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How many bodies are required before we
have a problem? G.E. Brown points out
that this can be answered by a look at
history. In eighteenth-century Newtonian
mechanics, the three-body problem was
insoluble. With the birth of relativity
around 1910 and quantum
electrodynamics in 1930, the two- and
one-body problems became insoluble. And
within modern quantum field theory, the
problem of zero bodies (vacuum) is
insoluble. So, if we are out after exact
solutions, no bodies at all is already too
many!

R.D. Mattuck

Abstract

A natural consequence of the pure Yang-Mills sector of quantum chromodynamics (QCD) is the
existence of gauge-invariant states composed of gluons, so-called glueballs. Since the early 1970s
their properties have been investigated in a variety of approaches but a conclusive picture of glue-
balls is still missing. Lattice QCD confirmed their existence and determined the full spectrum
of glueballs where the ground state is a scalar glueball (JF¢ = 0**) with a mass of about 1.7 GeV.

A further fundamental issue of QCD is the understanding of the scalar-isoscalar sector, I¢(JF¢) =
0*(0**), in the low-energy region below 2 GeV. In the last four decades many states with these
quantum numbers were discovered and discussed. At the present time five scalar-isoscalar res-
onances are well-established and listed by the Particle Data Group (PDG). There are the two
resonances fo(500) and fy(980) whose masses lie below 1 GeV. Many studies suggest that these
resonances are neither quarkonia nor glueballs. Together with a¢(980) and K (800) they rather
form a nonet of tetraquark states or they can be interpreted as mesonic molecular states. The
remaining three resonances are fo(1370), fp(1500), and fo(1710) and lie in the energy region

between 1 and 2 GeV. Thus, it is natural to expect that one of them is the scalar glueball.

This thesis is addressed to study the vacuum phenomenology of the scalar-isoscalar sector in the
energy region between 1 and 2 GeV in the framework of the extended linear sigma model (eLSM).
This effective field-theoretical model is based on symmetries and anomalies of QCD such as the
global chiral symmetry and the trace anomaly. The degrees of freedom of the eLSM are from
the very beginning hadrons: there are quark-antiquark mesons as well as one scalar glueball,
which is described by excitations of a scalar dilaton field. The gq fields include not only scalar
(S,07*) and pseudoscalar (P, 07*) mesons, but also vector (V,, 177) and axial-vector (A,, 1*)
mesons. The eLSM in the case Ny = 2, where Ny is the number of flavors, yields a two-body
mixing scenario in the scalar-isoscalar sector where the bare non-strange quark-antiquark meson
oN (ﬂu + Jd) /\/§ and the bare scalar glueball G' are involved. In the eLSM with Ny =3 an
additional scalar-isoscalar qq state, the strange one og % 5s, arises. Hence, two bare quarkonia
and a bare glueball mix and generate the physical resonances f(1370), fo(1500), and fo(1710).
Finally, the fields oy, 0g, and G possess the quantum numbers of the vacuum, hence three
types of condensates arise in our model: the non-strange and the strange quark condensate
(ﬂu+Jd) /v/2 # 0 and (5s) # 0 as well as the gluon condensate (O‘? GZVG“”“’) # 0. Thus, it is

interesting to learn how large are the respective contributions to the generation of hadron masses.



We found two solutions of the eLSM in the case of Ny = 2. In both solutions the resonance
f0(1370) was predominantly the non-strange gq state while the glueball was in one solution
predominantly fo(1500) and in the other one predominantly fy(1710). Calculations of the three-
flavored eLSM yield an unambiguous result where fo(1370) was, as previously, predominantly
the non-strange, while fo(1500) is predominantly the strange quark-antiquark meson, and finally
the resonance fo(1710) turns out to be predominantly a scalar glueball. Our calculations are
based on the assumption that the decay width of the scalar glueball is narrow (I'¢ $ 100 GeV)
which is in accordance with large-N, arguments. As a consequence, we obtained for the energy
scale parameter Ag;, which arises from the trace anomaly, a large value, which implies a large
gluon condensate. Furthermore, we found that the mass of the p meson is mostly generated
by the gluon condensate. Consequently, we expect that its mass in medium scales as the gluon

condensate rather than the quark condensate.

We emphasize that the inclusion of the (axial-)vector degrees of freedom was crucial for the re-
sults of our approach. These fields affect the phenomenology in the (pseudo)scalar sector, e.g.
our model suggests that fo(1370) is the chiral partner of the pion. In addition, it is, to our knowl-
edge, the first time where a full mixing, Ny = 3, above 1 GeV of two scalar-isoscalar quarkonia
and a scalar glueball, described by a dilaton field, in a chiral hadronic model with (axial-)vector
fields, was studied.

Moreover, we studied the vacuum properties of a pseudoscalar glueball G. To this end, we
constructed in conformity with the eLSM the effective Lagrangian which couples this glueball
to the quark-antiquark mesons. The corresponding mass mg = 2.6 GeV is predicted by lattice
QCD in the quenched approximation and lies in the energy region which can be investigated by
the upcoming AntiProton ANnihilations at DArmstadt (PANDA) experiment at the Facility for
Antiproton and Ion Research (FAIR) as well as the GLUonic EXcitations (GlueX) experiment
of the Jefferson national LABoratory (JLAB). In case of the pseudoscalar glueball we present
our results as branching ratios in order to make parameter-free predictions which can be used as
a guideline for the search of glueballs. We found that G — KK is the dominant decay channel
(~47%) of the pseudoscalar glueball followed by G — nrm (~ 16%) and G — n'wr (~ 10%), while
G — 7rr is predicted to vanish. We repeat the calculations for a glueball mass of 2.37 GeV
which corresponds to the mass of the pseudoscalar resonance X (2370) observed in the BFEijing
Spectrometer (BES) III experiment. In the future, the very same procedure can be applied to
other glueballs. A very interesting case is that of the vector glueball O, with a mass of mep, = 3.8
GeV obtained by lattice QCD, whose decay into quark-antiquark mesons will be studied. In this

work we present the Lagrangian and the main features.
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Chapter 1

Introduction

In this chapter we briefly recapitulate the theoretical background which is relevant in order to
construct our effective model, by using the following references [10, [1T), 12, [T3], 14} 15} 16 [17, 18],
19]. In addition, by following the references [}, 2, B} 14, 5] [6] [7, [8 @] [20], we give an overview of

the subjects and the associated physical issues which this thesis addresses.

1.1 Units and conventions

We use natural units [10]

h=c=eog=kp=1, (1.1)
which implies
[energy] = [mass] = [temperature] = [length] ™" = [time] ™", (1.2)
as well the Minkowski space where
G = g*" = diag(1,-1,-1,-1) (1.3)
is the metric tensor and
r=at=(t,2)7, z, =g’ = (t,-Z) (1.4)

are the co- and contravariant vectors of the space-time with Greek indices running over 0,1,2,3.

1.2 Aspects of Quantum Chromodynamics (QCD)

At the present time four fundamental forces are known. The Strong interaction together with
the weak and the electromagnetic interaction represent the interactions of the Standard Model of
Particle Physics (SM)[H The latter is formulated as a local quantum field theory (QFT) with the
symmetry group

SU(3)xSU(2)xU(1), (1.5)

1The fourth fundamental force is gravity, which is described by the theory of general relativity, see e.g. Ref.
[2I]. Unfortunately, this theory could be not yet satisfactorily implemented into the SM due to conceptional
problems such as non-renormalisability and the tensor nature of gravitons.



where U(N) and SU(N) are the unitary and special unitary groups, respectively, in N dimen-
sions, see e.g. Refs. [10, 0T} 12, 13, 22| 23] and later on in this thesis. The theory of the strong
interaction is quantum chromodynamics, on which this work is based on. Therefore, its relevant

aspects will be discussed in the following.

1.2.1 From hadrons and quarks to QCD

In the last century a huge amount of strongly interacting particles, so-called hadrons, were
discovered e.g.,
proton, neutron, m, K, A, w, p, n, ¢, J[v... .

Already before the underlying theory of the strong interaction, QCD, was developed and well-
established, a classification of hadrons was undertaken. To this end one assumed that hadrons
are composed of elementary pieces of matter, which are called quarks according to a suggestion of
Murray Gell-Mann, and used for their classification the SU¢(Ny) flavor symmetry, where Ny = 3
is the number of flavors [24], [25] 26, (27]. This was the birth of the quark model, which is today in
a more sophisticated form embedded in QCD [2§].

Later on, the development of the parton modelﬂ by Richard P. Feynman and James D. Bjorken

was of primary importance in order to describe and interpret deep inelastic lepton-nucleon scat-

tem’ngﬂ Such high-energy experiments indicate that quarks with spin % exist. At the present

time six quark flavors are known (Ny = 6) which we summarize in Table

Quark Flavor | Notation | Current Mass [MeV]
up u 23707
down d 4803
strange S 95+£5
charm c (1.275 £ 0.025) - 10?
bottom b (4.18 £+0.03) - 10?
top t (17321 £0.51 £0.71) - 10°

Table 1.1: Quark flavors and their current masses [II]. According to these masses they are

compartmentalized into the light (u,d,s) and heavy quarks (c,b,t).

All experiments exhibit that very soon after a collision quarks form hadrons. The time-scale of
this procedure, called hadronization, is Aélc p, where Agep = 200 MeV is the typical hadronic

energy scale. This implies also that the size of a hadron is about 1 fm. Quarks are then confined

It turned out that inter alia partons can be interpreted as quarks. Hence, the parton model is a dynamical
quark model, while the quark model of Murray Gell-Mann and George Zweig is only a static one.

3Leptons are, just as quarks, elementary building blocks of matter of the SM. They include the electron (e7)
with its two heavier counterparts, muon (p~) and tau (77), as well as the corresponding neutrinos ve, v, and

vr. Protons and neutrons are called nucleons.



inside hadrons and it is not possible to isolate them. This so-called confinement is a feature
of the strong interaction which is experimentally verified but theoretically still not completely

understood.

In addition, quarks carry fractions of the electric charge eq = ze, where z = % for u,c,t and z = —%
for d, s,b. Nevertheless, due to the confinement, conservation of electric charge is fulfilled, since
the observable hadrons only exhibit multiples of e. Moreover, quarks as particles of spin S = %

are fermions according to the spin-statistic theorem of Wolfgang Pauli [29].

Using quarks and antiquarkﬁ as building blocks of matter, two types of hadrons with respect to

their spin can be formed, the so-called baryons and mesons.

Baryons

Baryons possess half-integer spin, S = n+% with n € Ny, and are therefore fermions. Furthermore,
they are defined through the baryon number B = 1 which is a conserved quantity. Ordinary
baryonsﬂ are composed of three quarks (ggq). By using the reduction formula for irreducible

representation of SU(3) one obtains
3®3®3=1008a8®1, (1.6)

i.e., a decuplet, two octets, and a singlet, which contain 27 baryons. For instance, in the case of

S = % the proton is placed in one of the two octets and its valence quarkﬂ are (u,u,d).

Mesons

Mesons are particles with an integer spin, S = n with n € Ny, which are according to the spin-
statistic theorem bosons. The ordinary mesons are made of a quark and an antiquark (¢g) where

according to the reduction formula for irreducible representation of SU(3) one obtains
3@3=8@1, (1.7)

i.e., there exist an octet and a singlet. In case of mesons, there is no corresponding conserved
mesonic number, but by definition these kinds of hadrons possess always a vanishing baryon
number (B =0). Hence, there are other possibilities to built mesons from quarks and antiquarks,
e.g. tetraquarks, first proposed by Robert L. Jaffe, which are composed of a diquark and an
anti-diquark (¢qgq). Beyond that, from the theoretical point of view there is a further group of
mesons, so-called glueballs, which are not composed of valence quarks. These states will face us

many times because they play a crucial role in this work.

4To every quark flavor there is a corresponding antiquark. They possess exactly the same mass as the respective
quark but all their additive quantum numbers, such as the electric charge, are opposite.

5There are also other possibilities to combine baryons which are in agreement with all required conservation
laws or symmetries, e.g. the pentaquarks (gqqqq). Their existence is controversial, but see, however, the very
recent results of Ref. [30]. Moreover, the definition of the baryon number B implies that By = % and Bj = —%.

6The so-called valence quarks define the quantum numbers, such as spin, of a hadron.

3



Color charge

The flavor symmetry as a fundamental symmetry of the strong interaction proved to be prob-
lematic. Due to the non-vanishing intrinsic mass of quarks, the so-called current mass reported
in Table this symmetry is not an exact symmetry of the strong interaction. In particular,
the breaking of the flavor symmetry between the light and heavy quarks is sizeable. However,
a substantial problem of the quark model described by SUf(3) flavor symmetry was that the
wave function of the delta resoncmceﬂ A** currently denoted as A(1232) [I1], should be totally
symmetric,

by v (L= 0) WSV (S = 3/2) U™ (uuu) , (1.8)

space spin flavor

but this would violate the Pauli principle. In order to preserve it, since it is considered to be
physically fundamental, an additional intrinsic degree of freedom was proposed in 1964, so-called
color [31]. The simplest possibility to antisymmetrize the wave function of A** was to
assume that every quark flavor occurs in three different colors red, green, and blue. This is the
usual convention and the corresponding antisymmetric color wave function reads

YOS (b 4 gbr + brg — rbg — grb — bgr) V6 . (1.9)

color

At that time the concept of color was controversial due to missing experimental evidence. But
in course of time, as the development of QCD proceeded and experimental evidence increased,

one recognized the deep physical meaning of color as the ‘charge’ of the strong interaction [14].

Evidence for color charge

In the following we show two experimental arguments that verify the existence of color charge
[11, 12].

e The amplitude of a decaying neutral pion into two photons is proportional to the number
of colors,

A < N, (1.10)

w0y
see the corresponding Feynman diagmmﬁ in Figure

v

71_0 -_—— - -

v

Figure 1.1: Feynman diagram of the decay process 7° — 7.

"Resonances are particles or physical excitations with a typical lifetime of ¢ ~ 10723s. They are defined as the
poles of a propagator, where the real part corresponds to the Breit-Wigner mass and the imaginary part to half
of the Breit-Wigner full width.

8These diagrams are named after its inventor and illustrate processes of QFT, which can be transformed into

corresponding analytical expressions.



and the theoretical decay width is given by

N 2
rih :7.87~(?C) ev. (1.11)

w0~y
The corresponding decay process observed experimentally yields a decay width of

<t =(7.95+0.05)eV . (1.12)

0y
Hence these results are only compatible if the number of colors is N, = 3.

e The ratio of the cross sections for hadronic and leptonic electron-positron annihilation reads

5/9 for Ny =2
2/3 for N; = 3
+e~ - had
PP Cal e afO_”S):NCZe;f:Nc 10/9 for Ny =4 . (1.13)
o(ete” > ptp7) 7 11/9 for Ny =5
5/3 for Ny =6

It is clear that the production of particles depends on the centre-of-mass energy (cme) /s of
the annihilating leptons. The cme for creating particles which include strange quarks must be
large enough in order to produce them. This energy is clearly larger than the one required to
produce hadrons only composed of up and down quarks, see Figure [I.2] Similar to the case of
the decaying 7°, the theoretical results of Eq. are only in agreement with experimental
data if the number of colors is N, = 3.

The experimental verification of the color charge which occurs in three different types, as was pro-
posed by the antisymmetrization of the wave function of A(1232), was essential for the progress
of QCD. In analogy to quantum electrodynamics (QED) one introduces a quantum field theory
with a local SU.(N.) color symmetry, where N, = 3, to describe the strong interaction. Similarly,

the gauge theory of the weak intemctionﬂ is based on the same idea.

According to the color wave function (1.9), each three ggq baryon has such a ‘white’ color
configuration, that is to say that they are color singlets under the transformations of the local
SU.(N. = 3) color symmetry. Analogously, each gg meson has a ‘white’ color wave function given
by

hite = (7r + gg + bb)/V/3 . (1.14)

Gluons and their evidence

A local QFT requires gauge fields (boson fields with spin 1) which are the mediators of the
corresponding interaction. The gauge fields of QCD are the so-called gluons which, due to the
non-abelian structure of the color symmetry, are themselves colored objects. Their existence was
verified by the experiment Positron FElektron Tandem Ring Anlage (PETRA) at the Deutsches

9Sheldon Glashow, Steven Weinberg, and Abdus Salam successfully unified the electromagnetic and the weak
interaction to the electroweak interaction, see e.g. Refs. [10} 22] and references therein. A further unification to
the grand unified theory (GUT), where also QCD is included, is still not satisfactorily completed, because such
theories predict a decay of the proton, but up to now this could not be experimentally verified.
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Figure 1.2: World data on the total cross section of e*e” — hadrons and the ratio R(\/s)=
o(e*e™ — hadrons)/(o(e*e” - p*p~). This figure is taken from Ref. [I].

Elektronen SYnchrotron (DESY) facility in Hamburg in 1979, where in e"e* annihilation pro-
cesses three jet events were observed, as shown in Figure and B2 33 34, 35]. The
interpretation of these hadronic jets is based on the QCD prediction that the production of
quark-antiquark pairs are accompanied by hard non-collinear gluons [32]. In addition, the analy-
sis of the Ellis-Karliner angle distribution of such three jet events shows that gluons are particles
of spin 1 as QCD requires. The discovery of the gluons was a further important experimental
milestone of QCD.

Moreover, at the DFEtector with Lepton, Photon and Hadron Identification (DELPHI) at the Large
FElectron Positron Collider (LEP) at the European Organization for Nuclear Research (CERN)
a clear proof of the gluon selfcoupling was given by studying four-jet events in 1991 [36]. Such
four-jet events can be observed by hadronic decays of the weak gauge boson Z°, where the angle
between the planes which are made of the two low- and high-energetic jets, respectively, corre-
sponds to the Bengtsson-Zerwas angle. From this angle the amount of three-gluon verticeﬂ

shown in Figure [L.5] can be extracted which differ from those of theories without gauge selfcou-

pling [14, 36, 37, 38].

10A vertex is the interaction point of a Feynman diagram, which is proportional to the coupling constant of the

corresponding interaction.
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Figure 1.3: A three jet event registered in the JApan, Deutschland and England detector (JADE)
at PETRA at a total energy of \/s =31 GeV. This figure is taken from Ref. [33].

e~ q

Figure 1.4: Feynman diagram of a three jet process.

Figure 1.5: Feynman diagrams of a three- and four-gluon selfcoupling. This figure is taken from

Ref. [39]



An interesting experimental fact is that until now a ‘white’ gluon, where
WEmalel - (Fr+ gg + bb) [V/3 (1.15)

is the corresponding wave function, is not observed. In turn, this means that the special unitary

gauge group describes the color symmetry correctly, since in that case the condition
det(U) =1 (1.16)

requires eight traceless matrices as the generators, T® with a = 1,..., N2 - 1, of the group which
correspond to the eight colored gluons. If a unitary gauge group would be taken in order to
describe the color symmetry then the condition (|1.16]) is not compulsive. Thus the generators,

T® with a = 1,..., N2, are not constrained by
Tr(T) 2 0. (1.17)

In that case one could take, together with the eight traceless matrices, an additional matrix, e.g.
the identity matriz which corresponds to the ninth gluon, the singlet one of Eq. . As a
consequence, such gluons would couple to ‘white’ objects but the properties of such a theory
would be completely different from what we observe in nature.

Theoretical mainstays and some open questions of QCD

From the theoretical point of view the analytical proof of renormalisability of gauge theories [40]
and that of asymptotic freedomE [411[42] in the beginning of the 1970s was crucial for establishing
of QCD as the theory of the strong interaction. In the following we briefly discuss these features.

Calculations of internal loops of Feynman diagrams yield divergent results. In order to obtain
a useful theory one first has to eliminate these divergences by the method of renormalization,
according to which infinite ‘bare’ quantities such as masses and coupling constants lead to ‘finite’
and physical masses and coupling constants. If this procedure is realizable then the correspond-
ing theory, like QCD, is renormalizable. This requirement is essential for a fundamental theory
of nature.

The coupling ‘constant’ of QCD, which is defined analogously to the fine-structure constant of
QED,

2
9s
s = 2=, 1.18
“ 4n (1.18)

is actually not a constant but a function of an energy scale{E Q@ as proven in a variety of mea-
surements [I1], see Figure According to that the coupling decreases with increasing
energy where finally in the limit

Q —o0=as(Q)—~0 (1.19)

asymptotic freedom emerges. This means that very energetic quarks interact softly with each
other. Hence, the application of perturbative methods in order to study the high-energy region is

a useful approach.

' This is a feature only of non-abelian theories.
12This corresponds to the squared four-momentum transfer Q2, see e.g. Refs. [14 [16].
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Figure 1.6: Summary of measurements of « as a function of the energy scale ). This figure is
taken from Ref. [I1].

When the momentum transfer or the energy scale decreases, the strength of the coupling a(Q)

increases, where its new world average value is given in Figure [I.6] which implies
9s(Mz) ~ 1.49 , (1.20)

where Mz = (91.1876+0.002) GeV is the mass of the Z° gauge boson of the weak interaction [11].
Thus, using perturbation theory in that energy region fails and the phenomenon of confinement
emerges, whose analytical proof within the QCD does not yet exist. Due to the confinement and
the fact that gluons interact strongly with each other the existence of colorless states composed of
gluons, the glueballs, is expected. Unfortunately, their unambiguous experimental verification,
just as full understanding of their nature, is up to now not completed. Namely, the exact
determination of these glueballs would require an exact solution in (3+ 1) dimensions of the pure
Yang-Mills part of the QCD Lagrangian

‘CQCD = Z qf(ZWMDM — mf)Qf - ZGZVG/‘;D (121)
f=1

which is still not available. The key problem is the non-linearity of the Yang-Mills equations.
Still, effective models and lattice QCD are a way out, see the discussion later on.

Approaches of low-energy QCD

In order to study glueballs and the confined region of QCD, respectively, a variety of effective
quantum field theories were developed. They are based on the QCD Lagrangian, where the
realization of its symmetries is central, see e.g. Refs. [43] [44] 45| [46], [47) 48], [49] and references
therein. In this work we follow such an approach, therefore we will introduce and discuss in
detail our effective model in chapter Now we present two applications of non-perturbative
QCD which will be relevant and useful for our future construction of an effective model. These

non-perturbative methods are the so-called large-N, expansion and lattice QCD.
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Large-N. limit In connection to effective models, a further useful tool is the large-N. expan-
sion of QCD, where the limit of an infinite number of colors, N, — oo, is used [50, [5I]. Indeed,
it is neither possible to solve QCD nor to fully understand confinement by using the large- N,
expansion, but still many calculations within effective models simplify. Therefore we outline the
scaling properties of some quantities in the large-N, limit, which are essential for our research

and considerations with respect to our model [I8].

An important feature in the limit NV, — oo is that the masses of g mesons as well as of glueballs

are constant and hence they scale as
0 0
Mgq < Ny , mg o< N, . (1.22)

When n > 2 ordinary mesons interact with each other, then the corresponding amplitude behaves

as follows

n-2

Agq o< Ni 2 . (1.23)

Thus, this amplitude decreases when the number of colors N, increases. An important example
for Eq. (|1.23]) is for n = 3, which corresponds to a two-body decay process gqg — 24q, where

Nl

Agg2gq < Ne 2 . (1.24)
This implies that the corresponding decay width scales as
Lgg-2qq o< |Aéq—>26q|2 o< Nc_l . (1.25)
In case of n > 2 interacting glueballs the scaling of the amplitude reads
Ag o< N2 (1.26)

An amplitude for n ordinary mesons, which interact with m glueballs, scales for n > 1 and m > 1

as

+m-1)

Aggc o< N, 2 (1.27)

An important example in this case is when m =1 and n = 2. This corresponds to the decay of a

glueball into two ordinary mesons
Ag-r2qq % N = Tamzgg o [Mamzgel” o N;° . (1.28)

In comparison with Eq. (1.25)) one sees that the decays of glueballs are stronger suppressed than

decays of ordinary mesons. A further interesting case is when n = m =1, which yields

N|=

Agqc o< No (1.29)

and corresponds to a mixing between an ordinary meson and a glueball which is large-N,. sup-

pressed.
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Lattice QCD Another very important method is lattice QCD where enormous efforts have
been made in order to solve QCD numerically@ One uses a discretized lattice of points in Eu-
clidean space-time with a spacing a in a four-dimensional space-time volume L3T. The fermions
are located on the sites of the lattice whereas the gauge fields correspond to the links between
these sites. This idea which exactly preserves gauge invariance goes back to Kenneth G. Wilson

in 1974 [62]. In order to calculate masses of hadrons one uses the two-point correlation function
C(t) = (U D))Q) o« [ U [ [ 6T 8¢ 5)6(0,0)e 5 D5 (1.30)

where |Q) is the ground state of QCD, the so-called vacuum, and (ﬁf as well as é are the creation
and annihilation operators, respectively. U, 1, and 1 are the gauge and fermion fields of the
path integral whereas a statistical probability for their particular configuration is given by the
Boltzmann weight e=57(F)=5c¢(A) " where Sp(B) and Sg(B) are the fermion and gauge action,
respectively. The parameter (8 ist the lattice coupling which controls the continuum limit, a - 0,

and hence influences the spacing a.

Using this first-principles approach of QCD a full glueball spectrum on lattice was computed,
originally in the quenched approximation, which means that the sea quarkslﬂ and the valence
quarks become static. Nevertheless, unquenched simulations where quark-loop corrections are
considered are also done, but the computational effort is obviously larger [57, 58]. In the end the
glueball mass is extracted from the decay of the function

C(t) o< e™et | (1.31)

where the corresponding operator creates or annihilates a glueball of mass m¢g at time ¢. In
the limit ¢ - oo this correlator falls exponentially where the rate of the fall-off corresponds to

glueball mass [54].

1.2.2 Symmetries of the QCD Lagrangian

The QCD Lagrangian (1.21]) possesses a variety of symmetries, some of which are broken in
several ways. An effective model of QCD should reflect as many of its symmetries as possible
which will be presented next by following Refs. [10] 12} 13} [15] 17, 18, [19].

Local SU.(3) color symmetry

As previously discussed the fundamental symmetry of QCD is the local SU.(3) color symmetry.
Under this continuous symmetry the quark spinor ﬁeldle of the Lagrangian ((1.21]), here denoted

131n this work we use, and are guided by, the values of glueball masses obtained by lattice QCD 521 53] 54 55]
56, [57), [58]. Therefore we recapitulate its basic ideas by following Refs. [20, [53] [54] [59] [60]. We also refer to Ref.
[61] and references therein.

14Sea quarks are virtual quark-antiquark pairs which arise from vacuum fluctuations.

15Due to the spin and the existence of antiquarks the components of Eq. correspond to complex four-

spinors in Dirac-spinor space.
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as three-vectors in color space,
qf,r
a =\ arg |- (1.32)
af,b

transform as follows
NZ-1

qr — q} =U(x)qs = exp l—i Zl 0 (x)T" gy , (1.33)

NZ-1

a5 > @5 = qUT(x) = G exp l@ >, 0% (x)T |, (1.34)
a=1

where gy = q;yo. The matrices T = %ﬂ are the eight generators of the SU(3) group, with
a=1,...,N?>-1=8, where \* are the Gell-Mann matrices and #*(z) the corresponding local

parameters. The covariant derivative of the QCD Lagrangian (1.21))
D, =0, -1igsA, (1.35)

ensures the conservation of the local color symmetry, where g is the ‘running’ coupling constant.

The four-potential A, represents the eight gauge fields, the gluons, and reads

N2-1
Au(z)= ) Af(x)T". (1.36)
a=1
It transforms under the local SU.(3) color symmetry as
Ay(x) > Al (x) = U(z) [Au(x) - iau] Ut () . (1.37)
9s
The Lagrangian, which we call the Dirac part of the QCD Lagrangian ,
Ny
Lp= Z(jf(i'y“D#—mf)qf, (138)
f=1

where my is a diagonal Ny x Ny mass matriz of the current quarks and v* are the gamma matri-
ces, describes the interaction of quarks via gluons. Since color symmetry is an exact symmetry
of QCD, the gluons couple to every quark flavor with the same strength. This is the so-called

flavor blindness.

The pure Yang-Mills part of the QCD Lagrangian ((1.21]) describes the selfcoupling of the gauge
fields and reads explicitly

1 a v
_ZG#UGZ

1
= —iaﬂA,‘j(a“Ag — QY AR) — gs fO7°0, AL AL AY

Ly

2
—% fabe pode gn Ab Ak AV (1.39)

where we see that only three- and four-gluon selfcoupling vertices emerge. Here we use the
definition of the gluon field strength tensor

Gl = 0u A = 0, A + g, [ ALAT, (1.40)
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where f2%¢ are the antisymmetric structure constants of the SU(3) group. Hence, the last term
of Eq. is the difference to an abelian theory like QED with the relevant consequences
of gauge-field selfcoupling. The gluon field strength tensor transforms under the local color
symmetry as follows

Ge, T - (G, 1) = U(x)Ge, T°U* () . (1.41)

nv N2 nz

The sum of the Lagrangians (1.38) and (1.39) yields the QCD Lagrangian

EQCD:£D+£YM~ (142)

Centre symmetry

The discrete centre symmetry Z, belongs to a special unitary group and is therefore a part of
the SU.(N,) color symmetry
N2-1
U=exp|-i > 6T|, (1.43)
a=1
where 6 are such that

2
Zy, = exp (— ;n

c

11) ,n=0,1,2,..,N.—1. (1.44)

The gauge fields and the quark spinor fields transform under the transformations of the centre

symmetry as follows

Ay~ Al =2, A7, = A, (1.45)

af = 45 = Zngy - (1.46)

The Lagrangian of QCD is clearly invariant under this symmetrym But if one considers phe-
nomena at non-vanishing temperature then the Z,, symmetry is spontaneously broken above a
critical temperature in the pure Yang-Mills sector of QCD. In that case the deconfinement takes
place where the Polyakov loop is the corresponding order parameter, see e.g. Refs. [63] 64 65, [66]
for details.

Discrete symmetries C, P, and T

The QCD Lagrangian is separately invariant under the following discrete symmetries: parity
P (inversion of the spatial coordinates), charge conjugation C (inversion of particle into an-
tiparticle), and time reversal T. Clearly, QCD, as every QFT [67], is invariant under CPT

transformations.

The quark spinor fields transform under parity as
q(t, @) > q'(t,2) = q(t,~2) , (1.47)

(j(tv ‘%) - q/(t7i') = q(tv _‘%)70 (148)

16 At non-vanishing temperature, due the presence of quarks, the centre symmetry is not exactly realized because

the fermionic fields not fulfill antisymmetric boundary conditions.
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and under charge conjugation as

q(z) > q'(x) = Cq(x)" (1.49)
4(z) ~ q'(z) =q(2)"C, (1.50)

where the operator C reads
C=-in"y2. (1.51)

Note, the gamma matrices in Eq. ([1.51)) have to be in the Dirac representation.

Moreover, these symmetries are related to quantum numbers which characterize hadrons. Namely,

the parity of a quark-antiquark meson can be obtained via

P=(-1)F! (1.52)
and its charge conjugation quantum number through

C = (-1), (1.53)

where L is the angular momentum and S the spin of the gq system. Due to the fact that charge
conjugation is only an exact symmetry for neutral states but not for charged ones, the so-called

G parity, which combines parity with isospin symmetry (I) [11], [68], was introduced as:

G = (-1)F5+ (1.54)

Global chiral symmetry

The global chiral symmetry is a further continuous symmetry of QCD described by the unitary

group
UR(Nf)XUL(Nf) 5 (155)

which is isomorphic to the group
Uy (Ny¢) x Ua(Ny) = SUv(Ny) x Uy (1) x SUA(Ny) x Ua(1) - (1.56)

This symmetry undergoes several breaking mechanisms which are of ezplicit as well as sponta-
neous type. In order to investigate the Dirac part of the QCD Lagrangian (|1.21)) with respect to

this symmetry, we first use the chiral projection operators which are defined as follows

Pr1 = (L+4°), (1.57)

N | =

where
% = iy 243 = 5 . (1.58)
Thus, the quark spinor fields can be decomposed into right- and left-handed Dirac spinors
a5 =(Pr+Pr)as=arr+ 4L, (1.59)
ar =y (PL+Pr)=qrr+drr - (1.60)
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Using the anticommutation relation of the gamma matrices

{r*.2"} =0 (1.61)
and
Pr.ov" =7"PrL.r (1.62)
we obtain for the Dirac part of the QCD-Lagrangian

Ny

Lp = Y (i, rRY" Dugs.r +iqr..7" Dpdy,L = i, RMfqy,L = 147,45 R) - (1.63)
7=1

The global chiral transformations of the quark spinor fields in flavor space read

NZ-1
f . )
ar.re > dr =Ursdrrr=exp| =i ) 0p T [arrL (1.64)
i=0
N7-1 ‘ '
qf7R7L_)qi_,f,R,L:qf’R7LU1T?,L:q7f7R7LeXp 7 Z QE)LTZ s (165)
i=0
where 9%’ ;, are the parameters and T with
7° = L]lN (1.66)
oN, ‘

the generators of the U(Ny) group.

According to the Noether theorem [69], there are in the chiral limit and neglecting anomalies
2NJ% conserved currents. These are the right-handed

R =VH— AM (1.67)

and the left-handed
LF =VH + A* (1.68)

currents, respectively, which can be expressed as vector

RF + LH
V= ; (1.69)

and axial-vector currents Ik _ Bo
AF = — - (1.70)

The advantage of the latter representation is that V# and A" have a definite parity, 1 and -1,
respectively. A direct calculation from the QCD Lagrangian yields [43]

Vi =arq, (1.71)
VI =g Tq, (1.72)
Ay =759 (1.73)
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Al = M ysTg (1.74)

with
9Vl =0, (1.75)
0,V =iq[my, T]q, (1.76)
OuAf = 2iqgmyysq (1.77)
0, Al = iq’{mf,Ti}%q . (1.78)

Applying the parity transformations ((1.47) and (1.48) to the vector and axial-vector currents
[CTD)-(T7) yields

Vo(t, &) = Vi (t, %) = Vo(t,-7) , (1.79)
Vi(t,2) - V/(t,7) = -Vi(t,-1) (1.80)
and
Ag(t, @) — Ap(t,7) = —Ag(t,-T) (1.81)
Ai(t,7) - Al(t,7) = Ai(t,-7) . (1.82)

Explicit breaking of the global chiral symmetry The chiral symmetry is explicitly broken
classically due to the non-vanishing quark masses as well as at the quantum level due to loop
corrections. In the chiral limit, my = 0, the chiral symmetry is classically conserved. Thus,
the Dirac part of the QCD Lagrangian is invariant under the transformations and
(L.63), but if my # 0 then non-vanishing mass terms occur in the Lagrangian (1.63), which mix
the right- and the left-handed quark spinor fields and explicitly break the chiral symmetry. In

the case of degenerate quark masses, the so-called flavor limit,
My =Mg = ... =MN; , (1.83)
the NJ? currents of the Ua(Ny) symmetry are explicitly broken
Ur(N7) x UL(Ny) > Uy (Ny) , (1.84)
see Eqgs. and . In the case when quark masses are not degenerate,
My Mg # ... #MN, (1.85)
then also the NJ% — 1 currents of the SUy (INy) symmetry are broken
Ur(Ny) xUr(Ny) - Uy (1), (1.86)

where Uy (1) corresponds to conservation of the baryon number, see Egs. (1.75]) and (1.76)).

At the quantum level even in the chiral limit the chiral symmetry is explicitly broken to
Ur(Ny) x Up(Ny) = Uy (Ny) x SUA(Ny) . (1.87)

The reason is that after quantization the singlet of the axial current does not vanish

giNy
3272

Bu Al = 2igm ysq - 25— G, GEY # 0, (1.88)
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where .
ég” = 56’“’”"(?30 (1.89)

is the dual gluon field strength tensor. This phenomenon, which is known as the chiral or U4 (1)
anomaly, was first seen in QED and is analogously realized in QCD [70]. In QFT anomalies play
an important role. In general anomalies are symmetries of a classical Lagrangian that are broken
at the quantum level [15].

The non-zero quark masses, see Table originate from the so-called Higgs mechanism, which
is named after Peter W. Higgs and describes a spontaneous breaking of a gauge symmetrﬂ
[71, [72, [73]. The corresponding part of the Higgs Lagrangian is given by

Litgs = ApHU U, (1.90)

where H is the scalar Higgs field (JFC = 0**), ¥} a field of a quark flavor f € {u,d,s,...,Ns}
and Ay the corresponding coupling constant. Since the Higgs field has the quantum numbers of

vacuum it may condense. Hence, one shifts this field
H-v+H, (1.91)

where v = (H) is the vacuum expectation value (vev) of the Higgs field H. Inserting the shift

(11.91) into the Lagrangian (1.90]) one obtains

E%l;ggsﬁ)\f’l)q/quf-i-/\fH\Iff\Iff y (192)

where
myg = /\fU (1.93)

is the current mass of the corresponding quark flavor.

The Higgs boson was discovered in 2012 at the A Toroidal LHC ApparatuS (ATLAS) and the
Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) [74,[75]. It was
the last missing particle of the SMIE with a mass [11]

my = (125.7+0.4) GeV . (1.94)

It should be stressed that the generation of the baryonic mass through the Higgs mechanism is
only about < 5% and therefore negligible. The main contribution originates from the spontaneous

breaking of the global chiral symmetry.

Spontaneous breaking of the global chiral symmetry Apart from the explicit breaking
of the chiral symmetry in the vacuum of QCD, |2}, there is also the spontaneous breaking of
chiral symmetry:

Uy (Ny) x SUA(Ny) - Uy (Ny) , (1.95)

7The Higgs mechanism also explains why the gauge bosons of the weak interaction, Z° and W#, have a mass.
181t is interesting that the Higgs particle is the only scalar among the elementary particles of the SM. The
search for the Higgs particle was the main reason for building the LHC.
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see e.g. Refs. [76, [77, [78]. In this case the vacuum is only invariant under the transformations

of the vector symmetry but is not left invariant by the axial-vector symmetry
TQ) #1Q) (1.96)

where T = 75% is a generator of the axial-vector transformations which act on the QCD vacuum.

This leads to a non-vanishing quark or chiral condensate

(79) = (Grqr + qrqr) # 0 (1.97)

and according to the Goldstone theorem there arise NJ% —1 massless states, the Nambu-Goldstone
bosons [44, 45] [79]. Hence, the spontaneous breaking of the chiral symmetry explains some im-
portant features of the hadronic mass spectrum. For instance, the pion, which is a pseudoscalar-
isotriplet

1P =17(07") (1.98)

corresponds to the Nambu-Goldstone bosons for Ny = 2. Indeed, the pion is not a massless
state but possesses a mass of about 140 MeV [I1]. However, this mass originates not from the
Goldstone but from the Higgs sector. The pion field,

T =1qY57q , (1.99)

transforms under the vector as well as axial-vector symmetry as follows

For =F+0x7, (1.100)
77 =7 +00, (1.101)
where
0 =qq (1.102)
is a scalar-isoscalar field
1Py = 0% (07) . (1.103)

Hence, the pion field is invariant under the vector transformations, see Eq. , but not under
the axial-vector transformations, because it transforms into the so-called chiral partner which is
the sigma field, see Eq. . Thus, one would expect that both the pion and the sigma field
have the same mass. Formerly, the chiral partner of the pion was identified with the resonance
fo(500) [II] but at the present time many works show that the resonance fy(1370) [11] with a
mass of

M, 1370y = (1200 — 1500) MeV (1.104)

is the chiral partner of the pion, see e.g. Refs. [1l [3 [19] 80, [81] and later on in this work. This
large mass splitting between the pion and its chiral partner can only be explained by spontaneous
but not by explicit breaking of the chiral symmetry. At a sufficiently large non-zero temperature
restoration of the chiral symmetry takes place and the masses of the chiral partners become
degenerate, see e.g. Refs. [82] [83].
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Since the realization of the spontaneous breaking of the chiral symmetry is crucial in our hadronic
model, we demonstrate this idea by using the simple classical ¢*-theory which can be found in
many standard text books on QFT, e.g. [10].

The corresponding Lagrangian with a scalar field ¢ reads

1
Lys = 58,L¢8“¢+V¢4(¢>) , (1.105)
where
I 50 Ay

This Lagrangian possesses a discrete Zo symmetry,
o9 =-9. (1.107)

If m? >0 and A > 0 then only one minimum of the potential (1.106) at ¢ = ¢g = 0 exists. In

this case the ground state fulfills the Z; symmetry and possesses the same symmetry as the
|
-1 105))

2

Lagrangian (1. However, when one requires m? < 0, then one finds two minima of the

potential ((1.106]),

2
b1 =ty =+ —6% 7 (1.108)

see Figure[l.7, where each one of them may correspond to the ground state of the physical system
described by the ¢*-theory.

V()

: F ‘ S[E]
—¢o $o

Figure 1.7: Potential of the ¢*-theory (1.106) for m? <0 and X > 0.

Now, the ground state is not any more symmetric under the Z; transformation which
indicates spontaneous symmetry breaking. Which of the two equivalent minima is the vev of
the physical system is randomly chosen by the system itself. In order to study the physical
excitations or fluctuations around the vacuum one has to shift the field

>+ . (1.109)

Thus, the corresponding quadratic mass can be studied as well as additional three-point vertices,

which originate from the spontaneous symmetry breaking.
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Lorentz symmetry

An essential requirement for a fundamental theory like QCD is invariance under Lorentz trans-
formations. These transformations correspond to three rotations as well as three boosts with six

generators in total. The Lorentz transformations in Dirac-spinor representation read
i
S(A) =exp (—waaw) ) (1.110)
where w,,,, = —w,,, are the parameters of the Lorentz group and
v 1 v
o = 5" "] (1.111)

represent the corresponding generators. Accordingly, the quark spinor fields of the QCD La-
grangian (1.21)) transform under Lorentz symmetry as follows:

qr(x) > qj(a’) = S(N)as(A'z) (1.112)

Qs (z) > qp(a’) = qr (A "2)S(A) . (1.113)

Dilatation symmetry

We complete our considerations of the symmetries of QCD by discussing the dilatation symmetry
which belongs to the conformal group under which the classical QCD Lagrangian with my = 0
is invariant [84] [85]. The conformal group has fifteen generators, where six of them are those
of the Lorentz group, discussed previously. Furthermore, when translations of space-time are
considered, four additional generators occur. These ten generators constitute the Poincaré or
inhomogeneous Lorentz group. Finally, among the last five generators, four correspond to special

conformal transformations and the last one to the dilatation symmetry.

The dilatation transformation reads
ot = Nt (1.114)

where A\7! is a scale parameter which changes the scale of the Minkowski-space by affecting the
metric, but without violating the conservation of length intervals and angles. The fields of an

arbitrary Lagrangian transform as follows
pi(2) = ¢i(x) = Xpi(Az) (1.115)

where d is the naive scaling dimension of the corresponding field and ¢ indicates its components.
Note that ¢}(2') = Ap;(AN"1x) = Ap;(x). The quark spinor fields transform under dilation as

g5 = ¢ = \q; (1.116)

and the gauge fields of QCD as
A~ A;f =\ (1.117)
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This implies that, at the classical level, where no loop corrections are taken into account, and in
the chiral limit, my = 0, the QCD action is invariant under the transformations of the dilatation

Symimetry:

Stoenr = fd4x'£QC fd4 '(q "D 4GIZ,G"“’)

f)\ 4ty (AB/Zqu"D A3/2q— /\ZG“ )\QG‘“’)

fd xLgcp = S[;QCD . (1.118)

This is evident because no dimensionful parameter occurs in Eq. (|1.118). According to the

Noether theorem a corresponding current
Jyar = T8, (1.119)

exists, where T3, is the energy-momentum tensor of the pure Yang-Mills part of QCD La-
grangian
OLy m

TV = 0" A, - 9" Ly - 1.120
YM T 5(0,4,) p=9 Lym ( )

Provided that energy-momentum is conserved, 9, 7%, = 0, one obtains in the case of dilatation

invariance

OuTins =T ar, =0 (1.121)

Explicit breaking of the dilatation symmetry The dilatation symmetry is explicitly bro-
ken in two ways. Firstly, due to the non-vanishing current quark masses

Ny
T[;:mequiO, (1.122)
=1

but if only the light quark flavors are considered this breaking is small because the masses of

these quarks are small compared to those of hadrons.

Nevertheless, the explicit breaking of dilatation symmetry by quantum effects is more significant.
This phenomenon is called trace or scale anomaly which plays a fundamental role in QCD.

Namely, in QCD one obtains
B(9gs)

Ol nrai = Ty vy = 1g, GLGa" 0, (1.123)
where 5
gs
Blgs) =n (1.124)
is the B-function of the renormalization group of QCD. A calculation at one-loop level yields
11N,
) = —bg? = e s 1.125
Blgs) = ~bgs =~ 05 (1.125)
whereas in full QCD with Ny flavors the constant b reads
11N, - 2N
- e 2l (1.126)
4872
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Thus, when quantum fluctuations are included and renormalization is carried out, the coupling

constant of QCD g, becomes a ‘running’ (renormalized) one

gs > gs(1) (1.127)

where p is the energy-scale parameteliﬂ The solution of Eq. (1.124]) is given by

2
2 90
_ ) 1.128
9200 = g (1.128)
Ho
In order to obtain an asymptotically free theory, in which the ‘running’ coupling constant de-

creases by increasing the energy and vice versa, the following constraint must hold

11N,
b>0< Ny< 20, (1.129)

which is the case in nature, where Ny = 6 and N, = 3. This implies that in the low-energy
region gluons as well as quarks couple strongly and are therefore confined in hadrons, which are

invariant under the transformations of SU,(3)-symmetry.

The pole of the ‘running’ coupling ([1.128]) is given by
1+2bg(2)1nﬂéO:>HLEAL:AYM:MOB_W , (1.130)
Mo

which is called the Landau pole and can be interpreted in the following way. Due to the large value
of the strong coupling constant in the low-energy region perturbative calculations are impossible
[11], but this does not imply that the running coupling becomes infinite at the Landau pole,
gs(pur) = oo. In fact, the S-function implies that at the scale u ~ Ay QCD becomes a strongly
coupled theory where perturbative methods fail and Eq. reads

1

—
2bIn oo

95(n)* = (1.131)

where Ay s is the Yang-Mills scale. Thus, the S-function induces an energy scale which in turn
generates a dimension in QCD which originally was, at the classical level and in the chiral limit,
dimensionless. This important phenomenon is called dimensional transmutation. Unfortunately,
the value of Ay s, or of Agep 2 Ay, when quarks are taken into account, cannot be calculated
theoretically, because gg in Eq. for a fixed pg is unknown. However, at a typical hadronic
scale which corresponds approximately to the radius of a nucleon,

Agep ~1fm, (1.132)

one obtains
Agep ~ 200 MeV . (1.133)

For a more precise determinations we refer e.g. to Ref. [86]. As a consequence of the trace
anomaly, the vev of the T}/,, u (1.123)) does not vanish and represents the so-called gluon con-

densate: n N
c | s a v c ~4
(T¥ar,) = T <? G Ga > =—5 C *0, (1.134)

9The energy dependence of the strong coupling gs is the only reason why the divergence of the scale current

(1.123) does not vanish.
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where

C* ~ (330 - 600 MeV)* . (1.135)

The numerical value (I1.135) has been obtained through QCD sum rules (lower bound of the
interval) [87, 88, [89] [O0, OT, 02, 03] 04, 05] and lattice-QCD simulations (upper bound of the
interval) [96, 07, 08, 99, 00, 10T, 102, 103, 104, [105].

1.3 Glueballs

As already mentioned, glueballs, the bound states of gluons, are naturally expected in QCD due

to the non-abelian nature of the theory. The gluons, which possess the quantum numbers
I(J?y=0(17), (1.136)

interact strongly with themselves and thus they can bind and form colorless states. The bare
mass of gluons is my = 0 [1I], but through the interaction of a gluon with the vacuum an effective
mass emerges

mg =0 —my =~ (400 - 900) MeV . (1.137)

It is important to stress that the generation of this effective gluonic mass takes place without
breaking the local symmetry, see Refs. [106] 107, [I08] for technical details.
The effective gluonic mass should be interpreted as an energy scale which emerges upon non-
perturbative physics. It is then responsible for the emergence of the masses of the glueballs
as well. This is in analogy to the quark sector where the masses of the constituent quarks, for
instance of the light ones,

my. = (300 -450) MeV , (1.138)

are considerable larger than their corresponding current masses, see Table The existence
of glueballs has been studied in the framework of the effective bag mode for QCD already
four decades ago [I10, 111} [T12] 113, 114] and it has been further investigated in a variety of
approaches [60] [115], [T16 [117]. Numerical calculations in lattice QCD of the Yang-Mills sector of
QCD also find a glueball spectrum with different quantum numbers, in which the scalar glueball
is the lightest state, see Figure 52, 53, 54, 55, 56, 57, 58].

An important feature of glueballs is that due to the ‘democratic’ coupling of the gluons to all
quark flavors, the glueball should be a flavor-blind object. Moreover, glueballs can mix with
other mesonic states, most importantly with quarkonia (gq), with the same quantum numbers.
This makes an experimental verification of glueballs more complicated, because measurable phys-
ical resonances emerge as admixtures. The search for states which are predominantly glueballs
represents an active experimental and theoretical area of research, see Refs. [60, 115] 116} 117
and references therein. The reason for these efforts is that a better understanding of the glueball
properties would be an important step in the comprehension of the non-perturbative behavior
of QCD. However, although up to now particular glueball candidates exist, some of which will

20This model is often called M.I.T. bag model, because it was first introduced at the Massachusetts Institute of
Technology. For a detailed introduction we refer to Ref. [I09].
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Figure 1.8: The mass spectrum of glueballs in the pure SU.(N. = 3) gauge theory. The masses
are given both in terms of the Sommer parameter 7o (ry' = 410 MeV) and GeV. The thickness

of each colored box indicates the statistical uncertainty of the mass. This figure is taken from

Ref. [55].

be discussed later on, no state which is predominantly and unambiguously a glueball has been
identified.

In the following we will discuss some gluon-rich physical production processes, see Fig [[.9] in
which the formation of glueballs as well as their detection is most probable [20] [60, (9] T18].

¥
I

L}
12 ) s

JII'I. Hi
Ity
[} i
— y iy
. 7

Figure 1.9: Feynman diagrams possibly leading to the formation of glueballs: (left) radiative

iy

my

J/Y decays, (middle) pomeron-pomeron scattering in hadron-hadron central collisions, (right) pp
annihilation. This figure is taken from Ref. [20].

e Radiative decay of J /¢

J /1, is a éc meson or a charmonium, which possesses the quantum numbers of the photon
JPC =177, and is with a decay width of
Ty =92.9+28 keV (1.139)
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a very narrow resonance [I1]. The reason is that the decay
J/p - DD, (1.140)

which is actually favored, according to the OZI ruleE because D mesons contain a charm

quark, is kinematically not allowed. Namely,
m .y = (3096.916 + 0.011) MeV (1.141)

is below the threshold of the DD mesons [I1]. In addition, the decay of J/1 into mesons
which are made of light quarks is OZI suppressed. Such decays proceed for instance via
gluons which then convert into hadrons, but these kinds of decays are of high multiplicity
and therefore difficult to detect. Another decay process of J/1) is into a photon and two
gluons. These gluons can form a glueball as an intermediate state, which in turn decays
further into ordinary mesons. Moreover, the scalar and tensor glueballs cannot be part of
three-gluon process. For this very reason the radiative decay of J/1 is of prime importance
for the search for glueballs. At the BESIII experiment huge data samples of such decays
are studied [123].

e Central collisions

A central collision is a scattering process of two high-energy hadrons, such as protons. In
this process the hadrons lose energy via emission and exchange of gluons. Here a glueball

can be formed, which then further decays into gq mesons.

e pp annihilation

In experiments where protons and antiprotons annihilate, a gluon-rich environment emerges
due to annihilation of quark and antiquark pairs into gluons. Hence glueballs can be directly
formed or they can be produced together with other particles as intermediate states, which
subsequently decay into ordinary mesons. The upcoming PANDA experiment will use an
antiproton beam with energy range of 1.5 GeV to 15 GeV colliding with a proton target at
rest [124] [125] 126], 127]. Thus, glueballs with masses of

Mgylueball = \/ 2mp(mp + Ef,) =2.1-5.5GeV (1142)

can be directly formed. Note that m, is the mass of the proton or antiproton and E; =
(\ k2 + m2, l%) is the energy of the antiproton.

Here we discussed processes in which it is highly probable that glueballs can be produced. On
the other side v fusion is a process, in which the production of glueballs should be strongly
suppressed because of the fact that photons only couple to the intrinsic electric charge but not to
the intrinsic color charge. Therefore it is not expected to see a substantial production of glueballs

in 7y processes.

21The OZI rule, named after Susumu Okubo, George Zweig, and Jugoro lizuka, means that competing processes,
in which exchange of gluons is required, are suppressed, contrary to those in which the quark lines are not
interrupted, see Refs. [27} [119] 120] 121] [122].
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Scalar glueball

According to the Particle Data Group (PDG) in the scalar-isoscalar sector,
[G (JPC) _ O+ (0++) ,

there are currently five resonances in the low-energy region (below 2 GeV) which we report in

Table .21

Resonance | Mass [MeV] | Decay Width [MeV]
£0(500) 400 — 550 400 — 700
£0(980) 990 + 20 40 - 100
f0(1370) 1200 - 1500 200 - 500
fo(1500) 1505 + 6 109+ 7
fo(1710) 1522+¢ 135+7

Table 1.2: Masses and decay widths of the fy resonances [11].

It is natural to expect that one of these scalar-isoscalar resonances is the ground state of the
glueball spectrum obtained by lattice QCD, the scalar glueball. However, there are two impor-
tant and quite general aspects of the physics of the scalar glueball, which need to be discussed

separately.

e Is the scalar glueball broad or narrow?

This question is extremely important for the phenomenology and the assignment of the

scalar glueball to an existing resonance. Yet, conflicting arguments exist:

(i) In the large-N.. limit the glueball is predicted to be narrow. Namely, the decay of a bare
glueball into two gq mesons, e.g., G — 77, scales as N2, For comparison, the decay of a
quark-antiquark state into two quark-antiquark states scales as N.!. Since the large-N,
limit is phenomenologically successful, the quite narrow resonances f(1500) and f((1710)

are candidates for being a scalar glueball.

(ii) In Ref. [128] it is shown that the decay G — w7 depends on the vev Gy of the dilaton
field as G32. The values of Gy can be related to the gluon condensate of QCD by assuming
that the trace anomaly is saturated by the dilaton field. Using the values of the gluon
condensate from either QCD sum rules or lattice-QCD calculations, it turns out that the

width of the decay G — 7w is very large
I'gorr 2500 MeV .

The authors of Ref. [128] conclude that the search for the scalar glueball may be very
difficult (if not impossible) if this state is too broad. Note that a wide glueball was also
discussed in Refs. [60], [129] 130} 131, 132].
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o Assuming that the scalar glueball is narrow, is fo(1500) or fo(1710) mostly gluonic?

A consensus has grown that the light scalar mesons fo(500), fo(980), ao(980), K;(800)
are not quark-antiquark states. The possible assignments are tetraquark or molecular
states [133, [134] (135, [136] (137, 138, [139, 140, 141 142 (43| 144, 145, [146, 147]. As a
consequence, the scalar quark-antiquark states are located above 1 GeV: a((1450) and
K (1430) represent the isovector and isodoublet gg states with J% ¢ = 0**. This picture
has been confirmed in Refs.[I] [148] 80, [81]. In particular, in Ref. [8I] a fit to a variety of
experimental data has shown that the scalar states lie between 1 and 2 GeV. Then, if the
glueball is a narrow state, the main question is which of the two resonances f,(1500) and

f0(1710) contains the largest gluonic amount.

Glueballs with other quantum numbers

The second lightest lattice-predicted glueball state has tensor quantum numbers (JFC = 2++)
and a mass of about 2.2 GeV. A good candidate could be the very narrow resonance f(2200)
[149, [150], if the total spin of the latter will be experimentally confirmed to be J = 2.

The third least massive glueball predicted by lattice QCD has pseudoscalar quantum numbers
(J* C= 07*) and a mass of about 2.6 GeV. Quite remarkably, most theoretical works investigating
the pseudoscalar glueball did not take into account this prediction of Yang-Mills lattice studies,
but concentrated their search around 1.5 GeV in connection with the isoscalar-pseudoscalar res-
onances 7(1295),7(1405), and 7n(1475). A candidate for a predominantly light pseudoscalar
glueball is the middle-lying state 1(1405) due to the fact that it is largely produced in (gluon-
rich) J/v radiative decays and is missing in v+ reactions [I51} 152 153, 154] 155, 156]. In this
framework the resonances 7(1295) and 7(1475) represent radial excitations of the resonances 7
and 7. Indeed, in relation to 7 and 7', a lot of work has been done in determining the gluonic
amount of their wave functions. The KLOE Collaboration found that the pseudoscalar glueball
fraction in the mixing of the pseudoscalar-isoscalar states n and n’ can be large (~ 14%) [157],
but the theoretical work of Ref. [I5§] found that the glueball amount in 7 and ' is compatible
with zero, see however, also Ref. [159].

A further very interesting glueball state is the vector glueball (JF¢ = 177) [160, 161, 162 163,
164, [T65] [166] with a mass of about 3.8 GeV, as lattice-QCD simulations suggest, see Ref. [55]
and Figure This glueball was first studied with respect to the so-called pm, K*K puzzle
[167, [168]. Otherwise, it is expected that the vector glueball is a ‘clean’ state with a small
admixture of qq. The arguments therefore are on the one hand its structure and on the other
hand its large mass. The 17~ glueball is composed of three gluons and hence a conversion into
a quark-antiquark configuration should be difficult. Therefore one expects that this glueball is
narrow as well as that its mixing with ordinary mesons is small. Contrary to the scalar glueball
which is hidden among the fo resonances, see Table [[.2] the identification of the pseudoscalar
as well as the vector glueball should be less complicated, for instance by the upcoming PANDA
experiment [124, [125] [126] or GL Uonic EXcitations (GlueX) experiment of the Jefferson national
LABoratory (JLAB) [169].
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1.4 Motivation

As previously discussed, in recent decades substantial progress in the field of strong interaction
has been achieved. Nevertheless, there are still open questions, some of which we address in this
work. Therefore, we repeat the relevant ones in order to outline our objectives and beyond that

we give a brief idea of our approach.

1.4.1 Objectives

e The understanding of the scalar sector in the low-energy region is one of the challenges of
hadronic physics. The assignment of the states of the 0** nonet to the physical resonances
is still not finalized. Due to the overpopulation in the scalar-isoscalar sector, see Table[1.2]
a natural question is whether if one of them is predominantly the glueball. The resonances
f0(1500) and fy(1710) seem to be good candidates. In order to figure out which of them

has the largest gluonic content, one has to determine the mizing matriz.

e The search for the scalar glueball has been, and still is, in the center of vivid activity of
low-energy QCD because of its importance regarding a basic phenomenon of QCD: the
anomalous breaking of dilatation invariance, which is associated with the generation of the
gluon condensate. Insights into the latter one can be useful to answer the question how

large is the contribution of the gluon condensate in generating the meson masses.

e The existence of glueballs is a clear prediction of QCD. Due to the strong mixing in the
scalar-isoscalar sector the identification of the ground-state glueball is still more compli-
cated. Therefore, a study of glueballs with other quantum numbers, as predicted by lattice

QCD, is very promising because one expects a smaller mixing with quark-antiquark mesons.

1.4.2 Approach

In the following we clarify which methods our approach is based on and what kind of input we use.
We treat the addressed physical issues phenomenologically by computing physical quantities, in
particular masses and decay widths, which we then compare with experimental data or we make
predictions for upcoming experiments, in order to test our effective hadronic model. A general
feature of such models is that one has to determine a set of free unknown parameters. A usual
method is the x? analysis [11] which we made use of. In addition, we present some of our results
as branching ratios. This is a common procedure, because some parameters cancel when taking

the ratio of two quantities.

The \*? function

The function of the x? method reads

X=X (x) = i

J=1

(Qéh(wi)_Q?) 7 (1.143)

AQ”

where ;" are experimental quantities, such as masses and decay widths, which have the experi-

mental errors AQj" and Q;h(mi) are the corresponding theoretical expressions which depend on
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the parameters, x; with ¢ = 1...n, of the model. After minimizing the function we obtain
a set of parameters of the model which validity is given to the value of x%. As an additional
indicator for the reasonability of the results we make use of large-N,. arguments, according to
which some parameters must be smaller than others. As an input for the x? procedure we use

experimental masses and decay widths of resonances listed in the PDG [11].

Branching ratios

For calculations of branching ratios where x? analysis was not necessary we use as input results
from the glueball mass spectrum obtained by lattice-QCD simulations in quenched approxima-
tion (e.g. neglecting quarks) [52], 53 [54] [55] and PDG data as well.

We perform our phenomenological study in vacuum, i.e., at vanishing temperature (T = 0) and
chemical potential (u = 0), as well as at tree level, i.e., our calculations are done without loop
corrections. The computations are performed with Mathematica. In the following we show the

formulas which are used in this work for calculating both two- and three-body decay processes.

Formula for two-body decays

For the computation of two-body decays, P — Py P>, we use the well-known formula

k )
FP—>P1P2 = SfISﬂ_]fQQ |_7’AP—>P1P2|2 ) (1144)
where 1
kg = oM M*+ (m2 -m2)2 -2M2(m2 + m2) (M - my —ms) (1.145)

is the modulus of the three-momentum of one of the outgoing particles (the moduli of the mo-
menta are equal in the rest frame of the decaying particle). Moreover, M is the mass of the
decaying particle P and m and mg refer to the masses of the particles P, and Py. Ap_p,p, is
the decay amplitude. The symmetrization factor sy avoids double counting of identical Feynman
diagrams and Z is the isospin factor which considers all subchannels of a particular decay channel.
The 0 function encodes the decay threshold. Additionally, for decay processes which are on the
energy threshold we perform an integration over a corresponding spectral function [I70]. This

function reads

XJQ\/[FP*P1P2(XM)

(X3 = M2)2+ X515 gy p, (Xar)

dp(XM)=N 9(XM—m1—m2) y (1146)

where X/ is the ‘running’ mass of particle P and A is a normalization constant which ensures

the conservation of probability
f dp(Xomp )d Xy = 1. (1.147)
0

Formula for three-body decays

In case of three-body decays, P — Py P> P3, we use for our calculations the well-known formula

oy o = sy f(M—mg)Z dm%Q /(mzs)max iAoy pop |2dm§3 ’ (1.148)
teehs (27T)332M3 (my1+ms)? (M23) min e
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where

2
(M23)min = (B} + E)? - (\/E52 —m3 +\/E3? - mg) : (1.149)
2
(s o = (5 + 5= (VB i = \[Eg? —m) (1.150)
and 2 2 2 2 2 2
E*:m12_m1+m2 E*:M _m12_m3 (1 151)
2 2mqo P 2mi2 '

The quantities mq, ma, mg refer to the masses of the particles Py, P, and Ps, Ap_ p, p,p, is the
decay amplitude, and sy is a symmetrization factor. This factor equals 1 if P, P», and P3 belong
to different particles. In case of two identical particles in the final state the symmetrization factor

equals 2 and for three identical particles in the final state we have sy = 6.

More details and a derivation of these formulas can be found in many standard text books on
particle physics, scientific works, as well as lectures, e.g. Refs. [111 [I7], 19 68, [T7T] [172].
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Chapter 2

A Hadronic Model: The eLSM

This chapter aims to introduce an effective hadronic model of QCD in order to study physical
issues of hadron spectroscopy in the mesonic sector, which we discussed in the previous chapter.
This model is called extended Linear Sigma Model (eLSM) and was developed in Refs. [I 2] [3]
4, 151 (61, (7, 18, [91 17, (18], 19, 80} [’T], 148, [T66]. Following these references we will present and discuss
the eLSM in detail in order to achieve a deep understanding of this model, which will then be
used to study the physical properties of mesons.

2.1 Properties of the eLSM

2.1.1 General remarks
Let us start with a general question:
Why are hadronic models like the eLSM needed at all?

As mentioned in chapter [1] at present an exact analytical solution of QCD in (3 + 1) dimen-
sions does not exist. Furthermore, the degrees of freedom (d.o.f.) of the QCD Lagrangian are
quarks and gluons but due to confinement we directly observe only free hadrons in experiments.
Moreover, in the low-energy region of QCD the ‘running’ coupling constant gs(p) becomes large
and therefore the application of perturbative methods is not possible. For this reasons effective
models with hadrons as d.o.f. are developed. In order to construct an effective hadronic model

the following question arises immediately:
What kind of hadrons should be implemented into the effective Lagrangian?

Unfortunately, at the present time this question cannot be answered for sure but as discussed
in Ref. [I8] the large-N, limit yields some indications. Namely, for N, > 1, in the low-energy
domain only free quark-antiquark and glueball mesons exist, whereas their interactions vanish.

Baryons are not present because their mass increases with N,
Mgqq < Ne , (2.1)
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and tetraquarks may also disappear for N, — oo, see however Ref. [I73]. In the case N, = 3 the
interaction between gq mesons and glueballs takes place. Studying the low-energy region of QCD
up to the energy of 2 GeV the following hadrons should be taken into account:

¢ (Pseudo)scalar and (axial-)vector quark-antiquark mesons, with quantum numbers

JPC . O++,0_+, 1——’ 1++ ,

e and a scalar glueball (0™*) which is the lightest state of the glueball spectrum predicted by
lattice QCD [562], 53], 54, [55], 56, 57, 58] with a mass of

mit ~ (1.5 - 1.7) GeV .

Hence, we are looking for an effective hadronic Lagrangian which cannot be directly derived
from the QCD Lagrangian due to the fact that the quarks and gluons are perturbative fields in
contrast to hadrons which are non-perturbative objects. This implies the question:

Which properties should an effective hadronic model possess?

In general an effective model of QCD should be less complicated, in the sense of solvability, than
QCD itself. This makes possible a verification of such a model by using experimental data and
predictions for upcoming experiments can be done. In turn, the resulting insights can be useful
for a better understanding of some aspects of QCD in the low-energy region.

The most crucial ingredients of an effective hadronic model are the symmetries of the QCD
Lagrangian, thus the corresponding effective Lagrangian should reflect as many of the QCD
symmetries as possible. The more symmetries we take into account the more constraints we can
exploit by constructing the terms of the effective hadronic Lagrangian. In principle an infinite
number of terms can be constructed, but this would make numerical calculations extremely dif-
ficult. In this respect it is very useful to consider the dilatation symmetry because it simplifies
this issue yielding a finite number of terms. Every term which enters into the model is propor-
tional to a free parameter, a so-called effective coupling constant. In order to obtain a particular
solution of the hadronic model one has to determine these couplings, usually by fixing them to
experimental data. However, this procedure turns out to be not always trivial. The emergence

of the numerous effective couplings is the ‘prize’ one has to pay for such phenomenological models.

The energy range of validity of QCD goes from zero up to the Planck scale (10'° GeV). Contrary
to the fundamental QCD, the range of validity of the effective hadronic model is automatically
given by the heaviest resonance which is incorporated into the model. In addition, QCD is a
renormalizable theory. These requirement is inevitable for a fundamental quantum field theory
but is not essential for an effective theory.

2.1.2 Symmetries of the eLSM

The d.o.f. of the eLSM studied in this work are mesons in the (pseudo)scalar as well as the (axial-

)vector sector. We are interested in the phenomenology in vacuum (7" = i = 0) and at tree level.
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This effective Lagrangian is built in agreement with the symmetries of the QCD Lagrangian,
which we discussed in chapter [Il In order to emphasize the significance of these symmetries for

our model we summarize them again in the following:

e Local SU.(3) color symmetry: This is the fundamental symmetry of QCD, which is in the
eLLSM, as in each purely hadronic model, trivially fulfilled due to the fact that the eLSM

contains only ‘white’ states as d.o.f. .

o Lorentz symmetry: This is a fundamental symmetry of any quantum field theory and thus

the Lagrangian of the eLSM is a Lorentz scalar.

o Discrete symmetries C, P, and T': The invariance under the simultaneous transformations
of charge conjugation C, parity P and time reversal T' (C'PT) is a fundamental feature of
quantum field theories and must be fulfilled in every hadronic model [67]. Furthermore, our

hadronic Lagrangian is invariant under C, P, and T separately, in agreement with QCD.

o Global chiral symmetry and its breakings: This symmetry and its breakings dictate the
dynamics at the hadronic level and are therefore crucial for the eLSM. The spontaneous
breaking of the chiral symmetry leads to the non-vanishing quark condensate and is of

primary importance.

e Dilatation symmetry and trace anomaly: This symmetry is crucial for a variety of reasons:

(i) As mentioned previously, this symmetry ensures a finite number of terms in the La-

grangian of the eLSM.
(ii) The trace anomaly of the pure Yang-Mills sector of QCD leads to a non-vanishing

gluon condensate and generates via dimensional transmutation the low-energy scale Agcp »
Ay . In the eLSM this scale corresponds to Ay (see later on), which is in the chiral limit

the only dimensionful parameter of the model.

(iii) Introducing dilatation symmetry into the eLSM yields an additional scalar degree of
freedom, the dilaton field G. This field can be interpreted as a scalar glueball, hence its

mixing with scalar-isoscalar quarkonia can be studied.

2.2 The pure Yang-Mills sector of QCD

An effective theory which correctly mimics the pure Yang-Mills

1 v

GGl (2.2)
part of QCD at the quantum as well as at the confined level should contain at least a scalar field
G. This field is namely linked to the gluonic field as

Lyy =~

G* < Gy, G . (2.3)
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The field G, which describes the collective field of gluons, should be embedded into a potential
that generates the trace anomaly in order to induce a dimension into the effective hadronic model.

The Lagrangian

1
Lai = 5(8HG)2 —Vau(G) , (2.4)
where )
1m G 1
Q) = ,7GG4(1 _,) 2.5
Vail(G) 1A2, n Al 1) (2.5)

fulfill exactly these requirements as shown in Refs. [I74] 1775, [I76] 177, 178, 179, 180]. The
logarithmic term, where Ag; is the energy scale which corresponds to Ay s, breaks the dilatation
symmetry explicitly, similar to the S-function of the renormalization group . Hence the
divergence of the corresponding current

T = o Tiy (2.6)
does not vanish
Oud gy =T, #0 - (2.7)

Divergence of the trace current

In the following we compute a divergence of the trace current, J* = 2, T"", for a general potential

V(p) of a Lagrangian

1 a
L = 5 0908 @_V(SD)

1 g
= 590070 -V(y). (2.8)
The energy-momentum tensor reads
oL
™ = p-g" L
()
= 0"pd"p-g"'L
= —pd"d"p-g"L. (2.9)
Ergo, by using
0, T" =0, (2.10)
we obtain
Oy = (B, ) T = T~ 1~ 22 % (2.11)
where , )
2
%= (%) - 5(5/#’)2—17(@ ; (2.12)
11 12, [ 2 1
T =(0%0) +|5 () - V(@) | , (2.13)
2 1 ]
T% = (0%)" + 5(5#@9)2—1)(@) ; (2.14)
2 [1 ]
T% = (0%) + |5 (0u0)" - V(p) | (2.15)
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Then, we obtain

2 2 2 2
O d* = (0%) = (0"0) = (9%¢) = (0%p)” - 2(0up)* +4V(p)
= —~(9u9)” + V() (2.16)
and finally
(0u)” = 0, (90" p) —pDOp. (2.17)
By using the equation of motion
oL oL
e 2.18
I g 9(9ue) ( )
we obtain oy
np=-2) (2.19)
¢
Therefore, by putting the elements together we obtain
OpJ" = =0, (0" p) - wau;i@p) +4V (o) . (2.20)
¥
By neglecting the total divergence we obtain the general expression
O " =T} =4V () = I V(p) - (2.21)

Divergence of the dilaton current

Applying the dilaton potential (2.5) to Eq. (2.21) we obtain the non-vanishing divergence of the

dilaton current as )
. . 1m
Ol =Thi==7732 G #0- (2.22)
dil

The ground state of the dilaton potential reads

0= Go=Au . (2.23)

Note that in Eq. (2.23)) no quark-antiquark fields are present. In the general case, when g fields
are taken into account, we will obtain Gy 2 Ay, see below. Hence, the vev of the trace of the

dilaton energy-momentum tensor reads

diti] =\ T4A2, 472 4

1 m 1 m 1
(1) = ( mg G4> S mg e 1e e (2.24)
dil dil

Requiring that the dilaton field saturates the dilaton current, we equate the vev of the dilaton

current (2.24]) with the vev of the trace anomaly (1.134])

<T<§Lil,u> = (T5M7p> : (225)
We obtain
Agi = Qm\/l_i c?. (2.26)
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2.3 The quark-gluon sector of QCD

In this section we introduce the flavor multiplets of the quark-antiquark mesons and the corre-

sponding terms which fulfil the symmetry properties that we discussed above.

2.3.1 Mesonic fields of the eLSM
Scalar and pseudoscalar g mesons

First, we introduce the scalar and pseudoscalar quark-antiquark mesons by defining the matrix

b5 = V245,411 (2.27)

where 4,7 € {u,d,s,..., Ny}. It is important to stress that the matrix ® is a non-perturbative ob-
ject but the quark-antiquark pair ¢; rq;,r is indeed a perturbative quantity. Using the equivalence

sign we intend to express the following:

e Both quantities transform in the same way under the global chiral symmetry. This implies
that, by considering of the transformation of the quarks (1.64)) and (1.65)), ® transforms
under the global chiral symmetry as follows

- =ULdU), o -t =000}, (2.28)
where ®' is the corresponding adjoint matrix.

e The perturbative bare quarks and antiquarks can be modified dynamically through the
interaction with the gluons as well as quark-antiquark pairs of the vacuum to form a non-
perturbative quark-antiquark current. The non-perturbative matrix elements of ® can now
be considered approximately as composed by this current. As pointed out in Refs. [18, [19]
a non-trivial connection between the objects of Eq. can be realized by expressing of
®;; as a non-local composition of ﬁqj,quyL via

P = f d*y2q;r(z + %)%,L(I - %)f(y) , (2.29)

where f(y) is a non-perturbative vertex function. Setting f(y) = 6(y) yields the perturba-

tive limes of Eq. (2.27).

Using the chiral projection operators ([1.57) we can rewrite the elements of the matrix & as

follows:
i; = \/iqj,RqLL = \/5%'75L75Lqi = \/5%75Lq¢
1, s 1, s
= - e — )y = 0; + 101 . . 230
7 (@9 - 37" ai) \/i(q]qz @i a;) (2.30)

The scalar and pseudoscalar currents are defined as:
1 1
Sij=——=0q;qi, Piyj=-—=0i7"q - 2.31
J \/§qu J \/5% v 4q (2.31)
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In the end we obtain the chiral field as
d=S5+iP, ®'=5-iP, (2.32)

where S and P are hermitian matrices and therefore they can be expressed in terms of the
generators t* of the U(Ny) group, where ¢ =0,1,..., NJ% -1, and Ny is the number of flavors:

S=5%", S*=+2qt%, (2.33)

and
P=P%*, P*=2giy"t%. (2.34)

Now, we write down a Lagrangiarﬂ with (pseudo)scalar gg mesons, which is invariant under the
global chiral transformations (2.28)

Lo =Tr[(0"®)"(0"®)] - miTr (2T®) - A [Tr(clﬂcp)]2 X Tr[(®TD)?]. (2.35)

The invariance under chiral transformation can be easily shown by using the unitarity of the
operator U,
Ulv=vut=1ev0f=U"". (2.36)

In addition, by considering the quark transformations under parity (|1.47))-(1.48)) and charge
conjugation ([1.64)-(1.65)), the chiral field ® transforms under these transformation as follows

o(t,7) 5 0'(t,7) = (L, 1) (2.37)

and
B(z) S @' (2) = 37 (2) . (2.38)

Thus, the chiral Lagrangian is also invariant under parity and charge conjugation transfor-
mations. By applying the transformations and one realizes that the Lagrangian
is, due to the mass term

-mdTr (&70) | (2.39)

not invariant under dilatation symmetry. A realization of this symmetry in our model is directly
connected with the implementation of a scalar glueball, which in turn is related to the trace

anomaly.

Namely, dilatation invariance requires that only terms with the dimension [energy4] are allowed
in the Lagrangian. Furthermore, in the chiral limit and by neglecting the U4 (1) anomaly the
only dimensionful parameter which enters the model should be the energy scale Ag;;. This energy
scale arises from the dilaton potential and generates, such as required by the Yang-Mills

sector of QCD, the trace anomaly. This implies that terms of the form

o[ Tr(@i)]’ (2.40)

!This Lagrangian corresponds to the one of the former versions of the LSM without (axial-)vector fields. The
first LSM was introduced by Murray Gell-Mann and Maurice M. Levy in 1960 [43].
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are not allowed because the coupling constant o possesses the dimension [energy’Z]. Moreover,

B

G2
possesses a dimensionless coupling constant 3, as dilatation invariance requires, but for G = 0

the term
[Tr(®T®)]? (2.41)

there is a singularity. In addition, at non-zero temperature when the gluon condensate which
corresponds to the vev of the glueball field Gy vanishes, the term (2.41) would also diverge.
Hence, the effective hadronic Lagrangian containing a scalar glueball field (G) and (pseudo)scalar

gq fields (®) with all symmetries discussed previously reads
Lca = Lai + Tr[(0"2)1(6"®)] - aG*Tr (270) - Ay [Tr(qﬂcp)]2 - NTr[(070)?] . (242)

Due to the symmetries of the Lagrangian (2.42)) the coupling of the scalar glueball to the fields
of ®@ is unambiguously defined. The sign of the parameter a determines whether chiral symmetry

is spontaneously broken and its connection with the former mass parameter of the Lagrangian
(2.35), when the scalar glueball condenses, is as follows

mg = aGp . (2.43)
Hence, the coupling constant a is dimensionless as required and in order to generate the sponta-
neous breaking of the chiral symmetry the requirement a é 0 should be fulfilled.
Moreover, in the large- N, limit the parameter a scales as

aoc N2 (2.44)
this implies the correct scaling of the mass parameter

mg o< N . (2.45)

The large-N,. dependence of the remaining parameters of the Lagrangian (2.42) and (2.4]), re-
spectively, is as follows. Since the glueball mass is large-IN, independent the mass parameter mg
have to scale as

mq o< N2 . (2.46)
The second parameter coming from the dilaton patential (2.5 is the energy scale Ag; which
scales as

Adil < Nc (247)
in order to ensure that the four glueball interaction scales according to Eq. (1.26) as

2
m -
A2G o« N2, (2.48)

dil

Finally, the terms which describe the four gg meson interaction scale as
A o< NJ2 | (2.49)

Mg o< NJb. (2.50)

The reason for the stronger suppression of the A\; term is due to the product of two traces which

requires exchange of gluons at the quark gluon level.
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Vector and axial-vector gq mesons

Analogously to the (pseudo)scalar sector (2.30), we introduce the right- and the left-handed
vector and axial-vector quark-antiquark mesons by defining the matrices

i 1, )
R, =V2q;,r7" 4ir = —= (47" ¢ - 47"V @:) (2.51)

V2

_ 1, )

L = V24507 i = —= (47" 0 + 477" ai) (2.52)

V2

where . X
K=~ 5 A o~ = B

V= gl A= 50 (2.53)

are the vector and axial-vector currents. Hence the right- and the left-handed chiral fields in the
vector and axial-vector sector read

RH=VHE_AF  LF=VF 4+ AF (2.54)
which transform under the global chiral symmetry as follows
R" - R"™ = UrR'U}, (2.55)
LM - LM = UL L'UT . (2.56)
The hermitian matrices V* and A* expressed through the generators of the U(Ny) group are
VI =Vita, V= V207"t (2.57)

Al = Alt, . AP =207y g (2.58)

In order to construct a kinetic term of (axial-)vector fields we define the right- and the left-handed
field-strength tensors
R* = 0" R” - 0"RM | (2.59)

L* =9rLY - 9" L* | (2.60)
which transform under chiral transformation in the following way
R"™ — R™ = UrR"™ U}, , (2.61)
LY » I = U LU . (2.62)
Now, a chirally and dilatation invariant Lagrangian of (axial-)vector gq fields can be constructed:

Lr,r, = —iTr [(L")? + (R*™)*] + %Tr [(L")? + (R")?]

~i2g> (T { Ly [17, Y]} + Tr ( Ry, [R¥, RV]})

+g3 [Tr (L*LYL,L,) + Tr (R*R"R,R,)]

+g4 [Tr (L*L,L"L,) + Tr (R*R,R"R,)]

+g5Tr (L¥L,) Tr (R*R,,)

g6 [Tx (LL,,) Tr (LL,) + Tr (R'R,) Tr (R*R,,)] | (2.63)
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where we consider terms up to fourth order in the fields. In the following the coupling constants
g3-ge are not relevant for studies in this work, since processes of four-point vertices are not
considered. Although the coupling constant go describes three-point vertices it is also not relevant
in this work as we will see later. Furthermore, the Lagrangian is invariant under parity and

charge conjugation transformations. According to the behavior of the quarks under these discrete

symmetries shown in Eqgs. (1.47)-(1.48) as well as (1.64])-(1.65) the right- and the left-handed

vector and axial-vector quark-antiquark fields transform under parity as
RM(t,3) 5 R, 3) = g" L, (t,-7) , (2.64)
LMt7) 5 (4, 7) = ¢ R, (, -7) (2.65)
and under charge conjugation as
R(x) S R™(z) = -L"" (z) (2.66)

L'(z) S L'"(2) = R (2) . (2.67)

In analogy to the (pseudo)scalar sector we have to modify the mass term of the (axial-)vector fields
in the Lagrangian (2.63)) in order to realize dilatation invariance. The corresponding Lagrangian
reads

Lonn, = —iTr[(L‘“’f+(R”“)2]+gGQTr[(L“)QJr(R“)Q], (2.68)

where
m3 =bG2 >0 (2.69)

is the connection between the mass parameter of the Lagrangian (2.63) and the dimensionless
coupling constant of the mass term of the Lagrangian (2.68]).

The large-N. dependence of the parameters of the Lagrangian (2.63)) and (2.68]), respectively, is

as follows. Similarly, to the (pseudo)scalar sector one obtain
bo<Ng2:>m%o<NCO. (2.70)

The coupling constants of the Lagrangian (2.63)) scale as

go o< NZ7 | (2.71)
93,94 < N ', (2.72)
95,96 o< N2 . (2.73)

Coupling of the (pseudo)scalar and (axial-)vector jqg mesons

In nature the (pseudo)scalar and (axial-)vector mesons interact with each other, therefore terms

which couple these states are necessary. Firstly, we introduce a corresponding covariant derivative
D,®=0,®+ig: (PR, - L,P) (2.74)
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and

(D) = 9ot —igy (RFOT - BTLH) | (2.75)
which behave under the chiral transformations ([2.28)), (2.55)), and (2.56)) as follows

(D,®) = 8,(UdUL) +igi(Ur®ULURR, U}, — UL L, UL UL ®UY,)
= Up(8,®)U}, +igi(UL®R, U, - UL L,®UL)
= UpD,oU}, . (2.76)
Similarly, we obtain
(D*®)"" = Uy (D*0) U] | (2.77)

from which the globally and locally chirally invariant kinetic term can be built
Tr [(D*®)'(D,®)] . (2.78)

However, local symmetry is not favored by phenomenology [I81]. In addition, the following

interaction terms of the (pseudo)scalar and (axial-)vector gq fields can be constructed

h
éTr[éffb]Tr[L#L“ +R,R"], (2.79)
hoTr[®L, L' ® + ®R, R'®1], (2.80)

2h3Tr[®R,®TLH] . (2.81)

In the large- N, limit the coupling constant g; scales as
1
g1 o< N, 2 (2.82)

and the parameters of the interaction terms (2.79)), (2.80)), and ([2.81]) as

hy o< N;% | (2.83)

ho,hg oc N1 . (2.84)
Note that for the same reason as A; the parameter hy is stronger suppressed than ho and hs.
Both parameters h; and A;, which are relevant for this study, vanish in the limit N, — oco.
Explicit breaking of the chiral symmetry in eLSM
In the following we will introduce terms which describe the explicit breaking of the chiral sym-

metry in the eLSM.

U4(1) anomaly Due to the Us(1) anomaly the global chiral symmetry is even broken when
quark masses vanish. There exist different ways to describe this phenomenon of the gauge sector
of QCD, which arises from instantonsﬂ for instance by the term of Ref. [183]

c(det @ + det 1) (2.85)

2For a general introduction to instantons we refer e.g. Ref. [I82] and references therein.
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or via the term
c1(det @ — det ®T)? (2.86)

first discussed in Refs. [184] [185].

One can easily see that these terms generate the U4 (1) anomaly by performing the axial trans-

formations U4 (Ny) on the determinant of ®, which yields:

det® — det® =det (UsPU,L)
= det (e—iagtaq)e—w;t“)

= det (e‘ﬂeaf‘ta <I>)

= det(e™™ NG )det(e’iw%lto )det®
= dct(e‘iwgto )det®
= VNI Jetd £ detd . (2.87)

A difference between the terms and is that in the case of Ny = 3 the first one
is of order O(3) whereas the second one of order O(6). This means that both terms violate
the dilatation symmetry but it is not essential that terms which describe the Uy (1) anomaly
satisfy the dilatation symmetry. Namely, the axial anomaly is also generated by the gluonic
sector of QCD, where the trace anomaly originates. Another difference between these terms is
the influence on the mesonic phenomenology. The term influences masses of scalar as well
as pseudoscalar mesons while the term only affects those of pseudoscalar-isoscalar mesons
[19, [I86). Furthermore, these terms are responsible for the large mass splitting of  and 7’(958).
Note, that the large-N. scaling of the parameters ¢ and ¢; depends on the number of quark

flavors N
_f

co< Ny, 2, (2.88)

¢ o< NV (2.89)

For the realization of the chiral anomaly in the implementation of the eLSM with two quark flavors
we use the term and in that of three quark flavors the term . Moreover, the term
is well suited to study the coupling of the pseudoscalar glueball G to the ordinary scalar
and pseudoscalar mesons which will be performed in chapter |§| [0l 7, [8l, [9, (19, 174, 176, 187 [188].

Non-vanishing quark masses The fact that pions, as Goldstone-Bosons, are not exactly
massless is a manifestation of the explicit breaking of the
SUv(Nf)XSUA(Nf) (2.90)

symmetry which originates from the Higgs sector [71] [72] [73]. This explicit symmetry breaking

is parametrized in the eLSM in the (pseudo)scalar sector by
Te[H (81 +2)], (2.91)

where
H =diag(h0u,h0d,~-~,h0Nf) (2.92)
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and the parameters

hoi = const o< my, (2.93)

with i € {u,d,...,Ny}. For the relevant cases Ny =2 and Ny = 3 the matrix H explicitly reads

hov hy 0
H=Hto+ Hsts=| 2 = N , (2.94)
0 v 0 hy
and
hov 00 hn 0 0
H=HTo+HgTg=| 0 2 0o =l 0 hy 0 |, (2.95)
0 0 h7§ 0 0 hg

Note that the breaking of the isospin symmetry m,, # mg, is not considered in this model hence

we use u,d = N as well as s =.S. Analogously, in the (axial-)vector sector the corresponding term

reads
Tr[A(LL+RY)], (2.96)
where
A = diag(0y,dd;-.-,0N,) , i = const o< my, . (2.97)
The matrix A explicitly reads
oo 0 oy 00
A=AgTo+AsTz= 0 2 0 |=| 0 6y O (2.98)
0 0 0 0 Jds

A crucial modification of the eLSM of Refs. [19, 8] is the introducing of a next-to-leading term
in the (pseudo)scalar sector. This is necessary in order to correctly describe the phenomenology

in the scalar-isoscalar sector as we will see in chapter four. The corresponding term read

-Tr[E(@'®)], (2.99)
where
E =diag(ey,€d; ..., €N, ), € = const o< my, . (2.100)
The matrix E explicitly reads
>0 0 en 0 0
E=ETy+EsTs=] 0 X 0 |=| 0 ex 0 (2.101)
0 O ;% 0 0 eg

The large- N, scaling of the constants hg;, d;, and €; reads

hos o< N, 2, (2.102)
Siy€; o< NU . (2.103)
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2.3.2 Mesonic Lagrangian of the eLSM

Finally, the mesonic Lagrangian of our eLSM which is studied in the present work with respect

to the three-body mixing in the scalar-isoscalar sector below 2 GeV reads

L= Lay +Te[(D'®)'(D,®)] - Tr {[mg (g)z + E] <I>T<I>} -\ [Tr(qﬂq))f - X Tr[(®TD)?]
0

m2 [ G \?
+cl(det<1>—det<I>T)2+’Iﬁr[H(<I>T+<I>)]+Tr{[21(G) +A] (L3+Ri)}
0

1
- (L2, +R2,)+ %Tr(cphb) Tr(L,L" + R,R") + hyTr(®'L, L'® + ®R,R"®T)

pv

+2h3Tr(®R, BT L) + ..., (2.104)

where
1

_ Z) . (2.105)

1 1 mg G
G el i caty b |
Lan= 5 ("GY = {1 G (n‘ I~

This mesonic Lagrangian is valid for Ny quark flavors and in the large- N, expansion. In addition,
the dots in the Lagrangian (2.104)) indicate further terms, e.g. those of the Lagrangian (2.63) or
additional d.o.f. as for instance further glueballs.

2.4 Assignment of the fields of the eLSM

In this section we discuss the assignment of the bare quark-antiquark fields of the eLSM to the
physical resonances of the PDG [I1]. Therefore we explicitly show the corresponding multiplets
for Ny = 3 as 3 x 3 matrices [19, B1]. In the limiting case of two quark flavors (N; = 2) which will
be discussed in the next chapter, the multiplets reduce to 2 x 2 matrices. In simplified terms this
means that the third columns and rows of the original Ny = 3 multiplets are omitted. Hence we

are only left with mesons which are composed of the two light quark flavors up and down.

2.4.1 Assignment of the fields in the scalar and pseudoscalar sector

A mesonic quark-antiquark state with spin S = 1 and angular momentum L = 1 can couple to
a total angular momentum J = 0. In that case S and L are antiparallel to each other. Using
the formulas and one obtains a particle with J7¢ = 0** which are the quantum
numbers of a scalar state. Analogously, in the case of S = L = 0 one obtains a particle with
the quantum numbers JF¢ = 07" which corresponds to a pseudoscalar state. A further relevant
quantum number is the isospin I. These quantum numbers are of great importance in order to
classify physical properties or resonances according to their quantum numbers. The fields of the

nonets of our hadronic model are assigned to the physical resonances of Ref. [I1].

We start with the multiplets of the scalar mesons

on+al *
3 1 Zz/% . ag Kq™
§=2 8T = v B "Ngg KO (2.106)
=0

KO_ KSO g
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and pseudoscalar mesons,

(nNi\;fo) Tt K+
8 o . 2
P=YiPT = % - % Ko |. (2.107)
=0 v
K- K s

This yields the chiral field of the scalar and pseudoscalar mesons, which is a linear combination

of the scalar and pseudoscalar multiplets S and P

. , <7N+‘18+\;(§77N+7f0) ag +int K6+ LKt
= (5" +iP)T" = 7 ag +in %f;wﬂo) KO+ik® |- (2.108)
i=0 _ _
K™ +iK~ K3 +iK° o5 +ins

The corresponding adjoint chiral field is given by ®f = ¥% (% —iP*)T" [19, B1]. In the pseu-
doscalar sector we assign the fields 7 and K to the physical pion isotriplet, I = 1, and the two
kaon isodoublets, I = £, [11]. The fields

nn 2i(nsu+dysd) V2, ns 2isyss (2.109)

are the non-strange and strange contributions to the physical isoscalar, I = 0, states n and n’(958)
1]
N =1NCOSpy +ngsing, , 1 =-nysine, +ngcos g, , (2.110)

where ¢, = —44.6° is the pseudoscalar mixing angle as determined as a consequence of the global
fit of Ref. [81, [I86]. As shown in the comprehensive study of Ref. [81], the scalar gq states
lie above 1 GeV. In turn, the scalar states below 1 GeV should not be interpreted as gq states
but as tetraquarks and/or mesonic molecular states, see Refs. [133], 134}, 135, 136}, 137, 138, 139,
1401 147, 142, 143| 144, [145], 146 [147]. Hence, in the scalar sector we assign the field dg to the
physical isotriplet resonance ag(1450) and the scalar kaon isodoublet fields K to the resonance
K;(1430) [I1]. The least clear assignment occurs in the scalar-isoscalar channel because in
the region from 1 to 2 GeV there are three resonances which are listed in Ref. [T1]: fo(1370),
fo(1500), and fp(1710). Only two of them can be interpreted as predominantly gq states, namely
the non-strange and the strange

on 2 (au+dd)/|NV2, o525s, (2.111)

while the third one is probably predominantly a glueball state G. The determination of the
corresponding three-body mixing matrix, as discussed in the section and indicated in the
beginning of this chapter, is one of the aims of this work and is carried out below [3, [, [5]. Note
that there are other interpretations in which f(1370) and fo(1710) are described as resonances
dynamically generated from vector-vector interactions [189] 190, [T91].

2.4.2 Assignment of the fields in the vector and axial-vector sector

Particles with spin S = 1 and angular momentum L = 0 yield JP¢ = 17 which are the quan-
tum numbers of vector states. Particles with spin and angular momentum S = L = 1, as in the

scalar case but now with a proper combination of parallel alignment, yield axial-vector states,
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JPC =1+,

The multiplets of the (axial-)vector mesons [19, BI] read

T
. X WN\;g pp,+ ) ell
g wh —ph?
VH = Z(:)V;F“T - ﬁ P'Lk N\/g KO , (2112)
= el K*'[LO w#
S
8 1 {IN\;;TO ailﬁ K{“
wegare Gl i s e | 9
=0 ) M0 fH
1 1 1S

The chiral fields of the left-handed and right-handed (axial)-vector mesons, which are linear

combinations of the vector and axial-vector multiplets V* and A", are given by

w, uo W )
wiy+p fintal

PPN it L+
3 S B R
LH = Z(VJ‘ + Af)Tl = ﬁ P+ a‘Ik ‘*’N\;g + fll\f#‘l1 R0 4 K{‘O (2.114)
=0 v -
el +K{L7 K*;LO +K{LO wg +f{LS
and
wh o  flyrat® pt _ Mt * et ut
8 - ) N\/i _WT , puo —all y K _KLA
no_ l;Uf_ # i _ _ LU'L—[) fb —_aM . 0
f Z(:)(V; AIL T \/§ P N@ _% K HO_Kf,A . (2.115)
RN N

The assignment of the fields of the multiplets (2.114]) and (2.115)) to the physical resonances is as

follows. In the J¥¢ = 17~ sector the non-strange wh; and the strange wg isoscalar field represent
the resonance w(782) and ¢(1020), respectively. The isotriplet field g* and the isodoublet fields
K™ correspond to the resonance p(770) and K*(1410), respectively. In the J¢ = 1** sector
the non-strange f1’y and the strange f]'y isoscalar field are assigned to the resonance f;(1285)
and f1(1420), respectively. The isotriplet field @} is identified with the resonance a;(1260).
Finally, the isodoublet fields K7, correspond to a mixture of K;(1270) and K;(1400). The

corresponding mixing matrix reads
K, (1270) _ (,to?apK —isin g Kf_A (2.116)
K1(1400) —isinpr  CoSQYx Ky

where g = (33.6+4.3)° is the mixing angle [I92]. Note that the physical I = 0 resonances in the

sector 177 as well as 1**, similar to other nonets like in the (pseudo)scalar sector, are admixtures
of the corresponding pure isoscalar fields wh, and wl on the one hand, and f{’y and f}s on the
other hand. However, the mixing angles are small and therefore the mixing of these states can
be neglected.

2.5 Vacuum expectation values

In this section we introduce the vev of the eLSM (2.104]) and discuss the consequences of the
spontaneous breaking of the global chiral symmetry in our model by following the Refs. [ [3
17, (18, [19], 81].
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2.5.1 Spontaneous breaking of the global chiral symmetry in the eLSM

The spontaneous breaking of chiral symmetry in the eLSM (2.104)) requires that the mass pa-

rameter
!

mg <0. (2.117)

The conservation of parity and of SUy (Ny) symmetry requires that only fields with the quantum
numbers

1€ (J79) = 0% (0%) (2.118)

can condense in vacuum. The eLSM (2.104)) with Ny = 3 has three fields with quantum numbers

of the vacuum: the two scalar-isoscalar quark-antiquark fields oy and og as well as a scalar

glueball G. Thus, the following condensates appear:

(on) =N =const 0, (2.119)
(0s) = ¢s =const 0, (2.120)
(G)=Go =const £0. (2.121)

In order to study the fluctuations, i.e., the physical excitations, we shift the scalar-isoscalar fields
by their vev’s
ON > 0ON+ON, O0s—0s5s+0s, G->G+Gyp. (2.122)

In chapter three and four we will study in detail the scalar-isoscalar Lagrangian for the case
!

Ny =2 and Ny = 3, respectively. Note that Eq. 1} corresponds to the requirement a < 0 in

the Lagrangian (2.42) where the connection between these parameters is

mg = aGp . (2.123)

Hence, the spontaneous breaking of the chiral symmetry originates from the explicit breaking of

the dilatation symmetry, which is realized in our model by the logarithmic term of the dilaton

potential (2.5)).

2.5.2 Bilinear terms of the eLSM

Spontaneous breaking of chiral symmetry induces bilinear terms

—91¢N(f{LN3;ﬂ]N +alfi’0~8ﬂ7'ri’0) - \/ﬁglngfiusauUS ) (2.124)
9 g1 e -0 ot _

_(ﬂ¢5+2¢N)(K1 OuK°+ K" 0,K™ +h.c) | (2.125)
I g —i Loy | (K00, K0 + K0, K} 2.126
Z\/§¢S Z2¢N( pilo  + uo)a (2. )
-gl . gl * 10 %0 * U+ *—

(Z2¢N—Z\/§(]§5)(K KGO+ K™ 0,K7) (2.127)

in the Lagrangian of the eLSM. These terms mix fields of different nonets, axial-vector with
pseudoscalar and vector with scalar fields, hence they should be eliminated. This can be achieved
by shifting the (axial-)vector fields as follows [19] 8T, 193],

Fings = Fings * ZangsWhgs 0" nys a0 = a0 4 Zw,, 0"+ (2.128)
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K00 o =00 4 Zrewpe, M KO0 00 L g 00 4z g MRG0 L (2.129)

After performing this procedure additional kinetic terms occur. In order to remove the latter a

redefinition of the (pseudo)scalar fields is required,

7ri70 - Zﬂ'ﬂ-i’O y TIN/s = Z77N/577N/S ) (2130)
K00 & 2 K200 | 00 g fra00 (2.131)
where
2

I = Zn = 7/% Ik = dis ; (2.132)

Mg, _91¢N \/4771%{1 —g%((ZSN"’\/i(bS)Q

2 *

Zgee = is Zp = —— s (2.133)

’ ns
Vimie. - g (on —/26s)? V/ms, 20103

are the wave-function renormalization constants and

g1ON V29105
wle = wal = 2 9 wf1s = T o (2134)
a1 fis
) 3 5
wie = DON=25) - 91(On £ V205) (2.135)

2
2mie.

2.6 Embedding of further gluballs into the eLSM

In the following we embed further glueballs, the pseudoscalar and the vector one, into the eLSM.

2.6.1 Lagrangian of the pseudoscalar glueball

This subsection follows Refs. [6l [7, Bl ©]. In order to study the coupling of a pseudoscalar
glueball G, with the corresponding quantum numbers JZ¢ = 07+, to quark-antiquark scalar and
pseudoscalar mesons, following the Refs. [I74] [I76, [I87, [I88], we construct an effective chiral

Lagrangian

1 ~ 1 ~ ~
La= 5(aMG)2 - §mga2 +icapG ( det® — detd’) | (2.136)

where cgg is an unknown coupling constant and ® the multiplet of ordinary scalar and pseu-
doscalar mesons introduced in the beginning of this chapter. The pseudoscalar glueball G is a
bosonic field made of gluons and is therefore chirally invariant. Moreover, it transforms under

dilatations as

G(z) - G'(x) = \G(\x) (2.137)

and under the discrete symmetries parity P and charge conjugation C as
G(t,7) 5 G'(t,7) = -C(t,-7) (2.138)
G(z) S &' (x) = Gx). (2.139)
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As shown in in Eq. (2.87) performing of the axial transformations of the chiral symmetry on the

determinant of ® yields

detd - detd’ = det (UsdU4)
e PAV2NT Jet® # det® (2.140)

Similarly one can show that under vector transformations of the chiral symmetry the determinant
of @ is invariant
det® — detd’ = det(Uy @U) = detd . (2.141)

This implies that the effective Lagrangian is invariant under SUr(Ny) x SUL(Ny), but
not under the axial U4(1) transformation. This is in agreement with the chiral anomaly in
the pseudoscalar-isoscalar sector. Applying the discrete transformations of the multiplet @, Eqs.
and as well as and , leaves the effective Lagrangian unchanged.
Additionally, in the Ny = 3 realization of ® the coupling constant cz4 is dimensionless and the
Lagrangian is invariant under dilatations. In conclusion, one can say that the effective
Lagrangian reflect exactly the symmetries of the QCD Lagrangian.

2.6.2 Excited vector and pseudovector quark-antiquark mesons

Analogously to the (pseudo)scalar, Eq. (2.30), and (axial-)vector sector, Eqs. (2.51)-(2.52)), we
introduce the excited vector and pseudovector quark-antiquark fields by defining the matrices
[166]

- 1 .
P} = V23; 70" i1 = —= (3;,r0" 4.1 + 10, RV 0" qi1) (2.142)

-

‘i’ﬁ?r = V230" ¢i.r = NG (@j,0.0"qi.r —10;,.7° 0" qi,r) - (2.143)
The excited vector and pseudovector currents are defined as:

1 _

1
o L o sou
B = %quy Mg, . (2.145)
Finally, the chiral fields in the excited vector and pseudovector sector read

d* = E* +iB*, &t =B -iB*. (2.146)

Since E* and B" are hermitian matrices they can be expressed through the generators of the
U(Ny) group

EF=EM,, EM=v230"t.q, (2.147)
B =BFt,, B"=\20y°0"t.q . (2.148)

The fields (2.146[) transform under the global chiral symmetry in the following way
> &' = UL U, (2.149)
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ot o @t = URreHtUT (2.150)

Furthermore, by considering the quark transformations under parity, Eqs. (1.47)-(1.48)), and
charge conjugation, Eqgs. G]{) the chiral field ®* transforms under these transformation
as follows

~ P ~ ~
ot > M = @, (2.151)
and
o1 S o= rT (2.152)

2.6.3 Assignment of the fields in the excited vector and pseudovector

sector

According to Egs. and the quantum numbers S =1 and L = 2 yield a vector meson
JPC =17~ but due to a higher angular momentum it is an excited one (E*). In case of S = 0 and
L =1 one obtains a particle with the quantum numbers JZ¢ = 17~ which describes a pseudovector
meson (B*). The Ny = 3 multiplets of these mesons read

Iz KO0
8 1 %;/JE P Ky
B =S BRI = pm e fE e | 2.153
;) AR ) K} (2.153)
KEM KEN ng
. A
o cppi _ Y _ ht —bk0 0
B ;)ZBZ T 7 b 1% Kf)B ) (2.154)
- _ =40
Ky  Kip M

which yield the chiral field in the excited vector and pseudovector sector

I3 pO - p ©o
Wy BT, +i(hY N +01T)

. 7 Pl +ibl™ K™ +iK!'"y
=~ : 1 0, 0 ’
_ ©w oy i _ _ o wh, —pt +i(hY KT i
P = Z(:)(Ez +iB])T" = /2 Pl + by NE °E N1 K;“O + szOB )
1= ’
*U= g *p0 g0 H M
K +2KLB K +2K17B wS’E+2h15
(2.155)

where the corresponding adjoint chiral field is given by &t = 2% ((E! —iB!)T*. The assignment
of the fields of the multiplets (2.153)) and (2.154) to the physical resonances is as follows. In the
excited vector sector where J¥¢ = 17~ and L = 2 the non-strange w%’ g and the strange wg’ B
field represent the resonance w(1650) and ¢(1680), respectively. The isotriplet field g% and the
isodoublet fields K}/ correspond to the resonance p(1700) and K*(1680), respectively. In the
JPC = 1~ sector the non-strange hYy and the strange hi'y field are assigned to the resonance
h1(1170) and hy(1380). The isotriplet field 6% is identified with the resonance by (1230). Finally,
the isodoublet fields K|, corresponds to a mixture of K;(1270) and K (1400) [192] where the

corresponding mixing matrix reads

{b1(1230), K1 5, hi(1170), hy(1380)}.

In both nonets the strange-non-strange isoscalar mixing is neglected, thus f1(1285) and h1(1170)
are purely non-strange states, while f;(1420) and hy(1380) are purely strange states.
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2.6.4 Lagrangian of the vector glueball

In the following we construct a chiral Lagrangian of the vector glueball, which decays via two-
and three-body processes into (pseudo)scalar, (axial-)vector, as well as excited vector and pseu-

dovector quark-antiquark mesons [166]. This Lagrangian reads

1 1 , . ,
Lo, = =7 00" = 5mp, 00" + Lo + L5 5+ LB 5 (2.156)

where O, is the vector glueball and
O;LV = al‘O” - 8u(9y, (2157)

the corresponding field-strength tensor. The vector glueball is clearly invariant under chiral
symmetry and transforms under dilatation symmetry, see Eq. (1.115)), as

OF(z) = O (x) = N\O*(\z) . (2.158)
In addition, it transforms under parity as
0, - (9; =O# (2.159)

and under charge conjugation as
0, - (’); =-0,. (2.160)

The interaction Lagrangian Ez’:’l describes the coupling of the vector glueball to the (pseudo)scalar

and (axial-)vector gg mesons and reads
L& =510, Tr (L'90T + RFOTP) | (2.161)

where k1 is a dimensionless coupling constant. One can easily see that this Lagrangian fulfills
the symmetries of the QCD Lagrangian. It is invariant under the chiral transformations (2.28]),

(2.55), and (2.56),
L3 = k0, Tr (U MU UL @ULURSUT + URRMULURSIUTULOUS) = £B  (2.162)
as well as dilatation-symmetric, Eq. (|1.115]),
Sto,, = f A2 kIAOL T (AL APADT + ARFADTAR) = Sp, (2.163)

Finally, using the parity transformations (2.37)), (2.64]) and (2.65|) one obtains

L8 = kO (R, + L,007) = L3 (2.164)

and analogously we obtain using the charge conjugation transformations (2.38)), (2.66)), and (2.67)

L5 = w1 (-0)Tr (-R T - [Tt T
-£10,Tr (-0TOR* - OTLH)
k10, Tr (R*®T® - LF0DT) = L5 . (2.165)
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The Lagrangian Lo, 2, which couples to the (pseudo)scalar, excited vector, and pseudovector

quark-antiquark mesons as well as to the scalar glueball, reads
Lo, 2 = kGO, Tr (2704 + o1 (2.166)

where ks is a dimensionless coupling constant. Exactly as in the previous case, also this La-
grangian fulfils the symmetries of the QCD Lagrangian. Finally, the Lagrangian Lo, 3
reads

LS 5= a0, Tr(RIOTLY® - L*ORVPT) . (2.167)

As the Lagrangian (2.161]) this Lagrangian couples to the ordinary mesons in the (pseudo)scalar
and (axial-)vector sector. But in this case we obtain interaction terms of the type

0,0,V A (2.168)

which are proportional to the condensates ¢ and ¢g as well as the Clebsch-Gordan coefficients.
Note that the Lagrangian breaks the dilatation symmetry hence the coupling constant « is not
dimensionless but carries the dimension [energy2].

The calculation of the corresponding decay widths and branching ratios, respectively, are in
progress and will be presented in Ref. [166].
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Chapter 3

Mixing in the Scalar-Isoscalar
Sector of the Ny =2 eLSM

In this chapter we discuss the two-body mixing of the scalar-isoscalar states within the eL.SM in
the case of two quark flavors, following Refs. [I],[2,[I7]. In this approximation the model contains

only two
IG (JPC) =" (0++)
fields. Several mixing scenarios are possible, which should be taken into account. Considering

the results of Ref. [80], we start our study with the natural assignment [I, [I7]

on = fo(1370), G = fo(1500) (3.1)
and then we test the alternative scenario [I]

on = fo(1370), G = fo(1710) . (3.2)

Additionally, we also tested assignments with the resonance f;(500) (or o) as predominantly
non-strange gg meson [I, 2]. Up to 2012 f;(500) was actually named fo(600) [194] with the
following Breit-Wigner mass and width:

mfo(goo) = (400 - 1200) MeV , (33)

T, (600) = (600 — 1000) MeV . (3.4)
In Ref. [195], see also Refs. [196] 197, 198 [199], the estimate of the mass and width of this

resonance was more precise

mf0(500) = (400 - 550) MeV 5 (35)
Ff0(500) = (400 - 700) MeV ) (36)

for that reason we repeat the calculations of this scenario [2] in order to confirm or disprove the
results of Ref. [1].

The numerical results presented in this chapter are obtained from the Mathematica algorithm
developed in Ref. [I7].
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3.1 eLSM in the case of N;=2

The Lagrangian of the eL.SM used for calculations in the case of two quark flavors [T} 2} [17] reads

L= Ly +Te[(D*®)(D,®)] - Tr [mg (GGO)2 <I>T<1>] -\ [T&r(qﬁ@)f - X Tr[(®T®)?]

2 2
+ c(det® + det®?) + Te[H(®! + @)] + T [”;1 (Gg) (12 + Ri)]
0
1 h
- (L, +R2,)+ %TY((I)T@) Tr(L,L" + R,R") + hyTr(®T L, L'® + ®R, R" )
+2h3Tr(®R,PTLF) + ..., (3.7)

where

G
Adir

2
1 mg

4 A

Lai = —(0"G)* -

Gt (ln

- i) . (3.8)

1
2
This Lagrangian follows from the Lagrangian (2.104)) by setting

hos =A=E=0, (3.9)

see Egs. (2.95)), (2.98)), and (2.101]).

3.1.1 Assignment of the fields in the N; =2 eLSM

The multiplets in the (pseudo)scalar and (axial-)vector sector of the eLSM in the case of Ny =2
read explicitly:

® = (on +inn )t + (4o +i7) -1, (3.10)
®F = (o —inn) t° + (4o —i7) - T, (3.11)
LH = (why + fi) 80+ (5" +df) - T (3.12)
R¥ = (wh = f 0+ (p a1, (3.13)

where t°, £ are the generators of the group U(2). The assignment of the fields to the physical
resonances listed in Ref. [IT] corresponds to those discussed in section The main difference
to the eLSM with Ny = 3 is that only fields composed of up and down quarks are present.
This implies that e.g. in the pseudoscalar-isoscalar sector only the pure field 1y occurs, which
corresponds to the SU(2) counterpart of the 1 meson. The mass of 7y, which is about 700 MeV
[200, 157], can be obtained by ‘unmizing’ the physical n and n’(958) mesons which both contain
s contributions, see Eq. . As shown in Ref.[80], the o field should be interpreted as a
predominantly gq state because its decay width decreases as N, ! in the limit of a large number
of colors. In the scalar-isoscalar sector only two fields, on and G, are present, thus a mixing of
two 0*(0*") states takes place. The physical fields ¢’ and G’ are obtained through an SO(2)

rotation, as we will show in the following. Then the assignments

{o',G"} = {fo(1370), fo(1500)} , {o',G"} = {fo(1370), fo(1710)} (3.14)
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as well as
{0/, G"} = {f0(500), fo(1500)} , {0, G"} = {fo(500), fo(1710)} (3.15)

will be discussed.

3.1.2 Explicit symmetry breaking terms

In the case of Ny = 2 the leading-order term which describes the explicit breaking of the chiral
symmetry in the (pseudo)scalar sector reads

Te[H(® + )] = hyow , (3.16)
where
H:diag(hN,hN) (317)
and
hn = const. o< mg, , (3.18)

which allows us to take into account the non-vanishing value m, of the current quark mass. This
term contains the dimensionful parameter hy with [hx] = [energy®] and also explicitly breaks
dilatation invariance, just as the quark masses do in the underlying QCD Lagrangian. Finally,
the chiral anomaly is described by the term [I83]:

c(det ® + det ®) . (3.19)

For Ny = 2 the parameter ¢ carries the dimension [energy?] and represents a further breaking
of dilatation invariance. This term arises from instantons, which are also a property of the
Yang-Mills sector of QCD.

3.1.3 Lagrangian, masses, and mixing matrix of the scalar-isoscalar
fields in the case N; =2

In order to study the non-vanishing vev’s of the two 0** isoscalar fields, on and G, of the Ny =2
model we set all the other fields of the Lagrangian (3.7) to zero and obtain

1 1 m?2 G 1
Lo = = 6”GQ—f—GG4(1 ‘ -7)
o = @O - n GHnT =g
1 1 G\ 1 A
+2(6/‘0'N)2_2|:m(2)((;0) —C:|O'12V—4()\1+22) ;LV-FhNO'N. (320)

Upon shifting the fields by their vev’s, oy — ony + ¢ and G - G + G, and expanding the
potential of L, ¢ (3.20) up to second order, we obtain the bare masses of the states [1I [80],

m2 :mg—c+3(/\1+%)¢?\,, (3.21)
% . 2 Go Go
Mé:m2—+mc—(1+3ln ) : (3.22)
’ Gy A Aai
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The pure glueball mass Mg depends also on the quark condensate ¢, but correctly reduces
to mg in the limit mg = 0, i.e., when quarkonium and glueball decouple. In the presence of
quarkonia, m3 # 0, the vev Gy is given by the equation

_ m%(b%VA?iil

2
ma

Go
Agi

:Ggln‘

, (3.23)

which implies that Gg 2 Ag;;. For large values of Ag; one has Gy ~ Ag;y, while for small values
Gy can be somewhat larger than Ag;. The shift of the fields by their vev’s introduces a bilinear
mixing term o« oG in the Lagrangian (3.7)), such that mass term of the tree-level potential reads

@ _lar
Ve =55 MY, (3.24)
with
m2 2m2pnGot
M= o 0NGom ) v ) (3.25)
2mion Gy’ ME G

Performing a diagonalization, which corresponds to an SO(2) rotation, yields the diagonal matrix
M’ = BMB" (3.26)

with the masses of the physical fields o}y and G’

miﬁv = m?,N cos? 0 + M2 sin? 0 + 2m? Z—N sin(26) , (3.27)
0

M2, = MZ cos?6 +m2  sin®f - 2m? G—N sin(26) . (3.28)
0

The orthogonal transformation matrix

B:( cosf sinf ) (3.29)

—sinf cosf

links the pure scalar-isoscalar fields to the physical resonances as follows

2’:(‘2):32:3(‘2’). (3.30)

The corresponding mixing angle 6 reads

1 oN mg
0= 5 arctan (—4 Gio W . (331)

The quantity mZ can be calculated from the masses of the pion, 1y, and the bare o mass [80]

mg:(”;)2+;[(mgv )Q—m?,N] . (3.32)

If m3 — ¢ < 0, spontaneous breaking of chiral symmetry is realized.
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3.1.4 Parameters of the N; =2 eLSM

The Lagrangian of the eL.SM in the case of two flavors (3.7)) contains the following twelve free
parameters [I} 2| [17]:

mOa)\laA27m17gl,Ca hNahlah'27h’37mG7Adil =V 11C2/(2mG) . (333)

The processes that we shall consider depend only on the combination hy + he + h3, thus reducing
the number of parameters to ten. We replace the set of ten parameters by the following equivalent
set

mﬂamanmpamm,(vaZwvaN,mGamlaC~ (334)

The masses m, = 139.57 MeV and m, = 775.49 MeV are fixed to their PDG values [1I]. As
outlined in Refs. [80, 201], the mass of the 1y meson can be calculated by using the mixing of
strange and non-strange contributions in the physical fields  and 7'(958), of Eq. . Here
we use ¢, ~ -36° [200], which corresponds to the value m,, =716 MeV. Given the well-known
uncertainty of the value of the angle ¢,, one could also consider other values, e.g., ¢, = —41.4°,
as published by the KLOE Collaboration [I57], which corresponds to m,,, = 755 MeV. Variations
of the pseudoscalar mixing angle affect the results presented in this chapter only slightly. The
value of my,, is fixed to 1050 MeV according to the study of Ref. [202]. We stress that taking
the present PDG estimate of 1230 MeV does not change the quality of our results. The chiral
condensate is fixed as

d)N = erfﬂ' (335)

and the renormalization constant Z. is determined by the study of the process a; — 7y where
Z.=1.67+0.2 [80].

Then, we are left with the following four free parameters
Cv Mmey , Mg, M1, (336)

where C parametrizes the gluon condensate (|1.134)), m,, and mg are the bare masses of the 07+
isoscalar fields (3.21)) and (3.22)), and m; is the mass parameter of the (axial-)vector fields. For
these parameters a fit was performed which depends on the chosen assignment in the detailed

discussion later on.

3.2 Results and Discussion

3.2.1 Assigning o), and G’ to f,(1370) and f;(1500)

The o'y field denotes an isoscalar J PC - 0** state and its assignment to a physical state is a

long-debated problem of low-energy QCD [52] 53], 54 55, 56, 57, 68, 60, A5, 116, 117, 133, 134
138, 145, (146, 1477, 203, 204], [205], 206]. The two major candidates are the resonances f,(500) and
the fo(1370) [II]. The study of Ref. [80] has shown that f;(1370) is favoured to be a state which
is predominantly gg. As stated above, the resonance fo(1500) is a convincing glueball candidate

[80]. For these reasons we first test the scenario
{o',G"} = {fo(1370), fo(1500)} , (3.37)
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which turns out to be phenomenologically feasible in the eLSM in the case Ny =2 [I} [I7].

The x? analysis for the scenario {0/, G’} = {fo(1370), fo(1500)}

In order to determine the free parameters we use the y? analysis and perform a fit. In this case we
fit the four free parameters listed in Eq. to five experimental quantities. As experimental
input we utilize the masses of the two scalar-isoscalar resonances [I1], where we use for the mass
of fp(1370) the mean value

mi”;”v = (1350 £ 150) MeV (3.38)

and
mar = My (1500) = (1505 £ 6) MeV . (3.39)

Furthermore, we use the three well-known decay widths of the well-measured resonance f,(1500):
fo(1500) — mm, fo(1500) — nn, and fo(1500) - KK.

Note that, although our framework is based on Ny = 2, we can calculate the amplitudes for the
decays into mesons containing strange quarks by making use of the flavor symmetry SU;(3) [207,
208, 209). Tt is then possible to calculate the following f,(1500) decay widths into pseudoscalar
mesons containing s-quarks: fo(1500) - KK, fo(1500) — nn, and fo(1500) — nn’. The >
method yields

x?/d.o.f.=0.29. (3.40)

The values of the parameters and the masses as well as the decay widths of the scalar-isoscalar
resonances are given in Tables and which correspond to the solution in which o, =
fo(1370) = (wu+dd)/\/2 is predominantly a non-strange gq state and G’ = f,(1500) predominantly
a glueball state.

Parameter | Value [MeV]
C 699 + 40
Moy 1275 £ 30
mgq 1369 + 26
my 809 + 18

Table 3.1: Parameters obtained from the fit with the solution: {o%, G'} = {f0(1370), fo(1500)}.

We have also examined the uniqueness of our fit for this assignment [I]. To this end, we have
considered x? by fixing three of the four parameters entering the fit at their best values and
varying the remaining fourth parameter. In each of the four cases we observe only one minimum of
the x? function, see Figures [3.113.4l Each minimum leads exactly to the parameter values stated
in Table We also observe no changes of the results for the errors of the parameters. These
findings give us confidence that the obtained minimum corresponds to the absolute minimum of
the x? function.
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: =~ C[GeV]
0.695 0.700 0.705 0.710

Figure 3.1: x? as a function of the parameter C.

: : : = my [GeV]
1.20 1.25 1.30 135 1.40

Figure 3.2: x? as a function of the parameter m,.

400
300
200

100

_ mg[GeV]
39 G

1.35 1.36 1.37 1.38

Figure 3.3: x? as a function of the bare glueball mass mg.

e my [GeV]
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Figure 3.4: x? as a function of the parameter m;.
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Quantity | Fit [MeV] | Experiment [MeV]
My 1191 £ 26 1200-1500
mer 1505 + 6 1505 + 6
G - rrm 38+5 38.04 £ 4.95
G' = 5.3+1.3 5.56 +1.34
G'- KK 9.3+1.7 9.37+1.69

Table 3.2: Fit in the scenario {¢’, G’} = {fo(1370), fo(1500)}. Note that, the f;(1370) mass
ranges between 1200 MeV and 1500 MeV [II] and therefore, as an estimate, we are using the
value mys = (1350 = 150) MeV in the fit.

Consequences of the x? analysis for the solution {cy,G’} = {£,(1370), fo(1500)}

e The quarkonium-glueball mixing angle reads

0=(29.7+3.6)°. (3.41)

This, in turn, implies that the resonance fy(1500) consists to 76% of a glueball and to the
remaining 24% of a quark-antiquark state. The inverse is true for fo(1370).

e Our fit allows us to determine the gluon condensate:

C = (699 + 40) MeV . (3.42)

This result implies that the upper value in Eq. (1.135)) is favored by our analysis. It is
interesting that insights into this basic quantity of QCD can be obtained from the PDG

data on mesons.

e Further results for the fp(1500) meson are reported in the first two entries of Table
The decay into 4 is calculated as a product of an intermediate pp decay. To this end the
usual integration over the p spectral function is performed [80]. Our result yields 30 MeV

in the 47 decay channel and is about half of the experimental value

Ff0(1500)—>47'r = (540 + 71) MeV . (343)

However, it should be noted that an intermediate state consisting of two f,(500) mesons,
which is also expected to contribute in this decay channel, is not included in the present
model. The decay into the nn’ channel is also evaluated, see Table This channel is
subtle because it is exactly on the threshold of the f;(1500) mass, namely [I1]

My + My = 1505.642 MeV . (3.44)

Therefore, an integration over the spectral function of the decaying meson fo(1500) is

necessary. The result is in a qualitative agreement with the experiment, see Table

e The results for the fo(1370) meson are reported in the last four rows of Table They

are in agreement with the experimental data regarding the full width [11]:
T, 1370y = (200 - 500) MeV . (3.45)
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Unfortunately, the experimental results in the different channels are not yet conclusive. Our
theoretical results point towards a dominant direct 77 and a non-negligible nn contribution.

These results correspond well to the experimental analysis of Ref. [210] where

Ff0(1370)—>71'7'r =325 MeV (346)
and r
_JoSTO=1 _ .19 +0.07 (3.47)
1_‘fo(1370)ﬂ7r'n'

are obtained. We find that the four-pion decay of
fo(1370) - pp — 47 (3.48)

is strongly suppressed, as was also found in Ref. [80]. This is unlike Ref. [210], where a
small but non-negligible value of about 50 MeV is found. However, it should be noted
that due to interference effects our result for this decay channel varies strongly when the

parameters are even slightly modified.

The mass of the p meson can be expressed as
m2=m3 + ¢ (hy +hy + h3) [2. (3.49)

In order that the contribution of the chiral condensate is not negative, the condition m; <
m, should hold. In the framework of our fit this condition is fulfilled at the two-sigma level.
This result points towards a dominant m; contribution to the p mass. This property, in
turn, means that the p mass is predominantly generated from the gluon condensate and
not from the chiral condensate. It is therefore expected that the p mass in the medium
scales as the gluon condensate rather than as the chiral condensate [2I1]. In view of the
fact that m; is slightly larger than m, we have also repeated the fit by fixing m; = m,.
The minimum has a x?/ d.o.f. ~ 1 and the results are very similar to the previous case.
The corresponding discussion about the phenomenology is unchanged. As we shall see, this

result is confirmed in the full Ny =3 case [3], see chapter four.

As already stressed in Refs. [80, 212], the inclusion of (axial-)vector mesons plays a central
role to obtain the present results. The artificial decoupling of (axial-)vector states would
generate a by far too wide f,(1370) state. For this reason the glueball-quarkonium mixing
scenario above 1 GeV has been previously studied only in phenomenological models with
flavor symmetry [60] TT5] 116l 117, 207, 208, [209] but not in the context of chirally invariant
models.

Further tests of the stability of the fit

Given that the resonance f;(1370) has a large mass uncertainty, we have also examined the

behaviour of the fit at different points of the PDG mass interval [I]. Considering the minimal

value mrﬁi(nmm) = (1220 + 20) MeV we obtain x? = 0.2/d.o.f. The resulting value of the mixing
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Decay Channel | Our Value [MeV] | Experiment [MeV]
G - pp—>dn 30 54.0+7.1
G -/ 0.6 2.1+1.0
Oy =TT 284 +43 -
o = 72+6 -
o - KK 46+2.1 -
oy = pp—4rm 0.09 -

Table 3.3: Further results regarding the oy = fo(1370) and G’ = fo(1500) decays.

angle 6 = (30.3 + 3.4)° is practically the same as the value 6 = (29.7 + 3.6)° obtained in the case
where m g, 1370y = (1350 £ 150) MeV was considered. Other results are also qualitatively similar
to the case of my, 1370y = (1350 + 150) MeV. For the upper boundary of the fo(1370) mass, the
error interval of +20 MeV turns out to be too restrictive as it leads to unacceptably large x?
values. Consequently, increasing the error interval decreases the x? values — we observe that
ml}:ﬁwo) = (1480 + 120) MeV leads to an acceptable x? value of 1.14 . Consequently, we obtain
6 = (30.0 £3.5)°, practically unchanged in comparison with the value 6 = (29.7+3.6)° in the case
where m 1370y = (1350 + 150) MeV. Also other quantities remain basically the same as in the
case of m g, 1370y = (1350 + 150) MeV.

We have also considered the fit at several points between the lower and upper boundaries of the
my,(1370) Mass range. We have chosen points of 50 MeV difference starting at m 1370y = 1250
MeV (i.e., we have considered m s, (1370) € {1250, 1300, 1350, 1400, 1450} MeV) with errors chosen
such that the x?/d.o.f. becomes minimal (error values are between +30 MeV for m fo(1370) = 1250
MeV and £100 MeV for m 1370y = 1450 MeV). We observe that the previous results presented in
this section do not change significantly. Most notably, the mixing angle 6 attains values between

30.2° and 30.7°, with an average error value of +3.4°.

We therefore conclude that considering different values of m ¢, 1370y within the (1200-1500) MeV
interval does not change the results significantly. In particular, the quarkonium-glueball mixing
angle 6 changes only slightly, by approximately 1°, and thus we confirm our conclusion that in
the present scenario fo(1370) is predominantly a quarkonium and f(1500) is predominantly a
glueball.

3.2.2 Assigning o), and G’ to fy(1370) and f,(1710)

A further glueball candidate is the resonance fy(1710) which was studied in a variety of works
[207, 213} 214} 215, 216], 217]. This resonance is narrow and has a mass of m,(1710)y = (1720 +6)
MeV which corresponds well to the scalar glueball mass predicted by lattice QCD in quenched
approximation [55].
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The x? analysis for the scenario {0/, G’} = {fo(1370), fo(1710)}

The resonance fo(1710) is experimentally well known. Decays into 7w, KK, and nn have been
seen, while no decays into nn’ and into 47 have been detected. Using the total decay width
T4, 1710y = (135 +8) MeV and the branching ratios reported in Ref. [I] it is possible to deduce
the decay widths into 7w, KK, and nn presented in Table [3.5)

A fit analogous to the one in Tableyields too large errors for the decay width o’y = fo(1370) —
7. For this reason we repeat our fit by adding the following constraint

Lot —nr = (250 + 150) MeV . (3.50)

The large error assures that this value is in agreement with experimental data on this decay
width. The 2 fit yields
x?/d.o.f.=1.72. (3.51)

The corresponding parameters and the fitted experimental quantities are reported in Table
and respectively. The mixing angle between the pure quarkonium oy and the pure glueball

G calculated from Eq. (3.31)) is
0= (37.2+21.4)° . (3.52)

The x? is worse than in the previous case, but the overall agreement is acceptable. The mix-
ing angle is large and could also overshoot the value of 45°, which would imply a somewhat
unexpected and unnatural reversed ordering, in which fo(1370) is predominantly glueball and

f0(1710) predominantly quarkonium.

Parameter | Value [MeV]
C 764 + 256
Moy 1516 = 80
ma 1531 + 233
my 827 + 36

Table 3.4: Parameters obtained from the fit with the solution: {o%, G'} = {f0(1370), fo(1710)}.

Quantity | Fit [MeV] | Experiment [MeV]
Mgt 1386 + 134 1350 + 150
mar 1720+ 6 1720+ 6
G' > 7w 29.7+6.5 29.3+£6.5
G' > | 69+58 34.3+17.6
G'-> KK 1614 71.4+£29.1
oy =TT 379 + 147 250 + 150

Table 3.5: Fit in the scenario {o’, G'} = {f,(1370), fo(1710)}.
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Consequences of the x? analysis for the solution {cy, G’} = {£,(1370), fo(1710)}

In Table we report the decay widths L'/ ppins Taronmy > Lot wnys and Tor ke, which can
be calculated as a consequence of the fit of Table [3.5] A clear problem of this scenario is that
the decay width

G’ = fo(1710) - pp — 47 (3.53)

is large, while experimentally it has not been seen. Therefore, we conclude that this scenario is
slightly less favored than the previous one. Still, no final statement can be done. Indeed, as we

will see in the next chapter, in a full Ny = 3 treatment, fo(1710) will be predominantly gluonic.

Decay Channel | Our Value [MeV] | Experiment [MeV]
G - pp—dn 115 -
G > 16 -
aN = 153 + 79 -
o - KK 2.1+13;6 -

Table 3.6: Further results from the fit with {¢’, G’} = {f0(1370), fo(1710)}.

3.2.3 Assignments with f;(500) as o,
Scenarios with oy = f,(600)

The scenarios with the old data of Ref. [194] for f,(600)

{on, G} = {f0(600), fo(1500)} (3.54)

and
{oy, G'} = {£0(600), fo(1710)} (3.55)

have also been tested. In both cases the mixing angle turns out to be smaller, 6 < 15°, thus the
state f,(600) is predominantly quarkonium. Then, in these cases the analysis of Ref. [80] applies:
a simultaneous description of the 77 scattering lengths and the o — w7 decay width cannot be
achieved. For these reasons the mixing scenarios with the resonance fp(600) as a quarkonium
state are not favored.

Scenarios with o)y = f,(500)

We have also tested the assignments

{on.G"} = {f0(500), fo(1500)} (3.56)

and
{o, G} = {fo(500), fo(1710)} (3.57)
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using the new available experimental data of the fy(500) resonance [11]. We used for the calcu-

lation the mean value of its mass,
mf;”fv = (475 +75) MeV . (3.58)

In both assignments the mixing angle turns out to be small, § $ 13°, and this implies that the
state fo(500) is almost a pure quarkonium. The problem of these scenarios is that the decay into
two pions is too narrow,

Lot —nr 180 MeV (3.59)

as already found in Ref. [1], in comparison to the experimental one,
L4, (500)»mr = (400 = 700) MeV . (3.60)

We thus confirm our result in Ref. [I] that the scenarios with the resonance fy(500) as a
quarkonium state are not favored. Note that we do not test any scenarios with the resonance
f0(980) because as shown in Refs. [19, 80} 8] its interpretation as a quarkonium state is as well
not favored. The resonances f,(500) and f3(980), which form a low lying scalar nonet, together
with the isotriplet a¢(980) and the isodoublet states K (800), can be interpreted as tetraquark
states and/or mesonic molecular states, see Refs. [133] [134] 135, 1306, 137, 138, 139, 140, 1411
149, 143, [144), (145, 146, [147).

3.3 Final remarks

By the study of the mixing scenario within the eLSM in the case of two quark flavors we found
two solutions. One solution exhibits the resonance fy(1500) being predominantly a glueball, in
the other one fy(1710) was found to be predominantly gluonic. It should be stressed that the
Ny =2 treatment is not complete. The absence of the third bare field g together with possible
interference effects of the amplitudes are jointly responsible for inconclusive results. In order
to obtain an unambiguous result a full study of the mixing scenario is required. This means
that a study within a chiral approach with (axial-)vector quark-antiquark d.o.f. where the bare
scalar-isoscalar fields on and G as well as og which generate fo(1370), fo(1500), and f,(1710)
are present, must be performed. However, the resonance f,(1710) is actually even more favorable
than fy(1500).

e Now, if the resonance f(1500) is interpreted as predominantly a glueball then the following
issues occur. Flavor blindness requires of a pure glueball state

FG—>7T7T 3
_—=—. 3.61

This branching ratio reads for the two putative scalar glueball candidates

F —>TTT
—Jo300)=mm _y g (3.62)

T (1500) KK

and

F —>TT
—folTO=mr g 41 (3.63)

I'yamo-rx
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This shows that the requirement of flavor blindness is rather fulfilled by the resonance
f0(1710) than f5(1500). Moreover, the errors of the decay widths of f(1710) are suffi-
ciently large to find a match between theoretical expectation and the experiment, see Table
This is not possible for the resonance fy(1500), see Table

e Furthermore, lattice-QCD calculations predict on the one hand a scalar glueball mass of
mlt ~ 1.7 GeV which corresponds to the mass of fo(1710) [55, 216, 217]. On the other
hand, the production rate in radiative J/v¢ decay is higher for fy(1710) than f,(1500)
[215]. This arguments support the scenario in which G’ = f((1710). Indeed, a full Ny =3
study confirms that fo(1710) is the glueball state to a good level of accuracy, see the next
chapter.
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Chapter 4

Mixing in the Scalar-Isoscalar
Sector of the Ny =3 eLSM

In this chapter we study the three-body mixing problem in the scalar-isoscalar sector of the
eLSM with a scalar glueball in the case Ny = 3. The intention is to improve on the case Ny = 2
studied in the previous chapter, which could not clarify which resonance fo(1500 or fo(1710) is
predominantly gluonic. For that purpose we use the Ny = 3 version of the eLSM developed in
Refs. [3, 19} BI] and follow Refs. 3] 4} [5].

The numerical results of the eLSM presented in this chapter are obtained from a Mathematica

algorithm which was developed in Refs. [3| 4, 5] and this work.

4.1 Lagrangian, masses, and mixing matrix of the scalar-

isoscalar fields

The essential difference with respect to the Ny = 2 case is that here we do not neglect the strange
d.o.f., thus an additional condensate occurs which has a high impact on the phenomenology, as

we will see in the following.

The three scalar-isoscalar fields oy, og, and G are the only fields of the model with quantum
numbers of the vacuum, I¢(JFY) = 0*(0**). In order to study the vacuum expectation values
(vev’s) and the mixing behavior of these fields we set all other fields of the chiral Lagrangian
to zero and obtain the scalar-isoscalar Lagrangian

1 o 1 2 m(QJ G\’ 2 2
Lonosc = Lain+ 5(0u0n)" + 5(0u05)" = == Go (0% +0%)
2 2\2 4
1
-\ (UZN +025) —12(02N+J4S)+hUNJN+hUSGS—2eSU§, (4.1)
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where

1 1 m? G 1
Ei:fa“Gz—f—GG“(l —7). 42
dil 2( ) 4A3il n A 4 ( )

Now we perform the shifts of the scalar-isoscalar fields by their vev’s, oy = on+dN, 05 = 05+dg,
and G - G + Gy, in order to obtain the bare masses and the bilinear mixing terms o onog,

< onG, and < o0gG. The bare masses of the non-strange and strange gq fields read
3
mZ = Ch+2X\1¢% + §A2¢§V , m2, =01 +2)\0% + 3Xa0% + €5, (4.3)
where
Cr =mi + A\ (o3 + %) (4.4)
is a constant [81] (see Table [4.1)),

27k fxk —oN
\/§ )

are the condensates of the non-strange and strange quark-antiquark states, where Z/x are the

¢N = Zﬂ'fﬂ‘ ; ¢S = (45)

wave-function renormalization constants given in Eq. (2.132)) and fr/k are the vacuum decay
constants. The bare mass of the scalar glueball reads
mZ G2

2
Adil

Go
Agi

2
MZ = 22 (6% +03) +

:Eg (1+31n‘

) . (4.6)

Note that the bare glueball mass also depends on the quark condensates ¢ and ¢g, but correctly
reduces to m¢ in the limit mZ = 0, when quarkonia and the glueball decouple. When quarkonia
couple to the glueball, m? # 0, the vev Gy is given by the equation

Go
Adgir

242
_ moAgi

(¢% +9%) =Gyln : (4.7)

mé
This equation shows that Gg 2 Ag;;. For large values of Ag; one has Gg ~ Ay, while for small

values G can be somewhat larger than Ay, see the analogous Ny = 2 equation. Note that here

¢s appears, but the coupling constant c is no longer present.

The contribution to the tree-level potential which is of second order in the fields reads

Ve o= %ETMZ : (4.8)
where
m2 . 2Monds  2mionGy' oN
M=| 2\Ménos m2 2m2psGyt |, = o5 |- (4.9)
2mionGy' 2missGyt M@ G

Following the usual diagonalization procedure, an orthogonal matrix B is introduced such that
the matrix M’ = BM BT is diagonal. As a consequence, B links the bare scalar-isoscalar fields

to the physical resonances

fo(1370) oy o
f0(1500) =y = O'gv =BY =8B gg . (410)
fo(1710) el G
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4.2 Determination of the mixing matrix B: Preliminary

studies

In the following section we present the determination of the scalar-isoscalar mixing matrix B.

4.2.1 Parameters of the model

In Ref. [81] a global fit was performed, in which 21 experimental quantities were fitted to eleven
parameters of the eLSM. Due to their peculiar status, scalar-isoscalar mesons were not part of
the fit. This allowed to exclude the coupling constants A\; and hy from the fit, which are large-N,
suppressed and therefore expected to be small. Since we are now explicitly interested in the
scalar-isoscalar resonances, these two coupling constants must be considered, which brings the
number of parameters to 13. Furthermore, in the fit of Ref. [81], the glueball was considered
to be frozen. This approximation is justifiable in the large- N, limit because the coupling of one
scalar glueball to m ordinary mesons scales as o< N ™/2 Tn the present study the scalar glueball
decay is non-zero, which introduces two additional parameters Ag; and mg, so that we have
15 parameters. Moreover, there is an additional mass term o €g, see Eq. , not present in
the study of Ref. [81], and thus our chiral Lagrangian contains 16 parameters. However,
the parameter go, which is contained in the dots in Eq. 7 does not play any role in the
present study. The reason is that only one two-body decay process which depends on gy is of
interest: the intermediate decay p — 7 of the full decay fo — pp — 47, where an integration over
the p spectral function is required and for the numerical calculations we use the corresponding
experimental value ',z ~ 149 MeV [I1I]. Hence, we can omit g, in the following, bringing the
total number of relevant parameters to be fitted to 15

Agii , mg, mg, mi, A1, A2, hi, ha, h3, g1, c1, hon , hos , 05, €s . (4.11)

For the calculations in this work we use the values of the parameters entering the Lagrangian
(2.104) | i.e., Ao, ho, hs, g1, c1, hon, hos, 0s, as well as the two combinations Cy, Eq. (4.4), and

Cy=m?+ % (¢ +9%) (4.12)

determined in Ref. [81] and shown in Table

Parameter Value Parameter Value
4 -0.918 x 105 MeV? Cy 0.413 x 10° MeV?
1 450-107% MeV 2 Ss 0.151 x 10°MeV?
g1 5.84 Ao 68.3
ho 9.88 hs 3.87
ON 164.6 MeV s 126.2 MeV

Table 4.1: Values of the parameters from Ref. [81].
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Hence there are five free parameters remaining which enter into the Lagrangian (2.104)) of Ref.
3]
Adil b mG I’ Al b hl ) 65 . (413)

Moreover, in order to be consistent in this work we also use the values of the quantities given in
Table [4.2| which results from the global fit of Ref. [81].

Quantity | Fit [MeV] | Experiment [MeV]
fx 96.3+0.7 92.2+4.6
fK 106.9 £ 0.6 110.4£5.5
My 141 £ 5.8 137.3+6.9
mg 485.6 £ 3 495.6 £ 24.8
my 509.4+3 5479274
mp 783.1+7 775.5 + 38.8
Ma, 1186 + 6 1230 + 62
My, (1420 | 1372.5+5.3 1426.4 +71.3

Table 4.2: Values of vacuum constants and masses from the global fit of Ref. [81].

4.2.2 Simplified procedure

In view of the fact that we started our study from the Lagrangian of the eLSM of Ref. [81]
in which the mass parameter e¢s was not present, we first studied the simplified case with four
parameters Ay, ma, A1, h1. Equations show that the masses of the pure fields ox and og
depend on A\; but not on hy. The parameter h; occurs in the amplitudes of the scalar-isoscalar
fields and is therefore only relevant when calculating the corresponding decay widths, see Ap-
pendix Moreover, the coupling constants A; and h; occur in the model in terms which
contain a product of traces and are therefore large- N, suppressed. Hence the couplings scale as
N;? and not as N_', and they are expected to be small.

We first focus on the determination of the mixing matrix by using the mass eigenvalues of the
scalar-isoscalar fields, where the parameters Ag;;, mg, and A; can be calculated by diagonaliza-
tion of the mass matrix M of the tree-level potential . Where we consider both relevant
assignments of the pure scalar-isoscalar fields to the resonances f,(1370), fo(1500), and fo(1710)
[11], namely

on = fo(1370), os = fo(1500) and G = fo(1710) (4.14)

and
on 2 fo(1370) , os 2 fo(1710) and G = fo(1500) . (4.15)

This should provide a first step as well as show the direction to determinate the final mixing
matrix, because in this procedure an exact solution is expected. Afterwards, using the obtained
parameters, the values of which are given in Table as well as the mixing matrix (4.16]) we can
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try to describe the decays of the 07" isoscalar fields for a small numerical range of the large- N,

suppressed coupling h;.

If this simple approach will turn out unsatisfactory then a fit of the parameters A, m¢g, A1, and

h1 should be performed.

Solution at the mass level

The numerical values of the free parameters presented in Table [£.3 have been obtained by re-
quiring that the three following masses of the scalar-isoscalar fields [IT] hold. For the mass of
Jo(1370) we use the mean value of the mass given in Ref. [I1] my 1370y = (1350 + 150) MeV,
while for the two other masses we use the well-known values of m ¢, 1500y = (1505 + 6) MeV and
my, 1710y = (17204 6) MeV. It turns out that the resonances fo(1370) and fo(1500) are predom-
inantly non-strange and strange gq states, and that the resonance fo(1710) is predominantly a
scalar glueball. No other solution [e.g. for the other scenario ] was found.

Parameter Value
Agil 930 MeV
ma 1580 MeV

A1 2.03

Table 4.3: Parameters obtained from calculating the mass eigenvalues of the scalar-isoscalar fields
with the assignment: {o’y, o, G’} = {fo(1370), fo(1500), fo(1710)} [4].

The mixing matrix corresponding to the parameters of Table reads [4]

0.92 -0.05 0.39
B=| -022 -0.89 -0.40 |. (4.16)
~0.33 -0.45 0.83

Testing the solution at the mass level by considering decays

We now test the mixing matrix by evaluating the decay widths, where we use the param-
eters of Table It turns out that using this solution it is not possible to describe the decay
processes of the fy resonances into 77 and K K, as shown in Figures {.1]- £.6] These results are
clearly too large and cannot be cured by varying the only remaining free parameter hy, which
should anyhow be small. Corresponding results in the large- N, limit, for which h; = 0, are sum-
marized in Table [£.4 Thus, the decay widths do not support this scenario as being physical.
Note that such a large decay width of the predominantly glueball state is in agreement with the
study of Ref. [12§].

71



rcr’N—ﬂm [GeV]

2.5

L L L h
1
-10 -5

o
n
-
)

Figure 4.1: Decay of oy— w7 using the mixing matrix B of Ref. [4].
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Figure 4.2: Decay of o)y~ KK using the mixing matrix B of Ref. [4].
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Figure 4.3: Decay of 05— 77 using the mixing matrix B of Ref. [4].

72



rrr’s—)KK [GeV]

1.0

rG‘—vmr [GeV]

10

I-kk [GeV]

0.6

73

hy

Figure 4.4: Decay of 04— KK using the mixing matrix B of Ref. [4].
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Figure 4.5: Decay of G'— 7w using the mixing matrix B of Ref. [4].
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Figure 4.6: Decay of G'-> KK using the mixing matrix B of Ref. [4].



Decay Channel | Our Value [MeV] | Experiment [MeV]
£o(1370) > 770 1785 ]
fo(1370) - KK 894 -
fo(1500) - 7w 830 38.04 +£4.95
fo(1500) > KK 421 9.37 £ 1.69
fo(1710) > 7 223 20.3 +6.5
£o(1710) > KK 1140 71.4+29.1

Table 4.4: Consequences of the solution at the mass level in the large-N, limit, ~; = 0, using Eq.

in which {0y, 0%, G'} = {fo(1370), fo(1500), fo(1710)} [ 5.

Further discussion

The search for an acceptable solution is extremely difficult due to interference effects in the decay
amplitudes. As an alternative approach, we use as an input the bare glueball mass mg = 1.7
GeV in agreement with lattice QCD [52]. Then, due to the fact that fy(1710) was too broad in
the previous solution, we increase the value of the dimensionful parameter Ag;;. For the choice
Agii = 2 GeV the resonance fo(1710) is sufficiently narrow. By further tuning A; ~ —10 and
hi ~ =5, we obtain the mixing matrix [5]

0.90 041 -0.05
B=| -042 090 -003 |. (4.17)
-0.04 -0.05 -0.99

The resonance fy(1710) is (almost) a pure glueball. The masses and decay widths that are
determined by these parameters are are still too large, see Table

Quantity Our Value [MeV] | Experiment [MeV]

M (1370) 1060 1200-1500

M, (1500) 1480 1505 £ 6

M (1710) 1700 1720+ 6
fo(1370) » 7 120 -
fo(1370) -~ KK 70 -
fo(1500) - 7w 140 38.04 £4.95
fo(1500) -~ KK 130 9.37+1.69
fo(1710) - 7t 82 20.3 £ 6.5
fo(1710) - KK 64 71.4+29.1

Table 4.5: Consequences of the solution (4.17)), in which {c), 0%, G'} = {fo(1370), fo(1500),
fo(1710)} [5].

While the decays of fo(1370) and fo(1710) are at least in qualitative agreement with the ex-
periment, this is not the case for fy(1500) for which the decays are still too large. Note
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also that the quite large value of Ag; implies a large gluon condensate. Lattice-QCD results
[96], 97, [98, ©99], 100, 10T, [102] 103, 104l 105] suggest that Agy $ 0.6 GeV, see the discussion in
Ref. [I]. Thus, at this level this solution can point to an interesting direction where to look for
it: a large bare glueball mass in agreement with lattice (1.7 GeV) and a large value of the gluon
condensate. Another possibility is to improve the underlying effective model of Ref. [RI], by
studying the influence of a quadratic mass term in the (pseudo)scalar sector. This is a minimal
change of Ref. [81], which however can have interesting phenomenological implications due to the
fact that the strange current quark mass is not negligible. For a value of the gluon condensate
in agreement with lattice QCD, a not too broad glueball can only be found if destructive inter-
ferences between the different amplitudes occur. This is why an improved numerical analysis,

which allows to study in detail the whole parameter space, would also be helpful.

4.2.3 Decay of the pure glueball and the gluon condensate

In Figure [£.7] we anticipate our result for the decay of a pure, i.e., unmixed, scalar glueball into
two pions as function of the vev Gy. For values of Gy which belong to the range obtained by QCD
sum rules and lattice QCD (the vertical bandEI), G — 7 is also very large, in complete agreement
with Ref. [128]. The two curves correspond to the cases with and without (axial-)vector states.
One can see that the inclusion of (axial-)vector d.o.f. reduces the decay width, but this effect
is not sufficient to make it small enough (when G is inside the vertical band). When mixing
is taken into account, due to interference phenomena the strong coupling of G to pions may be
reduced for the physical resonances. Yet, since the quarkonium state nn is also expected to be
broad, it is not possible to obtain two narrow resonances fo(1500) and f3(1710) in a three-body
mixing scenario. Thus, we realize that we cannot obtain a good description of the phenomenology
of the states fo(1370), fo(1500), and fo(1710) if we impose that Gg corresponds to the range
given by QCD sum rules or lattice QCD.

FGonr [GeV]
207

10f

0.5F

0.0

Gy[GeV]
5

Figure 4.7: Decay of the pure glueball field into w7 for a bare glueball mass mg = 1525 MeV.
Dashed red line: (Axial-)vector mesons are decoupled (Z, = 1). Solid blue line: (Axial-)vector

mesons are included (Z, # 1).

IThe vertical band in Figure 1 is slightly shifted to the right when compared to the range of Ag; determined

from Eqs. (1.135) and (2.26). This results from Eq. (4.7) which shows that Go 2 Agy. For large values of Agy;
one has Gg ~ Ag;;, while for small values Gg can be somewhat larger than Ag;.
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4.3 Determination of the mixing matrix B: The full study

In the following we present the full determination of the scalar-isoscalar mixing matrix B, where
Ay s fitted as well.

4.3.1 The x? analysis

Using the x? analysis,

th exr 2
(x) — 7
Qf()]) ,withi=1,...,5, (4.18)

8
2_ .2
X =x (@) = ) (
AQ;Z
we fit eight experimental quantities to the five parameters
Ty = Adil , mag, )‘1 9 hl , €8 (4]‘9)

of our chiral model summarized in Tables and

For the mass of fy(1370) we use the value my,(1370) = (1350 + 150) MeV and we increase the
experimental errors of m,(1500) = (1505 + 6) MeV and m g, (1710y = (1720 +6) [I1] to 5%. This
procedure was also applied in Ref. [81], arguing that the precision of our model cannot be better
than 5% since it does not account e.g. for isospin breaking effects. Moreover, in order to better
constrain the fit we use the value I'f (1370)~rr = 325 MeV [2I0] together with an estimated
uncertainty of about 100 MeV, which is not given in Ref. [2I0]. The parameters in Table
for which

x?/d.o.f. ~0.35 (4.20)

was achieved, and the masses as well as the decay widths of the scalar-isoscalar resonances in Table
correspond to the solution in which ¢y = fo(1370) = (@u + dd)/+/2 is predominantly a non-
strange, og = fo(1500) = 5s predominantly a strange gq state, and G’ = f,(1710) predominantly
a glueball state.

Parameter Value
Nair 3297 [MeV]
me 1525 [MeV]
A1 6.25
h1 -3.22
€s 0.421 x 10° [MeV?]

Table 4.6: Parameters obtained from the fit with the solution: {ol, o4, G'} = {fo(1370),
fo(1500), fo(1710)}.
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Quantity Fit [MeV] | Experiment [MeV]

Mgy (1570) 1444 1200-1500

™0 (1500) 1534 1505 + 6

M, (1710) 1750 1720+ 6
fo(1370) - 7 423.6 -
fo(1500) - 7 39.2 38.04 + 4.95
fo(1500) > KK 9.1 0.37 + 1.69
fo(1710) > 7 28.3 20.3 + 6.5
£o(1710) > KK 73.4 71.4+29.1

Table 4.7: Fit with the solution: {o’y, 0%, G'} = {fo(1370), fo(1500), fo(1710)}.

The bare fields oy = (du+dd) /2, o5 = 35, and G generate the resonances fo(1370), fo(1500),
and fo(1710), where the corresponding mixing matrix B, cf. Eq. (4.10)), is given by

~0.91 0.24 -0.33
B=| 030 094 -017 |, (4.21)
-0.27 0.26 0.93

which implies the following admixtures of the bare fields to the resonances
fo(1370): 83%on, 6%os, 11%G,

fo(1500): 9% on, 88%ocs, 3%G, (4.22)
f0(1710): 8%01\{, 6%05’, 86%G

For other results of the mixing matrix B using different theoretical models, we refer to Refs.
[20] 203], 204, 205], 207, 213], 214] and references therein. Moreover, our branching ratio

F —>TTT
— o002 _ 39 (4.23)
Tyaro)»rx
is very close to the experimental one
F =TT
—Jo0TO=mm 41, (4.24)
Tyamo-kx

see Table The branching ratio (4.23)) is also in good agreement with those of Refs.[218]
219, 220]. Note that the resonance f5(1710) is not a pure glueball but contains quark-antiquark
components, therefore the branching ratios (4.23)) and (4.24]) can differ from the expected one of

a pure glueball
Fgornr 3
Gomr _ 2 (4.25)
Fegokkx 4
For further approaches which favor the resonance fo(1710) as predominantly gluonic we refer to

Refs. [215], 216] 217, 221], 222] and references therein.

4.3.2 Discussion of the x? analysis

The parameters A\; and h; are small, in agreement with the large-N, expectation (they scale as

N;? and not as N;!). The numerical value Ay ~ 3.3 GeV suppresses the quarkonium-glueball
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mixing: this is why the admixtures in Eq. (4.22)) are small.

In the pure Yang-Mills sector the vev of the dilaton field G is given by Gg = Agy. The nu-
merical value Ag; » 3.3 GeV implies that the resulting gluon condensate in pure Yang-Mills
theory, which is parametrized by the constant C' defined in Eq. 7 reads C ~ 1.8 GeV,
which is a factor 3 larger than the lattice value C' ~ 0.61 GeV obtained in Ref. [I05] in the
quenched approximation. When quarks are included, the value of Gy is such that Gy ~ Agy to
a very good level of precision, see Eq. . Similarly, using Eq. the value of the bare
glueball mass in the presence of quarks reads Mg ~ mg. The fact that Gy ~ Ag;; and Mg » mga

is also a consequence of the large value of Ag;. For small Ag;; $ 0.6 GeV the differences are larger.

Our determination of the parameter C is based on the assumption that the glueball is narrow,
see Figure [£.7) and the discussion in section If this assumption does not hold, the glueball is
very broad and would probably remain undetected. If, however, the narrow-glueball hypothesis is
correct, our results imply that either (i) the value of the constant C' cannot be directly compared
to the corresponding one appearing in lattice QCD or QCD sum rules (which is entirely possible
because there may be corrections to the tree-level Lagrangian arising from renormaliza-
tion), or (ii) that it is not allowed to assume that the dilaton field saturates the trace anomaly.
In turn, Egs. and would not hold and other contributions should appear in order
to reconcile the mismatch.

The stability of the fit has been also tested by repeating the minimum search for different values
of the parameters, by increasing or reducing the errors in some channels and by including and /or
removing some experimental quantities. The same pattern has always been found: in all solu-
tions the resonance f,(1710) is (by far) predominantly a glueball, while f;(1370) and f,(1500)
are predominantly (@ +dd)/\/2 and 5s quark-antiquark states, respectively.

In the future, one should also go beyond the present two-step fit and perform a unique fit in which
all 15 parameters (4.11]) are determined at once. However, we do not expect large variations for
the parameters determined in Ref. [8I] and listed in Table otherwise the agreement with

mesonic masses and decays calculated in Ref. [81] would inevitably be spoiled.

4.3.3 Consequences of the y? analysis

As a consequence of our fit we calculate the decay processes given in Table We discuss our

results in the following.

e At present, the different decay channels of the resonance f;(1370) are experimentally not
yet well known because conflicting experimental results exist [II]. Only the full decay
width is listed in Ref. [11]: T, ) = (200 - 500) MeV. In our solution the dominant
decay channel of f;(1370) is the one into two pions with a decay width of about 400 MeV.
This corroborates that fy(1370) is predominantly a non-strange gg state as also found in
Refs. [I, B0, BI]. The total decay width of f;(1370) obtained with the parameters of

Table is 598 MeV. In addition, we found non-negligible contributions from the decays
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f0(1370) - nn and fy(1370) - pp — 4m, where in the latter case we have integrated over
the corresponding p spectral function. These results are in qualitative agreement with the

experimental analysis of Ref. [2I0], where

I‘fo(1370)—>‘n’7‘r =325 MeV ) (426)
I f(1370)»4x ~ 50 MeV (4.27)
and -
—So8T0)=m 194007 . (4.28)
Ff0(1370)—>7r7r
Note that the channel
fo(1370) — fo(500) fo(500) — 47 (4.29)

is not included in our model, so our determination of the 47—decay mode is not complete.

When omitting the quantity I' s (1370)xr from the fit, a solution with a similar phenomenol-
ogy is found. However, the state fo(1370) would be somewhat too wide (~ 700 MeV.) This
is why we have decided to include the value I'f, (1370)—rr = 325 MeV [210] in the fit.

The decay channel fo(1500) — 11 turns out to be in good agreement with the experiment.

Experimentally, there is also a sizeable contribution of the channel

Fo(1500) — dm : T2 = (54.0+7.1) MeV . (4.30)

We have calculated the decay of fo(1500) into 47 only through the intermediate pp state,
as in the case of f(1370) and fo(1710), respectively, including the p spectral function.
We found that this decay channel is strongly suppressed. However, we expect a further
and much larger contribution to this decay channel through the intermediate state of two
fo0(500) resonances, but f(500) is not implemented in the present model.

The decay channel fo(1710) — nn is slightly larger than the experiment.

In comparison with the Ny = 2 results of Ref. [I], we now find that the decay channel
fo(1710) - pp — 4w is strongly suppressed. The reason is the scaling

Ff0(1710)ﬂppa47r o< Gal . (431)

This is indeed an important point: in Ref. [I] two scenarios were phenomenologically ac-
ceptable, one in which fy(1500) and one in which fy(1710) is predominantly a glueball.
The latter case was, however, slightly disfavored because Iy, (1710)-pp—4x Was too large in
virtue of the vev Gg » Ay, which was much smaller in that case. A solution of that type
was possible because only one quarkonium existed and less experimental information was

taken into account.
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Decay Channel | Our Value [MeV] | Experiment [MeV]
fo(1370) > KK 117.5 -
fo(1370) - nn 43.3 -
fo(1370) — pp — 4w 13.8 -
£o(1500) > 1 47 5.56 + 1.34
£o(1500) = pp — 47 0.2 >54.0+7.1
£o(1710) > 1 57.9 34.3+17.6
fo(1710) - pp - 47 0.5 -

Table 4.8: Consequences of the fit with the solution: {ol, o4, G'} = {fo(1370), fo(1500),
fo(1710)}
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Chapter 5

Pseudoscalar Glueball within the
eLSM

In this chapter we present and discuss the results for the pseudoscalar glueball G, JPC¢ =07+,
following Refs. [6] [7, [8, [@]. The corresponding effective chiral interaction chiral Lagrangian

LI = icay G ( det® - det®@?) | (5.1)

which we already introduced in chapter |2 enables us to study the decay widths for the processes
G - PPP and G - PS, where P and S are pseudoscalar and scalar quark-antiquark fields,
respectively. Our intention is to study the properties of the pseudoscalar glueball in order to give
a useful hints for an experimental search of this still undetected but theoretically expected state,
e.g. the ongoing BESIII experiment [123] and the upcoming PANDA experiment at the FAIR
facility near Darmstadt [124].

The numerical results of the pseudoscalar glueball within the eLSM presented in this chapter are
obtained from a Mathematica algorithm which was developed in Refs. [6] [7, [8, 0] and this work,
except for the calculations in which have been done by Klaus Neuschwander in Ref. [223]
and the calculations in which have been done by Antje Peters in Ref. [224].

5.1 Implications of the chiral interaction Lagrangian Eg‘t

5.1.1 Assignment of the fields and the free parameter

For our calculations we fixed the mass of the pseudoscalar glueball to mz = 2.6 GeV. This value
is obtained by studying of the pure Yang-Mills sector in lattice QCD [52, 53] 54} 55| 56, 57]. The
assignment of the (pseudo)scalar quark-antiquark fields of the multiplet ® to the physical reso-
nances corresponds to the discussion of sectiorﬂ By evaluating the decays of the pseudoscalar

glueball G we have to take into account that the spontaneous breaking of chiral symmetry takes

!For the numerical calculations in this chapter we used for all masses the values of Ref. [II] as well as the
standard values fr =0.0922 GeV and fx =0.110 GeV [I1].
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place. This implies the usual shift of the scalar-isoscalar fields as well as the procedure of elim-
inating the bilinear terms in the (axial-)vector sector which we already performed in chapter
Thus the chiral interaction Lagrangian contains the relevant tree-level vertices for the two-
and three-body decay processes of G, G -~ PPP, and G — PS, which are explicitly shown in

Appendix [B]

This chiral Lagrangian contains only one unknown coupling constant csq, whose determination
would require experimental data or a more microscopic model. The branching ratios can be
calculated and do not depend on ¢z they are a clear prediction of the model and may present a
useful guideline for experimental search of the pseudoscalar glueball in the energy region between
2 to 3 GeV. In this respect, the planned PANDA experiment at the FAIR facility [124] will be
capable to scan the mass region above 2.5 GeV. The experiment is based on proton-antiproton
scattering, thus the pseudoscalar glueball G can be directly produced as an intermediate state.
We shall therefore present our results for the branching ratios for a putative pseudoscalar glueball
with a mass of 2.6 GeV.

On the other hand, it is also possible that the pseudoscalar glueball G has a mass that is a
bit lower than the lattice-QCD prediction and that it has been already observed in the BESIII
experiment, where pseudoscalar resonances have been investigated in .J /1 decays [225] 226], [227].
In particular, the resonance X (2370) which has been clearly observed in the 7*7~ 7' channel
represents a good candidate, because it is quite narrow (~ 80 MeV) and its mass lies just below
the lattice-QCD prediction. For this reason we repeat our calculation for a pseudoscalar glueball
mass of 2.37 GeV, and thus make predictions for the resonance X (2370), which can be tested in
the near future.

5.1.2 Constraints on the coupling constant cz,

r'[GeV]
0.151
0.10

0.05

Figure 5.1: Solid (blue) line: Total decay width of the pseudoscalar glueball with the bare mass
meg= 2.6 GeV as function of the coupling constant czg. Dashed (red) line: Same curve for
meg=2.37 GeV [0].

As mentioned previously, the chiral interaction Lagrangian contains an unknown coupling con-

stant which cannot be determined without experimental data. In Figure[5.1|we show the behavior
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of the total decay width
Ié' =Te.ppp+Taops (5.2)

as a function of the coupling constant czq for both choices of the pseudoscalar glueball mass.
We assume here that other decay channels, such as decays into vector mesons or baryons are
negligible. In the case of mg = 2.6 GeV, one expects from large-N, considerations that the total
decay width

I'" 5100 MeV . (5.3)

In fact, as discussed in the Introduction, the scalar glueball candidates fy(1500) and fo(1710)
are roughly 100 MeV broad and the tensor candidate f;(2220) is even narrower. In the present
work, the condition implies that

Cap SO (5.4)

Moreover, in the case of m gz = 2.37 GeV in which the identification G= X (2370) has been made,
we can indeed use the experimental knowledge on the full decay width

Fx(2370) =83+ 17 MeV (55)
[225], 220, 227] to determine the coupling constant to be
Cg = 448 +0.46 . (5.6)

However, we also refer to the recent work of Ref. [228], where the possibility of a broad pseu-

doscalar glueball is discussed.

5.1.3 Mixing in the pseudoscalar-isoscalar sector

Once the shifts of the scalar-isoscalar fields by their vacuum expectation values have been per-
formed, there are also bilinear mixing terms in the JF¢ = 07" isoscalar sector of the form o< nyG
and o< nsé which lead to a non-diagonal mass matrix. In principle, one should take these terms
into account, in addition to the already mentioned ny-ng mixing [19, 811, 157, (186, [200],
and solve a three-body mixing problem in order to determine the physical masses of the pseu-
doscalar particles. This will also affect the calculation of the decay widths. However, due to the
large mass difference of the bare glueball field G to the other quark-antiquark pseudoscalar fields,
the corresponding admixtures of G are expected be very small and can be safely neglected. In
the following we will present the calculation of this three-body mixing problem in order to show
that for the numerical calculations of the decay widths the field G can be considered as a pure

state.

The contribution of the pseudoscalar-isoscalar fields to the tree-level potential of the chiral in-
teraction Lagrangian (5.1)), which is of second order in the fields, reads

83



where

Mo ~1ZxZns SN 052 —CapZndnds/V2
M=| —c1Zys 29 bs/2 m2, ~Cop ZrdN |2V (5.8)
~CaaZndNGSINZ  —CopZxdn[2V2 m?

is the non-diagonal mass matrix and
~ 1 Zn Zps G2 b5 /2 (5.9)

is the mixing parameter of the ny-ng mixing studied in Refs. [19] 8T [186]. Following the usual
diagonalization procedure, which corresponds to an SO(3) rotation, an orthogonal matrix B
is introduced such that the matrix M’ = BMBT is diagonal. As a consequence, B links the
bare pseudoscalar-isoscalar fields to the physical resonances n and 1'(958) and to a hypothetical

pseudoscalar glueball, which we denote as 7, as follows

U R T
n'(958) [=5'=| ng [=BE=B| ns (5.10)
Ng G’ G
30
% oL
E 15
= i
% 5 10 1; 20
Céo

Figure 5.2: Physical masses of pseudoscalar-isoscalar fields as a function of the coupling constant
Cap-

In Figure we show the masses of the pseudoscalar states, after diagonalization of the bare
mass matrix , as a function of the coupling constant czg. It turns out that the mass of
the mixed state which is predominantly a glueball increases very slowly. For the value of the
coupling constant, czq, = 4.48 + 0.46, determined in the previous subsection, where we assumed
that the resonance X (2370) is a glueball, we obtain the physical masses of the pseudoscalar states
presented in Table For solving the three-body mixing issue we used for the masses of the
bare fields m,,, =766 MeV, m,, = 770 MeV [186] and the mass mg = 2.6 GeV which corresponds
to a lattice-QCD calculation in the quenched approximation [52] 53, 64, 55 56, B7].

The corresponding mixing matrix reads

0.71 070  0.02
B=| -0.70 o0.71 -0.01 |, (5.11)
-0.02 -0.01 0.99
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Mass | eLSM [MeV] | Experiment [MeV]
oy 517 (547.862 + 0.018)
My (958) 954 (957.78 £ 0.06)
my, 2600.52 -

Table 5.1: Masses of the pseudoscalar-isoscalar mesons.

which implies the following admixtures of the bare fields to the two physical resonances as well

as to the hypothetical state 7,

n: 51%nn, 49%ns, ~0%QG,
n'(958): 49%nN, 51%ns, ~0%G, (5.12)
ng: ~0%nn, ~0%ns, ~100%G .

Equations (5.11) and (5.12) show that the mixing of the two pseudoscalar-isoscalar quark-
antiquark fields is almost maximal as also determined in Ref. [I9, 8], [I86] and the mixing of the
pseudoscalar glueball with the pseudoscalar quarkonia is almost ideal. Hence, for the numerical

calculation of the decay widths we must only consider the ny-ns mixing and use mg ~ my, .

5.2 Decay of the pseudoscalar glueball G

In this section we present the analytical tree-level expressions for the decay of the pseudoscalar
glueball G. The relevant vertices are extracted from the chiral interaction Lagrangian whose
explicit form is shown in Appendix These vertices are then applied to the decay formulas
(1.144) and (1.148)).

5.2.1 Decay widths of the type G - PPP

We begin with listing the decay amplitudes and widths of the pseudoscalar glueball into three

ordinary pseudoscalar mesons.

Decay channel G - KKn:

. . 1
- z.Aé%K,KW = —'L.Aé‘)Kof(on = §C@¢Z%Zﬂ cos? ©n (5.13)

FG—»KKW = 2FG—>K‘K+T7 : (514)

Decay channel G > KKn':

. . 1 .
- ZAG%K’K*?]' = _ZAGQKOI_(O’I]' = §Céq>Z%(Zﬂ— Sln2 SD»,] 5 (515)
FG—>KK77’ = 2FC~;—>K‘K+n’ : (516)
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Decay channel G - nnn:

. 1 2 4 .2
—iAG g = mcéq)Zns Z: cos” gy sin gy, ,
. 2
Lésymy > 6 |_ZAC3%?77777|

Decay channel G - nnn':

=i Aa = ﬁcé{)ZnS Z2(cos® ¢, — 2sin® ¢, cos p,)

r o 2|-idg |

G-nnn’

G-y’

Decay channel G — nn'n':

. 1 2, .3 2 .
- zAG—»nn’n’ = ——=CapZns Ly (sin” @, — 2 cos” py sinpy) ,

2V/2

T 2

Gy 2= AG gy

Decay channel G- KK
. . 1 2
- ,LAG—>K‘K+7TO = _ZAC?%KOKOWO = icéCI)ZKZ‘” ’

1
. _ . _ N 2
- ZAG KOK+m— — Z‘AG KOK-m+ — 7\/§CG¢ZKZ,T s

Lo kkr =Tank-remo ¥ Lankogoro * Tasgogen + Tan gog-re = 6L G, k- oo -

Decay channel G - nrr:

. 1 2 .
- ZAé_mﬂoﬂ.o = mCéq)ZnSZﬂ_ sin (pn s
. 1 2 .
- ZAC;'—W'N*W* - ﬁCGQZWSZﬂ S P
Fé—mﬂ'w = 2Fé—>n7r07r0 + Fé—mn’*w’ :

Decay channel G — 7/ (958)7m:
1

. B _ 5 2 .
- 'LAG—mTrOwO - 2\/§CG<I>Z77$ Zﬂ S @y,

1
. _ 5 2 .
—iAGrine = —=CGIns Ln SN Oy

V2

Fé—»nﬂ'ﬂ = 2FC~¥—>777r07r0 + Fé—>7]7T+7T_ :
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(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)



5.2.2 Decay widths of the type G - PS

Now we consider the decay channels of the pseudoscalar glueball into an ordinary pseudoscalar

and a scalar meson.

Decay channel G - KK;:

. ‘ . ‘ 1
- ZACJ—»K‘KS* = _ZAG—>K+K5‘ = _Z‘AG—J?OKSO = _ZAGeKOKSO = mC@bZK*ZKﬁbN )

Pookin =Vank-rpr *Vanrrrs- tlanrore *Panrorp =4 a ke -

Decay channel G - mag:

. . . 1
- ZAC?—m'Oag = _ZAé—nr‘raa = zAC:‘—»-rr*ag = \/QCG'CPZTFQSS )

T

= Féﬂﬂoag + Fé%ﬂ’*aa + Fé%w‘ag = 3FG%7r0ag :

G-mag

Decay channel G — noy:
; 1 .
_ ZAC:'*WUN = —ﬁcéq)(ZnS(bN sinypy, + Zx s cospy) ,

. 2
FG—W}UN o< |_ZAC¥—>UUN |

Decay channel G - nog:

1

_ iAG*nos = ﬁcéq)ZﬂqﬁN cos @y, ,

r §

é—ﬂ]o‘s o< |_2Aé—>no'5
Decay channel G - n'op:

) 1 .
- ZAG—wz’aN = ﬁc@b(ZnN bssing, = Zygon cospy)

. 2
Fé*ﬂ'ﬂN o |_Z'AC~*'*77'UN |

Decay channel G - 1/cg:

, 1 .
_ Z‘Aé—m’as = ECG{)ZW@V sin ¢y, ,
) 2
Fé—’n'ffs o< |_Z‘Aé—>n’ffs|
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(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)



5.2.3 Amplitudes for G - P/,

Concerning the decay channels of G involving scalar-isoscalar mesons one should take into account
the full mixing pattern above 1 GeV, in which the resonances f,(1370), fo(1500), and f,(1710)
are mixed states of the pure quark-antiquark contributions oy and og and a pure scalar glueball
field G which is absent in this Studyﬂ This mixing, which is described by an orthogonal 3 x
3 matrix, was studied in detail in chapter 3 of this work [3 [ 5] as well as e.g. in Refs.
[11, 201 203], 204} 205], 207, 208, 213}, 214], 229]. Now we present the corresponding amplitudes for
the decay of the pseudoscalar glueball into 7 and 7'(958) and one of the fy resonances.

. 1 :
—iAa 0 (1370) = _ﬁcéé(zns(bl\f sinppbi1 + Zrdg cos pnbi1 + Zrpn cos pybsr) , (5.44)

) 1 .
_ Z‘AG‘—mfo(lsoo) = _ECG‘@(ZWSQSN sin ppbia + Zrdg cos pnbia + Zrn cos pybsa) , (5.45)

‘ 1 .
—iAG ., o (1710) = _ﬁcé@(znsdw sin @,big + Zxds cos pnbis + Zrdn cos ppbss) , (5.46)

) 1 ) )

—iAG 0 (1370) = ﬁcé@(zﬂbs sinpbi1 — Zyg @ cos rbi1 + Zrdn sinpbsi) , (5.47)
) 1 . .

- ZA(’;—m’fo(moo) = —ﬁcé(p(Zﬂqﬁs sin b1 — Zy P cos ppbia + Zrdn sin pybsa) (5.48)

and
) 1 . .
- Z.Aé_m,fo(17lo) = —Ecéq)(Zﬂ(;ﬁs sin b1z — Zpg O €os ppbiz + Zrdn sin pybss) | (5.49)

where b;; with 4,j = 1,2,3 are elements of a mixing matrix B of the three fy resonances.

5.3 Branching ratios of the decay of G

In order to make parameter-free predictions we present our numerical results as branching ratios.

5.3.1 Branching ratios of G - PPP

The branching ratios of G for the decays into three pseudoscalar mesons are reported in Table
for both choices of the pseudoscalar masses, 2.6 and 2.37 GeV, which are relevant for the
PANDA and BESIII experiments, respectively. The branching ratios are presented relative to
the total decay width of the pseudoscalar glueball I‘g’t.

2As already discussed scalar-isoscalar states below 1 GeV are predominantly tetraquarks or mesonic molecular
states, see Refs.[133] 134} [135], 136 137 [138| 139] 140} T4T] [142], 143}, [144] [145] [146] [147] and references therein,
and are not considered here.
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Quantity Case (i): mga =2.6 GeV | Case (ii): mg =2.37 GeV

T reren/TE 0.049 0.043

Cos iy /TE 0.019 0.011
CépnlTE! 0.016 0.013

Cés TS 0.0017 0.00082

Cés TS 0.00013 0

i ienl TS 0.47 0.47

Céianl T 0.16 0.17

Cé el TE! 0.095 0.090

Table 5.2: Branching ratios for the decay of the pseudoscalar glueball G into three pseudoscalar

mesons.

5.3.2 Branching ratios of G - PS

Next we turn to the decay process G — PS. The results, for both choices of mg, are reported in
Table [5.3| for the cases in which the pure resonance og is assigned to fy(1710) or to fo(1500).

Ratio Case (i): mg =2.6 GeV | Case (ii): mg =2.37 GeV
o rera/TY 0.060 0.070
Lo on/T 0.083 0.10
N /FtOt 0.0000026 0.0000030
G non
Fg_m LT 0.039 0.026
To /TS 0.012 (0.015) 0.0094 (0.017)
oo /T 0 (0.0082) 0 (0)

Table 5.3: Branching ratios for the decay of the pseudoscalar glueball G into a scalar and a
pseudoscalar meson. In the last two rows og is assigned to fo(1710) or to fo(1500) (values in

parentheses).

5.3.3 Branching ratios of G - P

Due to the mixing in the scalar-isoscalar channel we evaluated explicitly the decays of the pseu-
doscalar glueball G into 1 and 7'(958), respectively, and one of the scalar-isoscalar resonances
fo(1370), fo(1500), or fo(1710).
chiral approach discussed in chapter four where the corresponding mixing matrix reads

Therefore, we use the solution of the mixing scenario of our

-0.91 024 -0.33
0.30 094 -0.17
-0.27 0.26 0.93

B= (5.50)

We also use two other solutions of Ref. [207] and the solution of Ref. [213] where the corresponding
results can be found in Appendix The branching ratios which correspond to our solution of
the mixing of the fy are presented in Table
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Quantity Sol. of eLSM. (4.21)
Lo o(170)/TS" | 0.0012 (0.0014)

T o1s00)/TS" | 0.013 (0.015)

T orioy/ T2 | 0.00078 (0.00062)
Féﬂn’fo(mm)/rg’t 0.043 (0.029)
Féﬁn’fo(lzaoo)/rté)t 0.00095 (0)

Loy pano/TE | 0(0)

Table 5.4: Branching ratios for the decays of the pseudoscalar glueball G into 7 and 7', respec-
tively, and one of the scalar-isoscalar resonance f,(1370), fo(1500), and fy(1710) by using the
mixing matrix B, Eq. , of scalar-isoscalar states [3]. The mass of the pseudoscalar glueball
is mg =2.6 GeV and mg = 2.37 GeV (values in parentheses), respectively.

5.3.4 Interference phenomena

An interesting and subtle issue is that the scalar states decay further into two pseudoscalar ones.
For instance, K = K;(1430) decays into Km. There are two possible decay amplitudes for the
process G — K K7. One is the direct decay mechanism reported in Table the other is the de-
cay chain G - K K§ - KKm. Both have the same final state. The immediate question is whether
interference effects emerge which spoil the results presented in Table and Namely, simply
performing the sum of the direct three-body decay Table and the corresponding two-body
decay Table is not fully correct.

We now describe this point in more detail by using the neutral channel G - K°K%r as an

illustrative case. To this end, we describe the coupling K to K via the Lagrangian
L xcn = gKGKom® + V29K K " + hec. . (5.51)

The coupling constant |g| = 2.73 GeV is obtained by using the experimental value for the total
decay width I'kx =270 MeV [11]. The full amplitude for the process G » KOKO70 results as

full _ (Adirect interact
"4(;_>K0f{07r0 - AG—>K01’<07T0 * AG—»KOK(;—»KUK%U : (5'52)
Thus the full decay width reads:
full _ mdirect interact miz
Fé—)KOROT(O T T G-KOKO70 + FG—»K"KJ—»K“RUWU + G->KOKO70 * (553)

miz
G—-KOKOx0
neglecting it. For instance, explicit calculation for the KOK°x0 case gives a relative error of

We can then investigate how large the mixing term is, and thus the error done in

B0 oo _T3% (9>0)

direct interact ~ !
“ _ + I _ 2%
FG—»K“KUTrO FG—»K“K;—J(OKO#U 2.2% (g<0)

(5.54)

Present results from the model in Ref. [8I] show that g < 0: the estimates presented in Ref.
[6] can be regarded as upper limits. We thus conclude that the total error for the channel
G - K°K°7° is not large and can be neglected at the present stage. However, future detailed

and precise theoretical predictions should implement these interference effects [0 [7, [223].
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5.4 Interaction of G with baryons

In the planned PANDA experiment at FAIR [124], antiprotons collide on a proton-rich target.
It is then also interesting to study how the pseudoscalar glueball interacts with the nucleon and
with its chiral partner. In the so-called mirror assignment [I48], 230], one starts from two nucleon

fields ¥, and W5 which transform under chiral transformations as follows
Uir) = Yire) = Ur)Yirw) s Yarw) = Yare) = Unr)Yar() - (5.55)
In this way, it is possible to write down a chirally invariant mass term of the type
Lo = —tio (P2v5¥1 = U17505) . (5.56)

Eventually, 119 can be seen as a condensation of a tetraquark and/or a glueball field, see details
in Ref. [I4§]. The nucleon fields N and its chiral partner, which is associated to the resonance
N*(1535), are obtained as

1
\Ill = m (]\[66/2 + ’Y5N*€_5/2) (557)
and )
= oy (BN NP (5.58)
where
coshd = % . (5.59)

The value 9 = (460 + 136) MeV was obtained by a fit to vacuum properties [148].

We now write down a chirally invariant Lagrangian which describes the interaction of G with the
baryon fields W, and Wy
- ) - _

L =icgyG (Ul - U1 Wy) . (5.60)
int
G-bar
chirally suppressed. Moreover, although the coupling constant csy cannot be determined, we

Thus, the fusion of a proton and an antiproton is described by £ , showing that it is not

can easily predict the ratio of the decay processes I's_, yy and T'a_, g nyap o [0 224]:
T~ -
——G=NN__ _1.94, (5.61)
FG’—>N*N+h.c.

5.5 Discussion

e The results depend only slightly on the glueball mass, thus the two columns of Table
and are similar. It turns out that the channel K K is the dominant one (almost 50%).
Also the nmm and n’m7m channels are sizeable. On the contrary, the two-body decays into a
scalar and a pseudoscalar are subdominant and reach only 20% of the full mesonic decay
width.

e The decay of the pseudoscalar glueball into three pions vanishes:

T -

Gonrm

-0. (5.62)

This result represents a further simple and testable prediction of our approach.
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e The decays of the pseudoscalar glueball into a scalar-isoscalar meson amount only to 5%
of the total decay width. Moreover, the mixing pattern in the scalar-isoscalar sector has
a negligible influence on the total decay width of G. Nevertheless, in the future it may

represent an interesting and additional test for scalar-isoscalar states.

e If a standard linear sigma model without (axial-)vector mesons is studied, the replacements

T =Zxc = Zyy = Zg = 1 (5.63)

need to be performed. Most of the results of the branching ratios for the three-body decay
are qualitatively, but not quantitatively, similar to the values of Table (variations of
about 25-30%). However, the branching ratios for the two-body decay change sizeably
with respect to the results of Table [5.3] This fact shows once more that the inclusion
of (axial)vector d.o.f. has sizeable effects also concerning the decays of the pseudoscalar

glueball.

e In principle, the three-body final states for the decays shown in Table can also be
obtained through a sequential decay from the two-body final states shown in Table
where the scalar particle S further decays into PP, (for instance, Kj(1430) — Km). There
are then two possible decay amplitudes, one from the direct three-body decay and one from
the sequential decay, which have to be added coherently before taking the modulus square
to obtain the total three-body decay width. The results shown in Table and gives a
first estimate which neglects interference terms for the magnitude of the total three-body
decay width. We have verified that the correction from the interference term to this total
three-body decay width in a given channel is at most of the order of 10% for mg = 2.6 GeV
and 15% for mg = 2.37 GeV. For a full understanding of the contribution of the various
decay amplitudes to the final three-body state, one needs to perform a detailed study of
the Dalitz plot for the three-body decay.
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Jede Losung eines Problems ist ein neues

Problem.
Johann Wolfgang von Goethe

Chapter 6

Conclusions and Outlook

The existence of glueballs is a clear prediction of QCD, confirmed by numerous and accurate
predictions of lattice QCD, but their existence and properties need to be further studied both

experimentally and theoretically. In this thesis we have studied the scalar-isoscalar sector,
IG (JPC) =0* (O++) ,

in the low-energy region below 2 GeV, where a scalar glueball is naturally expected. In addition,
we have investigated the properties of a pseudoscalar glueball and written down the Lagrangian
for a vector glueball. In the following we summarize the most important insights that we have

achieved in this work and give some useful suggestions for future progress.

6.1 The scalar glueball

One of the challenges of hadronic physics is the full understanding of the scalar-isoscalar sector
below 2 GeV where at the present five well-established f; resonances exist [I1]. A variety of

works indicate that the 0" isoscalar resonances below 1 GeV,
f0(500) and f,(980) ,

belong to a nonet of tetraquarks or are mesonic molecular states. In the energy region between

1 and 2 GeV there are three further resonances
f0(1370), fo(1500) and, fo(1710) .

Out of these resonances only two can be interpreted as predominantly gg mesons. Namely, one

as the non-strange,

ON 2 (ﬂu+c?d)/\/§,

and the other one as the strange,

og =88,

meson. Hence a natural question arises whether one of them is the scalar glueball, which is,

due to the quantum numbers of vacuum, directly connected with the trace anomaly of the pure
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Yang-Mills sector of QCD. If that is the case then the final question is which of the fj resonances

possesses the largest gluonic content.

In order to answer these questions we used an effective hadronic model, the extended Linear Sigma
Model, whose d.o.f. are scalar and pseudoscalar (07*) as well as vector (177) and axial-vector
(1**) quark-antiquark mesons. The scalar glueball is described in the eLSM as the excitation of a
scalar dilaton field G. Our model is built in agreement with the symmetry properties of the QCD
Lagrangian. Since the eLSM is a confined effective field theory, the dynamics is dictated by the
global chiral and dilation symmetries rather than the local SU.(3) symmetry, which is trivially
fulfilled. In the full implementation of the eLSM (N; = 3) the bare quark-antiquark mesons
on and og as well as the bare glueball G mix and generate the physical resonances fy(1370),
fo(1500), and fo(1710).

Implementation of the eLSM with two flavors (N; = 2) We started our search for the
scalar glueball within the two-flavor version of the eLSM, which does not contain mesons with
strange quarks. In this case a two-body mixing scenario in the scalar-isoscalar sector takes place,
where the bare non-strange quark-antiquark meson oy and the bare scalar glueball G mix and
produce two physical fy resonances. Thus, several assignments of the bare fields on and G to
the fy resonances are possible which we investigated by using a x? analysis. As an input we
used physical quantities of the scalar-isoscalar resonances such as masses and decay widths [I1].
Our calculations were done in vacuum, that is at vanishing temperature (T = 0) and chemical
potential (1 = 0), and at tree level, which means that loop corrections were not considered. We
found two acceptable solutions where in both cases the resonance f;(1370) was predominantly
the non-strange gq state while the glueball was in one solution predominantly fo(1500) and in
the other one predominantly fy(1710). The reasons for the ambiguous result are that the Ny =2
approach of the eLSM is not complete, mainly because the bare strange field og was neglected.

The solution of the assignment
on 2 fo(1370) and G = f,(1500)
is slightly favored with respect to those of the assignment
on 2 fo(1370) and G = fo(1710) ,
because the latter exhibits a too large
G’ = fo(1710) — pp - 47

decay width, which however is not experimentally observed [1l [I7]. On the other hand, if the

resonance fo(1500) is interpreted as predominantly a glueball then the following issues occur.

e Flavor blindness of a pure glueball state requires that

Tosrr 3
ZGlomm _ 2 (6.1)
lgokx 4
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This branching ratio reads for the two putative scalar glueball candidates

F T
—Jd0=TT _y 06, (6.2)
¢ (1500)>K K
F =TT
ZJoUT0)=>mm 49 (6.3)
Lyaro)-kk

This shows that the requirement of flavor blindness is rather fulfilled by the resonance
fo(1710) than f3(1500). Note that the branching ratio (6.1]) corresponds to a pure glueball,
but the fy resonances contain gg components. In addition, the errors of the decay widths
of fo(1710) are sufficient large, thus it is possible to find a match between the theoretical
expectation of Eq. and the experiment, see Eq. and Table This is not possible
for the resonance f,(1500), see Eq. and Table

e Lattice-QCD calculations predict a scalar glueball mass of
mit ~ 1.7 GeV
which corresponds to the mass of fy(1710) rather than to fo(1500) [55] 58].

e The production rate in radiative J/i¢ decay is higher for f3(1710) than for f,(1500) [215].

These arguments support the scenario in which G’ = f3(1710). In order to obtain a conclusive
result, a study of three-body mixing scenario is required where three bare fields oy, 0g, and G
are involved and generate fo(1370), fo(1500), and fo(1710).

In the end, we also tested for completeness assignments with the resonance f,(500) as a predom-

inantly non-strange gg meson [I} 2] but it turns out that its decay width is with
Lo onr $ 180 MeV .
considerably narrower than the experimental one
L (500)—rmr = (400 = 700) MeV .

Therefore, scenarios in which fo(500) is interpreted as a quark-antiquark state are strongly

disfavored.

Implementation of the eLSM with three flavors (N; =3) The three-flavor eLSM requires
a solution of a three-body mixing problem in order to figure out which of the f resonances can
be interpreted as the scalar glueball. Contrary to the calculations of the eLSM in the case Ny =2

we now obtained an unique result.

Our fit with
x?/d.o.f.~0.35 (6.4)
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describes the phenomenology in the scalar-isoscalar sector very well and yields

F =TT
—SUTO=TT 39 . (6.5)

Tiaro)-rx
Similar results were also found in Refs. [2I8] [219] 220]. We found that the resonance fo(1710) is
predominantly the scalar glueball, while the resonances f,(1370) and fy(1500) are predominantly

non-strange oy and strange og quark-antiquark meson.

fo(1370) -0.91 0.24 -0.33 on 2 (au+dd) [V2
fo(1500) |=] 030 094 -0.17 |= o5 2 38 : (6.6)
fo(1710) -0.27 026 0.93 G = glueball

This solution is based on the assumption that the decay width of the scalar glueball is narrow
(T¢ £ 100 GeV) which is in accordance with large-N, arguments. As an interesting consequence,
we obtained for the scale parameter Ag;;, which arises from the trace anomaly, a large value and

this implies a large gluon condensate (0‘7 GZVGQ“’).

We emphasize that the inclusion of (axial-)vector d.o.f. was crucial for the results of our approach.
These fields affect the phenomenology in the (pseudo)scalar sector, e.g. our model suggests that
fo(1370) is the chiral partner of the pion. In addition, it is to our knowledge the first time
where a full Ny = 3 mixing of f,(1370), fo(1500), and fp(1710) in a chiral hadronic model with

a scalar glueball, described by a dilaton field, and the presence of (axial-)vector fields was studied.

6.2 The pseudoscalar glueball

Motivated by the glueball spectrum of lattice QCD, we constructed an effective interaction La-
grangian in the framework of the eLSM in order to study vacuum properties of the pseudoscalar
glueball G . Accordingly, we used for our calculations the glueball mass obtained by lattice QCD
in the quenched approximation mg = 2.6 GeV. The upcoming PANDA experiment at FAIR near
Darmstadt will cover this energy range. Our predictions can be used as a guideline for the search

of glueballs.

The results regarding the pseudoscalar glueball are given as branching ratios in order to make
parameter-free prediction. We found that G — KK is the dominant decay channel (~ 47%)
followed by G — nr7 (~ 16%) and G — n'wr (~ 10%), while G — 777 is predicted to vanish. In
addition, we repeat the calculations for a glueball mass of 2.37 GeV which corresponds to the

mass of the pseudoscalar resonance X (2370) observed in the BESIII experiment.

6.3 Outlook

Finally, there are further interesting developments of this work, which will be discussed in the

following.
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The vector glueball In case of the vector glueball O, with a lattice-QCD mass mo, = 3.8
GeV we presented a chiral interaction Lagrangian with which the following two- and three-body
decay processes can be evaluated: O, - VA, O, - VP, O, - PB, O, - VPP, 0O, - VSS,
O, - APS, and O, - eV PP. The numerical calculations are in progress and will be presented
in Ref. [166].

Inclusion of light tetraquark fields In the future, one should include the nonet of light scalar
states fp(500), f0(980), ag(980), and K (800), which then allow to describe all scalar states up
to 1.7 GeV. Indeed, in the two-flavor case the resonance fo(500) has been already included as a
tetraquark/molecular field in a simplified version of the eLSM [231], in which chiral symmetry
restoration at non-zero temperature has been studied, and in the extension of the eLSM to the
baryonic sector [232] 233]. The role of f,(500) is important because it induces a strong attraction

between nucleons and affects the properties of nuclear matter at non-zero density.

In the three-flavor case chiral models with tetraquark fields but without (axial-)vector mesons
were studied [I45] [146], [147]. The isovector resonances ao(1450) and ao(980) arise as a mixing of
a bare quark-antiquark and a bare tetraquark/molecular field configuration. A similar situation
holds in the isodoublet sector for Kj(1430) and Kj(800). The mixing angle turns out to be
small [I38]. In the scalar-isoscalar sector one has a more complicated system with the mixing
of five bare fields, which leads to the five resonances fo(500), fo(980), fo(1370), fo(1500), and
fo(1710) [146].

In the framework of the e.SM, the inclusion of the light scalars should also contain their coupling
to (axial-)vector d.o.f. as well as to the dilaton field. A variety of decays, such as the decays of
the light scalars

fo(500) - 7, f0(980) - KK ,

etc. as well as decays into them
a1(1230) — fo(500)7 , fo(1500) > fo(500) fo(500) ,

etc. can be studied. Moreover, the mixing in the isovector, isodoublet, and most importantly in
the isoscalar sector can be investigated in such a framework. In this general scenario, a mixing
of five scalar-isoscalar states takes place, which allows to describe all relevant scalar-isoscalar
resonances listed in the PDG below 1.8 GeV [11]

Inclusion of other glueball fields In analogy to the scalar, pseudoscalar, and vector glueballs,
further glueballs with different quantum numbers, as predicted by lattice QCD [55], can be
studied in the framework of the eLSM, e.g. a pseudovector (177) or a tensor (2**) glueball.
Such studies can be based on ideas similar to those pursued in this work. This can be done by
making use of the symmetries of the QCD and introducing effective couplings and constructing
the corresponding Lagrangians. In this way, decay ratios can be calculated which can be used as

a further guide for future experimental search for gluballs.
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Appendix A

Decay Widths of the

Scalar-Isoscalar fields

Using the formula (1.144)) we compute two-body decays of the the scalar-isoscalar fields. All
relevant expressions for these decay processes are extracted from the Lagrangian (2.104]) and are
presented in the following [I, [3], [I'7], 19} B1].

A.1 Decays of the scalar-isoscalar fields into 77

For the decay widths of the scalar-isoscalar resonances into w7 we obtain

m%
g 2
Ffo%‘n’ﬂ" = 6W |—/LAfO‘,ﬂ—7-r(mfo)| y (A.l)

where my, is the mass of the physical fy resonance. The bare amplitudes (as functions of my,)

are
) ) mfco - 2m72T 5
- Z-’40'1\7—>7r‘n'(’rnfo) =1 AO'Nﬂ'Tr - BO'Nﬂ'T(# - C(TN?TTFmTr 9 (AZ)
) ] m?-o - 2m72T
- ZAcrs»‘rrrr (mfo) =1 AO’s7T7T - Basfr‘n' B — 1, (A3)
, ' m?co - 2m?2

- ZAG—err(mfo) =1 AG?T‘IT - BG’ﬂ'Wf 5 (A4)

with the corresponding constants
p—— (/\1 . %) 224y | (A.5)

hl + h2

Boynn = _291Z72rwa1 + (9% 7)Z72r (211 (A.6)
CO'N7T7r = _glzgwal 5 (A7)
AO’sTl'ﬂ' = _)\1Z72r¢5 3 (AS)
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Byorn = 5 —Z2w. ¢s (A.9)
AGrn =— Go 22 (A.10)
BGﬂ'TI’ = Glzfzr 21 . (All)

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-
isoscalar fields oy = fo(1370), 0% = fo(1500), and G’ = f(1710):

- iA0'§V—>7T7I'(mO';V) =1 [AUNﬁﬂ'ﬂ'(maﬁv )bll + Ao‘sﬁﬂ"ﬂ'(mo';v)b12 + AGﬂww(mog\, )613] ) (A12)

- iAa':S,a'n'ﬂ’ (mo'g,) =1 I:AUN—MTTF(mO':g )621 + Aa’g—»ﬂﬂ'(ma’s )622 + AG—VIHT(mO"’S )b23] ) (A13)
- iAG’—>7\'ﬂ' (mG’) =1 [AO'N —>7'r7r(mG’)b3l + Aasaﬂﬁ(mG’)bSQ + AG—M'r‘n'(mG’)b33:| ) (A14)

where b;;, 4,7 = 1,2,3, are the corresponding elements of the mixing matrix B from Eq. (4.10)).

A.2 Decays of the scalar-isoscalar fields into K K

For the decay widths of the scalar-isoscalar resonances into K K we obtain

2
Mo 2
4
2
8mm %o

K .
N ~iAf ok (mp)) (A.15)

where the bare amplitudes are

2 —2m?2

—iAUN*KK(mfo):i[AO'NKK_(BUNKK_QCG'NKK) +200—NKKm§(:| s (A16)

2 _2m2
—iAssorK(my,) =1 [AUSKK ~(Boskx i —2Co5kK) — 5 Ky QCUSKKm%{] , (A7)
) ) mfo 2m?
—iAgokk(my,) =i| Agrk — BGKKf ) (A.18)
and the corresponding constants read
Aoy KK = ﬁ [/\2 (¢S - \/§¢N) - 2\/§>\1¢N] , (A.19)
V2

Byykk = %Ziwm [—2+gle1( N+\/_¢S)] ?( %(1 [(2’11 +h2) o - \/_h3¢s] , (A.20)

CO'NKK = %ZIQ(’LUKl b (A'21)

[)\2 (6n -2v205) - 2v2M0s] | (A.22)

AsskK =

ﬂ\ww

22 2
Boskx = fgl Ziwi, |2+ qrwx, (6w +V20s) |+ @“’;1 [V2(h1 +hs) 65— hson | , (A.23)

—
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V2
CO'sKK = 291 Z%(’LUK1 s (A24)
2m?2
Ackk = G 07Z% . (A.25)
0
2m?
0

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-

isoscalar fields
~ Ay xx(Mgr ) =1 [flgN_>1m<(Trlg;V 011 + Ao gk i (Mgr Y12 + Aok ik (o, )b13] , (A.27)

— iAot~k i (Mar,) = i [Agy kK (Mor, )b21 + Ags ki (Mgt )ba2 + Ac ki (Mor, )bas] , (A.28)
—iAgorkk(ma) =i [Aoyok k(M )bs1 + Asg ik k (M )bsa + Agokk (mar)bss] , (A.29)

which we assign to the physical resonances as follows: ofy = fo(1370), o5 = fo(1500), and
G = fo(1710).
A.3 Decays of the scalar-isoscalar fields into 77

For the decay widths of the scalar-isoscalar resonances into 17 we obtain

2

. 2
Lfoony = 2W =i A gosmm (M) (A.30)
where the bare amplitudes are
. . mj, = 2my mj,
= iAoy nn(myy) =i | Aoy = Bownnf + CUNUWT ) (A.31)
. . m?n B an m?o
—iAggonn(my,) =i\ Aognn = Basnnf + CUsTmT ) (A.32)
) ] m?co - Qm%
_Z‘AGHWI(mfo) = 1 AGTIN"N - BG"]N"?N# COS ¥y
] m?co - me] )
+i| Aansns = Bansns 5 |Smen (A.33)
and the corresponding constants read
A c .
Asymn = —Z5¢N ()\1 + ?2 + Cl¢%) cos? Oy = ngqu ()\1 + Elqb?\,)suﬂ o
3 .
_ZCIZWZWS¢%V¢S Sln(230n) ’ (A34)
Z7w; h h .
By =~ . L(m? + %(b% +20) cos? on + éngwilsqﬁN sin® ©n (A.35)
Conmm =01 Z2w,, cos? ©n (A.36)
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. 1 ,
Agomn = —Zflsqﬁg (A1 +X2) sin® on - Zfrqﬁg ()\1 + clqﬁv) cos? o - chZﬂZnsgb“;’v sin(2¢,) , (A.37)
2
By = _Zashs 1S (42 +7¢ +255) sin’ NUYE 2 hg cos? (A.38)
asnn = b3 mj N §) ST P+ LWy, @5 COS™ Py .

Coom = V201 2} wp,sin’ o, | (A.39)

2

m
AG"?N”']N = —G—0Z3 ) (A.40)

0

m% 2 2
BG’?NVIN = ﬁzﬂ'wle ) (A41)
m2

Agnsns == Gz z (A.42)
BGnsns = 122 wy,, - (A.43)

Gy
After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-

isoscalar fields

- iAg;V—)n'r](mo-ﬁv) =1 [.AgNﬁqm(mg?V)bll + Agsﬁnn(mg&)blg + Agﬁnn(m(,?\] )blg] s (A44)
- 1Ay _,m,(mg )=1i [AUN_,nn(mgg)bm +Asgomn (mals)bgg + Agom (ma’s)bQB] , (A.45)
- iAG’—ﬂ]T](mG’) =9 [.AO-N_"?n(mG/)bgl + AO-S_,nn(mG/)bgg + AG_,nn(mG/)bgg] s (A46)

which we assign to the physical resonances as follows: of = fo(1370), o5 = fo(1500), and
G = fo(1710).

A.4 Decays of the scalar-isoscalar fields into pp — 47

The decay processes fo — pp — 47 are on the threshold, hence we use for the calculation of the

decay widths the spectral function of the p meson

X2 Tpornn(Xom,)

dy,(Xm,) = X, = 2my) , A47
p(Xm,) N(X2 )+ X2 T2 (Xom) 0(Xm, - 2my) (A.47)

where N is a normalization constant, which guaranties that
[ (X, )Xo, =1 (A.48)

Here d, (X, ) is the probability mass distribution. Considering the polarization of the p mesons

the general amplitude reads

2 X, +X3,,  (mi-X}, -XZ,)°
. 42 1,m 2,m fo 1,m 2,m
=i A sy pp(mfy, Xim,)| = A2, [4— Pm% Ly 4753 ’ ] . (A.49)
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where ¢ = 1,2 and A,, is one of the corresponding constants

AoNpp = ¢7N (hl + hg + hg) s

bs
Ao'spp = Ehl )
2
my
AGPP = Gio .

The physical amplitudes of the scalar-isoscalar fields read

2
|_i-AG§V—>pp(mfov Xi,mp)|

2
2,m,

(A.50)

(A.51)

(A.52)

X2, o+
= [Aoyppbr1 + Acgppbiz + AGppbl?)]Q [4 - ,,m2
)

2
|_i~’40fg ~pp (M fos Xiim, ) |

2 2
Xl,mp + X2,mp

2 2
+ (mfo _Xl,mp -

4
4mp

+ (m?() - X12,mp - ‘)(22,mp)2

Xim,) ] . (A.53)

= [Aoyppba1 + Ao ppbaz + AGppb23]2 [4 -

4
4mp

] . (A54)

2

my

. 2
|_Z~’4G’—>pp(mfoa Xi,mp)|
2 2
+X

2 1,m 2,m
= [Aonppbst + Aogppbsz + Acppbss] [4 - pmz ‘

p

2 _ y2 _
" (mfo Xl,mp

4
4mp

Xom,) ] . (A55)

The formula for the decays of the scalar-isoscalar fields into p mesons and 4, respectively, reads

kf(mfoni,mp)

2
8mm %

Ffo-’PP(mfoni,mp) =6

2
=i Ay po (Mg, Xim, )| 0(migy = X1,m, = Xom,) » (A56)

T o pposin = [O fo T o (Mg Xion) )p (X1, Yp(Xom, YAX 1 g dX o, . (A5T)
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Appendix B

Details of the study of the

pseudoscalar Glueball

B.1 Explicit form of the pseudoscalar glueball Lagrangian

After performing the field transformations in Eqs. (2.122) and (2.132)-(2.133]), the effective
Lagrangian (5.1]) takes the form:

P %é(\/izpzwgf(gof(o 225 Z3r QK K - 2725 Zycal KiO K-

~ 275 Zai K™K = 27 Zgeag KO K — 22+ Ziea) K™K+ —~\27% 7, KKy
222 2 KO R 0N — V222 2y K Ky + Zyoa s + 22, agadns

+ 22 Znsnans — V225 Z KOK1° + V225 2, K" K °n° + V223 2, K~ K*n°

— Zp Z2ns 4222 2, KOK n + 222 2, KOK n* - 22%. Z, K K¢~

~ 27, Z2nsmmt = 22k Zieag KT K + 225 Z, KK iy — V225 2, Ky K~
— 272, 7, K K1 -\ 22k ZiaQK{ VK™ + 22 Zgo K™K oy + V22 Zi- K™K on

+ \/§ZK*ZKK50KO¢N +V2Z ZKKSOROJN + \&ZKZK*KOKSO@V + \ﬁZKZK*KOXSOUN
+V2Z Zrk K K oy + \/§ZK*ZKK67K+UN - Znsﬁséf’?v - ZnSTISUJZv -2Z,NsPNON

+ 2Zﬁa87ro¢s + 2Zﬁa87roag +2Z alm s +2Z alm 05+ 22 a5 s + 22 agm o5

=27y INONODS — 22y INONOTS = 22y INON DS — 22 INONTS) - (B.1)

This expression is used to determine the coupling of the field G to scalar and pseudoscalar mesons.

B.2 Further results for the decays G — P,

In order to calculate the decay of the pseudoscalar glueball into an ordinary pseudoscalar meson
and an fj resonance we consider, as in Refs. [6l 8], other solutions of mixing of the resonances
f0(1370), fo(1500), and fp(1710). Two solutions are from Ref. [207] and one solution is from
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Ref. [213]. The corresponding mixing matrices read:

0.86
-0.45
-0.24

B =

0.81
-0.49
0.30

0.78
-0.54
0.32

0.24 045
-0.06 0.89 ,
0.97 -0.06
0.19 0.54

0.72 0.49 )
0.67 -0.68
0.51 -0.36
0.84 0.03

0.18 0.93

(B.3)

(B.4)

In all three solutions f;(1370) is predominantly described by the bare field oy, but the assign-
ments for the other resonances vary. In the first solution of Ref. [207], Eq. , the resonance
f0(1500) is predominantly gluonic, while in the other two solutions, Eqgs. and , the
resonance fo(1710) has the largest gluonic content. The corresponding branching ratios are

reported in Table

Quantity

Sol. 1 of Ref. [207]

Sol. 2 of Ref. [207]

Sol. of Ref. [213]

tot
Gonfo(1370)/ T8

0.00093 (0.0011)

0.00058 (0.00068)

0.0044 (0.0052)

0.000046 (0.000051)

0.0082 (0.0090)

0.011 (0.012)

r
Lo npas00)/TE"
T

Gnpoimiy/T2 | 0.011 (0.0089) 0.0053 (0.0042) 0.00037 (0.00029)
T poiazoy/T'" | 0.038 (0.026) 0.033 (0.022) 0.043 (0.029)
T puisony/T | 0:0062 (0) 0.00020 (0) 0.00013 (0)
Fé—»n'fa(wm)/rt@ot 0 (0) 0 (0) 0 (0)

Table B.1: Branching ratios for the decays of the pseudoscalar glueball G into n and 7, re-

spectively and one of the scalar-isoscalar resonances fo(1370), fo(1500), and fo(1710) by using

three different mixing scenarios of these scalar-isoscalar states reported in Refs. [207), 2T3]. The

mass of the pseudoscalar glueball is ms = 2.6 GeV and ms = 2.37 GeV (values in parentheses),

respectively.
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Deutschsprachige

Zusammenfassung

Theoretische Grundlagen

Das Standardmodell der Elementarteilchen Das gegenwartige physikalische Weltbild be-
ruht auf den vier uns bekannten fundamentalen Kraften bzw. Wechselwirkungen. Drei dieser
Wechselwirkungen, die elektromagnetische, die schwache und die starke, bilden das Standard-
modell der Elementarteilchen (SM) und werden mit lokalen Quantenfeldtheorien (QFT) beschrie-
berﬂ Diese Theorien basieren auf einigen wenigen Symmetrien, die sich in der Natur beobachten
lassen. Die fundamentalen Symmetrien dieser Wechselwirkungen bzw. des SM, U(1) x SU(2) x
SU(3), resultieren aus der Forderung nach einer lokalen Eichinvarianz, wodurch die entsprechen-
den Eichbosonen mit Spin S = 1 hervorgehen und diese als Austauschteilchen zwischen den
Materieteilchen, die der jeweiligen Wechselwirkung unterliegen, interpretiert werden. Sowohl die
zwolf Eichbosonen des SM als auch die Materieteilchen, zu denen die sechs Quarks und sechs
Leptonen zéhlen und auf Grund ihres halbzahligen Spins S = % zu den Fermionen gehoren,
weisen im Rahmen der Genauigkeit heutiger Hochenergie-Experimente keine Substruktur auf
und gelten daher als elementarﬂ Die Beschreibung der Natur auf der Basis solcher lokalen QFT
hat sich als erfolgreich und vielversprechend herausgestellt. Dies belegen einerseits viele ex-
perimentelle Befunde, einige, fiir diese Arbeit relevante, werden wir noch erwéhnen, andererseits
ist beispielsweise die Quantenelektrodynamik (QED), die die elektromagnetische Wechselwirkung
beschreibt, derzeitig die am genauesten experimentell tiberpriifte Theorie. Dartiberhinaus konnte
diese mit der Eichtheorie der schwachen Wechselwirkung zur elektroschwachen Theorie verein-
heitlicht werden. Eine weitere Vereinheitlichung, bei der noch die Theorie der starken Wechsel-
wirkung, die Quantenchromodynamik (QCD), einbezogen ist, die Grole Vereinheitlichte Theorie
(Grand Unified Theory), konnte bis jetzt noch nicht erfolgreich umgesetzt werden, da beispiels-
weise entsprechende Theorien einen Zerfall des Protons vorhersagen und dies konnte bis jetzt
noch nicht experimentell bestétigt werden. AuBerdem sind zu weiteren experimentellen Veri-

fikationen solcher Theorien Beschleunigerenergien, die der Planckskala (10'° GeV) entsprechen,

IDie vierte fundamentale Wechselwirkung ist die Gravitation und wird durch die allgemeine Relativitétstheorie
beschrieben. Diese konnte bis jetzt noch nicht einwandfrei in das SM implementiert werden, da konzeptionelle
Schwierigkeiten, wie ihre Nicht-Renormierbarkeit und die tensorielle Natur der Gravitonen, vorliegen und noch

nicht iberbriickt werden konnten.
2Man beachte, dass zu jedem Materieteilchen des SM ein entsprechendes Antiteilchen existiert. Thr Unterschied

liegt in den entgegengesetzten additiven Quantenzahlen, wahrend ihre Massen, falls vorhanden, exakt gleich sind.
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notwendig, die jedoch (noch) nicht realistisch sind.

Hadronen Die vorliegende Arbeit beschéftigt sich mit der Untersuchung von Hadronen. Dies
sind Teilchen, die der starken Wechselwirkung unterliegen und aus Quarksﬂ und Gluonen, den
Eichbosonen der QCD, zusammengesetzt sind. Eine besondere Eigenschaft der QCD ist, dass
sowohl Quarks als auch Gluonen nicht isoliert, sondern in Hadronen eingeschlossen sind. Diese
Hadronen haben eine Ausdehnung von AZ;C D, wobei Agep ~ 200 MeV die typische hadronische
Energieskala ist. Diesen experimentell bewiesenen, theoretisch jedoch nicht vollkommen ver-
standenen Umstand bezeichnet man als Confinement. Hadronen werden beziiglich ihres Spins in

Baryonen und Mesonen unterschieden.

Die Baryonen besitzen einen halbzahligen Spin, sind somit Fermionen, und bestehen aus drei
Quarks. Die bekanntesten Vertreter dieser Hadronen-Gruppe stellen die Protonen und Neutro-
nen dar, die als Nukleonen zusammengefasst werden und aus den up und down Quarks aufgebaut
sind. Eine wichtige Erhaltungsgrofie der Baryonen in der QCD ist die Baryonenzahl B = 1 bzw.
Antibaryonen B = —-1. Dies impliziert, dass die Quarks By = % und die Antiquarks entsprechend

__1 :
Bg = 3 besitzen.

Die Mesonen, die relevant fiir diese Arbeit sind, besitzen einen ganzzahligen Spin, wodurch sie den
Bosonen angehoren und deren allgemeinste Definition durch die Baryonenzahl B = 0 gewéhrleistet
ist. Die Konstituenten der gewhnlichen Mesonen sind Quarks und Antiquarks. Um jedoch die
grofle Breite des bekannten hadronischen Spektrums theoretisch beschreiben zu kénnen, insbeson-
dere im skalaren Bereich JF¢ = 0**, wurden weitere Mesonen postuliert, welche die Bedingung
B = 0 erfiillen. Dies sind beispielsweise Tetraquarks, die aus einem Diquark und einem An-
tidiquark (gq@q) bestehen. Dariiber hinaus werden Mesonen vorhergesagt, deren Konstituenten
nicht Quarks, genauer gesagt Valenzquarks, sind, sondern Gluonen bzw. Valenzgluonen, die so-
genannten Gluebille, die eine zentrale Rolle in dieser Arbeit spielen. Im Folgenden werden wir

auf deren Rechtfertigung sowie ihre Eigenschaften und Bedeutung kurz eingehen.

Farbladung und Eigenschaften der Gluonen Hinsichtlich der Tatsache, dass Quarks in
drei Farbzusténden, i. d. R. als rot, griin und blau bezeichnet, vorkommen, wurde zu deren
Beschreibung die lokale SU.(N.)-Farbsymmetrie, wobei N. = 3 die Anzahl der Farben ist,
gewahlt. Die Farbladung wurde zunéchst postuliert, um die Wellenfunktion der Delta-Resonanz
A** bzw. heute bezeichnet als A(1232) zu antisymmetrisieren und dadurch die Giiltigkeit des
als physikalisch fundamental betrachteten Spin-Statistik-Theorems von Wolfgang Pauli zu erhal-
ten. Die spéateren experimentellen Beweise, wie beispielsweise der Zerfall des neutralen Pions
in zwei Photonen, m — 77, oder das Verhaltnis der Wirkungsquerschnitte fiir hadronische und
leptonische Elektron-Positron-Vernichtung, konnten mit theoretischen Berechnungen nur dann
iibereinstimmten, wenn angenommen wurde, dass drei Farbfreiheitsgrade (N, = 3) existieren.
Diese experimentellen Befunde fithrten schlielich dazu, dass die lokale Farbsymmetrie der QCD

als physikalisch fundamental angesehen wurde. Dies begiinstigte ihre Weiterentwicklung und nach

3Genauer gesagt bestehen sie aus drei Valenz- bzw. Konstituentenquarks, die die Quantenzahlen sowie die
Massen der Hadronen bestimmen.
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dem theoretischen Beweis der Renormierbarkeit der nicht-abelschen Yang-Mills-Theorien sowie
der asymptotischen Freiheit wurde QCD zur wohletablierten Theorie der starken Wechselwirkung.
Als Konsequenz der nicht-abelschen Natur der SU.(3)-Farbsymmetrie sind die Gluonen selbst
Tréager der Farbladung, was eine Selbstkopplung der Gluonen impliziert. Auf Grund dieser Selbst-
kopplung zusammen mit dem Confinement erwartet man gebundene gluonische Zustande, die
Gluebdlle, die invariant unter den Transformationen der Farbsymmetrie sind, sowie entsprechend
ihrer Konstituenten B = 0 aufweisen. Aus experimenteller Sicht konnten Gluonen einerseits di-
rekt bei Elektron-Positron-Vernichtungsprozessen durch Beobachtung von Drei-Jet-Ereignissen
nachgewiesen werden. Andererseits konnte durch Analyse von Vier-Jet-Ereignissen die Selbst-
kopplung der Gluonen experimentell verifiziert werden. Der eindeutige experimentelle Beweis
von Gluebillen steht jedoch noch aus und ist mit grofien Herausforderungen verbunden. Eine
eindeutige Identifikation von Gluebéllen wiirde zum Einen ein weiterer stiitzender Beweis fir
die QCD als fundamentale Theorie der Natur sein. Zum Anderen wiirde man wichtige Erkennt-
nisse liber die Natur des Confinements bzw. den nicht-stérungstheoretischen Bereich der QCD

gewinnen.

Glueballe, Motivation und das hadronische Modell

Zugang und Eigenschaften von Gluebéllen Aus theoretischer Sicht ist die Existenz von
Gluebéllen eine eindeutige Vorhersage der QCD. Um deren Eigenschaften zu studieren bzw. zu
erhalten miisste man die QCD-Lagrangedichte, insbesondere den Eichsektor der QCD, analytisch
in (3+1) Dimensionen 16sen. Dies ist aufgrund der Nichtlinearitdt der Yang-Mills-Gleichungen
gegenwirtig leider noch nicht gelungen. Uberdies ist die Anwendung von stérungstheoretischen
Methoden nicht moglich, da im niederenergetischen Bereich der QCD, welcher unter anderem fiir
Gluebélle interessant ist, die von Energie bzw. einer Renormierungsskala abhéngige starke Kop-
plungskonstante grof} ist, gs 2 1. Dennoch gibt es andere vielversprechende Methoden, die einen
Zugang zur Untersuchung von Gluebillen bzw. diesen nicht-storungstheoretischen Bereich der
QCD liefern. Dies sind einerseits auf der QCD, und insbesondere auf ihren Symmetrieeigen-
schaften, basierende effektive quantenfeldtheoretische Modelle. Im Rahmen solcher Modelle
haben sich auch Betrachtungen der QCD in der N,! Entwicklung mit dem Grenzfall N, — oo als
sehr niitzlich erwiesen. Dadurch kénnen Groflenordnungen freier Parameter sowie das Verhalten
wichtiger physikalischer Grofien, wie z. B. Massen, Amplituden und folglich auch Zerfallsbre-
iten, abgeschitzt werden. Mit dem sogenannten erweiterten Linearen Sigma Modell (eLSM)
werden wir in der vorliegenden Arbeit diese Herangehensweise verfolgen und werden im weiteren
Verlauf auf Eigenschaften unseres Modells zu sprechen kommen. Andererseits kann die QCD
auf dem Gitter simuliert werden. In diesem Fall bedient man sich direkt den ersten Prinzipien
der QCD, indem man die Zwei-Punkt-Korrelations-Funktion heranzieht und aus deren Zerfall
die Massen der Gluebélle extrahiert. Mit solchen QCD-Gitterrechnungen konnte ein komplettes
Massenspektrum der Gluebille berechnet werden, bei dem ein skalarer Glueball (JF¢ = 0**) mit
einer Masse von etwa mlc‘;“ ~ 1.7 GeV den leichtesten Zustand darstellt. Eine wichtige Eigen-
schaft der Gluebélle ist ihre Flavorblindheit, da die Gluonen mit der gleichen Stéirke an alle
Quarkflavors koppeln. Auflerdem erwartet man eine Mischung zwischen Gluebéllen und Quark-

Antiquark-Mesonen, sofern ihre Quantenzahlen tiibereinstimmen. Entsprechend der Starke der
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Mischung kann dies eine grofle und zusétzliche Herausforderung bei der experimentellen Suche
nach Gluebillen sein, da die Unterscheidung zwischen einem Zustand, der iiberwiegend Glue-
ball, und einem, der iiberwiegend ein gewohnliches Meson ist, nicht trivial ist. Um Gluebélle
zu untersuchen, eignen sich besonders die sogenannten gluon-reichen Prozesse, da in solchen
eine Formierung von Gluebillen sehr wahrscheinlich ist. Eine grofie Bedeutung haben dabei
die radiativen J/¢ Zerfalle J/vbp - G - yHadronen, welche z. B. beim BFijing Spectrometer
(BES) ITI-Experiment intensiv und mit einem sehr grofen Umfang an Daten untersucht wurden.
Weitere solche gluon-reichen Prozesse sind die zentralen Kollisionen, bei denen hochenergetische
Hadronen gestreut werden, sowie die Proton-Antiproton-Vernichtung. Bei Letzteren kénnen
Gluebdlle direkt oder zusammen mit anderen Teilchen als Zwischenzusténde erzeugt werden, die
ihrerseits weiter zerfallen. Ein vielversprechendes, auf pp Vernichtung basierendes Experiment,
bei dem unter anderem Glueballe im Massenbereich von 2.1 - 5.5 GeV erzeugt und studiert wer-
den konnen, ist das AntiProton ANnihilations at DArmstadt (PANDA) Experiment innerhalb
der sich im Aufbau befindenden Facility for Antiproton and Ion Research (FAIR)-Anlage bei
Darmstadt, sowie auch das GLUonic EXcitations (GlueX) Experiment am Jefferson national
LABoratory (JLAB).

Der skalare Glueball Eine der grofiten Herausforderungen der hadronischen Physik ist das
Verstindnis des skalaren-isoskalaren Sektors, I¢(JF¢) = 0*(0**), unterhalb der Energie von 2
GeV. In diesem Energiebereich werden gegenwértig fiinf fo-Resonanzen der Particle Data Group
(PDG) aufgefiithrt. Viele Studien deuten daraufhin, dass die beiden Resonanzen f,(500) und
f0(980), deren Massen unterhalb 1 GeV liegen, keine Quark- Antiquark-Mesonen sind, sondern zu
einem Tetraquark-Nonet gehoren oder sie sind mesonische Molekiile. Im Energiebereich zwischen
1 und 2 GeV befinden sich die weiteren Resonanzen f,(1370), fo(1500) und fo(1710). Allerdings
konnen hochstens zwei dieser Resonanzen als iiberwiegende gq Zustande interpretiert werden, und
zwar eine als ein nicht-seltsames oy = (au + cid) / V2 und die andere als ein seltsames og = 88
Meson. Folglich stellt sich die Frage, ob sich der skalare Glueball unter diesen drei Resonanzen
befindet, welcher wegen seiner Quantenzahlen des Vakuums direkt mit der Spuranomalie des
Yang-Mills-Sektors der QCD zusammenhéngt. Falls ja, dann ergibt sich eine weitere Frage,
namlich, welche dieser fy-Resonanzen besitzt den grofiten gluonischen Anteil.

Der pseudoskalare und vektorielle Glueball Wie schon bereits angedeutet, wird es mit
dem PANDA Experiment mdoglich sein, schwere Zustinde zu erzeugen und somit auch mdogliche
schwere Gluebélle. Man erwartet, dass diese Gluebélle weniger mit gewShnlichen Quark-Anti-
quark-Mesonen mischen und daher moglicherweise leichter zu identifizieren sein werden, im
Gegensatz zu dem skalaren Glueball, der sich wahrscheinlich unter den fy-Resonanzen verbirgt.
Aus diesem Grund interessieren wir uns in dieser Arbeit einerseits fiir den pseudoskalaren Glue-
ball (JF¢ = 07*) mit der Masse von etwa 2.6 GeV, wie Gitterrechnungen der QCD vorhersagen.
Andererseits ist es der Vektorglueball (JF¢ = 177) mit der Masse von etwa 3.8 GeV, die ebenfalls
aus den Gitterrechnungen der QCD folgt. Auf Grund der Quantenzahlen ist der Vektorglue-
ball aus mindestens drei Gluonen zusammengesetzt und damit sollte seine Umwandlung in einen
Quark-Antiquark-Meson unwahrscheinlich sein. Folglich wird eine kleine Zerfallsbreite dieses

Glueballs erwartet.
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Das hadronische Modell Um die bereits diskutierten Fragestellungen der hadronischen Physik
im mesonischen Sektor zu untersuchen, wird das eLSM herangezogen. Die Freiheitsgrade des
eLSM sind auf Grund des Confinements von Beginn an Hadronen, ndmlich Quark-Antiquark-
Mesonen sowie ein skalarer Glueball, welcher durch die Anregungen des skalaren Dilatons beschrieben
wird. Weitere Glueballe lassen sich leicht in das eLSM einbetten. Die gg-Felder beinhalten nicht
nur skalare (S,0*") und pseudoskalare (P, 07*) Mesonen, sondern auch Vektor- (V,, 177) und
Axial-Vektor (A,, 1*") Mesonen. Die letztgenannten Vektorfelder sind von grofier Bedeutung,
um die Phédnomenologie korrekt zu beschreiben, da diese auch den (pseudo)skalaren Sektor bee-
influssen. Das effektive feldtheoretische Modell ist im Einklang mit den Eigenschaften der QCD
bzw. ihrer Lagrangedichte. Da das el.SM eine auf dem Confinement basierende effektive Feldthe-
orie ist, wird die Dynamik durch die globale chirale und die Dilatations-Symmetrie bestimmt
und weniger durch die lokale SU.(3)-Farbsymmetrie, die folglich trivial erfiillt ist. Die Real-
isierung des eLSM mit drei Quarkflavors beinhaltet im skalaren-isoskalaren Sektor zwei nackte
Quark-Antiquark-Mesonen, ndmlich oy und og, als auch einen skalaren Glueball G, die alle-
samt miteinander mischen und die physikalischen Resonanzen f;(1370), fo(1500) und fo(1710)
generieren. Da die Felder oy, 0g und G die Quantenzahlen des Vakuums besitzen, treten in
unserem Modell drei verschiedene Kondensate in Erscheinung, ndmlich das nicht-seltsame und
das seltsame Quarkkondensat (ﬁu+Jd) /72 # 0 und (5s) # 0, als auch das Gluonkondensat
(O‘? GZVGQ“’) # 0. Folglich ist es interessant zu lernen, wie grof3 die entsprechenden Beitrige zur

Erzeugung der Hadronenmassen sind.

Mischung im skalaren-isoskalaren Sektor des eLSM

Das eLSM im Fall von Ny =2 Die Untersuchungen des skalaren Glueballs im eLSM wur-
den zunéchst fiir den Fall Ny = 2 durchgefiihrt. In dieser Realisierung des eLSM sind Mesonen,
die aus den seltsamen Quarks zusammengesetzt sind, nicht enthalten. Ferner ergibt sich im
skalaren-isoskalaren Sektor ein Zwei-Korper-Mischungsszenario, in dem das nackte nicht-seltsame
Quark-Antiquark-Meson o und der nackte skalare Glueball G mischen und zwei physikalische
fo-Resonanzen erzeugen. Folglich lassen sich verschiedene Zuweisungen der nackten Felder oy
und G zu den fy-Resonanzen durchfiihren und mit Hilfe der x?-Methode untersuchen. Dazu
wurden physikalische Groflen der skalaren-isoskalaren Resonanzen, wie beispielsweise ihre Massen
und Zerfallsbreiten, herangezogen. Die Rechnungen wurden durchgefiihrt im Vakuum, d. h. bei
verschwindender Temperatur (7' = 0) und bei verschwindendem chemischen Potential (u = 0),
und auf Baumdiagrammniveau, d. h. ohne Schleifenkorrekturen. Dabei wurden zwei akzeptable
Losungen gefunden, bei denen jeweils die Resonanz f((1370) tiberwiegend das nicht-seltsame
dg-Meson ist, wahrend der Glueball in einer Losung iiberwiegend f(1500) und in der anderen
iiberwiegend f(1710) ist. Der Grund fiir das nicht eindeutige Ergebnis liegt darin, dass die Re-
alisierung des eLSM mit IV = 2 unvollsténdig ist, da das nackte seltsame Feld og vernachlassigt

wurde.

Es gibt jedoch eine Reihe von Argumenten, die die Resonanz fo(1710) als iiberwiegenden Glueball-
Zustand unterstiitzen. Die wichtige Eigenschaft der Flavorblindheit erfordert fiir einen reinen
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Glueball
FG’*MTW _ 3

Tookrx 4
Die entsprechenden Verzweigungsverhéltnisse flir die zwei mutmaflichen Kandidaten fiir den

skalaren Glueball lauten

F —>TTTT
S0 _ g 06
I o (1500) > KK
und r
fo(1710)>7m - 0.41.
Tyamo-kx

Dies zeigt, dass die Forderung nach der Flavorblindheit eher fiir die Resonanz f,(1710) als fiir die
fo(1500) erfiillt ist. An dieser Stelle wollen wir noch anmerken, dass die Verzweigungsverhéltnisse
der fo-Resonanzen gg-Komponenten enthalten. Auflerdem sind die experimentellen Fehler der
Zerfallsbreiten von fo(1710) hinreichend gro8, so dass eine Ubereinstimmung zwischen den theo-
retischen und experimentellen Werten méglich ist, withrend eine entsprechende Ubereinstimmung
fiir die Resonanz f,(1500) nicht vorliegt. Des Weiteren sagen Gitterrechnungen der QCD eine
Masse des skalaren Glueballs von mlc‘}t ~ 1.7 GeV voraus, welcher der Masse von fo(1710) sehr
nah ist. Schliefflich soll noch auf die Produktionsrate in den radiativen J/v Zerfillen hingewiesen

werden, die fiir fo(1710) hoher ist als fiir fo(1500).

Diese Argumente sprechen fiir das Szenario, in dem G’ = f(1710) ist. Um jedoch ein schliissiges
Ergebnis innerhalb des eLSM zu erzielen, ist eine Studie notwendig, die ein Drei-Korper-Mi-
schungsszenario beinhaltet, in dem die nackten Felder oy, og und G involviert sind und die
Resonanzen f,(1370), fo(1500) und fo(1710) erzeugen.

Abschlieflend haben wir auch Szenarien untersucht, in denen die Resonanz f,(500) iiberwiegend
als das nicht-seltsame gg-Meson interpretiert wurde. Es stellte sich jedoch heraus, dass diese
Szenarien stark nicht-favorisiert sind, da sie die experimentellen Daten nicht beschreiben kénnen
z. B. ist die Zerfallsbreite Lot onr S 180 MeV deutlich schmaler als der entsprechende experi-
mentelle Wert 'S 5,0y = (400 - 700) MeV.

Das eLSM im Fall von Ny =3 Die Realisierung des eLSM mit drei Quarkflavors erfordert
die Losung eines Drei-Korper-Mischungsproblems, um herauszufinden, welche fy-Resonanz man
als den skalaren Glueball interpretieren kann. Im Gegensatz zur Realisierung des eLSM im
Fall von zwei Quarkflavors konnten wir in diesem Fall eine eindeutige Loésung finden, die die
Phénomenologie in dem skalaren-isoskalaren Sektor sehr gut beschreibt. Wir fanden heraus, dass
die Resonanz fy(1710) tiberwiegend der skalare Glueball ist, wihrend die Resonanzen f((1370)
und fo(1500) tiberwiegend das nicht-seltsame o und das seltsame og Quark-Antiquark-Meson

sind
fo(1370) -0.91 0.24 -0.33 on 2 (au+dd)[V2
fo(1500) |=| 030 094 -0.17 |= o5 238
fo(1710) -0.27 0.26 0.93 G = glueball

Diese Losung basiert auf der Annahme, dass die Zerfallsbreite des Glueballs schmal ist (I'¢ $ 100
GeV), was mit den Argumenten des large-N. Formalismus tibereinstimmt. Dies hat eine interes-

sante Konsequenz zur Folge, ndmlich einen groflen Energieskalenparameter Ay;;, dessen Ursprung
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in der Spuranomalie liegt, und das impliziert ein grofies Gluonkondensat (a? GZVG5V>.

An dieser Stelle wollen wir noch einmal hervorheben, dass die Einbindung der (Axial-)Vektor-
Freiheitsgrade entscheidend fiir die erzielten Ergebnisse des eLSM war. Durch ihre Beeinflussung
des (pseudo)skalaren Sektors, beispielsweise geht aus unserem Modell hervor, dass der chirale
Partner des Pions die Resonanz f(1370) ist. Des Weiteren ist es nach unserer Kenntnis das erste
Mal, dass eine vollstandige Mischung, Ny = 3, iiber der Energie von 1 GeV von zwei skalaren-
isoskalaren Quarkonia und einem skalaren Glueball, der durch das Dilaton-Feld beschrieben wird,

in einem chiralen hadronischen Modell mit (axial-)vektor Mesonen, untersucht wurde.

Der pseudoskalare Glueball im Rahmen des eLSM

Ferner wurden in dieser Arbeit die Vakuumeigenschaften des pseudoskalaren Glueballs G un-
tersucht. In diesem Zusammenhang haben wir im Einklang mit dem eLSM eine effektive Lag-
rangedichte konstruiert, die diesen pseudoskalaren Glueball mit Quark- Antiquark-Mesonen kop-
pelt. Die entsprechende Masse ist mg = 2.6 GeV, die aus den Gitterrechnungen der QCD in
der sogenannten quenched-Naherung folgt. Diese Masse liegt im Energiebereich der geplanten
Experimente PANDA oder GlueX. Wir priisentieren die entsprechenden Ergebnisse als Verzwei-
gungsverhéltnisse, um eine parameterfreie Vorhersage machen zu kénnen, die als eine Richtlinie
fiir die Suche nach Gluebéllen dienen kann. Unsere Rechnungen zeigen, dass G — KK der
dominierende Zerfallskanal des pseudoskalaren Glueballs ist (~ 47%), gefolgt von G - nmww
(~ 16%) und G - n'mm (~ 10%), wihrend der Zerfall G — 7nm verschwindet. Wir wieder-
holten diese Berechnungen fiir eine Glueballmasse von 2.37 GeV. Diese entspricht der Masse der
pseudoskalaren Resonanz X (2370), welche im BESIII-Experiment beobachtet wurde. Die gleiche
Prozedur kann in naher Zukunft auf andere Gluebille angewendet werden. Einen sehr interes-
santen Fall bietet der Vektorglueball O, mit einer Masse von mo, = 3.8 GeV, welche ebenfalls
durch Gitterrechnungen der QCD erhalten wurde, dessen Zerfall in Quark-Antiquark-Mesonen
studiert werden kann. In der vorliegenden Arbeit haben wir die entsprechende Lagrangedichte

prasentiert und ihre wesentlichen Eigenschaften diskutiert.
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