~a1

[~π] , (4.347)
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where we defined the different functional integrals according to

If ′ [~π] ≡
∫

Df ′(x) exp

{
i

∫
d4x Lf ′~π

}
, (4.348)

for f ′ = σN , ~ρµ, ηN ,~a0, ωN,µ, f1N,µ,~a1,µ. At this point, we are able to calculate the Gaussian functional
integrals (4.347). As already mentioned, the only interesting integrals for our tree-level calculation are those
with respect to σN and ~ρµ. All other integrals only contribute at one-loop order. The solutions of these
integrals can be obtained in a similar way as those in Eqs. (4.311)-(4.319). Without specification of the
exact form of various differential operators, the solutions of the these integrals are given by

IηN [~π] = NηN
[
detOηN ,~π(x, y)

]−1/2

, (4.349)

I~a0
[~π] = N~a0

[
detOij

~a0,~π
(x, y)

]−1/2

, (4.350)

IωN [~π] = NωN
[
detOµν

ωN ,~π
(x, y)

]−1/2

, (4.351)

If1N
[~π] = Nf1N

[
detOµν

f1N ,~π
(x, y)

]−1/2

, (4.352)

I~a1
[~π] = N~a1

[
det
(
Oµν
~a1,~π

)ij
(x, y)

]−1/2

. (4.353)

In the following, we now have to solve the remaining two functional integrals. To this end, we start with the
σN integral which is given by

IσN [~π] =

∫
DσN (x) exp

{
i

∫
d4x LσN~π

}
=

∫
DσN exp

{
i

∫
d4x

{
1

2
(∂µσN )

2 − 1

2
m2
σNσ

2
N −

(
λ1 +

λ2

2

)
φNZ

2σN~π
2 + g1wZ

2 (∂µσN ) (∂µ~π) · ~π

+

{[
g2

1φN + (h1 + h2 − h3)
φN
2

]
w2Z2 − g1wZ

2

}
σN (∂µ~π)

2
+

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
w2Z2σ2

N (∂µ~π)
2

− 1

2

(
λ1 +

λ2

2

)
Z2σ2

N~π
2

}}
. (4.354)

In order to rewrite the above functional integral into the standard form of a shifted Gaussian integral, we
have to integrate the first and the fourth term of the exponential by parts, so that

IσN [~π] =

∫
DσN (x) exp

{
− i

2

∫
d4x σN

{
� +m2

σN +

(
λ1 +

λ2

2

)
Z2~π2 +

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2 (∂µ~π)

2

}
σN

+ i

∫
d4x

{
−
(
λ1 +

λ2

2

)
φNZ

2~π2σN +

{[
g2

1φN + (h1 + h2 − h3)
φN
2

]
w2Z2 − g1wZ

2

}
(∂µ~π)

2
σN

− g1wZ
2 [∂µ (∂µ~π · ~π)]σN

}}
=

∫
DσN (x) exp

{
− i

2

∫
d4xd4y σN (x)OσN~π(x, y)σN (y) + i

∫
d4xJσN ,~π(x)σN (x)

}
, (4.355)

where

OσN~π(x, y) =

{
�x +m2

σN +

(
λ1 +

λ2

2

)
Z2~π2(x) +

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2 [∂µ~π(x)]

2

}
δ(4)(x− y)

(4.356)
and

JσN ,~π(x) =

[
g1wZ

2m2
~π −

(
λ1 +

λ2

2

)
φNZ

2

]
~π2 +

{[
g2

1φN + (h1 + h2 − h3)
φN
2

]
w2Z2 − 2g1wZ

2

}
(∂µ~π)

2

≡ c1,σN~π2 + c2,σN (∂µ~π)
2

. (4.357)

The above ”source” was obtained from the first line of Eq. (4.355) by using the product rule

∂µ (∂µ~π · ~π) = (�~π) · ~π + (∂µ~π)
2

(4.358)
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and by using the free Klein-Gordon equation for the ~π-fields

�~π(x) = −m2
~π~π . (4.359)

Furthermore, we defined the coefficients

c1,σN = g1wZ
2m2

~π −
(
λ1 +

λ2

2

)
φNZ

2 , (4.360)

c2,σN =

[
g2

1φN + (h1 + h2 − h3)
φN
2

]
w2Z2 − 2g1wZ

2 , (4.361)

which have, to this order, dimension [Energy] and [Energy−1], respectively. As a cross-check, we can now
use these coefficients and the operator (4.356) and set w = g1 = g2, Z = 1. In these limits, we exactly obtain
the Gaussian functional integral for the σN -field, which we had to solve in the two previous Subsections,
Eq. (4.277). Similar to that discussion, we now have to perform the analytic continuation from Minkowski
space-time to Euclidean space-time. With Eqs. (4.18), (4.20), (4.21), and the Euclidean operator

OσN ,~π,E(xE , yE) =

{
−�x,E +m2

σN +

(
λ1 +

λ2

2

)
Z2~π2(xE)−

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2

[
∂Eµ ~π(xE)

]2}
δ(4)(xE−yE)

(4.362)
the Euclidean functional integral is given by

IσN [~π] =

∫
DσN (xE) exp

{
−1

2

∫
d4xEd4yE σN (xE)OσN ,~π,E(xE , yE)σN (yE) +

∫
d4xEJσN ,~π,E(xE)σN (xE)

}
= NσN

[
detOσN ,~π,E(xE , yE)

]−1/2

exp

{
1

2

∫
d4xEd4yE JσN ,~π,E(xE)O−1

σN ,~π,E
(xE , yE)JσN ,~π,E(yE)

}
= NσN

[
detOσN ,~π(x, y)

]−1/2

exp

{
i

2

∫
d4xd4y JσN ,~π(x)O−1

σN ,~π
(x, y)JσN ,~π(y)

}
= NσN

[
detOσN ,~π(x, y)

]−1/2

exp

{
i

2

∫
d4x JσN ,~π

{
� +m2

σN +

(
λ1 +

λ2

2

)
Z2~π2 +

[
g2

1 +
1

2
(h1 + h2 − h3)

]

× w2Z2 (∂µ~π)
2

}−1

JσN ,~π

}
, (4.363)

where we transformed the integral back to Minkowski space-time and introduced the inverse of Eq. (4.356),

O−1
σN~π

(x, y) =

{
�x +m2

σN +

(
λ1 +

λ2

2

)
Z2~π2(x) +

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2 [∂µ~π(x)]

2

}−1

δ(4)(x− y) .

(4.364)
Now, in order to obtain a local result for Eq. (4.363), we have to expand the square bracket in powers of
inverse σN masses and ~π-fields. We find{
� +m2

σN +

(
λ1 +

λ2

2

)
Z2~π2 +

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2 (∂µ~π)

2

}−1

=

{
1 +

(
� +m2

σN

)−1
[(
λ1 +

λ2

2

)
Z2~π2 +

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2 (∂µ~π)

2

]}−1 (
� +m2

σN

)−1

=

∞∑
m=0

(−1)m
{(

� +m2
σN

)−1
[(
λ1 +

λ2

2

)
Z2~π2 +

[
g2

1 +
1

2
(h1 + h2 − h3)

]
w2Z2 (∂µ~π)

2

]}m
1

m2
σN

∞∑
n=0

(−1)n
(

�
m2
σN

)n
=

1

m2
σN

∞∑
n=0

(−1)n
(

�
m2
σN

)n
+ terms involving two or more ~π-fields , (4.365)

where we suppressed all terms with m > 0 in the first sum. Similar to the previous Sections, we are interested
in four-pion interaction terms that contain up to four space-time derivatives. Therefore, we expand the first
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sum in Eq. (4.365) only up to n = 2 and neglect terms of O(∂6), so that the functional integral is given by

IσN [~π] = NσN
[
detOσN ,~π(x, y)

]−1/2

exp

{
i

2

∫
d4x

[
c1,σN~π

2 + c2,σN (∂µ~π)
2
]( 1

m2
σN

− �
m4
σN

+
�2

m6
σN

)[
c1,σN~π

2

+c2,σN (∂ν~π)
2
]}

= NσN
[
detOσN ,~π(x, y)

]−1/2

exp

{
i

2

∫
d4x

[
c21,σN
m2
σN

~π2

(
1− �

m2
σN

+
�2

m4
σN

)
~π2

︸ ︷︷ ︸
(a)

+
c1,σN c2,σN
m2
σN

(∂µ~π)
2

(
1− �

m2
σN

)
~π2

︸ ︷︷ ︸
(b)

+
c1,σN c2,σN
m2
σN

~π2

(
1− �

m2
σN

)
(∂ν~π)

2

︸ ︷︷ ︸
(c)

+
c22,σN
m2
σN

(∂µ~π)
2

(
1− �

m2
σN

)
(∂ν~π)

2

︸ ︷︷ ︸
(d)

]}
. (4.366)

For the sake of clarity and in order to identify the relevant terms, we consider the four terms (a)-(d) separately.
Integrating the second term in (a) by parts, we find

c21,σN
m2
σN

∫
d4x ~π2

(
1− �

m2
σN

+
�2

m4
σN

)
~π2 =

c21,σN
m2
σN

∫
d4x

[(
~π2
)2

+
1

m2
σN

(
∂µ~π2

) (
∂µ~π

2
)

+
1

m4
σN

(
�~π2

)
�~π2

]
=
c21,σN
m2
σN

∫
d4x

{(
~π2
)2

+
4

m2
σN

(~π · ∂µ~π)
2

+
4

m2
σN

[
(∂µ~π)

2
(∂ν~π)

2

+4m2
~π (~π · ∂µ~π)

2 −m4
~π

(
~π2
)2]}

=

∫
d4x

[(
c21,σN
m2
σN

−
4c21,σNm

4
~π

m6
σN

)(
~π2
)2

+

(
4c21,σN
m4
σN

+
16c21,σNm

2
~π

m6
σN

)
(~π · ∂µ~π)

2

+
4c21,σN
m6
σN

(∂µ~π)
2

(∂ν~π)
2

]
. , (4.367)

Similarly, term (b) can be rewritten as

c1,σN c2,σN
m2
σN

∫
d4x (∂µ~π)

2

(
1− �

m2
σN

)
~π2 =

c1,σN c2,σN
m2
σN

∫
d4x

[
(∂µ~π)

2
~π2 − (∂µ~π)

2 �
m2
σN

~π2

]
=
c1,σN c2,σN
m2
σN

∫
d4x

{
(∂µ~π)

2
~π2 − 2

m2
σN

(∂µ~π)
2
[
(∂ν~π)

2
+ ~π�~π

]}
=

∫
d4x

[
c1,σN c2,σN
m2
σN

(
1 +

2m2
~π

m2
σN

)
(∂µ~π)

2
~π2 − 2c1,σN c2,σN

m4
σN

(∂µ~π)
2

(∂ν~π)
2

]
,

(4.368)

where we used the chain rule, the product rule and the free Klein-Gordon equation for the ~π-fields, Eq.
(4.359).

Performing two integrations by parts in the second term of (c) and using exactly the same manipulations
as in Eq. (4.368), we are able to show that the third term yields the same result as (b),

c1,σN c2,σN
m2
σN

∫
d4x ~π2

(
1− �

m2
σN

)
(∂ν~π)

2
=

∫
d4x

[
c1,σN c2,σN
m2
σN

(
1 +

2m2
~π

m2
σN

)
(∂µ~π)

2
~π2 − 2c1,σN c2,σN

m4
σN

(∂µ~π)
2

(∂ν~π)
2

]
.

(4.369)
Finally, in the case of (d), we are able to neglect the contribution of the second term, since it contains six
space-time derivatives. We find

c22,σN
m2
σN

∫
d4x (∂µ~π)

2

(
1− �

m2
σN

)
(∂ν~π)

2
=

∫
d4x

c22,σN
m2
σN

(∂µ~π)
2

(∂ν~π)
2

+O(∂6) . (4.370)

Combining the results (4.366)-(4.370) and summarizing identical terms, the functional integral IσN [~π] can
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be written as

IσN [~π] = NσN
[
detOσN ,~π(x, y)

]−1/2

exp

{
i

∫
d4x

{[
c21,σN
2m2

σN

(
1−

4m4
~π

m4
σN

)
+
c1,σN c2,σNm

2
~π

m2
σN

(
1 +

2m2
~π

m2
σN

)](
~π2
)2

+

[
2c21,σN
m4
σN

(
1 +

4m2
~π

m2
σN

)
− 2c1,σN c2,σN

m2
σN

(
1 +

2m2
~π

m2
σN

)]
(~π · ∂µ~π)

2
+

[
c22,σN
2m2

σN

− 2c1,σN c2,σN
m4
σN

+
2c21,σN
m6
σN

]

× (∂µ~π)
2

(∂ν~π)
2

}}
. (4.371)

Finally, we have to consider the ~ρ integral. In this case, the situation becomes more involved, since the ~ρµ-
and the ~π-fields are both vectorial structures in isospin space. To this end, we write the functional integral
as

I~ρ[~π] =

∫
D~ρµ(x) exp

{
i

∫
d4x L~ρ~π

}
=

∫
D~ρµ(x) exp

{
i

∫
d4x

{
−1

4
(∂µ~ρν − ∂ν~ρµ) · (∂µ~ρν − ∂ν~ρµ) +

1

2
m2
~ρ~ρ

2
µ −

ξ~ρ
2

(∂µ~ρ
µ) · (∂ν~ρν)︸ ︷︷ ︸

(a)

+

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
Z2~ρ2

µ~π
2︸ ︷︷ ︸

(b)

− 1

2

(
g2

1 − h3

)
Z2 (~ρµ · ~π)

2︸ ︷︷ ︸
(c)

+
(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2~ρ2

µ (∂ν~π)
2︸ ︷︷ ︸

(d)

+ g3w
2Z2 [(~ρµ · ~ρν) (∂µ~π) · (∂ν~π) + (~ρµ · ∂ν~π) (~ρµ · ∂ν~π) + (~ρµ · ∂ν~π) (~ρν · ∂µ~π)]︸ ︷︷ ︸

(e)

+ (−g3 + g4 − g5 + 2g6)w2Z2 (~ρµ · ∂µ~π) (~ρν · ∂ν~π)︸ ︷︷ ︸
(f)

+
[(
g2

1 − h3

)
φNwZ

2 − g1Z
2
]
~ρµ · (∂µ~π × ~π)︸ ︷︷ ︸

(g)

+ g2w
2Z2 (∂µ~ρν) · (∂ν~π × ∂µ~π)︸ ︷︷ ︸

(h)

}}
. (4.372)

In order to rewrite the above integral in the usual form of a shifted Gaussian integral, we have to introduce
isospin indices for those terms that are quadratic in the ~ρµ-fields, i.e., (a)-(f). The remaining two terms,
(g)-(h), correspond to the ”source” term, which is linearly coupled to the ~ρµ-fields. But before we consider
these terms, we focus on the first six terms and rewrite them in the desired way. Using the antisymmetry of
the field-strength tensor and integrating the first and the third term of (a) by parts, we find∫

d4x

[
−1

4
(∂µ~ρν − ∂ν~ρµ) · (∂µ~ρν − ∂ν~ρµ) +

1

2
m2
~ρ~ρ

2
µ −

ξ~ρ
2

(∂µ~ρ
µ) · (∂ν~ρν)

]
=

∫
d4x

[
−1

2
(∂µ~ρν − ∂ν~ρµ) · (∂µ~ρν) +

1

2
m2
~ρ~ρ

2
µ −

ξ~ρ
2

(∂µ~ρ
µ) · (∂ν~ρν)

]
=

∫
d4x

[
1

2
~ρµ · (�gµν − ∂µ∂ν) ~ρν +

1

2
m2
~ρ~ρ

2
µ +

ξ~ρ
2
~ρµ∂

µ∂ν · ~ρν
]

=

∫
d4x

1

2
~ρµ ·

[(
� +m2

~ρ

)
gµν − (1− ξ~ρ) ∂µ∂ν

]
~ρν

=

∫
d4x

1

2
ρµ,i ·

[(
� +m2

~ρ

)
gµν − (1− ξ~ρ) ∂µ∂ν

]
δijρν,j , (4.373)

where we introduced isospin-space indices in the last line. Obviously, this term corresponds to a structure
which is diagonal in isospin space. This kind of structure is also present in (b) and (d), so that∫

d4x

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
Z2~ρ2

µ~π
2 =

∫
d4x

[
g2

1

2
+

1

4
(h1 + h2 − h3)

]
Z2ρµ,ig

µνδij~π2ρν,j , (4.374)∫
d4x

(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2~ρ2

µ (∂ν~π)
2

=

∫
d4x

(
−g3

2
+
g4

2
+
g5

2
+ g6

)
w2Z2ρµ,ig

µνδij (∂α~π)
2
ρν,j .

(4.375)
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On the other hand, the terms (c), (e), and (f) are not diagonal in isospin space, since∫
d4x

1

2

(
g2

1 − h3

)
Z2 (~ρµ · ~π)

2
=

∫
d4x

1

2

(
g2

1 − h3

)
Z2ρµ,ig

µνπiπjρν,j , (4.376)

∫
d4x g3w

2Z2 [(~ρµ · ~ρν) (∂µ~π) · (∂ν~π) + (~ρµ · ∂ν~π) (~ρµ · ∂ν~π) + (~ρµ · ∂ν~π) (~ρν · ∂µ~π)]

=

∫
d4x g3w

2Z2
[
ρµ,ig

ij
(
∂µπk

)
(∂νπk) ρν,j + ρµ,ig

µν
(
∂απi

) (
∂απ

j
)
ρν,j + ρµ,i

(
∂νπi

) (
∂µπj

)
ρν,j
]

,

(4.377)

∫
d4x (−g3 + g4 − g5 + 2g6)w2Z2 (~ρµ · ∂µ~π) (~ρν · ∂ν~π) =

∫
d4x (−g3 + g4 − g5 + 2g6)w2Z2ρµ,i

(
∂µπi

) (
∂νπj

)
ρν,j .

(4.378)

And exactly the non-diagonal contributions of (e) and (f) will cause problems, when we have to invert the
corresponding operator. This can be understood as follows: In the previous calculations all operators of
the heavy fields, which we had to invert, were diagonal in isospin space as well as in space-time, compare
Eqs. (4.278) and (4.356). In the case of the ~ρµ-fields this situation changes, since the terms (a)-(f) contain
contributions which are non-diagonal either in isospin space, or in space-time, or in both spaces. Therefore,
the process of inverting the corresponding operator becomes more involved. In our case, the outermost
mathematical structure is that of isospin space, so that the inversion process would be as follows: First of
all, we would introduce two projection operators

Pij‖ =
πiπj

~π2
, (4.379)

Pij⊥ = δij − Pij‖ , (4.380)

which project onto the one-dimensional subspace parallel to ~π and onto the two-dimensional subspace per-
pendicular to ~π, which can be seen as follows

Pij‖ πj =
πiπj

~π2
πj = πi , (4.381)

Pij⊥πj =
(
δij − Pij‖

)
πj = πi − πi = 0 . (4.382)

Furthermore, both operators are idempotent, orthogonal, and complete

Pik,‖P
kj
‖ =

πiπk
~π2

πkπj

~π2
=
πiπj

~π2
= Pij‖ , Pik,⊥P

kj
⊥ =

(
δik − Pik,‖

)(
δkj − Pkj‖

)
= δij − Pij‖ = Pij⊥ ,

(4.383)

Pik,‖P
kj
⊥ = Pik,‖

(
δkj − Pkj‖

)
= Pij‖ − P

ij
‖ = 0 , (4.384)

Pij‖ + Pij⊥ = δij . (4.385)

With these properties, it is, in principle, possible to rewrite the ~ρµ operator
(
Oµν
~ρ,~π

)ij
(x, y) in the following

form (
Oµν
~ρ,~π

)ij
(x, y) = Dµν~π,‖(x, y)Pij‖ +Dµν~π,⊥(x, y)Pij⊥ , (4.386)

where the coefficients Dµν~π,‖(x, y), Dµν~π,⊥(x, y) define differential operators that also contain ~π-fields. These

differential operators are, of course, scalar objects in isospin space and tensorial objects in space-time. Using
Eq. (4.386) and the various properties of the projection operators (4.379) and (4.380), the inverse operator
is given by (

Oµν−1
~ρ,~π

)ij
(x, y) = Dµν−1

~π,‖ (x, y)Pij‖ +Dµν−1
~π,⊥ (x, y)Pij⊥ . (4.387)

Now, since the differential operators Dµν~π,‖(x, y) and Dµν~π,⊥(x, y) are, in general, not diagonal objects in space-

time, we have to repeat this inversion procedure in space-time. This means that we have to transform
the differential operators to momentum space and introduce two projection operators which project onto
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the one-dimensional subspace parallel to kµ and onto the three-dimensional subspace perpendicular to the
four-momentum kµ. These operators have a similar structure as those that we introduced in isospin space

Pµν‖ =
kµkν

k2
, (4.388)

Pµν⊥ = gµν − Pµν‖ . (4.389)

It is easy to see that these operators are also idempotent, orthogonal and complete

Pµλ,‖P
λν
‖ =

kµkλ
k2

kλkν

k2
=
kµkν

k2
= Pµν‖ , Pµλ⊥P

λν
⊥ =

(
gµλ − P

µ
λ,‖

)(
gλν − Pλν‖

)
= gµν − Pµν‖ = Pµν⊥ ,

(4.390)

Pµλ,‖P
λν
⊥ = Pµλ,‖

(
gµν − Pµν‖

)
= Pµν‖ − P

µν
‖ = 0 , (4.391)

Pµν‖ + Pµν⊥ = gµν . (4.392)

Similar to Eq. (4.386), it is then possible to decompose Dµν~π,‖(x, y) and Dµν~π,⊥(x, y) according to

D̃µν~π,‖/⊥(k) = D̃~π,‖(k)Pµν‖ + D̃~π,⊥(k)Pµν⊥ , (4.393)

where D̃~π,‖(k) and D̃~π,⊥(k) define Lorentz-scalar coefficients, that depend on the four-momentum kµ. So,
in principle, the procedure in order to invert the ~ρµ operator is quite clear. The problems now derive from
the terms (e) and (f), since the space-time derivatives that act on the ~π-fields prevent us from rewriting
the operator into the form (4.386). To be particular, by using integrations by parts, it was, up to now, not
possible to isolate a structure that is proportional πiπj , so that it is possible to introduce the projection
operators. Therefore, the upcoming calculation will be based on the assumption that the terms (b)-(f) will
not have a tree-level contribution to four-pion interaction terms, so that the operator which corresponds
to the ~ρµ-fields will be made of terms from (a). This assumption seems to be quite radical, but in the
previous calculations and also in the case of the σN -field, it was shown that the additional terms which are
proportional to ~π-fields inside the operator do not correspond to tree-level four-pion interactions, since we
terminated the expansion after the m = 0 term, compare Eqs. (4.286) and (4.365). With these assumptions
the functional integral (4.372) simplifies significantly

I~ρ[~π] =

∫
D~ρµ(x) exp

{
i

∫
d4x

{
−1

4
(∂µ~ρν − ∂ν~ρµ) · (∂µ~ρν − ∂ν~ρµ) +

1

2
m2
~ρ~ρ

2
µ −

ξ~ρ
2

(∂µ~ρ
µ) · (∂ν~ρν)

+
[(
g2

1 − h3

)
φNwZ

2 − g1Z
2
]
~ρµ · (∂µ~π × ~π) + g2w

2Z2 (∂µ~ρν) · [(∂ν~π)× (∂µ~π)]

}}
=

∫
D~ρµ(x) exp

{
i

∫
d4x

{
1

2
ρµ,i ·

[(
� +m2

~ρ

)
gµν − (1− ξ~ρ∂µ∂ν)

]
δijρν,j

+
[(
g2

1 − h3

)
φNwZ

2 − g1Z
2
]
ρµi (∂µ~π × ~π)

i − g2w
2Z2ρνi ∂

µ [(∂ν~π)× (∂µ~π)]
i

}}
=

∫
D~ρµ(x) exp

{
i

∫
d4x

{
1

2
ρµ,i ·

[(
� +m2

~ρ

)
gµν − (1− ξ~ρ∂µ∂ν)

]
gijρν,j

+
[(
g2

1 − h3

)
φNwZ

2 − g1Z
2 + g2w

2Z2m2
~π

]
ρµ,i (∂µ~π × ~π)

i − g2w
2Z2ρµ,i [(∂µ∂ν~π)× (∂ν~π)]

i

}}
=

∫
D~ρµ(x) exp

{
1

2

∫
d4xd4y ~ρµ(x) · Oµν(x, y)~ρν(y) + i

∫
d4x ~Jµ~ρ,~π(x) · ~ρµ(x)

}
, (4.394)

where we integrated the third term in the second line by parts and made use of Eq. (4.373). In the third
line, we applied the product rule and used the free Klein-Gordon equation (4.359) of the ~π-fields. Finally,
in the last line, we introduced the operator

Oµν(x, y) = i
[(
�x +m2

~ρ

)
gµν − (1− ξ~ρ)∂µx∂νx

]
δ(4)(x− y) (4.395)

and the ”source”

~Jµ~ρ,~π(x) =
[(
g2

1 − h3

)
φNwZ

2 − g1Z
2 + g2w

2Z2m2
~π

]
[(∂µ~π(x))× ~π(x)]− g2w

2Z2 [(∂µ∂ν~π(x))× ∂ν~π(x)]

≡ c1,~ρ [(∂µ~π(x))× ~π(x)]− c2,~ρ [(∂µ∂ν~π(x))× ∂ν~π(x)] , (4.396)
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where we defined the coefficients

c1,~ρ =
(
g2

1 − h3

)
φNwZ

2 − g1Z
2 + g2w

2Z2m2
~π , (4.397)

c1,~ρ = g2w
2Z2 , (4.398)

which have dimension [1] and [Energy−2]. From Eq. (4.373) it was already clear that the operator (4.395)
has to be diagonal in space-time. This fact will simplify the following calculation. But before we need
to invert the operator (4.395), we have to evaluate the functional integral (4.394). To this end, we have
to perform the analytic continuation to Euclidean space-time by using Eqs. (4.18), (4.20), and (4.21). In
contrast to the previous calculations, we now have to deal with vectorial and tensorial structures that have
to be transformed to Euclidean space-time. We start with the scalar product of the source (4.396) and the
~ρµ vector

~Jµ~ρ,~π(x) · ~ρµ(x) = ~J0
~ρ,~π(x) · ~ρ0(x)− ~J i~ρ,~π(x) · ~ρi(x)

= i ~J0
~ρ,~π,E(xE) · i~ρ0,E(xE)− ~J i~ρ,~π,E(xE) · ~ρi,E(xE)

= − ~Jµ~ρ,~π,E(xE) · ~ρµ,E(xE) , (4.399)

where we defined the Euclidean four-vectors(
~Jµ~ρ,~π,E

)
(xE) =

(
~J0
~ρ,~π,E(xE), ~J i~ρ,~π,E(xE)

)T
, (~ρµE) (xE) =

(
~ρ0
E(xE), ~ρiE(xE)

)T
, (4.400)

with ~J i~ρ,~π,E ≡ ~J i~ρ,~π, ~ρiE ≡ ~ρi. It should be noted that the i-indices in Eqs. (4.399) and (4.400) denote spatial

directions in R3 and not the components in isospin space as in Eq. (4.394). Now, we also have to transform
the bilinear form in Eq. (4.394)

~ρµ(x) · Oµν(x, y)~ρν(y)

= ~ρµ(x) · i
[(
�x +m2

~ρ

)
gµν − (1− ξ~ρ)∂µx∂νx

]
δ(4)(x− y)~ρν(y)

= ~ρ0(x) · i
[(
�x +m2

~ρ

)
g00 − (1− ξ~ρ)∂0

x∂
0
x

]
δ(4)(x− y)~ρ0(y)− ~ρ0(x) · i

[
−(1− ξ~ρ)∂0

x∂
i
x

]
δ(4)(x− y)~ρi(y)

− ~ρi(x) · i
[
−(1− ξ~ρ)∂ix∂0

x

]
δ(4)(x− y)~ρ0(y) + ~ρi(x) · i

[(
�x +m2

~ρ

)
gij − (1− ξ~ρ)∂ix∂jx

]
δ(4)(x− y)~ρj(y)

= i~ρ0,E(xE) · i
[(
−�x,E +m2

~ρ

)
g00
E − (1− ξ~ρ)i∂0

x,Ei∂
0
x,E

]
iδ(4)(xE − yE)i~ρ0(yE)

− i~ρ0,E(xE) · i
[
−(1− ξ~ρ)i∂0

x,E∂
i
x,E

]
iδ(4)(xE − yE)~ρi,E(yE)− ~ρi,E(xE) · i

[
−(1− ξ~ρ)∂ix,Ei∂0

x,E

]
iδ(4)(xE − yE)i~ρ0,E(y)

+ ~ρi,E(xE) · i
[(
−�x,E +m2

~ρ

)
(−1)gijE − (1− ξ~ρ)∂ix,E∂

j
x,E

]
iδ(4)(xE − yE)~ρj,E(yE)

= ~ρµ,E(xE) ·
[(
−�x,E +m2

~ρ

)
gµνE + (1− ξ~ρ)∂µx,E∂

ν
x,E

]
δ(4)(xE − yE)~ρν,E(xE)

≡ ~ρµ,E(xE) · Oµν
~ρ,~π,E(xE , yE)~ρν,E(xE) , (4.401)

where we made use of gi0 = g0i = 0, the Euclidean 4-gradient ∂µE = (∂τ ,∇)
T

, and introduced the Euclidean
metric

gµνE = diag (1, 1, 1, 1) . (4.402)

Inserting the above results into the functional integral (4.394), we find

I~ρ[~π] =

∫
D~ρµ,E(xE) exp

{
−1

2

∫
d4xEd4yE ~ρµ,E(xE)

[(
−�x,E +m2

~ρ

)
gµνE + (1− ξ~ρ)∂µx,E∂

ν
x,E

]
δ(4)(xE − yE)~ρν,E(xE)

+

∫
d4xE

[
− ~Jµ~ρ,~π,E(xE)

]
· ~ρµ,E(xE)

}
=

∫
D~ρµ,E(xE) exp

{
−1

2

∫
d4xEd4yE ~ρµ,E(xE) · Oµν

~ρ,~π,E(xE , yE)~ρν,E(xE) +

∫
d4xE

[
− ~Jµ~ρ,~π,E(xE)

]
· ~ρµ,E(xE)

}
= N~ρ

[
det
(
Oµν
~ρ,~π,E

)ij
(xE , yE)

]−1/2

exp

{
1

2

∫
d4xEd4yE ~J~ρ,~π,µ,E(xE) · Oµν−1

~ρ,~π,E (xE , yE) ~J~ρ,~π,µ,E(yE)

}
(4.403)

with the Euclidean operator defined in Eq. (4.401). Before we perform the analytic continuation back to
Minkowski space-time, we want to derive the explicit expression of the inverse operator Oµν,−1

~ρ,~π,E (xE , yE). To
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this end, we begin with the determination of the Fourier transform of the operator in Eq. (4.401), i.e.,[(
−�x,E +m2

~ρ

)
gµνE + (1− ξ~ρ)∂µx,E∂

ν
x,E

]
δ(4)(xE − yE)

=
[(
−�x,E +m2

~ρ

)
gµνE + (1− ξ~ρ)∂µx,E∂

ν
x,E

] ∫ d4kE
(2π)4

e−ikE(xE−yE)

=

∫
d4kE
(2π)4

Õµν
~ρ,~π,E(kE)e−ikE(xE−yE) , (4.404)

where
Õµν
~ρ,~π,E(kE) =

(
k2
E +m2

~ρ

)
gµνE − (1− ξ~ρ) kµEk

ν
E . (4.405)

Now, in order to invert this momentum-space operator, we introduce the Euclidean versions of the projection
operators (4.388) and (4.389)

PµνE,‖ =
kµEk

ν
E

k2
E

, (4.406)

PµνE,⊥ = gE,µν − PµνE,‖ . (4.407)

and rewrite the operator (4.405) as follows

Õµν
~ρ,~π,E(kE) =

(
k2
E +m2

~ρ

)
gµνE − k

2
E (1− ξ~ρ)

kµEk
ν
E

k2
E

=
(
k2
E +m2

~ρ

)
PµνE,⊥ +

(
k2
Eξ~ρ +m2

~ρ

)
PµνE,‖

= D̃E,‖(kE)Pµν‖ + D̃E,⊥(kE)Pµν⊥ , (4.408)

where we defined the scalar coefficients D̃E,‖(kE) and D̃E,⊥(kE). At this point we are also able to check an
important property of the operator (4.405), which has to be fulfilled in order to guarantee that the integral
(4.403) really exists. To be particular, the operator has to be non-singular. This property is easily verified
for the previous calculations, since the eigenvalues of the Klein-Gordon operators are always different from
zero, so that the determinant is different from zero. In order to check this property for Eq. (4.408), we
rewrite the determinant of the momentum-space operator as follows

detÕµν
~ρ,~π,E(kE) = exp

{
ln
[
detÕµν

~ρ,~π,E(kE)
]}

= exp

{
Tr ln

[
D̃E,‖(kE)Pµν‖ + D̃E,⊥(kE)Pµν⊥

]}
= exp

{
Tr

[
ln
(
D̃E,⊥(kE)gµλ,E

)
+ ln

[
gλνE −

(
1−
D̃E,‖(kE)

D̃E,⊥(kE)

)
PλνE,‖

]]}

= exp

{
−
∞∑
j=1

(−1)j

j

(
D̃E,⊥(kE)− 1

)j
Trgµλ,E −

∞∑
j=1

1

j

(
1−
D̃E,‖(kE)

D̃E,⊥(kE)

)j
Tr
(
PλνE,‖

)j}

= exp

{
ln
(
D̃4
E,⊥(kE)

)
+ ln

(
D̃E,‖(kE)

D̃E,⊥(kE)

)}
= D̃3

E,⊥(kE)D̃E,‖(kE) , (4.409)

which is obviously unequal to zero in the case of the usual gauges (Feynman gauge: ξ~ρ = 1, unitary gauge:
ξ~ρ = 0). But before we discuss the influences of the choice of the gauge parameter, we have to comment
on the above calculation. In the third line of Eq. (4.409), we factorized the operator and used that the
coefficient D̃E,⊥(kE) is different from zero. Then, we used the series expansion of the matrix logarithm

ln (x1n×n) = −
∞∑
j=1

(−1)j

j
(x− 1)j1n×n , ln (1n×n − xM) = −

∞∑
j=1

xj

j
M j (4.410)

and pulled the trace inside the series. Due to the idempotence of PµνE,‖, the second trace in the last line is

given by

Tr
(
PλνE,‖

)j
= TrPλνE,‖ = Pλλ,E,‖ =

kλEkλ,E
k2
E

= 1 . (4.411)
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Now, the inverse operator is clearly given by

Õµν,−1
~ρ,~π,E (kE) = D̃−1

E,‖(kE)Pµν‖ + D̃−1
E,⊥(kE)Pµν⊥

=
1

k2
E +m2

~ρ

(
gµνE −

kµEk
ν
E

k2
E

)
+

1

k2
Eξ~ρ +m2

~ρ

kµEk
ν
E

k2
E

=
gµνE

k2
E +m2

~ρ

+
1− ξ~ρ(

k2
Eξ~ρ +m2

~ρ

)(
k2
E +m2

~ρ

)kµEkνE . (4.412)

The position-space equivalent of the above inverse operator is then given by

Oµν,−1
~ρ,~π,E (xE , yE) =

 gµνE
−�x,E +m2

~ρ

−
1− ξ~ρ(

−�x,Eξ~ρ +m2
~ρ

)(
−�x,E +m2

~ρ

)∂µx,E∂νx,E
 δ(4)(xE − yE) , (4.413)

which is of course a non-local result. For the following discussion, we will choose Feynman gauge ξ~ρ = 1,
since this choice will simplify the above operator significantly. But, in the end of this subsection, we will
show that it is not relevant for our purposes, if we choose Feynman or unitary gauge. In Feynman gauge,
the Euclidean functional integral (4.403) is given by

I~ρ[~π] = N~ρ
[
det
(
Oµν
~ρ,~π,E

)ij
(xE , yE)

]−1/2

exp

{
1

2

∫
d4xEd4yE ~J~ρ,~π,µ,E(xE)·

gµνE
−�x,E +m2

~ρ

δ(4)(xE−yE) ~J~ρ,~π,µ,E(yE)

}
.

(4.414)
In order to transform this functional integral back to Minkowski space-time, we have to perform the analytic
continuation of the bilinear form in the exponential. With similar calculation steps as in Eq. (4.401), we
obtain

~J~ρ,~π,µ,E(xE) ·
gµνE

−�x,E +m2
~ρ

δ(4)(xE − yE) ~J~ρ,~π,µ,E(yE)

= ~J~ρ,~π,0,E(xE) · g00
E

−�x,E +m2
~ρ

δ(4)(xE − yE) ~J~ρ,~π,0,E(yE) + ~J~ρ,~π,i,E(xE) · gi0E
−�x,E +m2

~ρ

δ(4)(xE − yE) ~J~ρ,~π,0,E(yE)

+ ~J~ρ,~π,0,E(xE) ·
g0j
E

−�x,E +m2
~ρ

δ(4)(xE − yE) ~J~ρ,~π,j,E(yE) + ~J~ρ,~π,i,E(xE) ·
gijE

−�x,E +m2
~ρ

δ(4)(xE − yE) ~J~ρ,~π,j,E(yE)

= (−i) ~J~ρ,~π,0(x) · g00

�x +m2
~ρ

(−i)δ(4)(x− y)(−i) ~J~ρ,~π,0(y) + ~J~ρ,~π,i(x) · −gij

�x +m2
~ρ

(−i)δ(4)(x− y) ~J~ρ,~π,j(y)

= ~J~ρ,~π,µ(x) · i gµν

�x +m2
~ρ

δ(4)(x− y) ~J~ρ,~π,ν(y) . (4.415)

Expanding the inverse operator

gµν
(
�x +m2

~ρ

)−1
=
gµν

m2
~ρ

(
1 +

�x
m2
~ρ

)−1

=
gµν

m2
~ρ

∞∑
n=0

(−1)n

(
�x
m2
~ρ

)n
, (4.416)

the Minkowski version of the functional integral (4.414) can be written as

I~ρ[~π] = N~ρ
[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
− i

2

∫
d4xd4y ~J~ρ,~π,µ(x) · g

µν

m2
~ρ

∞∑
n=0

(−1)n

(
�x
m2
~ρ

)n
δ(4)(x− y) ~J~ρ,~π,ν(y)

}

= N~ρ
[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
− i

2

∫
d4x [c1,~ρ (∂µ)~π × ~π − c2,~ρ (∂µ∂

α~π)× ∂α~π]

· g
µν

m2
~ρ

∞∑
n=0

(−1)n

(
�x
m2
~ρ

)n [
c1,~ρ (∂ν~π)× ~π − c2,~ρ

(
∂ν∂

β~π
)
× ∂β~π

]}
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n=1
= N~ρ

[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
−i
∫

d4x
1

2m2
~ρ

{
c21,~ρ [(∂µ~π)× ~π] ·

(
1− �x

m2
~ρ

)
(∂µ~π)× ~π︸ ︷︷ ︸

(a)

− c1,~ρc2,~ρ [(∂µ~π)× ~π] ·

(
1− �x

m2
~ρ

)(
∂µ∂β~π

)
× ∂β~π︸ ︷︷ ︸

(b)

− c1,~ρc2,~ρ [(∂µ∂
α~π)× ∂α~π] ·

(
1− �x

m2
~ρ

)
(∂µ~π)× ~π︸ ︷︷ ︸

(c)

+ c22,~ρ [(∂µ∂
α~π)× ∂α~π] ·

(
1− �x

m2
~ρ

)(
∂µ∂β~π

)
× ∂β︸ ︷︷ ︸

(d)

}}
, (4.417)

where we terminated the expansion after the n = 1 term, in order to obtain four pion-interaction terms with
a maximum number of four space-time derivatives. In the following, we have to rewrite the terms (a)-(d).
The first term becomes

c21,~ρ

∫
d4x (∂µ~π)× ~π ·

(
1− �x

m2
~ρ

)
(∂µ~π)× ~π = c21,~ρ

∫
d4x

{
[(∂µ~π)× ~π]

2 − 1

m2
~ρ

[(∂µ~π)× ~π] ·� (∂µ~π)× ~π

}

= c21,~ρ

∫
d4x

{
(∂µ~π)

2
~π2 − [(∂µ~π) · ~π]

2
+

1

m2
~ρ

∂ν [(∂µ~π)× ~π] ∂ν [(∂µ~π)× ~π]

}

= c21,~ρ

∫
d4x

{
(∂µ~π)

2
~π2 − [(∂µ~π) · ~π]

2
+

1

m2
~ρ

[
(∂µ∂ν~π)

2
~π2 − [(∂µ∂ν~π) · ~π]

2

+ (∂µ~π)
2

(∂ν~π)
2 − [(∂µ~π) · ∂ν~π]

2

]}
, (4.418)

where we integrated the second term by parts and used the product rule. Furthermore, several times we
made use of Eq. (4.193). The same vector identity can be used in order to rewrite (b) and (c). We find

c1,~ρc2,~ρ

∫
d4x [(∂µ~π)× ~π] ·

(
1− �x

m2
~ρ

)(
∂µ∂β~π

)
× ∂β~π = c1,~ρc2,~ρ

∫
d4x [(∂µ~π)× ~π] ·

[(
∂µ∂β~π

)
× ∂β~π

]
+O(∂6)

= c1,~ρc2,~ρ

∫
d4x

{
(∂µ~π) ·

(
∂µ∂β~π

)
~π · ∂β~π

−
[(
∂µ∂β~π

)
· ~π
]

(∂µ~π) · ∂β~π
}

(4.419)

and

c1,~ρc2,~ρ

∫
d4x [(∂µ∂

α~π)× ∂α~π) ·

(
1− �x

m2
~ρ

)
(∂µ~π)× ~π = c1,~ρc2,~ρ

∫
d4x [(∂µ∂α~π)× ∂α~π] · [(∂µ~π)× ~π] +O(∂6)

= c1,~ρc2,~ρ

∫
d4x {(∂µ∂α~π) · (∂µ~π) (∂α~π) · ~π

− (∂α~π) · (∂µ~π) (∂µ∂
α~π) · (~π)} , (4.420)

where we neglected terms that contain six or more space-time derivatives. Finally, for the same reason, we
also neglect all terms of (d). Then, the functional integral is given by

I~ρ[~π] = N~ρ
[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
−i
∫

d4x

{
c21,~ρ
2m2

~ρ

[
(∂µ~π)

2
~π2 − (~π · ∂µ~π)

2
]

+
c21,~ρ
2m4

~ρ

[
(∂µ∂ν~π)

2
~π2 − (~π · ∂µ∂ν~π)

2

+ (∂µ~π)
2

(∂ν~π)
2 − [(∂µ~π) · ∂ν~π]

2
]
−
c1,~ρc2,~ρ
m2
~ρ

[(∂µ~π) · (∂µ∂ν~π)~π · ∂ν~π − (∂µ∂ν~π) · ~π (∂µ~π) · ∂ν~π]

}

= N~ρ
[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
−i
∫

d4x

{(
c21,~ρm

2
~π

2m2
~ρ

−
c1,~ρc2,~ρm

4
~π

m2
~ρ

)(
~π2
)2 −(3c21,~ρ

2m2
~ρ

−
3c1,~ρc2,~ρm

2
~π

m2
~ρ

)
(~π · ∂µ~π)

2

+

(
c21,~ρ
m4
~ρ

+
c1,~ρc2,~ρ
m2
~ρ

)
(∂µ~π)

2
(∂ν~π)

2 −

(
c21,~ρ
m4
~ρ

+
c1,~ρc2,~ρ
m2
~ρ

)
[(∂µ~π) · ∂ν~π]

}}
, (4.421)
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where we integrated the first line by parts for several times. Before we combine this result with Eq. (4.371)
and Eqs. (4.349)-(4.353) in order to find the tree-level effective action of the eLSM, we want to show that
we would obtain the same solution (4.421), if we had used unitary gauge ξ~ρ = 0. To this end, we go back
to Eq. (4.417). In unitary gauge and after performing the analytic continuation to Minkowski space, the
functional integral would be given by

I~ρ[~π] = N~ρ
[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
− i

2

∫
d4xd4y ~J~ρ,~π,µ(x) ·

[(
�x +m2

~ρ

)−1
gµν +

1

m2
~ρ

(
�x +m2

~ρ

)−1
∂µx∂

ν
x

]

× δ(4)(x− y) ~J~ρ,~π,ν(y)

}
= N~ρ

[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
− i

2

∫
d4x [c1,~ρ (∂µ~π)× ~π − c2,~ρ (∂µ∂

α~π)× ∂α~π]

·

[
gµν

m2
~ρ

∞∑
n=0

(−1)n

(
�x
m2
~ρ

)n
+

1

m4
~ρ

∞∑
m=0

(−1)m

(
�x
m2
~ρ

)m
∂µx∂

ν
x

] [
c1,~ρ (∂ν~π)× ~π − c2,~ρ

(
∂ν∂

β~π
)
× ∂β~π

]}
n=1,
m=0= N~ρ

[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

exp

{
−i
∫

d4x
1

2m2
~ρ

{
c21,~ρ [(∂µ~π)× ~π] ·

(
1− �x

m2
~ρ

)
(∂µ~π)× ~π︸ ︷︷ ︸

(a)

− c1,~ρc2,~ρ [(∂µ~π)× ~π] ·

(
1− �x

m2
~ρ

)(
∂µ∂β~π

)
× ∂β~π︸ ︷︷ ︸

(b)

− c1,~ρc2,~ρ [(∂µ∂
α~π)× ∂α~π] ·

(
1− �x

m2
~ρ

)
(∂µ~π)× ~π︸ ︷︷ ︸

(c)

+ c22,~ρ [(∂µ∂
α~π)× ∂α~π] ·

(
1− �x

m2
~ρ

)(
∂µ∂β~π

)
× ∂β~π︸ ︷︷ ︸

(d)

}
+

1

2m4
~ρ

{
c21,~ρ [(∂µ~π)× ~π] · ∂µ∂µ (∂ν~π)× ~π︸ ︷︷ ︸

(e)

− c1,~ρc2,~ρ [(∂µ~π)× ~π] · ∂µ∂ν
[(
∂ν∂

β~π
)
× ∂β~π

]︸ ︷︷ ︸
(f)

− c1,~ρc2,~ρ [(∂µ∂
α~π)× ∂α~π] · ∂µ∂ν [(∂ν~π)× ~π]︸ ︷︷ ︸

(g)

+ c22,~ρ [(∂µ∂
α~π)× ∂α~π] · ∂µ∂ν

[(
∂ν∂

β~π
)
× ∂β~π

]︸ ︷︷ ︸
(h)

}}
, (4.422)

where we introduced the inverse operator

(
�x +m2

~ρ

)−1
gµν +

1

m2
~ρ

(
�x +m2

~ρ

)−1
∂µx∂

ν
x =

1

m2
~ρ

(
1 +

�x
m2
~ρ

)−1

+
1

m4
~ρ

(
1 +

�x
m2
~ρ

)−1

∂µx∂
ν
x

=
gµν

m2
~ρ

∞∑
n=0

(−1)n

(
�x
m2
~ρ

)n
+

1

m4
~ρ

∞∑
m=0

(−1)m

(
�
m2
~ρ

)m
∂µx∂

ν
x

(4.423)

in the second line of Eq. (4.422) and expanded this operator only up to n = 1, m = 0. Obviously, the
non-diagonal part of the operator gives four new contributions to the four-pion interaction terms. But since
the terms (f)-(h) contain six space-time derivatives, we are able to neglect them directly. Finally, we are
only left with (e) which can be shown to vanish identically

c21,~ρ

∫
d4x [(∂µ~π)× ~π] · ∂µ∂ν [(∂ν~π)× ~π] = c21,~ρ

∫
d4x [(∂µ~π)× ~π] · ∂µ [(�~π)× ~π + (∂ν~π)× ∂ν~π]

= c21,~ρ

∫
d4x [(∂µ~π)× ~π] · ∂µ

[
−m2

~π (~π × ~π) + (∂ν~π)× (∂ν~π)
]

= 0 , (4.424)

where we used (4.359) and the antisymmetry of the vector product. Now, since all four contributions (e)-(h)
are ether negligible or equal to zero, we are left with the same final result (4.421) as in the case of Feynman
gauge. Finally, we have to combine all results of this subsection in order to obtain a solution for the transition
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amplitude (4.347). We find

〈f,∞|f,−∞〉 = N
∫

D~π(x) exp

{
i

∫
d4x L~π

}
IσN [~π]I~ρ[~π]IηN [~π]I~a0

[~π]IωN [~π]If1N
[~π]I~a1

[~π]

= Neff
∫

D~π(x)

[
detOηN ,~π(x, y)

]−1/2[
detOij

~a0,~π
(x, y)

]−1/2[
detOµν

ωN ,~π
(x, y)

]−1/2

×
[
detOµν

f1N ,~π
(x, y)

]−1/2[
det
(
Oµν
~a1,~π

)ij
(x, y)

]−1/2[
detOσN ,~π(x, y)

]−1/2[
det
(
Oµν
~ρ,~π,E

)ij
(x, y)

]−1/2

× exp
{
iS

(n=1,m=0)
eLSM,eff [~π]

}
, (4.425)

where the tree-level effective action of the eLSM is given by

S
(n=1,m=0)
eLSM,eff [~π] =

∫
d4x

{
1

2
(∂µ~π)

2 − 1

2
m2
~π~π

2 + C1,eLSM

(
~π2
)2

+ C2,eLSM (∂µ~π · ~π)
2

+ C3,eLSM (∂µ~π)
2

(∂ν~π)
2

+C4,eLSM [(∂µ~π) · ∂ν~π]
2
}

, (4.426)

where the LECs of the eLSM are given by

C1,eLSM =
Z4

4

[
(h1 + h2 + h3)w2m2

~π −
(
λ1 +

λ2

2

)]
+
c21,σN
2m2

σN

(
1−

4m4
~π

m4
σN

)
+
c1,σN c2,σNm

2
~π

m2
σN

(
1 +

2m2
~π

m2
σN

)
−
c21,~ρm

2
~π

2m2
~ρ

+
c1,~ρc2,~ρm

4
~π

m2
~ρ

, (4.427)

C2,eLSM =
1

2

(
g2

1 − h1 − h2 − 2h3

)
w2Z4 +

2c21,σN
m4
σN

(
1 +

4m2
~π

m2
σN

)
− 2c1,σN c2,σN

m2
σN

(
1 +

2m2
~π

m2
σN

)
+

3c1,~ρ
2m2

~ρ

−
3c1,~ρc2,~ρm

2
~π

m2
~ρ

,

(4.428)

C3,eLSM =
(
−g3

4
+
g4

4
+
g5

4
+
g6

2

)
w4Z4 +

c22,σN
2m2

σN

− 2c1,σN c2,σN
m4
σN

+
2c21,σN
m6
σN

−
c21,~ρ
m4
~ρ

−
c1,~ρc2,~ρ
m2
~ρ

, (4.429)

C4,eLSM =
g3

2
w4Z4 +

c21,~ρ
m4
~ρ

+
c1,~ρc2,~ρ
m2
~ρ

. (4.430)

Before we determine the numerical values for the above LECs in the upcoming subsection, we recognize that
the presence of vector- and axial-vector mesons in the eLSM Lagrangian influences the structure of the LECs
in a positive way. On the one hand, the contribution of the σN -field is modified by new terms which arise
from the covariant derivative. On the other hand, the presence of the ~ρµ-field gives rise to new interaction
vertices which were not present in the previous calculations. These new vertices result in a nonzero value of
C4,eLSM , so that we now have nonzero values for all LECs. Finally, we want to check, if the (~π2)2 interaction
term vanishes in the chiral limit as it should be. To this end, we consider the limit hN,0 → 0, so that the
tree-level pion mass (4.260) vanishes, since

m2
~π =

[
−c1 −m2

0 +

(
λ1 +

λ2

2

)
φ2
N

]
Z2 =

hN,0Z
2

φN
. (4.431)

In this limit, the tree-level mass of the σN -field is given by Eq. (4.296). Then, using the definition (4.360)
and taking the chiral limit, we find

C1,eLSM =
c21,σN
2m2

σN

− 1

4

(
λ1 +

λ2

2

)
Z4

=

(
λ1 + λ2

2

)2
φ2
NZ

4

4
(
λ1 + λ2

2

)
φ2
N

− 1

4

(
λ1 +

λ2

2

)
Z4

= 0 , (4.432)

which beautifully demonstrates that all non-derivatively coupled interaction vertices vanish in the case of an
exact chiral symmetric Lagrangian.
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4.3.6 Numerical Input and Results

Now we want to determine the numerical values for the coupling constants of ChPT, (3.236)-(3.239), as well
as those of the different versions of the eLSM, Eqs. (4.290)-(4.293), (4.322)-(4.325), and (4.427)-(4.430).
To this end, we want to start with those of Chiral Perturbation Theory. Obviously, the first coupling
constant (3.236) depends on the mass parameter defined by Eq. (3.225). At tree-level and NLO in the chiral
expansion, the physical pion mass and this mass parameter are connected through Eq. (3.235). This relation
yields a quartic equation that we can use to determine the mass parameter (3.225). To this end, we first of
all need a numerical value for the pion mass. Since we worked in the isospin symmetric limit and neglected
electromagnetic interactions, we take an isospin-averaged value for the pion mass

Mπ = (138± 6.9) MeV . (4.433)

This numerical values is taken from Ref. [PKWGR]. Furthermore, we need the numerical values of the first
three LECs of two-flavor Chiral Perturbation Theory. These parameters can be obtained from Ref. [BiEc].
The first two LECs `1 and `2 are obtained from ππ scattering lengths

`1 = (−4.051± 0.642) · 10−3 , `2 = (1.819± 0.299) · 10−3 . (4.434)

The third LEC is obtained from an analysis of the dependence of the pion mass on the mass parameters of
ChPT

`3 = (0.852± 3.803) · 10−3 . (4.435)

Note that the LECs (4.434) and (4.435) have to be determined from the subtraction scale idependent ones,
cf. Ref. [BiEc]. It should be mentioned that the LECs from Ref. [BiEc] are not tree-level values. These
values are obtained through a two-loop analysis of ChPT, see Ref. [BiEc] and refs. therein for more details.
Now, using (4.433) and (4.435), the quartic equation (4.225) can be solved, in order to obtain

M = (137.738± 6.958) MeV . (4.436)

The error has been calculated by using the usual Gaussian error law. Now, the LECs (3.236)-(3.239) are
also functions of the pion decay constant fπ. The numerical value of this constant is also taken from Ref.
[PKWGR]

fπ = (92.2± 4.6) MeV . (4.437)

Finally, using (4.434)-(4.437), the coupling constants of the four pion interaction terms can be calculated as

C1,χPT = −0.279± 1.941 , (4.438)

C2,χPT = (5.882± 0.587)10−5 MeV−2 , (4.439)

C3,χPT = (−5.606± 1.429) · 10−11 MeV−4 , (4.440)

C4,χPT = (2.517± 0.651)10−11 MeV−4 . (4.441)

Now we also have to calculate the LECs of the different versions of the eLSM. In the Secs. [4.3.3] and [4.3.4]
it was shown, that both versions of the model lead to the same low-energy couplings. The reason for this
to happen was simply given by the fact that the relevant σN interactions with the ~π-fields remain the same
in both cases. It was shown that there are only three non-vanishing LECs which are given by Eqs. (4.290),
(4.291), and (4.292). These constants, of course, depend on the parameters of the eLSM. The numerical
values which have been used in order to calculate the LECs of the eLSM are taken from the three-flavor
fit of the model, which was presented in Ref. [PKWGR]. These values have been determined by studying
the decay widths of the different mesons included in the eLSM. For more details on this calculation and on
the fit procedure see Ref. [PKWGR]. For the sake of clarity, we want to quote all numerical values which
have been used to calculate the LECs. First of all, the LECs (4.290)-(4.293) and (4.427)-(4.430) have a
dependence on four masses, the pion mass, the mass of the σN -field as well as the masses of the ~a1,µ- and
the ~ρµ-fields. While we use the isospin-averaged values (4.433) for the pion mass, the mass of the σN has
been determined in a large-NC limit fit in Ref. [PKWGR]

mσN = 1362.7 MeV . (4.442)

Also the masses of the vector and the axial-vector isotriplets have been taken from the fit results of Ref.
[PKWGR]

m~a1
= (1186± 6) MeV , m~ρ = (783.1± 7) MeV . (4.443)
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Furthermore, the different LECs depend on all coupling parameters of the eLSM, which have been introduced
in Sec. [4.2.2]. In the following, we also consider the large-NC scenario, so that

λ1 = h1 = g5 = g6 = 0 . (4.444)

In addition to that, we also set
g3 = g4 = 0 , (4.445)

since these values could not be determined by the analysis of the decay widths in Ref. [PKWGR]. The
remaining parameters of the model are

φN , g1, g2, h2, h3 and λ2 . (4.446)

From the three-flavor fit procedure one obtains

g1 = 5.843± 0.018 , (4.447)

g2 = 3.025± 0.233 , (4.448)

h2 = 9.88± 0.663 , (4.449)

h3 = 4.867± 0.086 , (4.450)

λ2 = 68.297± 0.044 (4.451)

(4.452)

for the coupling parameters. The vacuum expectation values of the σN -field is given by

φN = (164.6± 0.1) MeV . (4.453)

At this point, it should be taken into account that this vacuum expectation value and the pion decay constant
are connected via

φN = Zfπ . (4.454)

The relation can obtained from the axial current, compare Ref. [Par2]. Now, since we have all numerical
values which are needed in order to determine the LECs of the different versions of the eLSM, we start with
those of the O(4)- and the U(2)L × U(2)R-case without vector/axial-vector degrees of freedom. In this case
we have

w = 0 , Z = 1 =⇒ φN ≡ fπ . (4.455)

Then, the LECs (4.290)-(4.293) or (4.322)-(4.325) are given by

C1,O(4) = C1,SU(2)L×SU(2)R = −5.869± 0.226 , (4.456)

C2,O(4) = C2,SU(2)L×SU(2)R = (5.985± 27.533) · 10−6 MeV−2 , (4.457)

C3,O(4) = C3,SU(2)L×SU(2)R = (3.096± 0.309)10−12 MeV−4 , (4.458)

C4,O(4) = C4,SU(2)L×SU(2)R = 0 . (4.459)

Now we come to the results of the full eLSM. In this case, the parameters w and Z are given by

w = (683.784± 7.231)10−6 MeV−1 , Z = 1.709± 0.181 . (4.460)

Then, during the calculation of Sec. [4.3.5], we introduced four constants which are defined by Eqs. (4.360),
(4.361), (4.397), and (4.398). These coefficients are, of course, also functions of the model parameters. With
the above numerical input, these constants can be determined as

c1,σN = (−16187.2± 3425.5) MeV , (4.461)

c2,σN = (−0.015± 0.003) MeV−1 , (4.462)

c1,~ρ = −7.361± 1.561 , (4.463)

c2,~ρ = (41.316± 9.342) · 10−7 MeV−2 . (4.464)

The reason why the first constant (4.461) has such a large absolute value is simply given by the fact that
this constant does not involve powers of w, which are present in all other constants. Due to the very small
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value of this shift parameter, all other constants (4.462)-(4.464) are strongly suppressed in comparison to
Eq. (4.461). Now, with these values, the LECs of the eLSM are given by

C1,eLSM = −0.345± 69.093 , (4.465)

C2,eLSM = (5.385± 8.20) · 10−5 MeV−2 , (4.466)

C3,eLSM = (−9.303± 5.114) · 10−11 MeV−4 , (4.467)

C4,eLSM = (9.449± 5.078) · 10−11 MeV−4 . (4.468)

A discussion of this work as well as the numerical results can be found in the last Chapter [5].
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Chapter 5

Discussion

The aim of this work was the determination of the low-energy constants of the eLSM at tree-level. To this
end, we started in Chapter [2] with a brief introduction of the mathematical and physical basics that are
essential for the understanding of this work. An important step towards the understanding of the low-energy
regime of strong interactions was the development of Chiral Perturbation Theory. This framework is based
on a systematic analysis of the hadronic n-point functions. Using the methods of the Effective Field The-
ory, it is then possible to construct the most general chiral Lagrangian which describes the interaction of
the pseudo-Nambu-Goldstone bosons of spontaneous chiral symmetry breaking. The importance of Chiral
Perturbation Theory for our approach then derives from the fact that the low-energy landscape of strong
interactions is dominated by the interactions of these pseudo-Nambu-Goldstone bosons among themselves.
Therefore, this approach yields a good possibility to compare our values of the low-energy constants to the
physical ones. For more details on Chiral Perturbation Theory see Chapter [3].

Then, in Chapter [4], we introduced the mesonic part of the eLSM in detail and considered three different
versions of the model. In the first two versions of the model, we only considered the interaction of scalar
and pseudoscalar mesons and set all vector and axial-vector degrees of freedom to zero. In our calculation,
it was shown that both versions of the model lead to the same low-energy couplings. Table [5.1] summarizes
the numerical values of these LECs in comparison to the results of two-flavor ChPT. It is obvious that it

LEC (Nf = 2)-χPT O(4)-model/U(2)L × U(2)R-model

C1,i −0.279± 1.941 −5.869± 0.266

C2,i [MeV−2] (5.882± 0.587) · 10−5 (5.985± 27.533) · 10−6

C3,i [MeV−4] (−5.606± 1.429) · 10−11 (3.096± 0.309) · 10−12

C4,i [MeV−4] (2.517± 0.651) · 10−11 0

Table 5.1: Comparison of the low-energy couplings of two-flavor ChPT and the O(4)- and U(2)L × U(2)R-version of the
eLSM.

is not sufficient, if we only incorporate scalar and pseudoscalar mesons in the eLSM in order to describe
the low-energy regime of strong interactions. We observe that in these versions of the model, three possible
interaction structures of the ~π-fields are not present at tree-level. This derives from the fact that the relevant
interaction terms that contribute to four-pion interactions are only given by σN~π~π couplings. Obviously,
these structures are not sufficient to generate all possible chirally symmetric four-pion interactions. In the
O(4) case of the eLSM, these LECs may only be improved at one-loop order by contributions of the σN -field.
In the second case where we included all scalar and pseudoscalar degrees of freedom, also the ηN - and the
~a0-fields will contribute at one-loop order, so that this version of the model seems to be a bit more promising
than the O(4) model. But, due to Tab. [5.1], it is obvious that, at tree-level, both approaches are not able
to describe the low-energy end of the QCD spectrum.

In the third calculation, we considered the full mesonic part of the eLSM. Table [5.2] illustrates a com-
parison of the tree-level LECs of the full mesonic eLSM and two-flavor Chiral Perturbation Theory. When
we consider the numerical values of the low-energy couplings of the eLSM, we observe that now all possible
chirally symmetric interaction structures are present in the low-energy effective action (4.426). It is quite
obvious that, in comparison to the previous cases the additional term structures have their origin in the
interactions between scalar/pseudoscalar mesons and vector/axial-vector mesons. To be particular, it turns
out that the presence of the vector/axial-vector mesons improves the structures of the low-energy effective
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LEC (Nf = 2)-χPT eLSM

C1,i −0.279± 1.941 −0.345± 69.093

C2,i [MeV−2] (5.882± 0.587) · 10−5 (5.385± 8.20) · 10−5

C3,i [MeV−4] (−5.606± 1.429) · 10−11 (−9.303± 5.114) · 10−11

C4,i [MeV−4] (2.517± 0.651) · 10−11 (9.449± 5.078) · 10−11

Table 5.2: Comparison of the low-energy couplings of two-flavor ChPT and the eLSM.

action of the eLSM. This follows from the fact that, on the one hand, the covariant derivative introduces new
couplings of the σN -field to the pions. On the other hand, the presence of the ~ρµ-fields which also couple to
the pion introduces new tree-level contributions to four-pion interactions. Furthermore, the necessary shifts
of the axial-vector fields give rise to derivatively coupled four-pion interactions that were not present in the
previous cases of the eLSM.

When we consider the values of the eLSM, we observe that the LECs fit very well to those of two-flavor
Chiral Perturbation Theory. Within the error tolerances the first three constants fit very well to those of
ChPT. The last low-energy coupling differs by a factor of two. The small deviations may have different rea-
sons. First of all, the interaction terms of two-flavor Chiral Perturbation Theory are not reparametrization-
invariant with respect to the parametrization of the coset space. This means that a different coset rep-
resentative leads to different interaction structures and therefore to different Ci,χPT . But, in principle, it
is not expected that another parametrization of the coset space will influence the values of the low-energy
couplings in a strong way, since the inverse powers of the pion decay constant should dominate the respective
expressions. Another and more important reason is that we only consider the LECs at tree-level. In the
case of the eLSM five mesons do not contribute at tree-level, but only at one-loop order. These contribu-
tions will, of course, influence the numerical values of the LECs and may improve them. Furthermore, the
input data of the eLSM parameters may be improved, since the values used are obtained from a fit of the
three-flavor version of the eLSM. In addition to that, nonzero values of the coupling constants g3 and g4

may also improve the values of the LECs. Therefore, we finally conclude that the eLSM is able to reproduce
the relevant interaction structures of the pion. This tree-level analysis illustrates that the eLSM describes
the low-energy regime of QCD very well, but, in order to improve the values of the respective low-energy
couplings, our analysis has to be extended to one-loop order.
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Chapter 6

Appendix

6.1 Pauli Matrices, Dirac Matrices, and Useful Relations

The first section of this appendix is dedicated to the so-called Pauli and Dirac matrices. To this end, we
summarize the most important identities and relations of these matrices, which are used throughout this
work. In addition to that, we will shortly describe the connection of the Pauli matrices to unitary and
orthogonal groups.

6.1.1 The Pauli Matrices

The three hermitian and unitary matrices

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
(6.1)

define the set of the so-called Pauli matrices. Together with

τ0 =

(
1 0
0 1

)
= 12×2 , (6.2)

the set {τa| a = 0, . . . , 3} spans the full vector space of hermitian (2×2)-matrices, i.e., any hermitian (2×2)-
matrix M can be written as a linear combination of the following form

M = caτ
a , (6.3)

with ca ∈ R. It is quite obvious that the Pauli matrices are traceless

Tr (τi) = 0 (6.4)

matrices with a determinant of
det (τi) = −1 , i = 1, 2, 3 . (6.5)

Therefore, it follows that the eigenvalues of the Pauli matrices are ±1. Furthermore, each Pauli matrix τi
represents its own inverse, i.e., the Pauli matrices are involutory matrices. This property can be written as

τ2
i = 12×2 . (6.6)

The Pauli matrices also obey the following commutation and anticommutation relations

[τi, τj ]− = 2iεijkτ
k , (6.7)

[τi, τj ]+ = 2δij12×2 . (6.8)

Another useful relation, involving the product of two Pauli matrices, can be derived by summing the above
commutation and anticommutation relations. We find

τiτj = iεijkτ
k + δij12×2 . (6.9)
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Using the above relation (6.9) in combination with Eq. (6.4), we are able to evaluate the traces of products
of Pauli matrices

Tr (τiτj) = Tr
(
iεijkτ

k + δij12×2

)
= 2δij , (6.10)

Tr (τiτjτk) = Tr
{[
iεijlτ

l + δij12×2

]
τk
}

= iεijlTr
(
τ lτk

)
= iεijk , (6.11)

Tr (τiτjτkτl) = Tr {[iεijmτm + δij12×2] [iεklnτ
n + δkl12×2]} = −εijmεklnTr (τmτn) + δijδklTr (12×2)

= 2 {δijδkl − δikδjl + δilδjk} , (6.12)

where we used the contraction identity εijkε
k
lm = δilδjm − δimδjl of two Levi-Civita tensors in the last step

of Eq. (6.12).

6.1.2 The Pauli Matrices and their Connection to Unitary and Orthogonal
Groups

The Pauli matrices are also related to unitary groups. More precisely, the set {τi| i = 1, 2, 3} spans the Lie
algebra su(2) of the Lie group of unitary (2 × 2)-matrices with unit determinant SU(2). Therefore, using
the conventional normalization, the three generators of SU(2) are given by

Ti =
τi
2

, i = 1, 2, 3 , (6.13)

so that each element U ∈ SU(2) can be written as

U = e−iαiT
i

, (6.14)

where the αi ∈ R are the so-called group parameters of SU(2). If we also include Eq. (6.2) with the same
normalization as above,

T0 =
τ0
2

, (6.15)

the set {Ta| a = 0, . . . , 3} defines the generators of the Lie group of unitary (2 × 2)−matrices U(2). Then,
each element U ∈ U(2) can be written as

U = e−iαaT
a

. (6.16)

The complete set of U(2)-generators satisfies the following trace identities

Tr
{
T 0T 0T 0T 0

}
=

1

8
, (6.17)

Tr
{
T 0T 0T iT j

}
=

1

8
δij , (6.18)

Tr
{
T 0T iT jT k

}
=
i

8
εijk , (6.19)

Tr
{
T iT jT kT l

}
=

1

8

[
δijδkl − δikδjl + δilδjk

]
, (6.20)

where we used Eqs. (6.10)-(6.12). Finally, it should also be noted that the Pauli matrices are connected to
the group of orthogonal (3 × 3)−matrices with unit determinant SO(3). This relation arises from the fact
that the Lie algebra su(2) of SU(2) is isomorphic to the Lie algebra so(3) of SO(3). But it can be shown
that the groups itself are not isomorphic, since the kernel

Kϕ =

{(
1 0
0 1

)
,

(
−1 0
0 −1

)}
(6.21)

of the group homomorphism ϕ : SU(2) → SO(3) is non-trivial, since two elements of SU(2) map onto the
identity of SO(3). This non-trivialty of Kϕ has its origin in the different periodicities of the two Lie groups.
The exact relation of SU(2) and SO(3) can be obtained from the fact that the kernel Kϕ forms a Z2 normal
subgroup of SU(2), so that

SO(3) ∼= SU(2)\Z2 . (6.22)
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6.1.3 The Dirac Matrices

In the Dirac basis, the so-called γ- or Dirac-matrices are given by

γ0 =

(
1 0
0 −1

)
⊗ 12×2 =

(
12×2 0

0 −12×2

)
,

γi =

(
0 1
−1 0

)
⊗ τi =

(
0 τi
−τi 0

)
, i = 1, 2, 3 ,

(6.23)

where the τi are the Pauli matrices (6.1) and ⊗ denotes the so-called Kronecker product. These matrices
can be assembled into a 4-vector which is given by

γµ = (γ0, γ1, γ2, γ3)
T

. (6.24)

A fifth Dirac matrix, denoted as γ5, can be defined as the product of the other four Dirac matrices. In the
Dirac basis, one obtains

γ5 = iγ0γ1γ2γ3 =

(
0 12×2

12×2 0

)
. (6.25)

From the definitions (6.19) and (6.20) it is obvious that the zeroth and the fifth Dirac matrices are hermitian,
while the remaining three matrices are anti-hermitian, i.e.,

γµ,† = γ0γ
µγ0 , (6.26)

γ†5 = γ5 . (6.27)

In addition to that, the Dirac matrices fulfill the following anticommutation relations

[γµ, γν ]+ = 2gµν14×4 , (6.28)

[γµ, γ5]+ = 0 . (6.29)

Furthermore, it is possible to construct a second-rank Lorentz tensor with the six antisymmetric combinations
of the Dirac matrices (6.23)

σµν =
i

2
[γµ, γν ]− . (6.30)

Then, from the sixteen objects 14×4, γ5, γ
µ, γµγ5, and σµν , which also have a distinct transformation be-

haviour under Lorentz transformations, it is possible to construct any (4× 4)−matrix. Finally, it should be
noted that these objects fulfill various contraction and trace identities which will be omitted here, since they
do not play any role in this work.

6.2 Multidimensional Gaussian Integrals

In Chapter [4], we frequently had to evaluate Gaussian functional integrals in order to determine the LECs
of various physical and unphysical models. The functional integral identities used are infinite-dimensional
generalizations of ordinary shifted Gaussian integrals. The aim of this section will be the derivation of these
integral identities. To this end, we start with the ordinary one-dimensional Gaussian integral and extend
this case up to an n-dimensional generalization of the Gaussian integral. The approach will be first to state
the final result and then to prove it by a straightforward calculation.

The one-dimensional Gaussian integral is given by

I =

∞∫
−∞

dx e−
ax2

2 =

√
2π

a
, (6.31)

with a ∈ R > 0. The usual proof of this identity relies on the trick not to consider the integral I itself, but
the square I2. This ansatz allows the transformation to polar coordinates, so that

I2 =

∞∫
−∞

dxdy e−
a
2 (x2+y2) =

2π∫
0

dϕ

∞∫
0

dr re−
ar2

2

=
2π

a

2π∫
0

dξ e−ξ =
2π

a
, (6.32)
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which proves Eq. (6.31). Now, it is possible to modify the exponential by a term which is linear in the
integration variable. The value of this shifted Gaussian integral is given by

I =

∞∫
−∞

dx e−
ax2

2 +Jx =

√
2π

a
e
J2

2a , (6.33)

where a, J ∈ R. We immediately observe that the result (6.33) reduces to Eq. (6.31), if we set the ”source”
J to zero. In order to prove this result, we simply complete the square in the exponential and rewrite Eq.
(6.33) in a way where we are able to use Eq. (6.31). We find

I =

∞∫
−∞

dx e−
ax2

2 +Jx =

∞∫
−∞

dx e−
ax2

2 −
J2

2a+Jx+ J2

2a

= e
J2

2a

∞∫
−∞

dx e−
a
2 (x− Ja )

2

= e
J2

2a

∞∫
−∞

dξ e−
aξ2

2

=

√
2π

a
e
J2

2a . (6.34)

Now, we extend our considerations to n dimensions. The n-dimensional generalization of Eq. (6.31) is given
by

I =

∞∫
−∞

dnx e−
1
2x

TAx =

√
(2π)

n

det (A)
, (6.35)

where x = (x1, x2, . . . , xn)
T ∈ Rn and xTAx = aijx

ixj . It is obvious that this identity cannot be fulfilled
for all matrices A ∈ Rn×n. Therefore, we require A to be a non-singular, positive definite, and symmetric
matrix with eigenvalues λj , j = 1, . . . , n. These properties are closely connected and need some explanation:
It is obvious, that Eq. (6.35) is only well defined, if the determinant of A is different from zero. On the
one hand, this requirement is met by the fact, that A is non-singular, i.e. that its inverse A−1 ∈ Rn×n
exists. The existence of an inverse will also be needed in the next case, where we consider the n-dimensional
generalization of Eq. (6.33). On the other hand, the positive definiteness of a symmetric matrix is equivalent
to the statement that all eigenvalues of the matrix are positive and therefore different from zero, such that the
invertibility of A is also satisfied. In order to prove Eq. (6.35), we exploit the fact that A is symmetric. This
property ensures the existence of an orthogonal matrix O ∈ Rn×n, so that D ≡ OAOT = diag (λ1, . . . , λn).
We find

I =

∞∫
−∞

dnx e−
1
2x

TAx =

∞∫
−∞

dnx e−
1
2x

TOTOAOTOx

=

∞∫
−∞

dnξ e−
1
2ξ
TDξ =

n∏
j=1

∞∫
−∞

dξj e
−
λj
2 ξ

2
j

=

n∏
j=1

√
2π

λj
=

√
(2π)

n

det (A)
, (6.36)

where we introduced new variables ξi = Oijx
j and used that the Jacobian |det (O)| of an orthogonal trans-

formation is one. Finally, it should be mentioned that the application of Eq. (6.31) in the last line is only
valid, since the eigenvalues of the matrix A are positive. As mentioned earlier, we also have to consider the
n-dimensional generalization of the shifted Gaussian integral (6.33). The desired integral identity is given
by

I =

∞∫
−∞

dnx e−
1
2x

TAx+JTx =

√
(2π)

n

det (A)
e

1
2J
TA−1J , (6.37)

where J = (J1, . . . , Jn) ∈ Rn and JTx = Jix
i. In analogy to the previous case (6.35), we require the

matrix A to be non-singular, positive definite, and symmetric. Again, the eigenvalues of A are given by
λj , j = 1, . . . , n. The idea of the proof of Eq. (6.37) is the same as in the one-dimensional case: We
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complete the square in the exponential and rewrite the integral in a way that we are able to use Eq. (6.35).
We obtain

I =

∞∫
−∞

dnx e−
1
2x

TAx+JTx =

∞∫
−∞

dnx e−
1
2 (xTAx−2JTx+JTA−1J)+ 1

2J
TA−1J

= e
1
2J
TA−1J

∞∫
−∞

dnx e−
1
2 (x−A−1J)

T
A(x−A−1J) = e

1
2J
TA−1J

∞∫
−∞

dnξ e−
1
2ξ
TAξ

=

√
(2π)

n

det (A)
e

1
2J
TA−1J , (6.38)

where we used
(
A−1

)T
= A−1, xTJ = JTx, and defined ξ = x − A−1J. The Jacobian of this coordinate

transformation is clearly the identity, since we simply shifted the initial integration variable by a constant.
Finally, we applied Eq. (6.31) in the last line.

In order to use Eq. (6.37) in the functional integral formulation of quantum field theory for spin-0 bosons,
we have to make further considerations. An important problem of the path integral approach to quantum
field theory concerns the convergence of the integrals. In particular, the strongly oscillating exponential in
the functional integral threatens the convergence of the integral. In order to resolve this problem, the usual
approach consists of a π/2-rotation of the time-like component of the 4-vectors into the complex plane. This
so-called Wick rotation transforms the usual 4-vectors of Minkowski space-time into Euclidean 4-vectors
which will be indicated by the subscript E . Replacing the n-dimensional ”spatial” vector x by the scalar
field φ(xE) as well as xTAx and JTx by their continuous generalizations, the Gaussian functional integral
identity is given by∫

Dφ(xE) exp

{
−1

2

∫
d4xEd4yE φ(xE)A(xE , yE)φ(yE) +

∫
d4xE J(xE)φ(xE)

}
= N [detA(xE , yE)]

−1/2
exp

{
1

2

∫
d4xEd4yE J(xE)A−1(xE , yE)J(yE)

}
. (6.39)

Since Eq. (6.39) should pass into Eq. (6.37) if we consider a discretized space-time, the operator A(xE , yE)
should fulfill the same properties as the matrix A of Eq. (6.37). Therefore, we require the operator A(xE , yE)
to be nonsingular, positive definite, and symmetric. Finally, it should be mentioned that the functional
determinant det (A) in Eq. (6.39) may have a physical meaning in some cases. It is also possible to
generalize the presented formalism to complex-valued as well as Grassmann-valued Gaussian integrals. The
latter type of Gaussian integrals plays an important role in the functional integral description of fermionic
systems, since the Grassmann-valued fields realize the Fermi-Dirac statistics of fermions.
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