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How many bodies are required before we

have a problem? G.E. Brown points out

that this can be answered by a look at

history. In eighteenth-century Newtonian

mechanics, the three-body problem was

insoluble. With the birth of relativity

around 1910 and quantum

electrodynamics in 1930, the two- and

one-body problems became insoluble. And

within modern quantum field theory, the

problem of zero bodies (vacuum) is

insoluble. So, if we are out after exact

solutions, no bodies at all is already too

many!

R.D. Mattuck

Abstract

A natural consequence of the pure Yang-Mills sector of quantum chromodynamics (QCD) is the

existence of gauge-invariant states composed of gluons, so-called glueballs. Since the early 1970s

their properties have been investigated in a variety of approaches but a conclusive picture of glue-

balls is still missing. Lattice QCD confirmed their existence and determined the full spectrum

of glueballs where the ground state is a scalar glueball (JPC = 0++) with a mass of about 1.7 GeV.

A further fundamental issue of QCD is the understanding of the scalar-isoscalar sector, IG(JPC) =
0+(0++), in the low-energy region below 2 GeV. In the last four decades many states with these

quantum numbers were discovered and discussed. At the present time five scalar-isoscalar res-

onances are well-established and listed by the Particle Data Group (PDG). There are the two

resonances f0(500) and f0(980) whose masses lie below 1 GeV. Many studies suggest that these

resonances are neither quarkonia nor glueballs. Together with a0(980) and K∗
0 (800) they rather

form a nonet of tetraquark states or they can be interpreted as mesonic molecular states. The

remaining three resonances are f0(1370), f0(1500), and f0(1710) and lie in the energy region

between 1 and 2 GeV. Thus, it is natural to expect that one of them is the scalar glueball.

This thesis is addressed to study the vacuum phenomenology of the scalar-isoscalar sector in the

energy region between 1 and 2 GeV in the framework of the extended linear sigma model (eLSM).

This effective field-theoretical model is based on symmetries and anomalies of QCD such as the

global chiral symmetry and the trace anomaly. The degrees of freedom of the eLSM are from

the very beginning hadrons: there are quark-antiquark mesons as well as one scalar glueball,

which is described by excitations of a scalar dilaton field. The q̄q fields include not only scalar

(S,0++) and pseudoscalar (P , 0−+) mesons, but also vector (Vµ, 1−−) and axial-vector (Aµ, 1++)

mesons. The eLSM in the case Nf = 2, where Nf is the number of flavors, yields a two-body

mixing scenario in the scalar-isoscalar sector where the bare non-strange quark-antiquark meson

σN ≅ (ūu + d̄d) /
√

2 and the bare scalar glueball G are involved. In the eLSM with Nf = 3 an

additional scalar-isoscalar q̄q state, the strange one σS ≅ s̄s, arises. Hence, two bare quarkonia

and a bare glueball mix and generate the physical resonances f0(1370), f0(1500), and f0(1710).
Finally, the fields σN , σS , and G possess the quantum numbers of the vacuum, hence three

types of condensates arise in our model: the non-strange and the strange quark condensate

⟨ūu + d̄d⟩ /
√

2 ≠ 0 and ⟨s̄s⟩ ≠ 0 as well as the gluon condensate ⟨αs
π
GaµνG

a,µν⟩ ≠ 0. Thus, it is

interesting to learn how large are the respective contributions to the generation of hadron masses.
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We found two solutions of the eLSM in the case of Nf = 2. In both solutions the resonance

f0(1370) was predominantly the non-strange q̄q state while the glueball was in one solution

predominantly f0(1500) and in the other one predominantly f0(1710). Calculations of the three-

flavored eLSM yield an unambiguous result where f0(1370) was, as previously, predominantly

the non-strange, while f0(1500) is predominantly the strange quark-antiquark meson, and finally

the resonance f0(1710) turns out to be predominantly a scalar glueball. Our calculations are

based on the assumption that the decay width of the scalar glueball is narrow (ΓG ≲ 100 GeV)

which is in accordance with large-Nc arguments. As a consequence, we obtained for the energy

scale parameter Λdil, which arises from the trace anomaly, a large value, which implies a large

gluon condensate. Furthermore, we found that the mass of the ρ meson is mostly generated

by the gluon condensate. Consequently, we expect that its mass in medium scales as the gluon

condensate rather than the quark condensate.

We emphasize that the inclusion of the (axial-)vector degrees of freedom was crucial for the re-

sults of our approach. These fields affect the phenomenology in the (pseudo)scalar sector, e.g.

our model suggests that f0(1370) is the chiral partner of the pion. In addition, it is, to our knowl-

edge, the first time where a full mixing, Nf = 3, above 1 GeV of two scalar-isoscalar quarkonia

and a scalar glueball, described by a dilaton field, in a chiral hadronic model with (axial-)vector

fields, was studied.

Moreover, we studied the vacuum properties of a pseudoscalar glueball G̃. To this end, we

constructed in conformity with the eLSM the effective Lagrangian which couples this glueball

to the quark-antiquark mesons. The corresponding mass mG̃ = 2.6 GeV is predicted by lattice

QCD in the quenched approximation and lies in the energy region which can be investigated by

the upcoming AntiProton ANnihilations at DArmstadt (P̄ANDA) experiment at the Facility for

Antiproton and Ion Research (FAIR) as well as the GLUonic EXcitations (GlueX) experiment

of the Jefferson national LABoratory (JLAB). In case of the pseudoscalar glueball we present

our results as branching ratios in order to make parameter-free predictions which can be used as

a guideline for the search of glueballs. We found that G̃ →KKπ is the dominant decay channel

(∼ 47%) of the pseudoscalar glueball followed by G̃→ ηππ (∼ 16%) and G̃→ η′ππ (∼ 10%), while

G̃ → πππ is predicted to vanish. We repeat the calculations for a glueball mass of 2.37 GeV

which corresponds to the mass of the pseudoscalar resonance X(2370) observed in the BEijing

Spectrometer (BES) III experiment. In the future, the very same procedure can be applied to

other glueballs. A very interesting case is that of the vector glueball Oµ with a mass of mOµ = 3.8

GeV obtained by lattice QCD, whose decay into quark-antiquark mesons will be studied. In this

work we present the Lagrangian and the main features.
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Chapter 1

Introduction

In this chapter we briefly recapitulate the theoretical background which is relevant in order to

construct our effective model, by using the following references [10, 11, 12, 13, 14, 15, 16, 17, 18,

19]. In addition, by following the references [1, 2, 3, 4, 5, 6, 7, 8, 9, 20], we give an overview of

the subjects and the associated physical issues which this thesis addresses.

1.1 Units and conventions

We use natural units [10]

h̵ = c = ε0 = kB = 1 , (1.1)

which implies

[energy] = [mass] = [temperature] = [length]−1 = [time]−1
, (1.2)

as well the Minkowski space where

gµν = gµν = diag(1,−1,−1,−1) (1.3)

is the metric tensor and

x ≡ xµ = (t, x⃗)T , xµ = gµνxν = (t,−x⃗) (1.4)

are the co- and contravariant vectors of the space-time with Greek indices running over 0,1,2,3.

1.2 Aspects of Quantum Chromodynamics (QCD)

At the present time four fundamental forces are known. The Strong interaction together with

the weak and the electromagnetic interaction represent the interactions of the Standard Model of

Particle Physics (SM)1. The latter is formulated as a local quantum field theory (QFT) with the

symmetry group

SU(3) × SU(2) ×U(1) , (1.5)

1The fourth fundamental force is gravity, which is described by the theory of general relativity, see e.g. Ref.

[21]. Unfortunately, this theory could be not yet satisfactorily implemented into the SM due to conceptional

problems such as non-renormalisability and the tensor nature of gravitons.
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where U(N) and SU(N) are the unitary and special unitary groups, respectively, in N dimen-

sions, see e.g. Refs. [10, 11, 12, 13, 22, 23] and later on in this thesis. The theory of the strong

interaction is quantum chromodynamics, on which this work is based on. Therefore, its relevant

aspects will be discussed in the following.

1.2.1 From hadrons and quarks to QCD

In the last century a huge amount of strongly interacting particles, so-called hadrons, were

discovered e.g.,

proton, neutron, π, K, Λ, ω, ρ, η, φ, J/ψ... .

Already before the underlying theory of the strong interaction, QCD, was developed and well-

established, a classification of hadrons was undertaken. To this end one assumed that hadrons

are composed of elementary pieces of matter, which are called quarks according to a suggestion of

Murray Gell-Mann, and used for their classification the SUf(Nf) flavor symmetry, where Nf = 3

is the number of flavors [24, 25, 26, 27]. This was the birth of the quark model, which is today in

a more sophisticated form embedded in QCD [28].

Later on, the development of the parton model2 by Richard P. Feynman and James D. Bjorken

was of primary importance in order to describe and interpret deep inelastic lepton-nucleon scat-

tering.3 Such high-energy experiments indicate that quarks with spin 1
2

exist. At the present

time six quark flavors are known (Nf = 6) which we summarize in Table 1.1.

Quark Flavor Notation Current Mass [MeV]

up u 2.3+0.7
−0.5

down d 4.8+0.5
−0.3

strange s 95 ± 5

charm c (1.275 ± 0.025) ⋅ 103

bottom b (4.18 ± 0.03) ⋅ 103

top t (173.21 ± 0.51 ± 0.71) ⋅ 103

Table 1.1: Quark flavors and their current masses [11]. According to these masses they are

compartmentalized into the light (u, d, s) and heavy quarks (c, b, t).

All experiments exhibit that very soon after a collision quarks form hadrons. The time-scale of

this procedure, called hadronization, is Λ−1
QCD, where ΛQCD ≃ 200 MeV is the typical hadronic

energy scale. This implies also that the size of a hadron is about 1 fm. Quarks are then confined

2It turned out that inter alia partons can be interpreted as quarks. Hence, the parton model is a dynamical

quark model, while the quark model of Murray Gell-Mann and George Zweig is only a static one.
3Leptons are, just as quarks, elementary building blocks of matter of the SM. They include the electron (e−)

with its two heavier counterparts, muon (µ−) and tau (τ−), as well as the corresponding neutrinos νe, νµ, and

ντ . Protons and neutrons are called nucleons.
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inside hadrons and it is not possible to isolate them. This so-called confinement is a feature

of the strong interaction which is experimentally verified but theoretically still not completely

understood.

In addition, quarks carry fractions of the electric charge eq = ze, where z = 2
3

for u, c, t and z = − 1
3

for d, s, b. Nevertheless, due to the confinement, conservation of electric charge is fulfilled, since

the observable hadrons only exhibit multiples of e. Moreover, quarks as particles of spin S = 1
2

are fermions according to the spin-statistic theorem of Wolfgang Pauli [29].

Using quarks and antiquarks4 as building blocks of matter, two types of hadrons with respect to

their spin can be formed, the so-called baryons and mesons.

Baryons

Baryons possess half-integer spin, S = n+ 1
2

with n ∈ N0, and are therefore fermions. Furthermore,

they are defined through the baryon number B = 1 which is a conserved quantity. Ordinary

baryons5 are composed of three quarks (qqq). By using the reduction formula for irreducible

representation of SU(3) one obtains

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1 , (1.6)

i.e., a decuplet, two octets, and a singlet, which contain 27 baryons. For instance, in the case of

S = 1
2

the proton is placed in one of the two octets and its valence quarks6 are (u,u, d).

Mesons

Mesons are particles with an integer spin, S = n with n ∈ N0, which are according to the spin-

statistic theorem bosons. The ordinary mesons are made of a quark and an antiquark (qq̄) where

according to the reduction formula for irreducible representation of SU(3) one obtains

3⊗ 3̄ = 8⊕ 1 , (1.7)

i.e., there exist an octet and a singlet. In case of mesons, there is no corresponding conserved

mesonic number, but by definition these kinds of hadrons possess always a vanishing baryon

number (B = 0). Hence, there are other possibilities to built mesons from quarks and antiquarks,

e.g. tetraquarks, first proposed by Robert L. Jaffe, which are composed of a diquark and an

anti-diquark (qqq̄q̄). Beyond that, from the theoretical point of view there is a further group of

mesons, so-called glueballs, which are not composed of valence quarks. These states will face us

many times because they play a crucial role in this work.

4To every quark flavor there is a corresponding antiquark. They possess exactly the same mass as the respective

quark but all their additive quantum numbers, such as the electric charge, are opposite.
5There are also other possibilities to combine baryons which are in agreement with all required conservation

laws or symmetries, e.g. the pentaquarks (qqqqq̄). Their existence is controversial, but see, however, the very

recent results of Ref. [30]. Moreover, the definition of the baryon number B implies that Bq =
1
3

and Bq̄ = −
1
3

.
6The so-called valence quarks define the quantum numbers, such as spin, of a hadron.
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Color charge

The flavor symmetry as a fundamental symmetry of the strong interaction proved to be prob-

lematic. Due to the non-vanishing intrinsic mass of quarks, the so-called current mass reported

in Table 1.1, this symmetry is not an exact symmetry of the strong interaction. In particular,

the breaking of the flavor symmetry between the light and heavy quarks is sizeable. However,

a substantial problem of the quark model described by SUf(3) flavor symmetry was that the

wave function of the delta resonance7 ∆++, currently denoted as ∆(1232) [11], should be totally

symmetric,

Ψtotsym
∆++ = Ψsym

space(L = 0)Ψsym
spin(S = 3/2)Ψsym

flavor(uuu) , (1.8)

but this would violate the Pauli principle. In order to preserve it, since it is considered to be

physically fundamental, an additional intrinsic degree of freedom was proposed in 1964, so-called

color [31]. The simplest possibility to antisymmetrize the wave function of ∆++ (1.21) was to

assume that every quark flavor occurs in three different colors red, green, and blue. This is the

usual convention and the corresponding antisymmetric color wave function reads

Ψantisym
color = (rgb + gbr + brg − rbg − grb − bgr)/

√
6 . (1.9)

At that time the concept of color was controversial due to missing experimental evidence. But

in course of time, as the development of QCD proceeded and experimental evidence increased,

one recognized the deep physical meaning of color as the ‘charge’ of the strong interaction [14].

Evidence for color charge

In the following we show two experimental arguments that verify the existence of color charge

[11, 12].

� The amplitude of a decaying neutral pion into two photons is proportional to the number

of colors,

Aπ0→γγ ∝ Nc (1.10)

see the corresponding Feynman diagram8 in Figure 1.1,

π0

γ

γ

Figure 1.1: Feynman diagram of the decay process π0 → γγ.

7Resonances are particles or physical excitations with a typical lifetime of t ≈ 10−23s. They are defined as the

poles of a propagator, where the real part corresponds to the Breit-Wigner mass and the imaginary part to half

of the Breit-Wigner full width.
8These diagrams are named after its inventor and illustrate processes of QFT, which can be transformed into

corresponding analytical expressions.
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and the theoretical decay width is given by

Γthπ0→γγ = 7.87 ⋅ (Nc
3

)
2

eV . (1.11)

The corresponding decay process observed experimentally yields a decay width of

Γexπ0→γγ = (7.95 ± 0.05) eV . (1.12)

Hence these results are only compatible if the number of colors is Nc = 3.

� The ratio of the cross sections for hadronic and leptonic electron-positron annihilation reads

R = σ(e
+e− → hadrons)

σ(e+e− → µ+µ−) = Nc∑
f

e2
q,f = Nc

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5/9 for Nf = 2

2/3 for Nf = 3

10/9 for Nf = 4

11/9 for Nf = 5

5/3 for Nf = 6

. (1.13)

It is clear that the production of particles depends on the centre-of-mass energy (cme)
√
s of

the annihilating leptons. The cme for creating particles which include strange quarks must be

large enough in order to produce them. This energy is clearly larger than the one required to

produce hadrons only composed of up and down quarks, see Figure 1.2. Similar to the case of

the decaying π0, the theoretical results of Eq. (1.13) are only in agreement with experimental

data if the number of colors is Nc = 3.

The experimental verification of the color charge which occurs in three different types, as was pro-

posed by the antisymmetrization of the wave function of ∆(1232), was essential for the progress

of QCD. In analogy to quantum electrodynamics (QED) one introduces a quantum field theory

with a local SUc(Nc) color symmetry, where Nc = 3, to describe the strong interaction. Similarly,

the gauge theory of the weak interaction,9 is based on the same idea.

According to the color wave function (1.9), each three qqq baryon has such a ‘white’ color

configuration, that is to say that they are color singlets under the transformations of the local

SUc(Nc = 3) color symmetry. Analogously, each q̄q meson has a ‘white’ color wave function given

by

Ψwhite
q̄q = (r̄r + ḡg + b̄b)/

√
3 . (1.14)

Gluons and their evidence

A local QFT requires gauge fields (boson fields with spin 1) which are the mediators of the

corresponding interaction. The gauge fields of QCD are the so-called gluons which, due to the

non-abelian structure of the color symmetry, are themselves colored objects. Their existence was

verified by the experiment Positron Elektron Tandem Ring Anlage (PETRA) at the Deutsches

9Sheldon Glashow, Steven Weinberg, and Abdus Salam successfully unified the electromagnetic and the weak

interaction to the electroweak interaction, see e.g. Refs. [10, 22] and references therein. A further unification to

the grand unified theory (GUT), where also QCD is included, is still not satisfactorily completed, because such

theories predict a decay of the proton, but up to now this could not be experimentally verified.
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Figure 1.2: World data on the total cross section of e+e− → hadrons and the ratio R(
√
s)=

σ(e+e− → hadrons)/(σ(e+e− → µ+µ−). This figure is taken from Ref. [11].

Elektronen SYnchrotron (DESY) facility in Hamburg in 1979, where in e−e+ annihilation pro-

cesses three jet events were observed, as shown in Figure 1.3 and 1.4 [32, 33, 34, 35]. The

interpretation of these hadronic jets is based on the QCD prediction that the production of

quark-antiquark pairs are accompanied by hard non-collinear gluons [32]. In addition, the analy-

sis of the Ellis-Karliner angle distribution of such three jet events shows that gluons are particles

of spin 1 as QCD requires. The discovery of the gluons was a further important experimental

milestone of QCD.

Moreover, at the DEtector with Lepton, Photon and Hadron Identification (DELPHI) at the Large

Electron Positron Collider (LEP) at the European Organization for Nuclear Research (CERN)

a clear proof of the gluon selfcoupling was given by studying four-jet events in 1991 [36]. Such

four-jet events can be observed by hadronic decays of the weak gauge boson Z0, where the angle

between the planes which are made of the two low- and high-energetic jets, respectively, corre-

sponds to the Bengtsson-Zerwas angle. From this angle the amount of three-gluon vertices10,

shown in Figure 1.5, can be extracted which differ from those of theories without gauge selfcou-

pling [14, 36, 37, 38].

10A vertex is the interaction point of a Feynman diagram, which is proportional to the coupling constant of the

corresponding interaction.
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Figure 1.3: A three jet event registered in the JApan, Deutschland and England detector (JADE)

at PETRA at a total energy of
√
s = 31 GeV. This figure is taken from Ref. [33].

e−

e+

q̄

q

Figure 1.4: Feynman diagram of a three jet process.

Figure 1.5: Feynman diagrams of a three- and four-gluon selfcoupling. This figure is taken from

Ref. [39]
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An interesting experimental fact is that until now a ‘white’ gluon, where

Ψsinglet
g = (r̄r + ḡg + b̄b) /

√
3 (1.15)

is the corresponding wave function, is not observed. In turn, this means that the special unitary

gauge group describes the color symmetry correctly, since in that case the condition

det(U) = 1 (1.16)

requires eight traceless matrices as the generators, T a with a = 1, ...,N2
c − 1, of the group which

correspond to the eight colored gluons. If a unitary gauge group would be taken in order to

describe the color symmetry then the condition (1.16) is not compulsive. Thus the generators,

T a with a = 1, ...,N2
c , are not constrained by

Tr(T a) != 0 . (1.17)

In that case one could take, together with the eight traceless matrices, an additional matrix, e.g.

the identity matrix which corresponds to the ninth gluon, the singlet one of Eq. (1.15). As a

consequence, such gluons would couple to ‘white’ objects but the properties of such a theory

would be completely different from what we observe in nature.

Theoretical mainstays and some open questions of QCD

From the theoretical point of view the analytical proof of renormalisability of gauge theories [40]

and that of asymptotic freedom11 [41, 42] in the beginning of the 1970s was crucial for establishing

of QCD as the theory of the strong interaction. In the following we briefly discuss these features.

Calculations of internal loops of Feynman diagrams yield divergent results. In order to obtain

a useful theory one first has to eliminate these divergences by the method of renormalization,

according to which infinite ‘bare’ quantities such as masses and coupling constants lead to ‘finite’

and physical masses and coupling constants. If this procedure is realizable then the correspond-

ing theory, like QCD, is renormalizable. This requirement is essential for a fundamental theory

of nature.

The coupling ‘constant’ of QCD, which is defined analogously to the fine-structure constant of

QED,

αs =
g2
s

4π
, (1.18)

is actually not a constant but a function of an energy scale12 Q as proven in a variety of mea-

surements [11], see Figure 1.6. According to that the coupling (1.18) decreases with increasing

energy where finally in the limit

Q→∞⇒ αs(Q) → 0 (1.19)

asymptotic freedom emerges. This means that very energetic quarks interact softly with each

other. Hence, the application of perturbative methods in order to study the high-energy region is

a useful approach.

11This is a feature only of non-abelian theories.
12This corresponds to the squared four-momentum transfer Q2, see e.g. Refs. [14, 16].
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Figure 1.6: Summary of measurements of αs as a function of the energy scale Q. This figure is

taken from Ref. [11].

When the momentum transfer or the energy scale decreases, the strength of the coupling αs(Q)
increases, where its new world average value is given in Figure 1.6 which implies

gs(MZ) ≈ 1.49 , (1.20)

where MZ = (91.1876±0.002) GeV is the mass of the Z0 gauge boson of the weak interaction [11].

Thus, using perturbation theory in that energy region fails and the phenomenon of confinement

emerges, whose analytical proof within the QCD does not yet exist. Due to the confinement and

the fact that gluons interact strongly with each other the existence of colorless states composed of

gluons, the glueballs, is expected. Unfortunately, their unambiguous experimental verification,

just as full understanding of their nature, is up to now not completed. Namely, the exact

determination of these glueballs would require an exact solution in (3+1) dimensions of the pure

Yang-Mills part of the QCD Lagrangian

LQCD =
Nf

∑
f=1

q̄f(iγµDµ −mf)qf −
1

4
GaµνG

µν
a (1.21)

which is still not available. The key problem is the non-linearity of the Yang-Mills equations.

Still, effective models and lattice QCD are a way out, see the discussion later on.

Approaches of low-energy QCD

In order to study glueballs and the confined region of QCD, respectively, a variety of effective

quantum field theories were developed. They are based on the QCD Lagrangian, where the

realization of its symmetries is central, see e.g. Refs. [43, 44, 45, 46, 47, 48, 49] and references

therein. In this work we follow such an approach, therefore we will introduce and discuss in

detail our effective model in chapter 2. Now we present two applications of non-perturbative

QCD which will be relevant and useful for our future construction of an effective model. These

non-perturbative methods are the so-called large-Nc expansion and lattice QCD.
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Large-Nc limit In connection to effective models, a further useful tool is the large-Nc expan-

sion of QCD, where the limit of an infinite number of colors, Nc → ∞, is used [50, 51]. Indeed,

it is neither possible to solve QCD nor to fully understand confinement by using the large-Nc

expansion, but still many calculations within effective models simplify. Therefore we outline the

scaling properties of some quantities in the large-Nc limit, which are essential for our research

and considerations with respect to our model [18].

An important feature in the limit Nc →∞ is that the masses of q̄q mesons as well as of glueballs

are constant and hence they scale as

mq̄q ∝ N0
c , mG ∝ N0

c . (1.22)

When n ≥ 2 ordinary mesons interact with each other, then the corresponding amplitude behaves

as follows

Aq̄q ∝ N
−n−22
c . (1.23)

Thus, this amplitude decreases when the number of colors Nc increases. An important example

for Eq. (1.23) is for n = 3, which corresponds to a two-body decay process q̄q → 2q̄q, where

Aq̄q→2q̄q ∝ N
− 1

2
c . (1.24)

This implies that the corresponding decay width scales as

Γq̄q→2q̄q ∝ ∣Aq̄q→2q̄q ∣2 ∝ N−1
c . (1.25)

In case of n ≥ 2 interacting glueballs the scaling of the amplitude reads

AG ∝ N−(n−2)
c . (1.26)

An amplitude for n ordinary mesons, which interact with m glueballs, scales for n ≥ 1 and m ≥ 1

as

Aq̄qG ∝ N
−(n2 +m−1)
c . (1.27)

An important example in this case is when m = 1 and n = 2. This corresponds to the decay of a

glueball into two ordinary mesons

AG→2q̄q ∝ N−1
c ⇒ ΓG→2q̄q ∝ ∣AG→2q̄q ∣2 ∝ N−2

c . (1.28)

In comparison with Eq. (1.25) one sees that the decays of glueballs are stronger suppressed than

decays of ordinary mesons. A further interesting case is when n =m = 1, which yields

Aq̄qG ∝ N
− 1

2
c (1.29)

and corresponds to a mixing between an ordinary meson and a glueball which is large-Nc sup-

pressed.
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Lattice QCD Another very important method is lattice QCD where enormous efforts have

been made in order to solve QCD numerically13. One uses a discretized lattice of points in Eu-

clidean space-time with a spacing a in a four-dimensional space-time volume L3T . The fermions

are located on the sites of the lattice whereas the gauge fields correspond to the links between

these sites. This idea which exactly preserves gauge invariance goes back to Kenneth G. Wilson

in 1974 [62]. In order to calculate masses of hadrons one uses the two-point correlation function

C(t) = ⟨Ω∣φ̂�(t)φ̂(0)∣Ω⟩ ∝ ∫ dU ∫ dψ∫ dψ̄∑
x⃗

φ̂�(t, x⃗)φ̂(0,0)e−SF (β)−SG(β) , (1.30)

where ∣Ω⟩ is the ground state of QCD, the so-called vacuum, and φ̂� as well as φ̂ are the creation

and annihilation operators, respectively. U , ψ, and ψ̄ are the gauge and fermion fields of the

path integral whereas a statistical probability for their particular configuration is given by the

Boltzmann weight e−SF (β)−SG(β), where SF (β) and SG(β) are the fermion and gauge action,

respectively. The parameter β ist the lattice coupling which controls the continuum limit, a→ 0,

and hence influences the spacing a.

Using this first-principles approach of QCD a full glueball spectrum on lattice was computed,

originally in the quenched approximation, which means that the sea quarks14 and the valence

quarks become static. Nevertheless, unquenched simulations where quark-loop corrections are

considered are also done, but the computational effort is obviously larger [57, 58]. In the end the

glueball mass is extracted from the decay of the function (1.30)

C(t) ∝ e−mGt , (1.31)

where the corresponding operator creates or annihilates a glueball of mass mG at time t. In

the limit t → ∞ this correlator falls exponentially where the rate of the fall-off corresponds to

glueball mass [54].

1.2.2 Symmetries of the QCD Lagrangian

The QCD Lagrangian (1.21) possesses a variety of symmetries, some of which are broken in

several ways. An effective model of QCD should reflect as many of its symmetries as possible

which will be presented next by following Refs. [10, 12, 13, 15, 17, 18, 19].

Local SUc(3) color symmetry

As previously discussed the fundamental symmetry of QCD is the local SUc(3) color symmetry.

Under this continuous symmetry the quark spinor fields15 of the Lagrangian (1.21), here denoted

13In this work we use, and are guided by, the values of glueball masses obtained by lattice QCD [52, 53, 54, 55,

56, 57, 58]. Therefore we recapitulate its basic ideas by following Refs. [20, 53, 54, 59, 60]. We also refer to Ref.

[61] and references therein.
14Sea quarks are virtual quark-antiquark pairs which arise from vacuum fluctuations.
15Due to the spin and the existence of antiquarks the components of Eq. (1.32) correspond to complex four-

spinors in Dirac-spinor space.

11



as three-vectors in color space,

qf =
⎛
⎜⎜
⎝

qf,r

qf,g

qf,b

⎞
⎟⎟
⎠
, (1.32)

transform as follows

qf → q′f = U(x)qf = exp

⎡⎢⎢⎢⎢⎣
−i

N2
c −1

∑
a=1

θa(x)T a
⎤⎥⎥⎥⎥⎦
qf , (1.33)

q̄f → q̄′f = q̄fU �(x) = q̄f exp

⎡⎢⎢⎢⎢⎣
i
N2
c −1

∑
a=1

θa(x)T a
⎤⎥⎥⎥⎥⎦
, (1.34)

where q̄f = q�fγ
0. The matrices T a = λa

2
are the eight generators of the SU(3) group, with

a = 1, . . . ,N2
c − 1 = 8, where λa are the Gell-Mann matrices and θa(x) the corresponding local

parameters. The covariant derivative of the QCD Lagrangian (1.21)

Dµ = ∂µ − igsAµ (1.35)

ensures the conservation of the local color symmetry, where gs is the ‘running’ coupling constant.

The four-potential Aµ represents the eight gauge fields, the gluons, and reads

Aµ(x) =
N2
c −1

∑
a=1

Aaµ(x)T a . (1.36)

It transforms under the local SUc(3) color symmetry as

Aµ(x) → A′
µ(x) = U(x) [Aµ(x) −

i

gs
∂µ]U �(x) . (1.37)

The Lagrangian, which we call the Dirac part of the QCD Lagrangian (1.21),

LD =
Nf

∑
f=1

q̄f(iγµDµ −mf)qf , (1.38)

where mf is a diagonal Nf ×Nf mass matrix of the current quarks and γµ are the gamma matri-

ces, describes the interaction of quarks via gluons. Since color symmetry is an exact symmetry

of QCD, the gluons couple to every quark flavor with the same strength. This is the so-called

flavor blindness.

The pure Yang-Mills part of the QCD Lagrangian (1.21) describes the selfcoupling of the gauge

fields and reads explicitly

LYM = −1

4
GaµνG

µν
a

= −1

2
∂µA

a
ν(∂µAνa − ∂νAµa) − gsfabc∂µAaνAµbA

ν
c

−g
2
s

4
fabcfadeAaµA

b
νA

µ
dA

ν
e , (1.39)

where we see that only three- and four-gluon selfcoupling vertices emerge. Here we use the

definition of the gluon field strength tensor

Gaµν ≡ ∂µAaν − ∂νAaµ + gsfabcAbµAcν , (1.40)
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where fabc are the antisymmetric structure constants of the SU(3) group. Hence, the last term

of Eq. (1.40) is the difference to an abelian theory like QED with the relevant consequences

of gauge-field selfcoupling. The gluon field strength tensor transforms under the local color

symmetry as follows

GaµνT
a → (GaµνT a)

′ = U(x)GaµνT aU �(x) . (1.41)

The sum of the Lagrangians (1.38) and (1.39) yields the QCD Lagrangian

LQCD = LD + LYM . (1.42)

Centre symmetry

The discrete centre symmetry Zn belongs to a special unitary group and is therefore a part of

the SUc(Nc) color symmetry

U = exp
⎛
⎝
−i

N2
c −1

∑
a=1

θaT a
⎞
⎠
, (1.43)

where θa are such that

Zn = exp(−2πn

Nc
1) , n = 0,1,2, ...,Nc − 1 . (1.44)

The gauge fields and the quark spinor fields transform under the transformations of the centre

symmetry as follows

Aµ → A′
µ = ZnA�

µZn = Aµ , (1.45)

qf → q′f = Znqf . (1.46)

The Lagrangian of QCD is clearly invariant under this symmetry16. But if one considers phe-

nomena at non-vanishing temperature then the Zn symmetry is spontaneously broken above a

critical temperature in the pure Yang-Mills sector of QCD. In that case the deconfinement takes

place where the Polyakov loop is the corresponding order parameter, see e.g. Refs. [63, 64, 65, 66]

for details.

Discrete symmetries C, P , and T

The QCD Lagrangian is separately invariant under the following discrete symmetries: parity

P (inversion of the spatial coordinates), charge conjugation C (inversion of particle into an-

tiparticle), and time reversal T . Clearly, QCD, as every QFT [67], is invariant under CPT

transformations.

The quark spinor fields transform under parity as

q(t, x⃗) → q′(t, x⃗) = γ0q(t,−x⃗) , (1.47)

q̄(t, x⃗) → q̄′(t, x⃗) = q̄(t,−x⃗)γ0 (1.48)

16At non-vanishing temperature, due the presence of quarks, the centre symmetry is not exactly realized because

the fermionic fields not fulfill antisymmetric boundary conditions.
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and under charge conjugation as

q(x) → q′(x) = Ĉq̄(x)T , (1.49)

q̄(x) → q̄′(x) = q(x)T Ĉ , (1.50)

where the operator Ĉ reads

Ĉ = −iγ0γ2 . (1.51)

Note, the gamma matrices in Eq. (1.51) have to be in the Dirac representation.

Moreover, these symmetries are related to quantum numbers which characterize hadrons. Namely,

the parity of a quark-antiquark meson can be obtained via

P = (−1)L+1 (1.52)

and its charge conjugation quantum number through

C = (−1)L+S , (1.53)

where L is the angular momentum and S the spin of the q̄q system. Due to the fact that charge

conjugation is only an exact symmetry for neutral states but not for charged ones, the so-called

G parity, which combines parity with isospin symmetry (I) [11, 68], was introduced as:

G = (−1)L+S+I . (1.54)

Global chiral symmetry

The global chiral symmetry is a further continuous symmetry of QCD described by the unitary

group

UR(Nf) ×UL(Nf) , (1.55)

which is isomorphic to the group

UV (Nf) ×UA(Nf) ≡ SUV (Nf) ×UV (1) × SUA(Nf) ×UA(1) . (1.56)

This symmetry undergoes several breaking mechanisms which are of explicit as well as sponta-

neous type. In order to investigate the Dirac part of the QCD Lagrangian (1.21) with respect to

this symmetry, we first use the chiral projection operators which are defined as follows

P̂R,L = 1

2
(1 ± γ5) , (1.57)

where

γ5 = iγ0γ1γ2γ3 = γ5 . (1.58)

Thus, the quark spinor fields can be decomposed into right- and left-handed Dirac spinors

qf = (P̂R + P̂L) qf ≡ qf,R + qf,L , (1.59)

q̄f = q̄f (P̂L + P̂R) ≡ q̄f,R + q̄f,L . (1.60)
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Using the anticommutation relation of the gamma matrices

{γ5, γµ} = 0 (1.61)

and

P̂R,Lγµ = γµP̂L,R (1.62)

we obtain for the Dirac part of the QCD-Lagrangian

LD =
Nf

∑
f=1

(iq̄f,RγµDµqf,R + iq̄f,LγµDµqf,L − iq̄f,Rmfqf,L − iq̄f,Lmfqf,R) . (1.63)

The global chiral transformations of the quark spinor fields in flavor space read

qf,R,L → q′f,R,L = UR,Lqf,R,L = exp
⎛
⎜
⎝
−i

N2
f−1

∑
i=0

θiR,LT
i
⎞
⎟
⎠
qf,R,L , (1.64)

q̄f,R,L → q̄′f,R,L = q̄f,R,LU �
R,L = q̄f,R,L exp

⎛
⎜
⎝
i

N2
f−1

∑
i=0

θiR,LT
i
⎞
⎟
⎠
, (1.65)

where θiR,L are the parameters and T i with

T 0 =
√

1

2Nf
1Nf (1.66)

the generators of the U(Nf) group.

According to the Noether theorem [69], there are in the chiral limit and neglecting anomalies

2N2
f conserved currents. These are the right-handed

Rµ = V µ −Aµ , (1.67)

and the left-handed

Lµ = V µ +Aµ , (1.68)

currents, respectively, which can be expressed as vector

V µ = R
µ +Lµ

2
(1.69)

and axial-vector currents

Aµ = L
µ −Rµ

2
. (1.70)

The advantage of the latter representation is that V µ and Aµ have a definite parity, 1 and −1,

respectively. A direct calculation from the QCD Lagrangian yields [43]

V µ0 = q̄γµq , (1.71)

V µi = q̄γµT iq , (1.72)

Aµ0 = q̄γµγ5q , (1.73)
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Aµi = q̄γ
µγ5T

iq , (1.74)

with

∂µV
µ
0 = 0 , (1.75)

∂µV
µ
i = iq̄ [mf , T

i] q , (1.76)

∂µA
µ
0 = 2iq̄mfγ5q , (1.77)

∂µA
µ
i = iq̄ {mf , T

i}γ5q . (1.78)

Applying the parity transformations (1.47) and (1.48) to the vector and axial-vector currents

(1.71)-(1.74) yields

V0(t, x⃗) → V ′
0(t, x⃗) = V0(t,−x⃗) , (1.79)

Vi(t, x⃗) → V ′
i (t, x⃗) = −Vi(t,−x⃗) (1.80)

and

A0(t, x⃗) → A′
0(t, x⃗) = −A0(t,−x⃗) , (1.81)

Ai(t, x⃗) → A′
i(t, x⃗) = Ai(t,−x⃗) . (1.82)

Explicit breaking of the global chiral symmetry The chiral symmetry is explicitly broken

classically due to the non-vanishing quark masses as well as at the quantum level due to loop

corrections. In the chiral limit, mf = 0, the chiral symmetry is classically conserved. Thus,

the Dirac part of the QCD Lagrangian (1.63) is invariant under the transformations (1.64) and

(1.65), but if mf ≠ 0 then non-vanishing mass terms occur in the Lagrangian (1.63), which mix

the right- and the left-handed quark spinor fields and explicitly break the chiral symmetry. In

the case of degenerate quark masses, the so-called flavor limit,

mu =md = ... =mNf , (1.83)

the N2
f currents of the UA(Nf) symmetry are explicitly broken

UR(Nf) ×UL(Nf) → UV (Nf) , (1.84)

see Eqs. (1.77) and (1.78). In the case when quark masses are not degenerate,

mu ≠md ≠ ... ≠mNf , (1.85)

then also the N2
f − 1 currents of the SUV (Nf) symmetry are broken

UR(Nf) ×UL(Nf) → UV (1) , (1.86)

where UV (1) corresponds to conservation of the baryon number, see Eqs. (1.75) and (1.76).

At the quantum level even in the chiral limit the chiral symmetry is explicitly broken to

UR(Nf) ×UL(Nf) → UV (Nf) × SUA(Nf) . (1.87)

The reason is that after quantization the singlet of the axial current does not vanish

∂µA
µ
0 = 2iq̄mfγ5q −

g2
sNf

32π2
GaµνG̃

µν
a ≠ 0 , (1.88)
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where

G̃µνa = 1

2
εµνρσGaρσ (1.89)

is the dual gluon field strength tensor. This phenomenon, which is known as the chiral or UA(1)
anomaly, was first seen in QED and is analogously realized in QCD [70]. In QFT anomalies play

an important role. In general anomalies are symmetries of a classical Lagrangian that are broken

at the quantum level [15].

The non-zero quark masses, see Table 1.1, originate from the so-called Higgs mechanism, which

is named after Peter W. Higgs and describes a spontaneous breaking of a gauge symmetry17

[71, 72, 73]. The corresponding part of the Higgs Lagrangian is given by

LintHiggs = λfHΨ̄fΨf , (1.90)

where H is the scalar Higgs field (JPC = 0++), Ψf a field of a quark flavor f ∈ {u, d, s, ...,Nf}
and λf the corresponding coupling constant. Since the Higgs field has the quantum numbers of

vacuum it may condense. Hence, one shifts this field

H → υ +H , (1.91)

where υ ≡ ⟨H⟩ is the vacuum expectation value (vev) of the Higgs field H. Inserting the shift

(1.91) into the Lagrangian (1.90) one obtains

LintHiggs → λfυΨ̄fΨf + λfHΨ̄fΨf , (1.92)

where

mf = λfυ (1.93)

is the current mass of the corresponding quark flavor.

The Higgs boson was discovered in 2012 at the A Toroidal LHC ApparatuS (ATLAS) and the

Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) [74, 75]. It was

the last missing particle of the SM18 with a mass [11]

mH = (125.7 ± 0.4) GeV . (1.94)

It should be stressed that the generation of the baryonic mass through the Higgs mechanism is

only about ≲ 5% and therefore negligible. The main contribution originates from the spontaneous

breaking of the global chiral symmetry.

Spontaneous breaking of the global chiral symmetry Apart from the explicit breaking

of the chiral symmetry in the vacuum of QCD, ∣Ω⟩, there is also the spontaneous breaking of

chiral symmetry:

UV (Nf) × SUA(Nf) → UV (Nf) , (1.95)

17The Higgs mechanism also explains why the gauge bosons of the weak interaction, Z0 and W±, have a mass.
18It is interesting that the Higgs particle is the only scalar among the elementary particles of the SM. The

search for the Higgs particle was the main reason for building the LHC.
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see e.g. Refs. [76, 77, 78]. In this case the vacuum is only invariant under the transformations

of the vector symmetry but is not left invariant by the axial-vector symmetry

T̃ a∣Ω⟩ ≠ ∣Ω⟩ , (1.96)

where T̃ a = γ5
τa

2
is a generator of the axial-vector transformations which act on the QCD vacuum.

This leads to a non-vanishing quark or chiral condensate

⟨q̄q⟩ = ⟨q̄RqL + q̄LqR⟩ ≠ 0 (1.97)

and according to the Goldstone theorem there arise N2
f −1 massless states, the Nambu-Goldstone

bosons [44, 45, 79]. Hence, the spontaneous breaking of the chiral symmetry explains some im-

portant features of the hadronic mass spectrum. For instance, the pion, which is a pseudoscalar-

isotriplet

IG(JPC) = 1−(0−+) (1.98)

corresponds to the Nambu-Goldstone bosons for Nf = 2. Indeed, the pion is not a massless

state but possesses a mass of about 140 MeV [11]. However, this mass originates not from the

Goldstone but from the Higgs sector. The pion field,

π⃗ ≡ iq̄γ5τ⃗ q , (1.99)

transforms under the vector as well as axial-vector symmetry as follows

π⃗ → π⃗′ = π⃗ + θ⃗ × π⃗ , (1.100)

π⃗ → π⃗′ = π⃗ + θ⃗σ , (1.101)

where

σ ≡ q̄q (1.102)

is a scalar-isoscalar field

IG(JPC) = 0+(0++) . (1.103)

Hence, the pion field is invariant under the vector transformations, see Eq. (1.100), but not under

the axial-vector transformations, because it transforms into the so-called chiral partner which is

the sigma field, see Eq. (1.101). Thus, one would expect that both the pion and the sigma field

have the same mass. Formerly, the chiral partner of the pion was identified with the resonance

f0(500) [11] but at the present time many works show that the resonance f0(1370) [11] with a

mass of

mf0(1370) = (1200 − 1500) MeV (1.104)

is the chiral partner of the pion, see e.g. Refs. [1, 3, 19, 80, 81] and later on in this work. This

large mass splitting between the pion and its chiral partner can only be explained by spontaneous

but not by explicit breaking of the chiral symmetry. At a sufficiently large non-zero temperature

restoration of the chiral symmetry takes place and the masses of the chiral partners become

degenerate, see e.g. Refs. [82, 83].
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Since the realization of the spontaneous breaking of the chiral symmetry is crucial in our hadronic

model, we demonstrate this idea by using the simple classical φ4-theory which can be found in

many standard text books on QFT, e.g. [10].

The corresponding Lagrangian with a scalar field φ reads

Lφ4 = 1

2
∂µφ∂

µφ + Vφ4(φ) , (1.105)

where

Vφ4(φ) = 1

2
m2φ2 + λ

4!
φ4 . (1.106)

This Lagrangian possesses a discrete Z2 symmetry,

φ→ φ′ = −φ . (1.107)

If m2 > 0 and λ > 0 then only one minimum of the potential (1.106) at φ = φ0 = 0 exists. In

this case the ground state fulfills the Z2 symmetry and possesses the same symmetry as the

Lagrangian (1.105). However, when one requires m2 !< 0, then one finds two minima of the

potential (1.106),

φ1,2 = ±φ0 = ±
√

−6m2

λ
, (1.108)

see Figure 1.7, where each one of them may correspond to the ground state of the physical system

described by the φ4-theory.

-Φ0 Φ0

Φ@ED

V
Φ4
HΦL

Figure 1.7: Potential of the φ4-theory (1.106) for m2 < 0 and λ > 0.

Now, the ground state is not any more symmetric under the Z2 transformation (1.107) which

indicates spontaneous symmetry breaking. Which of the two equivalent minima is the vev of

the physical system is randomly chosen by the system itself. In order to study the physical

excitations or fluctuations around the vacuum one has to shift the field

φ→ φ0 + φ . (1.109)

Thus, the corresponding quadratic mass can be studied as well as additional three-point vertices,

which originate from the spontaneous symmetry breaking.
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Lorentz symmetry

An essential requirement for a fundamental theory like QCD is invariance under Lorentz trans-

formations. These transformations correspond to three rotations as well as three boosts with six

generators in total. The Lorentz transformations in Dirac-spinor representation read

S(Λ) = exp(− i
4
ωµνσ

µν) , (1.110)

where ωµν = −ωνµ are the parameters of the Lorentz group and

σµν = 1

2
[γµ, γν] (1.111)

represent the corresponding generators. Accordingly, the quark spinor fields of the QCD La-

grangian (1.21) transform under Lorentz symmetry as follows:

qf(x) → q′f(x′) = S(Λ)qf(Λ−1x) , (1.112)

q̄f(x) → q̄′f(x′) = q̄f(Λ−1x)S(Λ)−1 . (1.113)

Dilatation symmetry

We complete our considerations of the symmetries of QCD by discussing the dilatation symmetry

which belongs to the conformal group under which the classical QCD Lagrangian with mf = 0

is invariant [84, 85]. The conformal group has fifteen generators, where six of them are those

of the Lorentz group, discussed previously. Furthermore, when translations of space-time are

considered, four additional generators occur. These ten generators constitute the Poincaré or

inhomogeneous Lorentz group. Finally, among the last five generators, four correspond to special

conformal transformations and the last one to the dilatation symmetry.

The dilatation transformation reads

xµ → x′µ = λ−1xµ , (1.114)

where λ−1 is a scale parameter which changes the scale of the Minkowski-space by affecting the

metric, but without violating the conservation of length intervals and angles. The fields of an

arbitrary Lagrangian transform as follows

ϕi(x) → ϕ′i(x) = λdϕi(λx) , (1.115)

where d is the naive scaling dimension of the corresponding field and i indicates its components.

Note that ϕ′i(x′) = λdϕi(λλ−1x) = λdϕi(x). The quark spinor fields transform under dilation as

qf → q′f = λ3/2qf (1.116)

and the gauge fields of QCD as

Aaµ → A′a
µ = λAaµ . (1.117)
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This implies that, at the classical level, where no loop corrections are taken into account, and in

the chiral limit, mf = 0, the QCD action is invariant under the transformations of the dilatation

symmetry:

S′LQCD = ∫ d4x′L′QCD = ∫ d4x′ (q̄′iγµD′
µq

′ − 1

4
G′a
µνG

′µν
a )

= ∫ λ−4d4x(λ3/2q̄λiγµDµλ
3/2q − 1

4
λ2Gaµνλ

2Gµνa )

= ∫ d4xLQCD = SLQCD . (1.118)

This is evident because no dimensionful parameter occurs in Eq. (1.118). According to the

Noether theorem a corresponding current

JµYM = xνTµνYM (1.119)

exists, where TµνYM is the energy-momentum tensor of the pure Yang-Mills part of QCD La-

grangian

TµνYM = ∂LYM
∂(∂µAρ)

∂νAρ − gµνLYM . (1.120)

Provided that energy-momentum is conserved, ∂µT
µν
YM = 0, one obtains in the case of dilatation

invariance

∂µJ
µ
YM = TµYM,µ = 0 . (1.121)

Explicit breaking of the dilatation symmetry The dilatation symmetry is explicitly bro-

ken in two ways. Firstly, due to the non-vanishing current quark masses

Tµµ =
Nf

∑
f=1

mf q̄q ≠ 0 , (1.122)

but if only the light quark flavors are considered this breaking is small because the masses of

these quarks are small compared to those of hadrons.

Nevertheless, the explicit breaking of dilatation symmetry by quantum effects is more significant.

This phenomenon is called trace or scale anomaly which plays a fundamental role in QCD.

Namely, in QCD one obtains

∂µJ
µ
YM,dil = T

µ
YM,µ =

β(gs)
4gs

GaµνG
µν
a ≠ 0 , (1.123)

where

β(gs) = µ
∂gs
∂µ

, (1.124)

is the β-function of the renormalization group of QCD. A calculation at one-loop level yields

β(gs) = −bg3
s = −

11Nc
48π2

g3
s , (1.125)

whereas in full QCD with Nf flavors the constant b reads

b = 11Nc − 2Nf

48π2
. (1.126)
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Thus, when quantum fluctuations are included and renormalization is carried out, the coupling

constant of QCD gs becomes a ‘running’ (renormalized) one

gs → gs(µ) , (1.127)

where µ is the energy-scale parameter19. The solution of Eq. (1.124) is given by

g2
s(µ) =

g2
0

1 + 2bg2
0 ln µ

µ0

. (1.128)

In order to obtain an asymptotically free theory, in which the ‘running’ coupling constant de-

creases by increasing the energy and vice versa, the following constraint must hold

b > 0⇔ Nf <
11Nc

2
, (1.129)

which is the case in nature, where Nf = 6 and Nc = 3. This implies that in the low-energy

region gluons as well as quarks couple strongly and are therefore confined in hadrons, which are

invariant under the transformations of SUc(3)-symmetry.

The pole of the ‘running’ coupling (1.128) is given by

1 + 2bg2
0 ln

µ

µ0

!= 0⇒ µL ≡ ΛL = ΛYM = µ0e
− 1

2bg2
0 , (1.130)

which is called the Landau pole and can be interpreted in the following way. Due to the large value

of the strong coupling constant in the low-energy region perturbative calculations are impossible

[11], but this does not imply that the running coupling becomes infinite at the Landau pole,

gs(µL) → ∞. In fact, the β-function implies that at the scale µ ≈ ΛYM QCD becomes a strongly

coupled theory where perturbative methods fail and Eq. (1.128) reads

gs(µ)2 = 1

2b ln µ
ΛYM

, (1.131)

where ΛYM is the Yang-Mills scale. Thus, the β-function induces an energy scale which in turn

generates a dimension in QCD which originally was, at the classical level and in the chiral limit,

dimensionless. This important phenomenon is called dimensional transmutation. Unfortunately,

the value of ΛYM , or of ΛQCD ≳ ΛYM , when quarks are taken into account, cannot be calculated

theoretically, because g0 in Eq. (1.130) for a fixed µ0 is unknown. However, at a typical hadronic

scale which corresponds approximately to the radius of a nucleon,

Λ−1
QCD ≃ 1 fm , (1.132)

one obtains

ΛQCD ≃ 200 MeV . (1.133)

For a more precise determinations we refer e.g. to Ref. [86]. As a consequence of the trace

anomaly, the vev of the TµYM,µ (1.123) does not vanish and represents the so-called gluon con-

densate:

⟨TµYM,µ⟩ = −
11Nc

48
⟨αs
π
GaµνG

µν
a ⟩ = −11Nc

48
C4 ≠ 0 , (1.134)

19The energy dependence of the strong coupling gs is the only reason why the divergence of the scale current

(1.123) does not vanish.
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where

C4 ≃ (330 − 600 MeV)4 . (1.135)

The numerical value (1.135) has been obtained through QCD sum rules (lower bound of the

interval) [87, 88, 89, 90, 91, 92, 93, 94, 95] and lattice-QCD simulations (upper bound of the

interval) [96, 97, 98, 99, 100, 101, 102, 103, 104, 105].

1.3 Glueballs

As already mentioned, glueballs, the bound states of gluons, are naturally expected in QCD due

to the non-abelian nature of the theory. The gluons, which possess the quantum numbers

I(JP ) = 0(1−) , (1.136)

interact strongly with themselves and thus they can bind and form colorless states. The bare

mass of gluons is mg = 0 [11], but through the interaction of a gluon with the vacuum an effective

mass emerges

mg = 0→m∗
g ≃ (400 − 900) MeV . (1.137)

It is important to stress that the generation of this effective gluonic mass takes place without

breaking the local symmetry, see Refs. [106, 107, 108] for technical details.

The effective gluonic mass should be interpreted as an energy scale which emerges upon non-

perturbative physics. It is then responsible for the emergence of the masses of the glueballs

as well. This is in analogy to the quark sector where the masses of the constituent quarks, for

instance of the light ones,

m∗
quds

≃ (300 − 450) MeV , (1.138)

are considerable larger than their corresponding current masses, see Table 1.1. The existence

of glueballs has been studied in the framework of the effective bag model20 for QCD already

four decades ago [110, 111, 112, 113, 114] and it has been further investigated in a variety of

approaches [60, 115, 116, 117]. Numerical calculations in lattice QCD of the Yang-Mills sector of

QCD also find a glueball spectrum with different quantum numbers, in which the scalar glueball

is the lightest state, see Figure 1.8 [52, 53, 54, 55, 56, 57, 58].

An important feature of glueballs is that due to the ‘democratic’ coupling of the gluons to all

quark flavors, the glueball should be a flavor-blind object. Moreover, glueballs can mix with

other mesonic states, most importantly with quarkonia (q̄q), with the same quantum numbers.

This makes an experimental verification of glueballs more complicated, because measurable phys-

ical resonances emerge as admixtures. The search for states which are predominantly glueballs

represents an active experimental and theoretical area of research, see Refs. [60, 115, 116, 117]

and references therein. The reason for these efforts is that a better understanding of the glueball

properties would be an important step in the comprehension of the non-perturbative behavior

of QCD. However, although up to now particular glueball candidates exist, some of which will

20This model is often called M.I.T. bag model, because it was first introduced at the Massachusetts Institute of

Technology. For a detailed introduction we refer to Ref. [109].
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Figure 1.8: The mass spectrum of glueballs in the pure SUc(Nc = 3) gauge theory. The masses

are given both in terms of the Sommer parameter r0 (r−1
0 = 410 MeV) and GeV. The thickness

of each colored box indicates the statistical uncertainty of the mass. This figure is taken from

Ref. [55].

be discussed later on, no state which is predominantly and unambiguously a glueball has been

identified.

In the following we will discuss some gluon-rich physical production processes, see Fig 1.9, in

which the formation of glueballs as well as their detection is most probable [20, 60, 59, 118].

Figure 1.9: Feynman diagrams possibly leading to the formation of glueballs: (left) radiative

J/ψ decays, (middle) pomeron-pomeron scattering in hadron-hadron central collisions, (right) p̄p

annihilation. This figure is taken from Ref. [20].

� Radiative decay of J/ψ

J/ψ, is a c̄c meson or a charmonium, which possesses the quantum numbers of the photon

JPC = 1−−, and is with a decay width of

ΓJ/ψ = 92.9 ± 2.8 keV (1.139)
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a very narrow resonance [11]. The reason is that the decay

J/ψ → D̄D , (1.140)

which is actually favored, according to the OZI rule,21 because D mesons contain a charm

quark, is kinematically not allowed. Namely,

mJ/ψ = (3096.916 ± 0.011) MeV , (1.141)

is below the threshold of the D̄D mesons [11]. In addition, the decay of J/ψ into mesons

which are made of light quarks is OZI suppressed. Such decays proceed for instance via

gluons which then convert into hadrons, but these kinds of decays are of high multiplicity

and therefore difficult to detect. Another decay process of J/ψ is into a photon and two

gluons. These gluons can form a glueball as an intermediate state, which in turn decays

further into ordinary mesons. Moreover, the scalar and tensor glueballs cannot be part of

three-gluon process. For this very reason the radiative decay of J/ψ is of prime importance

for the search for glueballs. At the BESIII experiment huge data samples of such decays

are studied [123].

� Central collisions

A central collision is a scattering process of two high-energy hadrons, such as protons. In

this process the hadrons lose energy via emission and exchange of gluons. Here a glueball

can be formed, which then further decays into q̄q mesons.

� p̄p annihilation

In experiments where protons and antiprotons annihilate, a gluon-rich environment emerges

due to annihilation of quark and antiquark pairs into gluons. Hence glueballs can be directly

formed or they can be produced together with other particles as intermediate states, which

subsequently decay into ordinary mesons. The upcoming P̄ANDA experiment will use an

antiproton beam with energy range of 1.5 GeV to 15 GeV colliding with a proton target at

rest [124, 125, 126, 127]. Thus, glueballs with masses of

mglueball =
√

2mp(mp +Ep̄) = 2.1 − 5.5 GeV (1.142)

can be directly formed. Note that mp is the mass of the proton or antiproton and Ep̄ =
(
√
k⃗2 +m2

p, k⃗) is the energy of the antiproton.

Here we discussed processes in which it is highly probable that glueballs can be produced. On

the other side γγ fusion is a process, in which the production of glueballs should be strongly

suppressed because of the fact that photons only couple to the intrinsic electric charge but not to

the intrinsic color charge. Therefore it is not expected to see a substantial production of glueballs

in γγ processes.

21The OZI rule, named after Susumu Okubo, George Zweig, and Jugoro Iizuka, means that competing processes,

in which exchange of gluons is required, are suppressed, contrary to those in which the quark lines are not

interrupted, see Refs. [27, 119, 120, 121, 122].
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Scalar glueball

According to the Particle Data Group (PDG) in the scalar-isoscalar sector,

IG (JPC) = 0+ (0++) ,

there are currently five resonances in the low-energy region (below 2 GeV) which we report in

Table 1.2.

Resonance Mass [MeV] Decay Width [MeV]

f0(500) 400 − 550 400 − 700

f0(980) 990 ± 20 40 − 100

f0(1370) 1200 − 1500 200 − 500

f0(1500) 1505 ± 6 109 ± 7

f0(1710) 1522+6
−5 135 ± 7

Table 1.2: Masses and decay widths of the f0 resonances [11].

It is natural to expect that one of these scalar-isoscalar resonances is the ground state of the

glueball spectrum obtained by lattice QCD, the scalar glueball. However, there are two impor-

tant and quite general aspects of the physics of the scalar glueball, which need to be discussed

separately.

� Is the scalar glueball broad or narrow?

This question is extremely important for the phenomenology and the assignment of the

scalar glueball to an existing resonance. Yet, conflicting arguments exist:

(i) In the large-Nc limit the glueball is predicted to be narrow. Namely, the decay of a bare

glueball into two q̄q mesons, e.g., G → ππ, scales as N−2
c . For comparison, the decay of a

quark-antiquark state into two quark-antiquark states scales as N−1
c . Since the large-Nc

limit is phenomenologically successful, the quite narrow resonances f0(1500) and f0(1710)
are candidates for being a scalar glueball.

(ii) In Ref. [128] it is shown that the decay G → ππ depends on the vev G0 of the dilaton

field as G−2
0 . The values of G0 can be related to the gluon condensate of QCD by assuming

that the trace anomaly is saturated by the dilaton field. Using the values of the gluon

condensate from either QCD sum rules or lattice-QCD calculations, it turns out that the

width of the decay G→ ππ is very large

ΓG→ππ ≳ 500 MeV .

The authors of Ref. [128] conclude that the search for the scalar glueball may be very

difficult (if not impossible) if this state is too broad. Note that a wide glueball was also

discussed in Refs. [60, 129, 130, 131, 132].
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� Assuming that the scalar glueball is narrow, is f0(1500) or f0(1710) mostly gluonic?

A consensus has grown that the light scalar mesons f0(500), f0(980), a0(980), K∗
0 (800)

are not quark-antiquark states. The possible assignments are tetraquark or molecular

states [133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147]. As a

consequence, the scalar quark-antiquark states are located above 1 GeV: a0(1450) and

K∗
0 (1430) represent the isovector and isodoublet q̄q states with JPC = 0++. This picture

has been confirmed in Refs.[1, 148, 80, 81]. In particular, in Ref. [81] a fit to a variety of

experimental data has shown that the scalar states lie between 1 and 2 GeV. Then, if the

glueball is a narrow state, the main question is which of the two resonances f0(1500) and

f0(1710) contains the largest gluonic amount.

Glueballs with other quantum numbers

The second lightest lattice-predicted glueball state has tensor quantum numbers (JPC = 2++)

and a mass of about 2.2 GeV. A good candidate could be the very narrow resonance fJ(2200)
[149, 150], if the total spin of the latter will be experimentally confirmed to be J = 2.

The third least massive glueball predicted by lattice QCD has pseudoscalar quantum numbers

(JPC = 0−+) and a mass of about 2.6 GeV. Quite remarkably, most theoretical works investigating

the pseudoscalar glueball did not take into account this prediction of Yang-Mills lattice studies,

but concentrated their search around 1.5 GeV in connection with the isoscalar-pseudoscalar res-

onances η(1295), η(1405), and η(1475). A candidate for a predominantly light pseudoscalar

glueball is the middle-lying state η(1405) due to the fact that it is largely produced in (gluon-

rich) J/ψ radiative decays and is missing in γγ reactions [151, 152, 153, 154, 155, 156]. In this

framework the resonances η(1295) and η(1475) represent radial excitations of the resonances η

and η′. Indeed, in relation to η and η′, a lot of work has been done in determining the gluonic

amount of their wave functions. The KLOE Collaboration found that the pseudoscalar glueball

fraction in the mixing of the pseudoscalar-isoscalar states η and η′ can be large (∼ 14%) [157],

but the theoretical work of Ref. [158] found that the glueball amount in η and η′ is compatible

with zero, see however, also Ref. [159].

A further very interesting glueball state is the vector glueball (JPC = 1−−) [160, 161, 162, 163,

164, 165, 166] with a mass of about 3.8 GeV, as lattice-QCD simulations suggest, see Ref. [55]

and Figure 1.8. This glueball was first studied with respect to the so-called ρπ,K∗K̄ puzzle

[167, 168]. Otherwise, it is expected that the vector glueball is a ‘clean’ state with a small

admixture of q̄q. The arguments therefore are on the one hand its structure and on the other

hand its large mass. The 1−− glueball is composed of three gluons and hence a conversion into

a quark-antiquark configuration should be difficult. Therefore one expects that this glueball is

narrow as well as that its mixing with ordinary mesons is small. Contrary to the scalar glueball

which is hidden among the f0 resonances, see Table 1.2, the identification of the pseudoscalar

as well as the vector glueball should be less complicated, for instance by the upcoming P̄ANDA

experiment [124, 125, 126] or GLUonic EXcitations (GlueX) experiment of the Jefferson national

LABoratory (JLAB) [169].
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1.4 Motivation

As previously discussed, in recent decades substantial progress in the field of strong interaction

has been achieved. Nevertheless, there are still open questions, some of which we address in this

work. Therefore, we repeat the relevant ones in order to outline our objectives and beyond that

we give a brief idea of our approach.

1.4.1 Objectives

� The understanding of the scalar sector in the low-energy region is one of the challenges of

hadronic physics. The assignment of the states of the 0++ nonet to the physical resonances

is still not finalized. Due to the overpopulation in the scalar-isoscalar sector, see Table 1.2,

a natural question is whether if one of them is predominantly the glueball. The resonances

f0(1500) and f0(1710) seem to be good candidates. In order to figure out which of them

has the largest gluonic content, one has to determine the mixing matrix.

� The search for the scalar glueball has been, and still is, in the center of vivid activity of

low-energy QCD because of its importance regarding a basic phenomenon of QCD: the

anomalous breaking of dilatation invariance, which is associated with the generation of the

gluon condensate. Insights into the latter one can be useful to answer the question how

large is the contribution of the gluon condensate in generating the meson masses.

� The existence of glueballs is a clear prediction of QCD. Due to the strong mixing in the

scalar-isoscalar sector the identification of the ground-state glueball is still more compli-

cated. Therefore, a study of glueballs with other quantum numbers, as predicted by lattice

QCD, is very promising because one expects a smaller mixing with quark-antiquark mesons.

1.4.2 Approach

In the following we clarify which methods our approach is based on and what kind of input we use.

We treat the addressed physical issues phenomenologically by computing physical quantities, in

particular masses and decay widths, which we then compare with experimental data or we make

predictions for upcoming experiments, in order to test our effective hadronic model. A general

feature of such models is that one has to determine a set of free unknown parameters. A usual

method is the χ2 analysis [11] which we made use of. In addition, we present some of our results

as branching ratios. This is a common procedure, because some parameters cancel when taking

the ratio of two quantities.

The χ2 function

The function of the χ2 method reads

χ2 ≡ χ2(xi) =
n

∑
j=1

⎛
⎝
Qthj (xi) −Qexj

∆Qexj

⎞
⎠

2

, (1.143)

where Qexj are experimental quantities, such as masses and decay widths, which have the experi-

mental errors ∆Qexj and Qthj (xi) are the corresponding theoretical expressions which depend on
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the parameters, xi with i = 1...n, of the model. After minimizing the function (1.143) we obtain

a set of parameters of the model which validity is given to the value of χ2. As an additional

indicator for the reasonability of the results we make use of large-Nc arguments, according to

which some parameters must be smaller than others. As an input for the χ2 procedure we use

experimental masses and decay widths of resonances listed in the PDG [11].

Branching ratios

For calculations of branching ratios where χ2 analysis was not necessary we use as input results

from the glueball mass spectrum obtained by lattice-QCD simulations in quenched approxima-

tion (e.g. neglecting quarks) [52, 53, 54, 55] and PDG data as well.

We perform our phenomenological study in vacuum, i.e., at vanishing temperature (T = 0) and

chemical potential (µ = 0), as well as at tree level, i.e., our calculations are done without loop

corrections. The computations are performed with Mathematica. In the following we show the

formulas which are used in this work for calculating both two- and three-body decay processes.

Formula for two-body decays

For the computation of two-body decays, P → P1P2, we use the well-known formula

ΓP→P1P2 = sfI
kf

8πM2
∣−iAP→P1P2 ∣

2
, (1.144)

where

kf =
1

2M

√
M4 + (m2

1 −m2
2)2 − 2M2(m2

1 +m2
2) θ(M −m1 −m2) (1.145)

is the modulus of the three-momentum of one of the outgoing particles (the moduli of the mo-

menta are equal in the rest frame of the decaying particle). Moreover, M is the mass of the

decaying particle P and m1 and m2 refer to the masses of the particles P1 and P2. AP→P1P2 is

the decay amplitude. The symmetrization factor sf avoids double counting of identical Feynman

diagrams and I is the isospin factor which considers all subchannels of a particular decay channel.

The θ function encodes the decay threshold. Additionally, for decay processes which are on the

energy threshold we perform an integration over a corresponding spectral function [170]. This

function reads

dP (XM) = N X2
MΓP→P1P2(XM)

(X2
M −M2)2 +X2

MΓ2
P→P1P2

(XM)θ(XM −m1 −m2) , (1.146)

where XM is the ‘running’ mass of particle P and N is a normalization constant which ensures

the conservation of probability

∫
∞

0
dP (XmP )dXmP = 1 . (1.147)

Formula for three-body decays

In case of three-body decays, P → P1P2P3, we use for our calculations the well-known formula

ΓP→P1P2P3 =
sf

(2π)332M3 ∫
(M−m3)2

(m1+m2)2
dm2

12 ∫
(m23)max

(m23)min

∣ − iAP→P1P2P3 ∣2dm2
23 , (1.148)
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where

(m23)min = (E∗
2 +E∗

3 )2 − (
√
E∗2

2 −m2
2 +

√
E∗2

3 −m2
3)

2

, (1.149)

(m23)max = (E∗
2 +E∗

3 )2 − (
√
E∗2

2 −m2
2 −

√
E∗2

3 −m2
3)

2

, (1.150)

and

E∗
2 = m

2
12 −m2

1 +m2
2

2m12
, E∗

3 = M
2 −m2

12 −m2
3

2m12
. (1.151)

The quantities m1, m2, m3 refer to the masses of the particles P1, P2, and P3, AP→P1P2P3 is the

decay amplitude, and sf is a symmetrization factor. This factor equals 1 if P1, P2, and P3 belong

to different particles. In case of two identical particles in the final state the symmetrization factor

equals 2 and for three identical particles in the final state we have sf = 6.

More details and a derivation of these formulas can be found in many standard text books on

particle physics, scientific works, as well as lectures, e.g. Refs. [11, 17, 19, 68, 171, 172].
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Chapter 2

A Hadronic Model: The eLSM

This chapter aims to introduce an effective hadronic model of QCD in order to study physical

issues of hadron spectroscopy in the mesonic sector, which we discussed in the previous chapter.

This model is called extended Linear Sigma Model (eLSM) and was developed in Refs. [1, 2, 3,

4, 5, 6, 7, 8, 9, 17, 18, 19, 80, 81, 148, 166]. Following these references we will present and discuss

the eLSM in detail in order to achieve a deep understanding of this model, which will then be

used to study the physical properties of mesons.

2.1 Properties of the eLSM

2.1.1 General remarks

Let us start with a general question:

Why are hadronic models like the eLSM needed at all?

As mentioned in chapter 1 at present an exact analytical solution of QCD in (3 + 1) dimen-

sions does not exist. Furthermore, the degrees of freedom (d.o.f.) of the QCD Lagrangian are

quarks and gluons but due to confinement we directly observe only free hadrons in experiments.

Moreover, in the low-energy region of QCD the ‘running’ coupling constant gs(µ) becomes large

and therefore the application of perturbative methods is not possible. For this reasons effective

models with hadrons as d.o.f. are developed. In order to construct an effective hadronic model

the following question arises immediately:

What kind of hadrons should be implemented into the effective Lagrangian?

Unfortunately, at the present time this question cannot be answered for sure but as discussed

in Ref. [18] the large-Nc limit yields some indications. Namely, for Nc ≫ 1, in the low-energy

domain only free quark-antiquark and glueball mesons exist, whereas their interactions vanish.

Baryons are not present because their mass increases with Nc,

mqqq ∝ Nc , (2.1)
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and tetraquarks may also disappear for Nc →∞, see however Ref. [173]. In the case Nc = 3 the

interaction between q̄q mesons and glueballs takes place. Studying the low-energy region of QCD

up to the energy of 2 GeV the following hadrons should be taken into account:

� (Pseudo)scalar and (axial-)vector quark-antiquark mesons, with quantum numbers

JPC ∶ 0++,0−+,1−−,1++ ,

� and a scalar glueball (0++) which is the lightest state of the glueball spectrum predicted by

lattice QCD [52, 53, 54, 55, 56, 57, 58] with a mass of

mlat
G ≈ (1.5 − 1.7) GeV .

Hence, we are looking for an effective hadronic Lagrangian which cannot be directly derived

from the QCD Lagrangian due to the fact that the quarks and gluons are perturbative fields in

contrast to hadrons which are non-perturbative objects. This implies the question:

Which properties should an effective hadronic model possess?

In general an effective model of QCD should be less complicated, in the sense of solvability, than

QCD itself. This makes possible a verification of such a model by using experimental data and

predictions for upcoming experiments can be done. In turn, the resulting insights can be useful

for a better understanding of some aspects of QCD in the low-energy region.

The most crucial ingredients of an effective hadronic model are the symmetries of the QCD

Lagrangian, thus the corresponding effective Lagrangian should reflect as many of the QCD

symmetries as possible. The more symmetries we take into account the more constraints we can

exploit by constructing the terms of the effective hadronic Lagrangian. In principle an infinite

number of terms can be constructed, but this would make numerical calculations extremely dif-

ficult. In this respect it is very useful to consider the dilatation symmetry because it simplifies

this issue yielding a finite number of terms. Every term which enters into the model is propor-

tional to a free parameter, a so-called effective coupling constant. In order to obtain a particular

solution of the hadronic model one has to determine these couplings, usually by fixing them to

experimental data. However, this procedure turns out to be not always trivial. The emergence

of the numerous effective couplings is the ‘prize’ one has to pay for such phenomenological models.

The energy range of validity of QCD goes from zero up to the Planck scale (1019 GeV). Contrary

to the fundamental QCD, the range of validity of the effective hadronic model is automatically

given by the heaviest resonance which is incorporated into the model. In addition, QCD is a

renormalizable theory. These requirement is inevitable for a fundamental quantum field theory

but is not essential for an effective theory.

2.1.2 Symmetries of the eLSM

The d.o.f. of the eLSM studied in this work are mesons in the (pseudo)scalar as well as the (axial-

)vector sector. We are interested in the phenomenology in vacuum (T = µ = 0) and at tree level.
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This effective Lagrangian is built in agreement with the symmetries of the QCD Lagrangian,

which we discussed in chapter 1. In order to emphasize the significance of these symmetries for

our model we summarize them again in the following:

� Local SUc(3) color symmetry: This is the fundamental symmetry of QCD, which is in the

eLSM, as in each purely hadronic model, trivially fulfilled due to the fact that the eLSM

contains only ‘white’ states as d.o.f. .

� Lorentz symmetry: This is a fundamental symmetry of any quantum field theory and thus

the Lagrangian of the eLSM is a Lorentz scalar.

� Discrete symmetries C, P , and T : The invariance under the simultaneous transformations

of charge conjugation C, parity P and time reversal T (CPT ) is a fundamental feature of

quantum field theories and must be fulfilled in every hadronic model [67]. Furthermore, our

hadronic Lagrangian is invariant under C, P , and T separately, in agreement with QCD.

� Global chiral symmetry and its breakings: This symmetry and its breakings dictate the

dynamics at the hadronic level and are therefore crucial for the eLSM. The spontaneous

breaking of the chiral symmetry leads to the non-vanishing quark condensate and is of

primary importance.

� Dilatation symmetry and trace anomaly: This symmetry is crucial for a variety of reasons:

(i) As mentioned previously, this symmetry ensures a finite number of terms in the La-

grangian of the eLSM.

(ii) The trace anomaly of the pure Yang-Mills sector of QCD leads to a non-vanishing

gluon condensate and generates via dimensional transmutation the low-energy scale ΛQCD ≈
ΛYM . In the eLSM this scale corresponds to Λdil (see later on), which is in the chiral limit

the only dimensionful parameter of the model.

(iii) Introducing dilatation symmetry into the eLSM yields an additional scalar degree of

freedom, the dilaton field G. This field can be interpreted as a scalar glueball, hence its

mixing with scalar-isoscalar quarkonia can be studied.

2.2 The pure Yang-Mills sector of QCD

An effective theory which correctly mimics the pure Yang-Mills

LYM = −1

4
GaµνG

µν
a (2.2)

part of QCD at the quantum as well as at the confined level should contain at least a scalar field

G. This field is namely linked to the gluonic field as

G4 ∝ GaµνG
µν
a . (2.3)
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The field G, which describes the collective field of gluons, should be embedded into a potential

that generates the trace anomaly in order to induce a dimension into the effective hadronic model.

The Lagrangian

Ldil =
1

2
(∂µG)2 − Vdil(G) , (2.4)

where

Vdil(G) = 1

4

m2
G

Λ2
dil

G4 (ln ∣ G
Λdil

∣ − 1

4
) , (2.5)

fulfill exactly these requirements as shown in Refs. [174, 175, 176, 177, 178, 179, 180]. The

logarithmic term, where Λdil is the energy scale which corresponds to ΛYM , breaks the dilatation

symmetry explicitly, similar to the β-function of the renormalization group (1.123). Hence the

divergence of the corresponding current

Jµdil = xνT
µν
dil (2.6)

does not vanish

∂µJ
µ
dil = T

µ
dil,µ ≠ 0 . (2.7)

Divergence of the trace current

In the following we compute a divergence of the trace current, Jµ = xνTµν , for a general potential

V(ϕ) of a Lagrangian

L = 1

2
∂σϕ∂

σϕ − V(ϕ)

≡ −1

2
ϕ∂σ∂

σϕ − V(ϕ) . (2.8)

The energy-momentum tensor reads

Tµν = ∂L
∂(∂µϕ)

∂νϕ − gµνL

= ∂µϕ∂νϕ − gµνL
≡ −ϕ∂µ∂νϕ − gµνL . (2.9)

Ergo, by using

∂µT
µν = 0 , (2.10)

we obtain

∂µJ
µ = (∂µxν)Tµν = T 00 − T 11 − T 22 − T 33 , (2.11)

where

T 00 = (∂0ϕ)2 − [1

2
(∂µϕ)2 − V(ϕ)] , (2.12)

T 11 = (∂1ϕ)2 + [1

2
(∂µϕ)2 − V(ϕ)] , (2.13)

T 22 = (∂2ϕ)2 + [1

2
(∂µϕ)2 − V(ϕ)] , (2.14)

T 33 = (∂3ϕ)2 + [1

2
(∂µϕ)2 − V(ϕ)] . (2.15)
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Then, we obtain

∂µJ
µ = (∂0ϕ)2 − (∂1ϕ)2 − (∂2ϕ)2 − (∂3ϕ)2 − 2(∂µϕ)2 + 4V(ϕ)

= −(∂µϕ)2 + 4V(ϕ) (2.16)

and finally

(∂µϕ)2 = ∂µ (ϕ∂µϕ) − ϕ ◻ ϕ . (2.17)

By using the equation of motion
∂L
∂ϕ

= ∂µ
∂L

∂(∂µϕ)
(2.18)

we obtain

◻ ϕ = −∂V(ϕ)
∂ϕ

. (2.19)

Therefore, by putting the elements together we obtain

∂µJ
µ = −∂µ (ϕ∂µϕ) − ϕ∂V(ϕ)

∂ϕ
+ 4V (ϕ) . (2.20)

By neglecting the total divergence we obtain the general expression

∂µJ
µ = Tµµ = 4V(ϕ) − ϕ∂ϕV(ϕ) . (2.21)

Divergence of the dilaton current

Applying the dilaton potential (2.5) to Eq. (2.21) we obtain the non-vanishing divergence of the

dilaton current as

∂µJ
µ
dil = T

µ
dil,µ = −

1

4

m2
G

Λ2
dil

G4 ≠ 0 . (2.22)

The ground state of the dilaton potential reads

dV
dG

= m2
G

Λ2
dil

G3 ln ∣ G
Λdil

∣ != 0⇒ G0 = Λdil . (2.23)

Note that in Eq. (2.23) no quark-antiquark fields are present. In the general case, when q̄q fields

are taken into account, we will obtain G0 ≳ Λdil, see below. Hence, the vev of the trace of the

dilaton energy-momentum tensor reads

⟨Tµdil,µ⟩ = ⟨−1

4

m2
G

Λ2
dil

G4⟩ = −1

4

m2
G

Λ2
dil

G4
0 = −

1

4
m2
GΛ2

dil. (2.24)

Requiring that the dilaton field saturates the dilaton current, we equate the vev of the dilaton

current (2.24) with the vev of the trace anomaly (1.134)

⟨Tµdil,µ⟩ ≡ ⟨TµYM,µ⟩ . (2.25)

We obtain

Λdil =
√

11

2mG
C2 . (2.26)
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2.3 The quark-gluon sector of QCD

In this section we introduce the flavor multiplets of the quark-antiquark mesons and the corre-

sponding terms which fulfil the symmetry properties that we discussed above.

2.3.1 Mesonic fields of the eLSM

Scalar and pseudoscalar q̄q mesons

First, we introduce the scalar and pseudoscalar quark-antiquark mesons by defining the matrix

Φij ≡
√

2q̄j,Rqi,L , (2.27)

where i, j ∈ {u, d, s, ...,Nf}. It is important to stress that the matrix Φ is a non-perturbative ob-

ject but the quark-antiquark pair q̄j,Rqi,L is indeed a perturbative quantity. Using the equivalence

sign we intend to express the following:

� Both quantities transform in the same way under the global chiral symmetry. This implies

that, by considering of the transformation of the quarks (1.64) and (1.65), Φ transforms

under the global chiral symmetry as follows

Φ→ Φ′ = ULΦU �
R , Φ� → Φ′� = URΦ�U �

L , (2.28)

where Φ� is the corresponding adjoint matrix.

� The perturbative bare quarks and antiquarks can be modified dynamically through the

interaction with the gluons as well as quark-antiquark pairs of the vacuum to form a non-

perturbative quark-antiquark current. The non-perturbative matrix elements of Φ can now

be considered approximately as composed by this current. As pointed out in Refs. [18, 19]

a non-trivial connection between the objects of Eq. (2.27) can be realized by expressing of

Φij as a non-local composition of
√

2q̄j,Rqi,L via

Φij ≡ ∫ d4y
√

2q̄j,R(x +
y

2
)qi,L(x −

y

2
)f(y) , (2.29)

where f(y) is a non-perturbative vertex function. Setting f(y) = δ(y) yields the perturba-

tive limes of Eq. (2.27).

Using the chiral projection operators (1.57) we can rewrite the elements of the matrix Φ as

follows:

Φij ≡
√

2q̄j,Rqi,L =
√

2q̄jP̂LP̂Lqi =
√

2q̄jP̂Lqi

= 1√
2
(q̄jqi − q̄jγ5qi) =

1√
2
(q̄jqi + iq̄jiγ5qi) . (2.30)

The scalar and pseudoscalar currents are defined as:

Sij ≡
1√
2
q̄jqi , Pij ≡

1√
2
q̄jiγ

5qi . (2.31)
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In the end we obtain the chiral field as

Φ = S + iP , Φ� = S − iP , (2.32)

where S and P are hermitian matrices and therefore they can be expressed in terms of the

generators ta of the U(Nf) group, where a = 0,1, ...,N2
f − 1, and Nf is the number of flavors:

S = Sata , Sa ≡
√

2q̄taq , (2.33)

and

P = P ata , P a ≡
√

2q̄iγ5taq . (2.34)

Now, we write down a Lagrangian1 with (pseudo)scalar q̄q mesons, which is invariant under the

global chiral transformations (2.28)

LΦ = Tr [(∂µΦ)�(∂µΦ)] −m2
0Tr (Φ�Φ) − λ1 [Tr(Φ�Φ)]2 − λ2Tr[(Φ�Φ)2] . (2.35)

The invariance under chiral transformation can be easily shown by using the unitarity of the

operator U ,

U �U = UU � = 1⇔ U � = U−1 . (2.36)

In addition, by considering the quark transformations under parity (1.47)-(1.48) and charge

conjugation (1.64)-(1.65), the chiral field Φ transforms under these transformation as follows

Φ(t, x⃗) P→ Φ′(t, x⃗) = Φ�(t,−x⃗) (2.37)

and

Φ(x) C→ Φ′(x) = ΦT (x) . (2.38)

Thus, the chiral Lagrangian (2.35) is also invariant under parity and charge conjugation transfor-

mations. By applying the transformations (1.114) and (1.115) one realizes that the Lagrangian

(2.35) is, due to the mass term

−m2
0Tr (Φ�Φ) , (2.39)

not invariant under dilatation symmetry. A realization of this symmetry in our model is directly

connected with the implementation of a scalar glueball, which in turn is related to the trace

anomaly.

Namely, dilatation invariance requires that only terms with the dimension [energy4] are allowed

in the Lagrangian. Furthermore, in the chiral limit and by neglecting the UA(1) anomaly the

only dimensionful parameter which enters the model should be the energy scale Λdil. This energy

scale arises from the dilaton potential (2.5) and generates, such as required by the Yang-Mills

sector of QCD, the trace anomaly. This implies that terms of the form

α [Tr(Φ�Φ)]3
(2.40)

1This Lagrangian corresponds to the one of the former versions of the LSM without (axial-)vector fields. The

first LSM was introduced by Murray Gell-Mann and Maurice M. Levy in 1960 [43].
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are not allowed because the coupling constant α possesses the dimension [energy−2]. Moreover,

the term
β

G2
[Tr(Φ�Φ)]3 (2.41)

possesses a dimensionless coupling constant β, as dilatation invariance requires, but for G = 0

there is a singularity. In addition, at non-zero temperature when the gluon condensate which

corresponds to the vev of the glueball field G0 vanishes, the term (2.41) would also diverge.

Hence, the effective hadronic Lagrangian containing a scalar glueball field (G) and (pseudo)scalar

q̄q fields (Φ) with all symmetries discussed previously reads

LGΦ = Ldil +Tr [(∂µΦ)�(∂µΦ)] − aG2Tr (Φ�Φ) − λ1 [Tr(Φ�Φ)]2 − λ2Tr [(Φ�Φ)2] . (2.42)

Due to the symmetries of the Lagrangian (2.42) the coupling of the scalar glueball to the fields

of Φ is unambiguously defined. The sign of the parameter a determines whether chiral symmetry

is spontaneously broken and its connection with the former mass parameter of the Lagrangian

(2.35), when the scalar glueball condenses, is as follows

m2
0 = aG2

0 . (2.43)

Hence, the coupling constant a is dimensionless as required and in order to generate the sponta-

neous breaking of the chiral symmetry the requirement a
!< 0 should be fulfilled.

Moreover, in the large-Nc limit the parameter a scales as

a∝ N−2
c (2.44)

this implies the correct scaling of the mass parameter

m2
0 ∝ N0

c . (2.45)

The large-Nc dependence of the remaining parameters of the Lagrangian (2.42) and (2.4), re-

spectively, is as follows. Since the glueball mass is large-Nc independent the mass parameter mG

have to scale as

mG ∝ N0
c . (2.46)

The second parameter coming from the dilaton patential (2.5) is the energy scale Λdil which

scales as

Λdil ∝ Nc (2.47)

in order to ensure that the four glueball interaction scales according to Eq. (1.26) as

m2
G

Λ2
dil

∝ N−2
c . (2.48)

Finally, the terms which describe the four q̄q meson interaction scale as

λ1 ∝ N−2
c , (2.49)

λ2 ∝ N−1
c . (2.50)

The reason for the stronger suppression of the λ1 term is due to the product of two traces which

requires exchange of gluons at the quark gluon level.
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Vector and axial-vector q̄q mesons

Analogously to the (pseudo)scalar sector (2.30), we introduce the right- and the left-handed

vector and axial-vector quark-antiquark mesons by defining the matrices

Rµij ≡
√

2q̄j,Rγ
µqi,R = 1√

2
(q̄jγµqi − q̄jγ5γµqi) , (2.51)

Lµij ≡
√

2q̄j,Lγ
µqi,L = 1√

2
(q̄jγµqi + q̄jγ5γµqi) , (2.52)

where

V µij ≡
1√
2
q̄jγ

µqi , Aµij ≡
1√
2
q̄jγ

5γµqi (2.53)

are the vector and axial-vector currents. Hence the right- and the left-handed chiral fields in the

vector and axial-vector sector read

Rµ = V µ −Aµ , Lµ = V µ +Aµ , (2.54)

which transform under the global chiral symmetry as follows

Rµ → R′µ = URRµU �
R , (2.55)

Lµ → L′µ = ULLµU �
L . (2.56)

The hermitian matrices V µ and Aµ expressed through the generators of the U(Nf) group are

V µ = V µa ta , V µa ≡
√

2q̄γµtaq , (2.57)

Aµ = Aµata , Aµa ≡
√

2q̄γ5γµtaq . (2.58)

In order to construct a kinetic term of (axial-)vector fields we define the right- and the left-handed

field-strength tensors

Rµν = ∂µRν − ∂νRµ , (2.59)

Lµν = ∂µLν − ∂νLµ , (2.60)

which transform under chiral transformation in the following way

Rµν → R′µν = URRµνU �
R , (2.61)

Lµν → L′µν = ULLµνU �
L . (2.62)

Now, a chirally and dilatation invariant Lagrangian of (axial-)vector q̄q fields can be constructed:

LLµRµ = −1

4
Tr [(Lµν)2 + (Rµν)2] + m

2
1

2
Tr [(Lµ)2 + (Rµ)2]

−i2g2 (Tr{Lµν [Lµ, Lν]} +Tr{Rµν [Rµ,Rν]})
+g3 [Tr (LµLνLµLν) +Tr (RµRνRµRν)]
+g4 [Tr (LµLµLνLν) +Tr (RµRµRνRν)]
+g5Tr (LµLµ)Tr (RµRµ)
+g6 [Tr (LµLµ) Tr (LµLµ) +Tr (RµRµ)Tr (RµRµ)] , (2.63)
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where we consider terms up to fourth order in the fields. In the following the coupling constants

g3-g6 are not relevant for studies in this work, since processes of four-point vertices are not

considered. Although the coupling constant g2 describes three-point vertices it is also not relevant

in this work as we will see later. Furthermore, the Lagrangian (2.63) is invariant under parity and

charge conjugation transformations. According to the behavior of the quarks under these discrete

symmetries shown in Eqs. (1.47)-(1.48) as well as (1.64)-(1.65) the right- and the left-handed

vector and axial-vector quark-antiquark fields transform under parity as

Rµ(t, x⃗) P→ R′µ(t, x⃗) = gµνLν(t,−x⃗) , (2.64)

Lµ(t, x⃗) P→ L′µ(t, x⃗) = gµνRν(t,−x⃗) (2.65)

and under charge conjugation as

Rµ(x) C→ R′µ(x) = −LνT (x) , (2.66)

Lµ(x) C→ L′µ(x) = RνT (x) . (2.67)

In analogy to the (pseudo)scalar sector we have to modify the mass term of the (axial-)vector fields

in the Lagrangian (2.63) in order to realize dilatation invariance. The corresponding Lagrangian

reads

LGLµRµ = −1

4
Tr [(Lµν)2 + (Rµν)2] + b

2
G2Tr [(Lµ)2 + (Rµ)2] , (2.68)

where

m2
1 = bG2

0 > 0 (2.69)

is the connection between the mass parameter of the Lagrangian (2.63) and the dimensionless

coupling constant of the mass term of the Lagrangian (2.68).

The large-Nc dependence of the parameters of the Lagrangian (2.63) and (2.68), respectively, is

as follows. Similarly, to the (pseudo)scalar sector one obtain

b∝ N−2
c ⇒m2

1 ∝ N0
c . (2.70)

The coupling constants of the Lagrangian (2.63) scale as

g2 ∝ N
− 1

2
c , (2.71)

g3, g4 ∝ N−1
c , (2.72)

g5, g6 ∝ N−2
c . (2.73)

Coupling of the (pseudo)scalar and (axial-)vector q̄q mesons

In nature the (pseudo)scalar and (axial-)vector mesons interact with each other, therefore terms

which couple these states are necessary. Firstly, we introduce a corresponding covariant derivative

DµΦ = ∂µΦ + ig1(ΦRµ −LµΦ) (2.74)
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and

(DµΦ)� = ∂µΦ� − ig1(RµΦ� −Φ�Lµ) , (2.75)

which behave under the chiral transformations (2.28), (2.55), and (2.56) as follows

(DµΦ)′ = ∂µ(ULΦU �
R) + ig1(ULΦU �

RURRµU
�
R −ULLµU

�
LULΦU �

R)
= UL(∂µΦ)U �

R + ig1(ULΦRµU
�
R −ULLµΦU �

R)
= ULDµΦU �

R . (2.76)

Similarly, we obtain

(DµΦ)′� = UR (DµΦ)�U �
L , (2.77)

from which the globally and locally chirally invariant kinetic term can be built

Tr [(DµΦ)�(DµΦ)] . (2.78)

However, local symmetry is not favored by phenomenology [181]. In addition, the following

interaction terms of the (pseudo)scalar and (axial-)vector q̄q fields can be constructed

h1

2
Tr[Φ�Φ]Tr[LµLµ +RµRµ], (2.79)

h2Tr[Φ�LµL
µΦ +ΦRµR

µΦ�], (2.80)

2h3Tr[ΦRµΦ�Lµ] . (2.81)

In the large-Nc limit the coupling constant g1 scales as

g1 ∝ N
− 1

2
c (2.82)

and the parameters of the interaction terms (2.79), (2.80), and (2.81) as

h1 ∝ N−2
c , (2.83)

h2, h3 ∝ N−1
c . (2.84)

Note that for the same reason as λ1 the parameter h1 is stronger suppressed than h2 and h3.

Both parameters h1 and λ1, which are relevant for this study, vanish in the limit Nc →∞.

Explicit breaking of the chiral symmetry in eLSM

In the following we will introduce terms which describe the explicit breaking of the chiral sym-

metry in the eLSM.

UA(1) anomaly Due to the UA(1) anomaly the global chiral symmetry is even broken when

quark masses vanish. There exist different ways to describe this phenomenon of the gauge sector

of QCD, which arises from instantons2, for instance by the term of Ref. [183]

c(det Φ + det Φ�) (2.85)

2For a general introduction to instantons we refer e.g. Ref. [182] and references therein.
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or via the term

c1(det Φ − det Φ�)2 (2.86)

first discussed in Refs. [184, 185].

One can easily see that these terms generate the UA(1) anomaly by performing the axial trans-

formations UA(Nf) on the determinant of Φ, which yields:

detΦ → detΦ′ = det (UAΦUA)
= det (e−iθ

a
At
a

Φe−iθ
a
At
a

)
= det (e−i2θ

a
At
a

Φ)

= det(e−i2∑
N2
f
−1

a=1 θaAt
a

)det(e−i2θ
0
At

0

)detΦ

= det(e−i2θ
0
At

0

)detΦ

= e−iθ
0
A

√
2NfdetΦ ≠ detΦ . (2.87)

A difference between the terms (2.85) and (2.86) is that in the case of Nf = 3 the first one

is of order O(3) whereas the second one of order O(6). This means that both terms violate

the dilatation symmetry but it is not essential that terms which describe the UA(1) anomaly

satisfy the dilatation symmetry. Namely, the axial anomaly is also generated by the gluonic

sector of QCD, where the trace anomaly originates. Another difference between these terms is

the influence on the mesonic phenomenology. The term (2.85) influences masses of scalar as well

as pseudoscalar mesons while the term (2.86) only affects those of pseudoscalar-isoscalar mesons

[19, 186]. Furthermore, these terms are responsible for the large mass splitting of η and η′(958).
Note, that the large-Nc scaling of the parameters c and c1 depends on the number of quark

flavors

c∝ N
−Nf2
c , (2.88)

c1 ∝ N
−Nf
c . (2.89)

For the realization of the chiral anomaly in the implementation of the eLSM with two quark flavors

we use the term (2.85) and in that of three quark flavors the term (2.86). Moreover, the term

(2.86) is well suited to study the coupling of the pseudoscalar glueball G̃ to the ordinary scalar

and pseudoscalar mesons which will be performed in chapter 6 [6, 7, 8, 9, 19, 174, 176, 187, 188].

Non-vanishing quark masses The fact that pions, as Goldstone-Bosons, are not exactly

massless is a manifestation of the explicit breaking of the

SUV (Nf) × SUA(Nf) (2.90)

symmetry which originates from the Higgs sector [71, 72, 73]. This explicit symmetry breaking

is parametrized in the eLSM in the (pseudo)scalar sector by

Tr [H (Φ� +Φ)] , (2.91)

where

H = diag(h0u, h0d, ..., h0Nf ) (2.92)
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and the parameters

h0i = const∝mqi (2.93)

with i ∈ {u, d, ...,Nf}. For the relevant cases Nf = 2 and Nf = 3 the matrix H explicitly reads

H =H0t0 +H3t3 =
⎛
⎝

h0N

2
0

0 h0N

2

⎞
⎠
≡
⎛
⎝
hN 0

0 hN

⎞
⎠
, (2.94)

and

H =H0T0 +H8T8 =
⎛
⎜⎜
⎝

h0N

2
0 0

0 h0N

2
0

0 0 h0S√
2

⎞
⎟⎟
⎠
≡
⎛
⎜⎜
⎝

hN 0 0

0 hN 0

0 0 hS

⎞
⎟⎟
⎠
, (2.95)

Note that the breaking of the isospin symmetry mqu ≠mqd is not considered in this model hence

we use u, d ≡ N as well as s ≡ S. Analogously, in the (axial-)vector sector the corresponding term

reads

Tr [∆ (L2
µ +R2

µ)] , (2.96)

where

∆ = diag(δu, δd, ..., δNf ) , δi = const∝mqi . (2.97)

The matrix ∆ explicitly reads

∆ = ∆0T0 +∆8T8 =
⎛
⎜⎜⎜
⎝

δ̃N
2

0 0

0 δ̃N
2

0

0 0 δ̃S√
2

⎞
⎟⎟⎟
⎠
≡
⎛
⎜⎜
⎝

δN 0 0

0 δN 0

0 0 δS

⎞
⎟⎟
⎠
. (2.98)

A crucial modification of the eLSM of Refs. [19, 81] is the introducing of a next-to-leading term

in the (pseudo)scalar sector. This is necessary in order to correctly describe the phenomenology

in the scalar-isoscalar sector as we will see in chapter four. The corresponding term read

−Tr [E(Φ�Φ)] , (2.99)

where

E = diag(εu, εd, ..., εNf ) , εi = const∝mqi . (2.100)

The matrix E explicitly reads

E = E0T0 +E8T8 =
⎛
⎜⎜
⎝

ε̃N
2

0 0

0 ε̃N
2

0

0 0 ε̃S√
2

⎞
⎟⎟
⎠
≡
⎛
⎜⎜
⎝

εN 0 0

0 εN 0

0 0 εS

⎞
⎟⎟
⎠
. (2.101)

The large-Nc scaling of the constants h0i, δi, and εi reads

h0i ∝ N
− 1

2
c , (2.102)

δi, εi ∝ N0
c . (2.103)

43



2.3.2 Mesonic Lagrangian of the eLSM

Finally, the mesonic Lagrangian of our eLSM which is studied in the present work with respect

to the three-body mixing in the scalar-isoscalar sector below 2 GeV reads

L = Ldil +Tr[(DµΦ)�(DµΦ)] −Tr{[m2
0 ( G
G0

)
2

+E]Φ�Φ} − λ1 [Tr(Φ�Φ)]2 − λ2 Tr[(Φ�Φ)2]

+ c1(detΦ − detΦ�)2 +Tr[H(Φ� +Φ)] +Tr{[m
2
1

2
( G
G0

)
2

+∆] (L2
µ +R2

µ)}

− 1

4
Tr (L2

µν +R2
µν) +

h1

2
Tr(Φ�Φ) Tr(LµLµ +RµRµ) + h2Tr(Φ�LµL

µΦ +ΦRµR
µΦ�)

+ 2h3Tr(ΦRµΦ�Lµ) + ... , (2.104)

where

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2
dil

G4 (ln ∣ G
Λdil

∣ − 1

4
) . (2.105)

This mesonic Lagrangian is valid for Nf quark flavors and in the large-Nc expansion. In addition,

the dots in the Lagrangian (2.104) indicate further terms, e.g. those of the Lagrangian (2.63) or

additional d.o.f. as for instance further glueballs.

2.4 Assignment of the fields of the eLSM

In this section we discuss the assignment of the bare quark-antiquark fields of the eLSM to the

physical resonances of the PDG [11]. Therefore we explicitly show the corresponding multiplets

for Nf = 3 as 3× 3 matrices [19, 81]. In the limiting case of two quark flavors (Nf = 2) which will

be discussed in the next chapter, the multiplets reduce to 2×2 matrices. In simplified terms this

means that the third columns and rows of the original Nf = 3 multiplets are omitted. Hence we

are only left with mesons which are composed of the two light quark flavors up and down.

2.4.1 Assignment of the fields in the scalar and pseudoscalar sector

A mesonic quark-antiquark state with spin S = 1 and angular momentum L = 1 can couple to

a total angular momentum J = 0. In that case S and L are antiparallel to each other. Using

the formulas (1.52) and (1.53) one obtains a particle with JPC = 0++ which are the quantum

numbers of a scalar state. Analogously, in the case of S = L = 0 one obtains a particle with

the quantum numbers JPC = 0−+ which corresponds to a pseudoscalar state. A further relevant

quantum number is the isospin I. These quantum numbers are of great importance in order to

classify physical properties or resonances according to their quantum numbers. The fields of the

nonets of our hadronic model are assigned to the physical resonances of Ref. [11].

We start with the multiplets of the scalar mesons

S =
8

∑
i=0
SiT i = 1√

2

⎛
⎜⎜⎜
⎝

σN+a00√
2

a+0 K⋆+
0

a−0
σN−a00√

2
K⋆0

0

K⋆−
0 K̄⋆0

0 σS

⎞
⎟⎟⎟
⎠

(2.106)
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and pseudoscalar mesons,

P =
8

∑
i=0
iP iT i = i√

2

⎛
⎜⎜⎜
⎝

(ηN+π0)√
2

π+ K+

π− (ηN−π0)√
2

K0

K− K̄0 ηS

⎞
⎟⎟⎟
⎠
. (2.107)

This yields the chiral field of the scalar and pseudoscalar mesons, which is a linear combination

of the scalar and pseudoscalar multiplets S and P

Φ =
8

∑
i=0

(Si + iP i)T i = 1√
2

⎛
⎜⎜⎜
⎝

σN+a00+i(ηN+π
0)√

2
a+0 + iπ+ K⋆+

0 + iK+

a−0 + iπ−
σN−a00+i(ηN−π

0)√
2

K⋆0
0 + iK0

K⋆−
0 + iK− K̄⋆0

0 + iK̄0 σS + iηS

⎞
⎟⎟⎟
⎠
. (2.108)

The corresponding adjoint chiral field is given by Φ� = ∑8
i=0(Si − iP i)T i [19, 81]. In the pseu-

doscalar sector we assign the fields π⃗ and K to the physical pion isotriplet, I = 1, and the two

kaon isodoublets, I = 1
2
, [11]. The fields

ηN ≅ i(ūγ5u + d̄γ5d)/
√

2 , ηS ≅ is̄γ5s , (2.109)

are the non-strange and strange contributions to the physical isoscalar, I = 0, states η and η′(958)
[11]

η = ηN cosϕη + ηS sinϕη , η′ = −ηN sinϕη + ηS cosϕη , (2.110)

where ϕη = −44.6○ is the pseudoscalar mixing angle as determined as a consequence of the global

fit of Ref. [81, 186]. As shown in the comprehensive study of Ref. [81], the scalar q̄q states

lie above 1 GeV. In turn, the scalar states below 1 GeV should not be interpreted as q̄q states

but as tetraquarks and/or mesonic molecular states, see Refs. [133, 134, 135, 136, 137, 138, 139,

140, 141, 142, 143, 144, 145, 146, 147]. Hence, in the scalar sector we assign the field a⃗0 to the

physical isotriplet resonance a0(1450) and the scalar kaon isodoublet fields K⋆
0 to the resonance

K∗
0 (1430) [11]. The least clear assignment occurs in the scalar-isoscalar channel because in

the region from 1 to 2 GeV there are three resonances which are listed in Ref. [11]: f0(1370),
f0(1500), and f0(1710). Only two of them can be interpreted as predominantly q̄q states, namely

the non-strange and the strange

σN ≅ (ūu + d̄d)/
√

2 , σS ≅ s̄s , (2.111)

while the third one is probably predominantly a glueball state G. The determination of the

corresponding three-body mixing matrix, as discussed in the section 1.4 and indicated in the

beginning of this chapter, is one of the aims of this work and is carried out below [3, 4, 5]. Note

that there are other interpretations in which f0(1370) and f0(1710) are described as resonances

dynamically generated from vector-vector interactions [189, 190, 191].

2.4.2 Assignment of the fields in the vector and axial-vector sector

Particles with spin S = 1 and angular momentum L = 0 yield JPC = 1−− which are the quan-

tum numbers of vector states. Particles with spin and angular momentum S = L = 1, as in the

scalar case but now with a proper combination of parallel alignment, yield axial-vector states,

45



JPC = 1++.

The multiplets of the (axial-)vector mesons [19, 81] read

V µ =
8

∑
i=0
V µi T

i = 1√
2

⎛
⎜⎜⎜
⎝

ωµ
N
+ρµ0√
2

ρµ+ K⋆µ+

ρµ−
ωµ
N
−ρµ0√
2

K⋆µ0

K⋆µ− K̄⋆µ0 ωµS

⎞
⎟⎟⎟
⎠
, (2.112)

Aµ =
8

∑
i=0
Aµi T

i = 1√
2

⎛
⎜⎜⎜
⎝

fµ
1N

+aµ01√
2

aµ+1 Kµ+
1

aµ−1
fµ
1N

−aµ01√
2

Kµ0
1

Kµ−
1 K̄µ0

1 fµ1S

⎞
⎟⎟⎟
⎠
. (2.113)

The chiral fields of the left-handed and right-handed (axial)-vector mesons, which are linear

combinations of the vector and axial-vector multiplets V µ and Aµ, are given by

Lµ =
8

∑
i=0

(V µi +Aµi )T
i = 1√

2

⎛
⎜⎜⎜
⎝

ωµ
N
+ρµ0√
2

+ fµ
1N

+aµ01√
2

ρµ+ + aµ+1 K⋆µ+ +Kµ+
1

ρµ− + aµ−1
ωµ
N
−ρµ0√
2

+ fµ
1N

−aµ01√
2

K⋆µ0 +Kµ0
1

K⋆µ− +Kµ−
1 K̄⋆µ0 + K̄µ0

1 ωµS + f
µ
1S

⎞
⎟⎟⎟
⎠

(2.114)

and

Rµ =
8

∑
i=0

(V µi −Aµi )T
i = 1√

2

⎛
⎜⎜⎜
⎝

ωµ
N
+ρµ0√
2

− fµ
1N

+aµ01√
2

ρµ+ − aµ+1 K⋆µ+ −Kµ+
1,A

ρµ− − aµ−1
ωµ
N
−ρµ0√
2

− fµ
1N

−aµ01√
2

K⋆µ0 −Kµ0
1,A

K⋆µ− −Kµ−
1,A K̄⋆µ0 − K̄µ0

1,A ωµS − f
µ
1S

⎞
⎟⎟⎟
⎠
. (2.115)

The assignment of the fields of the multiplets (2.114) and (2.115) to the physical resonances is as

follows. In the JPC = 1−− sector the non-strange ωµN and the strange ωµS isoscalar field represent

the resonance ω(782) and φ(1020), respectively. The isotriplet field ρ⃗µ and the isodoublet fields

K⋆µ correspond to the resonance ρ(770) and K∗(1410), respectively. In the JPC = 1++ sector

the non-strange fµ1N and the strange fµ1S isoscalar field are assigned to the resonance f1(1285)
and f1(1420), respectively. The isotriplet field a⃗µ1 is identified with the resonance a1(1260).
Finally, the isodoublet fields Kµ

1,A correspond to a mixture of K1(1270) and K1(1400). The

corresponding mixing matrix reads

⎛
⎝
K1(1270)
K1(1400)

⎞
⎠
=
⎛
⎝

cosϕK −i sinϕK
−i sinϕK cosϕK

⎞
⎠
⎛
⎝
Kµ

1,A

Kµ
1,B

⎞
⎠

(2.116)

where ϕK = (33.6±4.3)○ is the mixing angle [192]. Note that the physical I = 0 resonances in the

sector 1−− as well as 1++, similar to other nonets like in the (pseudo)scalar sector, are admixtures

of the corresponding pure isoscalar fields ωµN and ωµS on the one hand, and fµ1N and fµ1S on the

other hand. However, the mixing angles are small and therefore the mixing of these states can

be neglected.

2.5 Vacuum expectation values

In this section we introduce the vev of the eLSM (2.104) and discuss the consequences of the

spontaneous breaking of the global chiral symmetry in our model by following the Refs. [1, 3,

17, 18, 19, 81].
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2.5.1 Spontaneous breaking of the global chiral symmetry in the eLSM

The spontaneous breaking of chiral symmetry in the eLSM (2.104) requires that the mass pa-

rameter

m2
0

!< 0 . (2.117)

The conservation of parity and of SUV (Nf) symmetry requires that only fields with the quantum

numbers

IG (JPC) = 0+ (0++) (2.118)

can condense in vacuum. The eLSM (2.104) with Nf = 3 has three fields with quantum numbers

of the vacuum: the two scalar-isoscalar quark-antiquark fields σN and σS as well as a scalar

glueball G. Thus, the following condensates appear:

⟨σN ⟩ ≡ φN = const ≠ 0 , (2.119)

⟨σS⟩ ≡ φS = const ≠ 0 , (2.120)

⟨G⟩ ≡ G0 = const ≠ 0 . (2.121)

In order to study the fluctuations, i.e., the physical excitations, we shift the scalar-isoscalar fields

by their vev’s

σN → σN + φN , σS → σS + φS , G→ G +G0 . (2.122)

In chapter three and four we will study in detail the scalar-isoscalar Lagrangian for the case

Nf = 2 and Nf = 3, respectively. Note that Eq. (2.117) corresponds to the requirement a
!< 0 in

the Lagrangian (2.42) where the connection between these parameters is

m2
0 = aG2

0 . (2.123)

Hence, the spontaneous breaking of the chiral symmetry originates from the explicit breaking of

the dilatation symmetry, which is realized in our model by the logarithmic term of the dilaton

potential (2.5).

2.5.2 Bilinear terms of the eLSM

Spontaneous breaking of chiral symmetry induces bilinear terms

− g1φN(fµ1N∂µηN + aµ±,01 ⋅ ∂µπ±,0) −
√

2g1φSf
µ
1S∂µηS , (2.124)

− ( g1√
2
φS +

g1

2
φN)(Kµ0

1 ∂µK̄
0 +Kµ+

1 ∂µK
− + h.c.) , (2.125)

(i g1√
2
φS − i

g1

2
φN)(K̄⋆µ0∂µK

⋆0
0 +K⋆µ−∂µK

⋆+
0 ) , (2.126)

(ig1

2
φN − i g1√

2
φS)(K⋆µ0∂µK̄

⋆0
0 +K⋆µ+∂µK

⋆−
0 ) , (2.127)

in the Lagrangian of the eLSM. These terms mix fields of different nonets, axial-vector with

pseudoscalar and vector with scalar fields, hence they should be eliminated. This can be achieved

by shifting the (axial-)vector fields as follows [19, 81, 193],

fµ
1N/S → fµ

1N/S +ZηN/Swf1N/S∂
µηN/S , aµ±,01 → aµ±,01 +Zπwa1∂µπ±,0 , (2.128)
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Kµ±,0,0̄
1 →Kµ±,0,0̄

1 +ZKwK1∂
µK±,0,0̄ , K⋆µ±,0,0̄ →K⋆µ±,0,0̄ +ZK⋆wK⋆∂µK⋆±,0,0̄

0 . (2.129)

After performing this procedure additional kinetic terms occur. In order to remove the latter a

redefinition of the (pseudo)scalar fields is required,

π±,0 → Zππ
±,0 , ηN/S → ZηN/SηN/S , (2.130)

K±,0,0̄ → ZKK
±,0,0̄ , K⋆±,0,0̄

0 → ZK⋆K⋆±,0,0̄
0 , (2.131)

where

Zπ = ZηN = ma1√
m2
a1 − g2

1φ
2
N

, ZK = 2mK1√
4m2

K1
− g2

1(φN +
√

2φS)2
, (2.132)

ZK⋆ = 2mK⋆
√

4m2
K⋆ − g2

1(φN −
√

2φS)2
, ZηS = mf1S√

m2
f1S

− 2g2
1φ

2
S

(2.133)

are the wave-function renormalization constants and

wf1N = wa1 =
g1φN
m2
a1

, wf1S =
√

2g1φS
m2
f1S

, (2.134)

wK⋆ = ig1(φN −
√

2φS)
2m2

K⋆
, wK1 =

g1(φN +
√

2φS)
2m2

K1

. (2.135)

2.6 Embedding of further gluballs into the eLSM

In the following we embed further glueballs, the pseudoscalar and the vector one, into the eLSM.

2.6.1 Lagrangian of the pseudoscalar glueball

This subsection follows Refs. [6, 7, 8, 9]. In order to study the coupling of a pseudoscalar

glueball G̃, with the corresponding quantum numbers JPC = 0−+, to quark-antiquark scalar and

pseudoscalar mesons, following the Refs. [174, 176, 187, 188], we construct an effective chiral

Lagrangian

LG̃ = 1

2
(∂µG̃)2 − 1

2
m2
G̃
G̃2 + icG̃ΦG̃ ( detΦ − detΦ�) , (2.136)

where cG̃Φ is an unknown coupling constant and Φ the multiplet of ordinary scalar and pseu-

doscalar mesons introduced in the beginning of this chapter. The pseudoscalar glueball G̃ is a

bosonic field made of gluons and is therefore chirally invariant. Moreover, it transforms under

dilatations as

G̃(x) → G̃′(x) = λG̃(λx) (2.137)

and under the discrete symmetries parity P and charge conjugation C as

G̃(t, x⃗) P→ G̃′(t, x⃗) = −G̃(t,−x⃗) , (2.138)

G̃(x) C→ G̃′(x) = G̃(x) . (2.139)
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As shown in in Eq. (2.87) performing of the axial transformations of the chiral symmetry on the

determinant of Φ yields

detΦ → detΦ′ = det (UAΦUA)
= e−iθ

0
A

√
2NfdetΦ ≠ detΦ . (2.140)

Similarly one can show that under vector transformations of the chiral symmetry the determinant

of Φ is invariant

detΦ→ detΦ′ = det(UV ΦU �
V ) = detΦ . (2.141)

This implies that the effective Lagrangian (2.136) is invariant under SUR(Nf) × SUL(Nf), but

not under the axial UA(1) transformation. This is in agreement with the chiral anomaly in

the pseudoscalar-isoscalar sector. Applying the discrete transformations of the multiplet Φ, Eqs.

(2.37) and (2.38) as well as (2.138) and (2.139), leaves the effective Lagrangian (2.136) unchanged.

Additionally, in the Nf = 3 realization of Φ the coupling constant cG̃Φ is dimensionless and the

Lagrangian (2.136) is invariant under dilatations. In conclusion, one can say that the effective

Lagrangian (2.136) reflect exactly the symmetries of the QCD Lagrangian.

2.6.2 Excited vector and pseudovector quark-antiquark mesons

Analogously to the (pseudo)scalar, Eq. (2.30), and (axial-)vector sector, Eqs. (2.51)-(2.52), we

introduce the excited vector and pseudovector quark-antiquark fields by defining the matrices

[166]

Φ̃µij ≡
√

2q̄j,R∂
µqi,L = 1√

2
(q̄j,R∂µqi,L + iq̄j,Rγ5∂µqi,L) , (2.142)

Φ̃µ�ij ≡
√

2q̄j,L∂
µqi,R = 1√

2
(q̄j,L∂µqi,R − iq̄j,Lγ5∂µqi,R) . (2.143)

The excited vector and pseudovector currents are defined as:

Eµij ≡
1√
2
q̄j∂

µqi , (2.144)

Bµij ≡
1√
2
q̄jγ

5∂µqi . (2.145)

Finally, the chiral fields in the excited vector and pseudovector sector read

Φ̃µ = Eµ + iBµ , Φ̃� = Eµ − iBµ . (2.146)

Since Eµ and Bµ are hermitian matrices they can be expressed through the generators of the

U(Nf) group

Eµ = Eµa ta , Eµa ≡
√

2q̄∂µtaq , (2.147)

Bµ = Bµa ta , Bµa ≡
√

2q̄γ5∂µtaq . (2.148)

The fields (2.146) transform under the global chiral symmetry in the following way

Φ̃µ → Φ̃′µ = ULΦ̃µU �
R , (2.149)
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Φ̃µ� → Φ̃′µ� = URΦ̃µ�U �
L . (2.150)

Furthermore, by considering the quark transformations under parity, Eqs. (1.47)-(1.48), and

charge conjugation, Eqs. (1.64)-(1.65), the chiral field Φ̃µ transforms under these transformation

as follows

Φ̃µ
P→ Φ̃′µ = Φ̃�

µ (2.151)

and

Φ̃µ
C→ Φ̃′µ = Φ̃µT . (2.152)

2.6.3 Assignment of the fields in the excited vector and pseudovector

sector

According to Eqs. (1.52) and (1.53) the quantum numbers S = 1 and L = 2 yield a vector meson

JPC = 1−− but due to a higher angular momentum it is an excited one (Eµ). In case of S = 0 and

L = 1 one obtains a particle with the quantum numbers JPC = 1+− which describes a pseudovector

meson (Bµ). The Nf = 3 multiplets of these mesons read

Eµ =
8

∑
i=0
Eµi T

i = 1√
2

⎛
⎜⎜⎜⎜
⎝

ωµ
N,E

+ρµ0
E√

2
ρµ+E K⋆µ+

E

ρµ−E
ωµ
N,E

−ρµ0
E√

2
K⋆µ0
E

K⋆µ−
E K̄⋆µ0

E ωµS,E

⎞
⎟⎟⎟⎟
⎠
, (2.153)

Bµ =
8

∑
i=0
iBµi T

i = i√
2

⎛
⎜⎜⎜
⎝

hµ
1N

+bµ01√
2

bµ+1 Kµ+
1,B

bµ−1
hµ
1N

−bµ01√
2

Kµ0
1,B

Kµ−
1,B K̄µ0

1,B hµ1S

⎞
⎟⎟⎟
⎠
, (2.154)

which yield the chiral field in the excited vector and pseudovector sector

Φ̃ =
8

∑
i=0

(Eµi + iB
µ
i )T

i = 1√
2

⎛
⎜⎜⎜⎜
⎝

ωµ
N,E

+ρµ0
E
+i(hµ

1N
+bµ01 )√

2
ρµ+E + ibµ+1 K⋆µ+

E + iKµ+
1,B

ρµ−E + ibµ−1

ωµ
N,E

−ρµ0
E
+i(hµ

1N
−bµ01 )√

2
K⋆µ0
E + iKµ0

1,B

K⋆µ−
E + iKµ−

1,B K̄⋆µ0
E + iK̄µ0

1,B ωµS,E + ih
µ
1S

⎞
⎟⎟⎟⎟
⎠
,

(2.155)

where the corresponding adjoint chiral field is given by Φ̃� = ∑8
i=0(Eµi − iB

µ
i )T i. The assignment

of the fields of the multiplets (2.153) and (2.154) to the physical resonances is as follows. In the

excited vector sector where JPC = 1−− and L = 2 the non-strange ωµN,E and the strange ωµS,E
field represent the resonance ω(1650) and φ(1680), respectively. The isotriplet field ρ⃗µE and the

isodoublet fields K⋆µ
E correspond to the resonance ρ(1700) and K∗(1680), respectively. In the

JPC = 1+− sector the non-strange hµ1N and the strange hµ1S field are assigned to the resonance

h1(1170) and h1(1380). The isotriplet field b⃗µ1 is identified with the resonance b1(1230). Finally,

the isodoublet fields Kµ
1,B corresponds to a mixture of K1(1270) and K1(1400) [192] where the

corresponding mixing matrix reads

{b1(1230), K1,B , h1(1170), h1(1380)}.

In both nonets the strange-non-strange isoscalar mixing is neglected, thus f1(1285) and h1(1170)
are purely non-strange states, while f1(1420) and h1(1380) are purely strange states.
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2.6.4 Lagrangian of the vector glueball

In the following we construct a chiral Lagrangian of the vector glueball, which decays via two-

and three-body processes into (pseudo)scalar, (axial-)vector, as well as excited vector and pseu-

dovector quark-antiquark mesons [166]. This Lagrangian reads

LOµ = −
1

4
OµνOµν −

1

2
m2
OµOµO

µ + LintOµ,1 + L
int
Oµ,2 + L

int
Oµ,3 , (2.156)

where Oµ is the vector glueball and

Oµν = ∂µOν − ∂νOµ (2.157)

the corresponding field-strength tensor. The vector glueball is clearly invariant under chiral

symmetry and transforms under dilatation symmetry, see Eq. (1.115), as

Oµ(x) → O′µ(x) = λOµ(λx) . (2.158)

In addition, it transforms under parity as

Oµ → O′
µ = Oµ (2.159)

and under charge conjugation as

Oµ → O′
µ = −Oµ . (2.160)

The interaction Lagrangian LintOµ,1 describes the coupling of the vector glueball to the (pseudo)scalar

and (axial-)vector q̄q mesons and reads

LintOµ,1 = κ1OµTr (LµΦΦ� +RµΦ�Φ) , (2.161)

where κ1 is a dimensionless coupling constant. One can easily see that this Lagrangian fulfills

the symmetries of the QCD Lagrangian. It is invariant under the chiral transformations (2.28),

(2.55), and (2.56),

L′intOµ,1 = κ1OµTr (ULLµU �
LULΦU �

RURΦ�U �
L +URR

µU �
RURΦ�U �

LULΦU �
R) = L

int
Oµ,1 (2.162)

as well as dilatation-symmetric, Eq. (1.115),

S′LOµ,1 = ∫ λ−4d4x′κ1λOµTr (λLµλΦλΦ� + λRµλΦ�λΦ) = SLOµ,1 . (2.163)

Finally, using the parity transformations (2.37), (2.64) and (2.65) one obtains

L′intOµ,1 = κ1OµTr (RµΦ�Φ +LµΦΦ�) = LintOµ,1 , (2.164)

and analogously we obtain using the charge conjugation transformations (2.38), (2.66), and (2.67)

L′intOµ,1 = κ1(−Oµ)Tr (−RµTΦTΦ�T −LµTΦ�TΦT )
= −κ1OµTr (−Φ�ΦRµ −ΦΦ�Lµ)
= κ1OµTr (RµΦ�Φ −LµΦΦ�) = LintOµ,1 . (2.165)

51



The Lagrangian LOµ,2, which couples to the (pseudo)scalar, excited vector, and pseudovector

quark-antiquark mesons as well as to the scalar glueball, reads

LOµ,2 = κ2GOµTr (Φ�Φ̃µ + Φ̃µ�Φ) , (2.166)

where κ2 is a dimensionless coupling constant. Exactly as in the previous case, also this La-

grangian (2.166) fulfils the symmetries of the QCD Lagrangian. Finally, the Lagrangian LOµ,3
reads

LintOµ,3 = αOµνTr (RµΦ�LνΦ −LµΦRνΦ�) . (2.167)

As the Lagrangian (2.161) this Lagrangian couples to the ordinary mesons in the (pseudo)scalar

and (axial-)vector sector. But in this case we obtain interaction terms of the type

∂µOνV µAν (2.168)

which are proportional to the condensates φN and φS as well as the Clebsch-Gordan coefficients.

Note that the Lagrangian breaks the dilatation symmetry hence the coupling constant α is not

dimensionless but carries the dimension [energy−2].

The calculation of the corresponding decay widths and branching ratios, respectively, are in

progress and will be presented in Ref. [166].
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Chapter 3

Mixing in the Scalar-Isoscalar

Sector of the Nf = 2 eLSM

In this chapter we discuss the two-body mixing of the scalar-isoscalar states within the eLSM in

the case of two quark flavors, following Refs. [1, 2, 17]. In this approximation the model contains

only two

IG (JPC) = 0+ (0++)

fields. Several mixing scenarios are possible, which should be taken into account. Considering

the results of Ref. [80], we start our study with the natural assignment [1, 17]

σN ≅ f0(1370) , G ≅ f0(1500) (3.1)

and then we test the alternative scenario [1]

σN ≅ f0(1370) , G ≅ f0(1710) . (3.2)

Additionally, we also tested assignments with the resonance f0(500) (or σ) as predominantly

non-strange q̄q meson [1, 2]. Up to 2012 f0(500) was actually named f0(600) [194] with the

following Breit-Wigner mass and width:

mf0(600) = (400 − 1200) MeV , (3.3)

Γf0(600) = (600 − 1000) MeV . (3.4)

In Ref. [195], see also Refs. [196, 197, 198, 199], the estimate of the mass and width of this

resonance was more precise

mf0(500) = (400 − 550) MeV , (3.5)

Γf0(500) = (400 − 700) MeV , (3.6)

for that reason we repeat the calculations of this scenario [2] in order to confirm or disprove the

results of Ref. [1].

The numerical results presented in this chapter are obtained from the Mathematica algorithm

developed in Ref. [17].
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3.1 eLSM in the case of Nf = 2

The Lagrangian of the eLSM used for calculations in the case of two quark flavors [1, 2, 17] reads

L = Ldil +Tr[(DµΦ)�(DµΦ)] −Tr [m2
0 ( G
G0

)
2

Φ�Φ] − λ1 [Tr(Φ�Φ)]2 − λ2 Tr[(Φ�Φ)2]

+ c(detΦ + detΦ�) +Tr[H(Φ� +Φ)] +Tr [m
2
1

2
( G
G0

)
2

(L2
µ +R2

µ)]

− 1

4
Tr (L2

µν +R2
µν) +

h1

2
Tr(Φ�Φ) Tr(LµLµ +RµRµ) + h2Tr(Φ�LµL

µΦ +ΦRµR
µΦ�)

+ 2h3Tr(ΦRµΦ�Lµ) + ... , (3.7)

where

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2
dil

G4 (ln ∣ G
Λdil

∣ − 1

4
) . (3.8)

This Lagrangian follows from the Lagrangian (2.104) by setting

h0S = ∆ = E = 0 , (3.9)

see Eqs. (2.95), (2.98), and (2.101).

3.1.1 Assignment of the fields in the Nf = 2 eLSM

The multiplets in the (pseudo)scalar and (axial-)vector sector of the eLSM in the case of Nf = 2

read explicitly:

Φ = (σN + iηN) t0 + (a⃗0 + iπ⃗) ⋅ t⃗ , (3.10)

Φ� = (σN − iηN) t0 + (a⃗0 − iπ⃗) ⋅ t⃗ , (3.11)

Lµ = (ωµN + fµ1N) t0 + (ρ⃗µ + a⃗µ1 ) ⋅ t⃗ , (3.12)

Rµ = (ωµN − fµ1N) t0 + (ρ⃗µ − a⃗µ1 ) ⋅ t⃗ , (3.13)

where t0, t⃗ are the generators of the group U(2). The assignment of the fields to the physical

resonances listed in Ref. [11] corresponds to those discussed in section 2.4. The main difference

to the eLSM with Nf = 3 is that only fields composed of up and down quarks are present.

This implies that e.g. in the pseudoscalar-isoscalar sector only the pure field ηN occurs, which

corresponds to the SU(2) counterpart of the η meson. The mass of ηN , which is about 700 MeV

[200, 157], can be obtained by ‘unmixing’ the physical η and η′(958) mesons which both contain

ss contributions, see Eq. (2.110). As shown in Ref.[80], the σN field should be interpreted as a

predominantly q̄q state because its decay width decreases as N−1
c in the limit of a large number

of colors. In the scalar-isoscalar sector only two fields, σN and G, are present, thus a mixing of

two 0+(0++) states takes place. The physical fields σ′ and G′ are obtained through an SO(2)
rotation, as we will show in the following. Then the assignments

{σ′,G′} ≡ {f0(1370), f0(1500)} , {σ′,G′} ≡ {f0(1370), f0(1710)} (3.14)
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as well as

{σ′,G′} ≡ {f0(500), f0(1500)} , {σ′,G′} ≡ {f0(500), f0(1710)} (3.15)

will be discussed.

3.1.2 Explicit symmetry breaking terms

In the case of Nf = 2 the leading-order term which describes the explicit breaking of the chiral

symmetry in the (pseudo)scalar sector reads

Tr[H(Φ +Φ�)] ≡ hNσN , (3.16)

where

H = diag(hN , hN) (3.17)

and

hN = const.∝mqN , (3.18)

which allows us to take into account the non-vanishing value mq of the current quark mass. This

term contains the dimensionful parameter hN with [hN ] = [energy3] and also explicitly breaks

dilatation invariance, just as the quark masses do in the underlying QCD Lagrangian. Finally,

the chiral anomaly is described by the term [183]:

c (det Φ + det Φ�) . (3.19)

For Nf = 2 the parameter c carries the dimension [energy2] and represents a further breaking

of dilatation invariance. This term arises from instantons, which are also a property of the

Yang-Mills sector of QCD.

3.1.3 Lagrangian, masses, and mixing matrix of the scalar-isoscalar

fields in the case Nf = 2

In order to study the non-vanishing vev’s of the two 0++ isoscalar fields, σN and G, of the Nf = 2

model we set all the other fields of the Lagrangian (3.7) to zero and obtain

LσNG = 1

2
(∂µG)2 − 1

4

m2
G

Λ2
dil

G4 (ln ∣ G
Λdil

∣ − 1

4
)

+1

2
(∂µσN)2 − 1

2
[m2

0 ( G
G0

)
2

− c]σ2
N − 1

4
(λ1 +

λ2

2
)σ4

N + hNσN . (3.20)

Upon shifting the fields by their vev’s, σN → σN + φN and G → G + G0, and expanding the

potential of LσNG (3.20) up to second order, we obtain the bare masses of the states [1, 80],

m2
σN

=m2
0 − c + 3(λ1 +

λ2

2
)φ2

N , (3.21)

M2
G =m2

0

φ2
N

G2
0

+m2
G

G2
0

Λ2
dil

(1 + 3 ln ∣ G0

Λdil
∣) . (3.22)
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The pure glueball mass MG depends also on the quark condensate φN , but correctly reduces

to mG in the limit m2
0 = 0, i.e., when quarkonium and glueball decouple. In the presence of

quarkonia, m2
0 ≠ 0, the vev G0 is given by the equation

− m
2
0φ

2
NΛ2

dil

m2
G

= G4
0 ln ∣ G0

Λdil
∣ , (3.23)

which implies that G0 ≳ Λdil. For large values of Λdil one has G0 ≃ Λdil, while for small values

G0 can be somewhat larger than Λdil. The shift of the fields by their vev’s introduces a bilinear

mixing term ∝ σNG in the Lagrangian (3.7), such that mass term of the tree-level potential reads

V
(2)
σNG

= 1

2
ΣTMΣ , (3.24)

with

M ≡
⎛
⎝

m2
σN

2m2
0φNG

−1
0

2m2
0φNG

−1
0 M2

G

⎞
⎠
, Σ ≡

⎛
⎝
σN

G

⎞
⎠
. (3.25)

Performing a diagonalization, which corresponds to an SO(2) rotation, yields the diagonal matrix

M ′ = BMBT (3.26)

with the masses of the physical fields σ′N and G′

m2
σ′
N
=m2

σN
cos2 θ +M2

G sin2 θ + 2m2
0

φN
G0

sin(2θ) , (3.27)

M2
G′ =M2

G cos2 θ +m2
σN

sin2 θ − 2m2
0

φN
G0

sin(2θ) . (3.28)

The orthogonal transformation matrix

B =
⎛
⎝

cos θ sin θ

− sin θ cos θ

⎞
⎠

(3.29)

links the pure scalar-isoscalar fields to the physical resonances as follows

Σ′ =
⎛
⎝
σ′N
G′

⎞
⎠
= BΣ = B

⎛
⎝
σN

G

⎞
⎠
. (3.30)

The corresponding mixing angle θ reads

θ = 1

2
arctan(−4

φN
G0

m2
0

M2
G −m2

σN

) . (3.31)

The quantity m2
0 can be calculated from the masses of the pion, ηN , and the bare σN mass [80]

m2
0 = (mπ

Z
)

2

+ 1

2
[(mηN

Z
)

2

−m2
σN

] . (3.32)

If m2
0 − c < 0, spontaneous breaking of chiral symmetry is realized.
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3.1.4 Parameters of the Nf = 2 eLSM

The Lagrangian of the eLSM in the case of two flavors (3.7) contains the following twelve free

parameters [1, 2, 17]:

m0, λ1, λ2,m1, g1, c, hN , h1, h2, h3,mG,Λdil =
√

11C2/(2mG) . (3.33)

The processes that we shall consider depend only on the combination h1 +h2 +h3, thus reducing

the number of parameters to ten. We replace the set of ten parameters by the following equivalent

set

mπ , mηN , mρ , ma1 , φN , Zπ , mσN , mG , m1 , C . (3.34)

The masses mπ = 139.57 MeV and mρ = 775.49 MeV are fixed to their PDG values [11]. As

outlined in Refs. [80, 201], the mass of the ηN meson can be calculated by using the mixing of

strange and non-strange contributions in the physical fields η and η′(958), of Eq. (2.110). Here

we use ϕη ≃ −36○ [200], which corresponds to the value mηN = 716 MeV. Given the well-known

uncertainty of the value of the angle ϕη, one could also consider other values, e.g., ϕη = −41.4○,

as published by the KLOE Collaboration [157], which corresponds to mηN = 755 MeV. Variations

of the pseudoscalar mixing angle affect the results presented in this chapter only slightly. The

value of ma1 is fixed to 1050 MeV according to the study of Ref. [202]. We stress that taking

the present PDG estimate of 1230 MeV does not change the quality of our results. The chiral

condensate is fixed as

φN = Zπfπ (3.35)

and the renormalization constant Zπ is determined by the study of the process a1 → πγ where

Zπ = 1.67 ± 0.2 [80].

Then, we are left with the following four free parameters

C , mσN , mG , m1 , (3.36)

where C parametrizes the gluon condensate (1.134), mσN and mG are the bare masses of the 0++

isoscalar fields (3.21) and (3.22), and m1 is the mass parameter of the (axial-)vector fields. For

these parameters a fit was performed which depends on the chosen assignment in the detailed

discussion later on.

3.2 Results and Discussion

3.2.1 Assigning σ′N and G′ to f0(1370) and f0(1500)

The σ′N field denotes an isoscalar JPC = 0++ state and its assignment to a physical state is a

long-debated problem of low-energy QCD [52, 53, 54, 55, 56, 57, 58, 60, 115, 116, 117, 133, 134,

138, 145, 146, 147, 203, 204, 205, 206]. The two major candidates are the resonances f0(500) and

the f0(1370) [11]. The study of Ref. [80] has shown that f0(1370) is favoured to be a state which

is predominantly q̄q. As stated above, the resonance f0(1500) is a convincing glueball candidate

[80]. For these reasons we first test the scenario

{σ′,G′} ≡ {f0(1370), f0(1500)} , (3.37)
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which turns out to be phenomenologically feasible in the eLSM in the case Nf = 2 [1, 17].

The χ2 analysis for the scenario {σ′,G′} ≡ {f0(1370), f0(1500)}

In order to determine the free parameters we use the χ2 analysis and perform a fit. In this case we

fit the four free parameters listed in Eq. (3.36) to five experimental quantities. As experimental

input we utilize the masses of the two scalar-isoscalar resonances [11], where we use for the mass

of f0(1370) the mean value

mex
σ′
N
= (1350 ± 150) MeV (3.38)

and

mG′ ≡mf0(1500) = (1505 ± 6) MeV . (3.39)

Furthermore, we use the three well-known decay widths of the well-measured resonance f0(1500):
f0(1500) → ππ, f0(1500) → ηη, and f0(1500) →KK.

Note that, although our framework is based on Nf = 2, we can calculate the amplitudes for the

decays into mesons containing strange quarks by making use of the flavor symmetry SUf(3) [207,

208, 209]. It is then possible to calculate the following f0(1500) decay widths into pseudoscalar

mesons containing s-quarks: f0(1500) → KK, f0(1500) → ηη, and f0(1500) → ηη′. The χ2

method yields

χ2/d.o.f. = 0.29 . (3.40)

The values of the parameters and the masses as well as the decay widths of the scalar-isoscalar

resonances are given in Tables 3.1 and 3.2, which correspond to the solution in which σ′N ≡
f0(1370) ≅ (ūu+d̄d)/

√
2 is predominantly a non-strange q̄q state andG′ ≡ f0(1500) predominantly

a glueball state.

Parameter Value [MeV]

C 699 ± 40

mσN 1275 ± 30

mG 1369 ± 26

m1 809 ± 18

Table 3.1: Parameters obtained from the fit with the solution: {σ′N , G′} ≡ {f0(1370), f0(1500)}.

We have also examined the uniqueness of our fit for this assignment [1]. To this end, we have

considered χ2 by fixing three of the four parameters entering the fit at their best values and

varying the remaining fourth parameter. In each of the four cases we observe only one minimum of

the χ2 function, see Figures 3.1-3.4. Each minimum leads exactly to the parameter values stated

in Table 3.1. We also observe no changes of the results for the errors of the parameters. These

findings give us confidence that the obtained minimum corresponds to the absolute minimum of

the χ2 function.
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Figure 3.1: χ2 as a function of the parameter C.
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Figure 3.2: χ2 as a function of the parameter mσ.
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Figure 3.3: χ2 as a function of the bare glueball mass mG.
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Figure 3.4: χ2 as a function of the parameter m1.
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Quantity Fit [MeV] Experiment [MeV]

mσ′
N

1191 ± 26 1200-1500

mG′ 1505 ± 6 1505 ± 6

G′ → ππ 38 ± 5 38.04 ± 4.95

G′ → ηη 5.3 ± 1.3 5.56 ± 1.34

G′ →KK 9.3 ± 1.7 9.37 ± 1.69

Table 3.2: Fit in the scenario {σ′, G′} = {f0(1370), f0(1500)}. Note that, the f0(1370) mass

ranges between 1200 MeV and 1500 MeV [11] and therefore, as an estimate, we are using the

value mσ′ = (1350 ± 150) MeV in the fit.

Consequences of the χ2 analysis for the solution {σ′N ,G′} ≡ {f0(1370), f0(1500)}

� The quarkonium-glueball mixing angle reads

θ = (29.7 ± 3.6) ○ . (3.41)

This, in turn, implies that the resonance f0(1500) consists to 76% of a glueball and to the

remaining 24% of a quark-antiquark state. The inverse is true for f0(1370).

� Our fit allows us to determine the gluon condensate:

C = (699 ± 40) MeV . (3.42)

This result implies that the upper value in Eq. (1.135) is favored by our analysis. It is

interesting that insights into this basic quantity of QCD can be obtained from the PDG

data on mesons.

� Further results for the f0(1500) meson are reported in the first two entries of Table 3.3.

The decay into 4π is calculated as a product of an intermediate ρρ decay. To this end the

usual integration over the ρ spectral function is performed [80]. Our result yields 30 MeV

in the 4π decay channel and is about half of the experimental value

Γf0(1500)→4π = (54.0 ± 7.1) MeV . (3.43)

However, it should be noted that an intermediate state consisting of two f0(500) mesons,

which is also expected to contribute in this decay channel, is not included in the present

model. The decay into the ηη′ channel is also evaluated, see Table 3.3. This channel is

subtle because it is exactly on the threshold of the f0(1500) mass, namely [11]

mη +mη′ = 1505.642 MeV . (3.44)

Therefore, an integration over the spectral function of the decaying meson f0(1500) is

necessary. The result is in a qualitative agreement with the experiment, see Table 3.3.

� The results for the f0(1370) meson are reported in the last four rows of Table 3.3. They

are in agreement with the experimental data regarding the full width [11]:

Γf0(1370) = (200 − 500) MeV . (3.45)
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Unfortunately, the experimental results in the different channels are not yet conclusive. Our

theoretical results point towards a dominant direct ππ and a non-negligible ηη contribution.

These results correspond well to the experimental analysis of Ref. [210] where

Γf0(1370)→ππ = 325 MeV (3.46)

and
Γf0(1370)→ηη

Γf0(1370)→ππ
= 0.19 ± 0.07 (3.47)

are obtained. We find that the four-pion decay of

f0(1370) → ρρ→ 4π (3.48)

is strongly suppressed, as was also found in Ref. [80]. This is unlike Ref. [210], where a

small but non-negligible value of about 50 MeV is found. However, it should be noted

that due to interference effects our result for this decay channel varies strongly when the

parameters are even slightly modified.

� The mass of the ρ meson can be expressed as

m2
ρ =m2

1 + φ2 (h1 + h2 + h3) /2 . (3.49)

In order that the contribution of the chiral condensate is not negative, the condition m1 ≤
mρ should hold. In the framework of our fit this condition is fulfilled at the two-sigma level.

This result points towards a dominant m1 contribution to the ρ mass. This property, in

turn, means that the ρ mass is predominantly generated from the gluon condensate and

not from the chiral condensate. It is therefore expected that the ρ mass in the medium

scales as the gluon condensate rather than as the chiral condensate [211]. In view of the

fact that m1 is slightly larger than mρ we have also repeated the fit by fixing m1 = mρ.

The minimum has a χ2/ d.o.f. ≃ 1 and the results are very similar to the previous case.

The corresponding discussion about the phenomenology is unchanged. As we shall see, this

result is confirmed in the full Nf = 3 case [3], see chapter four.

� As already stressed in Refs. [80, 212], the inclusion of (axial-)vector mesons plays a central

role to obtain the present results. The artificial decoupling of (axial-)vector states would

generate a by far too wide f0(1370) state. For this reason the glueball-quarkonium mixing

scenario above 1 GeV has been previously studied only in phenomenological models with

flavor symmetry [60, 115, 116, 117, 207, 208, 209] but not in the context of chirally invariant

models.

Further tests of the stability of the fit

Given that the resonance f0(1370) has a large mass uncertainty, we have also examined the

behaviour of the fit at different points of the PDG mass interval [1]. Considering the minimal

value mmin
f0(1370) = (1220 ± 20) MeV we obtain χ2 = 0.2/d.o.f. The resulting value of the mixing
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Decay Channel Our Value [MeV] Experiment [MeV]

G′ → ρρ→ 4π 30 54.0 ± 7.1

G′ → ηη′ 0.6 2.1 ± 1.0

σ′N → ππ 284 ± 43 -

σ′N → ηη 72 ± 6 -

σ′N →KK 4.6 ± 2.1 -

σ′N → ρρ→ 4π 0.09 -

Table 3.3: Further results regarding the σ′N ≡ f0(1370) and G′ ≡ f0(1500) decays.

angle θ = (30.3 ± 3.4)○ is practically the same as the value θ = (29.7 ± 3.6)○ obtained in the case

where mf0(1370) = (1350 ± 150) MeV was considered. Other results are also qualitatively similar

to the case of mf0(1370) = (1350 ± 150) MeV. For the upper boundary of the f0(1370) mass, the

error interval of ±20 MeV turns out to be too restrictive as it leads to unacceptably large χ2

values. Consequently, increasing the error interval decreases the χ2 values – we observe that

mmax
f0(1370) = (1480 ± 120) MeV leads to an acceptable χ2 value of 1.14 . Consequently, we obtain

θ = (30.0± 3.5)○, practically unchanged in comparison with the value θ = (29.7± 3.6)○ in the case

where mf0(1370) = (1350 ± 150) MeV. Also other quantities remain basically the same as in the

case of mf0(1370) = (1350 ± 150) MeV.

We have also considered the fit at several points between the lower and upper boundaries of the

mf0(1370) mass range. We have chosen points of 50 MeV difference starting at mf0(1370) = 1250

MeV (i.e., we have considered mf0(1370) ∈ {1250,1300,1350,1400,1450} MeV) with errors chosen

such that the χ2/d.o.f. becomes minimal (error values are between ±30 MeV for mf0(1370) = 1250

MeV and ±100 MeV for mf0(1370) = 1450 MeV). We observe that the previous results presented in

this section do not change significantly. Most notably, the mixing angle θ attains values between

30.2○ and 30.7○, with an average error value of ±3.4○.

We therefore conclude that considering different values of mf0(1370) within the (1200-1500) MeV

interval does not change the results significantly. In particular, the quarkonium-glueball mixing

angle θ changes only slightly, by approximately 1○, and thus we confirm our conclusion that in

the present scenario f0(1370) is predominantly a quarkonium and f0(1500) is predominantly a

glueball.

3.2.2 Assigning σ′N and G′ to f0(1370) and f0(1710)

A further glueball candidate is the resonance f0(1710) which was studied in a variety of works

[207, 213, 214, 215, 216, 217]. This resonance is narrow and has a mass of mf0(1710) = (1720± 6)
MeV which corresponds well to the scalar glueball mass predicted by lattice QCD in quenched

approximation [55].
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The χ2 analysis for the scenario {σ′,G′} ≡ {f0(1370), f0(1710)}

The resonance f0(1710) is experimentally well known. Decays into ππ, KK, and ηη have been

seen, while no decays into ηη′ and into 4π have been detected. Using the total decay width

Γf0(1710) = (135 ± 8) MeV and the branching ratios reported in Ref. [11] it is possible to deduce

the decay widths into ππ, KK, and ηη presented in Table 3.5.

A fit analogous to the one in Table 3.2 yields too large errors for the decay width σ′N ≡ f0(1370) →
ππ. For this reason we repeat our fit by adding the following constraint

Γσ′
N
→ππ = (250 ± 150) MeV . (3.50)

The large error assures that this value is in agreement with experimental data on this decay

width. The χ2 fit yields

χ2/d.o.f. = 1.72 . (3.51)

The corresponding parameters and the fitted experimental quantities are reported in Table 3.4

and 3.5, respectively. The mixing angle between the pure quarkonium σN and the pure glueball

G calculated from Eq. (3.31) is

θ = (37.2 ± 21.4)○ . (3.52)

The χ2 is worse than in the previous case, but the overall agreement is acceptable. The mix-

ing angle is large and could also overshoot the value of 45○, which would imply a somewhat

unexpected and unnatural reversed ordering, in which f0(1370) is predominantly glueball and

f0(1710) predominantly quarkonium.

Parameter Value [MeV]

C 764 ± 256

mσN 1516 ± 80

mG 1531 ± 233

m1 827 ± 36

Table 3.4: Parameters obtained from the fit with the solution: {σ′N , G′} ≡ {f0(1370), f0(1710)}.

Quantity Fit [MeV] Experiment [MeV]

mσ′
N

1386 ± 134 1350 ± 150

mG′ 1720 ± 6 1720 ± 6

G′ → ππ 29.7 ± 6.5 29.3 ± 6.5

G′ → ηη 6.9 ± 5.8 34.3 ± 17.6

G′ →KK 16 ± 14 71.4 ± 29.1

σ′N → ππ 379 ± 147 250 ± 150

Table 3.5: Fit in the scenario {σ′, G′} ≡ {f0(1370), f0(1710)}.
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Consequences of the χ2 analysis for the solution {σ′N ,G′} ≡ {f0(1370), f0(1710)}

In Table 3.6 we report the decay widths ΓG′→ρρ→4π, ΓG′→ηη′ , Γσ′
N
→ηη, and Γσ′

N
→KK , which can

be calculated as a consequence of the fit of Table 3.5. A clear problem of this scenario is that

the decay width

G′ ≡ f0(1710) → ρρ→ 4π (3.53)

is large, while experimentally it has not been seen. Therefore, we conclude that this scenario is

slightly less favored than the previous one. Still, no final statement can be done. Indeed, as we

will see in the next chapter, in a full Nf = 3 treatment, f0(1710) will be predominantly gluonic.

Decay Channel Our Value [MeV] Experiment [MeV]

G′ → ρρ→ 4π 115 -

G′ → ηη′ 16 -

σ′N → ηη 153 ± 79 -

σ′N →KK 2.1+13.6
−2.1 -

Table 3.6: Further results from the fit with {σ′, G’} ≡ {f0(1370), f0(1710)}.

3.2.3 Assignments with f0(500) as σ′N

Scenarios with σ′N ≡ f0(600)

The scenarios with the old data of Ref. [194] for f0(600)

{σ′N ,G′} ≡ {f0(600), f0(1500)} (3.54)

and

{σ′N ,G′} ≡ {f0(600), f0(1710)} (3.55)

have also been tested. In both cases the mixing angle turns out to be smaller, θ ≲ 15○, thus the

state f0(600) is predominantly quarkonium. Then, in these cases the analysis of Ref. [80] applies:

a simultaneous description of the ππ scattering lengths and the σN → ππ decay width cannot be

achieved. For these reasons the mixing scenarios with the resonance f0(600) as a quarkonium

state are not favored.

Scenarios with σ′N ≡ f0(500)

We have also tested the assignments

{σ′N ,G′} ≡ {f0(500), f0(1500)} (3.56)

and

{σ′N ,G′} ≡ {f0(500), f0(1710)} (3.57)
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using the new available experimental data of the f0(500) resonance [11]. We used for the calcu-

lation the mean value of its mass,

mex
σ′
N
= (475 ± 75) MeV . (3.58)

In both assignments the mixing angle turns out to be small, θ ≲ 13○, and this implies that the

state f0(500) is almost a pure quarkonium. The problem of these scenarios is that the decay into

two pions is too narrow,

Γσ′
N
→ππ ≲ 180 MeV , (3.59)

as already found in Ref. [1], in comparison to the experimental one,

Γf0(500)→ππ = (400 − 700) MeV . (3.60)

We thus confirm our result in Ref. [1] that the scenarios with the resonance f0(500) as a

quarkonium state are not favored. Note that we do not test any scenarios with the resonance

f0(980) because as shown in Refs. [19, 80, 81] its interpretation as a quarkonium state is as well

not favored. The resonances f0(500) and f0(980), which form a low lying scalar nonet, together

with the isotriplet a0(980) and the isodoublet states K∗
0 (800), can be interpreted as tetraquark

states and/or mesonic molecular states, see Refs. [133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147].

3.3 Final remarks

By the study of the mixing scenario within the eLSM in the case of two quark flavors we found

two solutions. One solution exhibits the resonance f0(1500) being predominantly a glueball, in

the other one f0(1710) was found to be predominantly gluonic. It should be stressed that the

Nf = 2 treatment is not complete. The absence of the third bare field σS together with possible

interference effects of the amplitudes are jointly responsible for inconclusive results. In order

to obtain an unambiguous result a full study of the mixing scenario is required. This means

that a study within a chiral approach with (axial-)vector quark-antiquark d.o.f. where the bare

scalar-isoscalar fields σN and G as well as σS which generate f0(1370), f0(1500), and f0(1710)
are present, must be performed. However, the resonance f0(1710) is actually even more favorable

than f0(1500).

� Now, if the resonance f0(1500) is interpreted as predominantly a glueball then the following

issues occur. Flavor blindness requires of a pure glueball state

ΓG→ππ
ΓG→KK

= 3

4
. (3.61)

This branching ratio reads for the two putative scalar glueball candidates

Γf0(1500)→ππ

Γf0(1500)→KK
= 4.06 (3.62)

and
Γf0(1710)→ππ

Γf0(1710)→KK
= 0.41 . (3.63)
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This shows that the requirement of flavor blindness is rather fulfilled by the resonance

f0(1710) than f0(1500). Moreover, the errors of the decay widths of f0(1710) are suffi-

ciently large to find a match between theoretical expectation and the experiment, see Table

3.5. This is not possible for the resonance f0(1500), see Table 3.2.

� Furthermore, lattice-QCD calculations predict on the one hand a scalar glueball mass of

mlat
G ≈ 1.7 GeV which corresponds to the mass of f0(1710) [55, 216, 217]. On the other

hand, the production rate in radiative J/ψ decay is higher for f0(1710) than f0(1500)
[215]. This arguments support the scenario in which G′ ≡ f0(1710). Indeed, a full Nf = 3

study confirms that f0(1710) is the glueball state to a good level of accuracy, see the next

chapter.
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Chapter 4

Mixing in the Scalar-Isoscalar

Sector of the Nf = 3 eLSM

In this chapter we study the three-body mixing problem in the scalar-isoscalar sector of the

eLSM with a scalar glueball in the case Nf = 3. The intention is to improve on the case Nf = 2

studied in the previous chapter, which could not clarify which resonance f0(1500 or f0(1710) is

predominantly gluonic. For that purpose we use the Nf = 3 version of the eLSM developed in

Refs. [3, 19, 81] and follow Refs. [3, 4, 5].

The numerical results of the eLSM presented in this chapter are obtained from a Mathematica

algorithm which was developed in Refs. [3, 4, 5] and this work.

4.1 Lagrangian, masses, and mixing matrix of the scalar-

isoscalar fields

The essential difference with respect to the Nf = 2 case is that here we do not neglect the strange

d.o.f., thus an additional condensate occurs which has a high impact on the phenomenology, as

we will see in the following.

The three scalar-isoscalar fields σN , σS , and G are the only fields of the model with quantum

numbers of the vacuum, IG(JPC) = 0+(0++). In order to study the vacuum expectation values

(vev’s) and the mixing behavior of these fields we set all other fields of the chiral Lagrangian

(2.104) to zero and obtain the scalar-isoscalar Lagrangian

LσNσSG = Ldil +
1

2
(∂µσN)2 + 1

2
(∂µσS)2 − m

2
0

2
( G
G0

)
2

(σ2
N + σ2

S)

− λ1 (σ
2
N

2
+ σ

2
S

2
)

2

− λ2

4
(σ

4
N

2
+ σ4

S) + hσNσN + hσSσS −
1

2
εSσ

2
S , (4.1)
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where

Ldil =
1

2
(∂µG)2 − 1

4

m2
G

Λ2
dil

G4 (ln ∣ G
Λdil

∣ − 1

4
) . (4.2)

Now we perform the shifts of the scalar-isoscalar fields by their vev’s, σN → σN+φN , σS → σS+φS ,

and G → G + G0, in order to obtain the bare masses and the bilinear mixing terms ∝ σNσS ,

∝ σNG, and ∝ σSG. The bare masses of the non-strange and strange q̄q fields read

m2
σN

= C1 + 2λ1φ
2
N + 3

2
λ2φ

2
N , m2

σS
= C1 + 2λ1φ

2
S + 3λ2φ

2
S + εS , (4.3)

where

C1 =m2
0 + λ1 (φ2

N + φ2
S) (4.4)

is a constant [81] (see Table 4.1),

φN = Zπfπ , φS = 2ZKfK − φN√
2

, (4.5)

are the condensates of the non-strange and strange quark-antiquark states, where Zπ/K are the

wave-function renormalization constants given in Eq. (2.132) and fπ/K are the vacuum decay

constants. The bare mass of the scalar glueball reads

M2
G = m

2
0

G2
0

(φ2
N + φ2

S) +
m2
GG

2
0

Λ2
dil

(1 + 3 ln ∣ G0

Λdil
∣) . (4.6)

Note that the bare glueball mass also depends on the quark condensates φN and φS , but correctly

reduces to mG in the limit m2
0 = 0, when quarkonia and the glueball decouple. When quarkonia

couple to the glueball, m2
0 ≠ 0, the vev G0 is given by the equation

− m
2
0Λ2

dil

m2
G

(φ2
N + φ2

S) = G4
0 ln ∣ G0

Λdil
∣ . (4.7)

This equation shows that G0 ≳ Λdil. For large values of Λdil one has G0 ≃ Λdil, while for small

values G0 can be somewhat larger than Λdil, see the analogous Nf = 2 equation. Note that here

φS appears, but the coupling constant c is no longer present.

The contribution to the tree-level potential which is of second order in the fields reads

V
(2)
σNσSG

= 1

2
ΣTMΣ , (4.8)

where

M ≡
⎛
⎜⎜⎜
⎝

m2
σN

2λ1φNφS 2m2
0φNG

−1
0

2λ1φNφS m2
σS

2m2
0φSG

−1
0

2m2
0φNG

−1
0 2m2

0φSG
−1
0 M2

G

⎞
⎟⎟⎟
⎠
, Σ ≡

⎛
⎜⎜
⎝

σN

σS

G

⎞
⎟⎟
⎠
. (4.9)

Following the usual diagonalization procedure, an orthogonal matrix B is introduced such that

the matrix M ′ = BMBT is diagonal. As a consequence, B links the bare scalar-isoscalar fields

to the physical resonances

⎛
⎜⎜
⎝

f0(1370)
f0(1500)
f0(1710)

⎞
⎟⎟
⎠
≡ Σ′ =

⎛
⎜⎜
⎝

σ′N
σ′S
G′

⎞
⎟⎟
⎠
= BΣ = B

⎛
⎜⎜
⎝

σN

σS

G

⎞
⎟⎟
⎠
. (4.10)
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4.2 Determination of the mixing matrix B: Preliminary

studies

In the following section we present the determination of the scalar-isoscalar mixing matrix B.

4.2.1 Parameters of the model

In Ref. [81] a global fit was performed, in which 21 experimental quantities were fitted to eleven

parameters of the eLSM. Due to their peculiar status, scalar-isoscalar mesons were not part of

the fit. This allowed to exclude the coupling constants λ1 and h1 from the fit, which are large-Nc

suppressed and therefore expected to be small. Since we are now explicitly interested in the

scalar-isoscalar resonances, these two coupling constants must be considered, which brings the

number of parameters to 13. Furthermore, in the fit of Ref. [81], the glueball was considered

to be frozen. This approximation is justifiable in the large-Nc limit because the coupling of one

scalar glueball to m ordinary mesons scales as ∝ N
−m/2
c . In the present study the scalar glueball

decay is non-zero, which introduces two additional parameters Λdil and mG, so that we have

15 parameters. Moreover, there is an additional mass term ∝ εS , see Eq. (2.99), not present in

the study of Ref. [81], and thus our chiral Lagrangian (2.104) contains 16 parameters. However,

the parameter g2, which is contained in the dots in Eq. (2.104), does not play any role in the

present study. The reason is that only one two-body decay process which depends on g2 is of

interest: the intermediate decay ρ→ ππ of the full decay f0 → ρρ→ 4π, where an integration over

the ρ spectral function is required and for the numerical calculations we use the corresponding

experimental value Γρ→ππ ≃ 149 MeV [11]. Hence, we can omit g2 in the following, bringing the

total number of relevant parameters to be fitted to 15

Λdil , mG , m0 , m1 , λ1 , λ2 , h1 , h2 , h3 , g1 , c1 , h0N , h0S , δS , εS . (4.11)

For the calculations in this work we use the values of the parameters entering the Lagrangian

(2.104) , i.e., λ2, h2, h3, g1, c1, h0N , h0S , δS , as well as the two combinations C1, Eq. (4.4), and

C2 =m2
1 +

h1

2
(φ2

N + φ2
S) (4.12)

determined in Ref. [81] and shown in Table 4.1.

Parameter Value Parameter Value

C1 −0.918 × 106 MeV2 C2 0.413 × 106 MeV2

c1 450 ⋅ 10−6 MeV−2 δS 0.151 × 106MeV2

g1 5.84 λ2 68.3

h2 9.88 h3 3.87

φN 164.6 MeV φS 126.2 MeV

Table 4.1: Values of the parameters from Ref. [81].
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Hence there are five free parameters remaining which enter into the Lagrangian (2.104) of Ref.

[3]

Λdil , mG , λ1 , h1 , εS . (4.13)

Moreover, in order to be consistent in this work we also use the values of the quantities given in

Table 4.2 which results from the global fit of Ref. [81].

Quantity Fit [MeV] Experiment [MeV]

fπ 96.3 ± 0.7 92.2 ± 4.6

fK 106.9 ± 0.6 110.4 ± 5.5

mπ 141 ± 5.8 137.3 ± 6.9

mK 485.6 ± 3 495.6 ± 24.8

mη 509.4 ± 3 547.9 ± 27.4

mρ 783.1 ± 7 775.5 ± 38.8

ma1 1186 ± 6 1230 ± 62

mf1(1420) 1372.5 ± 5.3 1426.4 ± 71.3

Table 4.2: Values of vacuum constants and masses from the global fit of Ref. [81].

4.2.2 Simplified procedure

In view of the fact that we started our study from the Lagrangian of the eLSM of Ref. [81]

in which the mass parameter εS was not present, we first studied the simplified case with four

parameters Λdil, mG, λ1, h1. Equations (4.3) show that the masses of the pure fields σN and σS

depend on λ1 but not on h1. The parameter h1 occurs in the amplitudes of the scalar-isoscalar

fields and is therefore only relevant when calculating the corresponding decay widths, see Ap-

pendix A. Moreover, the coupling constants λ1 and h1 occur in the model (2.104) in terms which

contain a product of traces and are therefore large-Nc suppressed. Hence the couplings scale as

N−2
c and not as N−1

c , and they are expected to be small.

We first focus on the determination of the mixing matrix by using the mass eigenvalues of the

scalar-isoscalar fields, where the parameters Λdil, mG, and λ1 can be calculated by diagonaliza-

tion of the mass matrix M of the tree-level potential (4.8). Where we consider both relevant

assignments of the pure scalar-isoscalar fields to the resonances f0(1370), f0(1500), and f0(1710)
[11], namely

σN ≅ f0(1370) , σS ≅ f0(1500) and G ≅ f0(1710) (4.14)

and

σN ≅ f0(1370) , σS ≅ f0(1710) and G ≅ f0(1500) . (4.15)

This should provide a first step as well as show the direction to determinate the final mixing

matrix, because in this procedure an exact solution is expected. Afterwards, using the obtained

parameters, the values of which are given in Table 4.3, as well as the mixing matrix (4.16) we can
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try to describe the decays of the 0++ isoscalar fields for a small numerical range of the large-Nc

suppressed coupling h1.

If this simple approach will turn out unsatisfactory then a fit of the parameters Λ, mG, λ1, and

h1 should be performed.

Solution at the mass level

The numerical values of the free parameters presented in Table 4.3 have been obtained by re-

quiring that the three following masses of the scalar-isoscalar fields [11] hold. For the mass of

f0(1370) we use the mean value of the mass given in Ref. [11] mf0(1370) = (1350 ± 150) MeV,

while for the two other masses we use the well-known values of mf0(1500) = (1505 ± 6) MeV and

mf0(1710) = (1720±6) MeV. It turns out that the resonances f0(1370) and f0(1500) are predom-

inantly non-strange and strange q̄q states, and that the resonance f0(1710) is predominantly a

scalar glueball. No other solution [e.g. for the other scenario (4.15)] was found.

Parameter Value

Λdil 930 MeV

mG 1580 MeV

λ1 2.03

Table 4.3: Parameters obtained from calculating the mass eigenvalues of the scalar-isoscalar fields

with the assignment: {σ′N , σ′S , G′} ≡ {f0(1370), f0(1500), f0(1710)} [4].

The mixing matrix corresponding to the parameters of Table 4.3 reads [4]

B =
⎛
⎜⎜
⎝

0.92 −0.05 0.39

−0.22 −0.89 −0.40

−0.33 −0.45 0.83

⎞
⎟⎟
⎠
. (4.16)

Testing the solution at the mass level by considering decays

We now test the mixing matrix (4.16) by evaluating the decay widths, where we use the param-

eters of Table 4.3. It turns out that using this solution it is not possible to describe the decay

processes of the f0 resonances into ππ and KK, as shown in Figures 4.1 - 4.6. These results are

clearly too large and cannot be cured by varying the only remaining free parameter h1, which

should anyhow be small. Corresponding results in the large-Nc limit, for which h1 = 0, are sum-

marized in Table 4.4. Thus, the decay widths do not support this scenario as being physical.

Note that such a large decay width of the predominantly glueball state is in agreement with the

study of Ref. [128].
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Figure 4.1: Decay of σ′N→ ππ using the mixing matrix B of Ref. [4].
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Figure 4.2: Decay of σ′N→KK using the mixing matrix B of Ref. [4].
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Figure 4.3: Decay of σ′S→ ππ using the mixing matrix B of Ref. [4].
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Figure 4.4: Decay of σ′S→KK using the mixing matrix B of Ref. [4].
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Figure 4.5: Decay of G′→ ππ using the mixing matrix B of Ref. [4].
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Figure 4.6: Decay of G′→KK using the mixing matrix B of Ref. [4].
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Decay Channel Our Value [MeV] Experiment [MeV]

f0(1370) → ππ 1785 -

f0(1370) →KK 894 -

f0(1500) → ππ 830 38.04 ± 4.95

f0(1500) →KK 421 9.37 ± 1.69

f0(1710) → ππ 223 29.3 ± 6.5

f0(1710) →KK 1140 71.4 ± 29.1

Table 4.4: Consequences of the solution at the mass level in the large-Nc limit, h1 = 0, using Eq.

(4.16) in which {σ′N , σ′S , G′} ≡ {f0(1370), f0(1500), f0(1710)} [4, 5].

Further discussion

The search for an acceptable solution is extremely difficult due to interference effects in the decay

amplitudes. As an alternative approach, we use as an input the bare glueball mass mG = 1.7

GeV in agreement with lattice QCD [52]. Then, due to the fact that f0(1710) was too broad in

the previous solution, we increase the value of the dimensionful parameter Λdil. For the choice

Λdil ≃ 2 GeV the resonance f0(1710) is sufficiently narrow. By further tuning λ1 ≃ −10 and

h1 ≃ −5, we obtain the mixing matrix [5]

B =
⎛
⎜⎜
⎝

0.90 0.41 −0.05

−0.42 0.90 −0.03

−0.04 −0.05 −0.99

⎞
⎟⎟
⎠
. (4.17)

The resonance f0(1710) is (almost) a pure glueball. The masses and decay widths that are

determined by these parameters are are still too large, see Table 4.5.

Quantity Our Value [MeV] Experiment [MeV]

mf0(1370) 1060 1200-1500

mf0(1500) 1480 1505 ± 6

mf0(1710) 1700 1720 ± 6

f0(1370) → ππ 120 -

f0(1370) →KK 70 -

f0(1500) → ππ 140 38.04 ± 4.95

f0(1500) →KK 130 9.37 ± 1.69

f0(1710) → ππ 82 29.3 ± 6.5

f0(1710) →KK 64 71.4 ± 29.1

Table 4.5: Consequences of the solution (4.17), in which {σ′N , σ′S , G′} ≡ {f0(1370), f0(1500),
f0(1710)} [5].

While the decays of f0(1370) and f0(1710) are at least in qualitative agreement with the ex-

periment, this is not the case for f0(1500) for which the decays are still too large. Note
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also that the quite large value of Λdil implies a large gluon condensate. Lattice-QCD results

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105] suggest that Λdil ≲ 0.6 GeV, see the discussion in

Ref. [1]. Thus, at this level this solution can point to an interesting direction where to look for

it: a large bare glueball mass in agreement with lattice (1.7 GeV) and a large value of the gluon

condensate. Another possibility is to improve the underlying effective model of Ref. [81], by

studying the influence of a quadratic mass term in the (pseudo)scalar sector. This is a minimal

change of Ref. [81], which however can have interesting phenomenological implications due to the

fact that the strange current quark mass is not negligible. For a value of the gluon condensate

in agreement with lattice QCD, a not too broad glueball can only be found if destructive inter-

ferences between the different amplitudes occur. This is why an improved numerical analysis,

which allows to study in detail the whole parameter space, would also be helpful.

4.2.3 Decay of the pure glueball and the gluon condensate

In Figure 4.7 we anticipate our result for the decay of a pure, i.e., unmixed, scalar glueball into

two pions as function of the vev G0. For values of G0 which belong to the range obtained by QCD

sum rules and lattice QCD (the vertical band1), G→ ππ is also very large, in complete agreement

with Ref. [128]. The two curves correspond to the cases with and without (axial-)vector states.

One can see that the inclusion of (axial-)vector d.o.f. reduces the decay width, but this effect

is not sufficient to make it small enough (when G0 is inside the vertical band). When mixing

is taken into account, due to interference phenomena the strong coupling of G to pions may be

reduced for the physical resonances. Yet, since the quarkonium state n̄n is also expected to be

broad, it is not possible to obtain two narrow resonances f0(1500) and f0(1710) in a three-body

mixing scenario. Thus, we realize that we cannot obtain a good description of the phenomenology

of the states f0(1370), f0(1500), and f0(1710) if we impose that G0 corresponds to the range

given by QCD sum rules or lattice QCD.
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Figure 4.7: Decay of the pure glueball field into ππ for a bare glueball mass mG = 1525 MeV.

Dashed red line: (Axial-)vector mesons are decoupled (Zπ = 1). Solid blue line: (Axial-)vector

mesons are included (Zπ ≠ 1).

1The vertical band in Figure 1 is slightly shifted to the right when compared to the range of Λdil determined

from Eqs. (1.135) and (2.26). This results from Eq. (4.7) which shows that G0 ≳ Λdil. For large values of Λdil
one has G0 ≃ Λdil, while for small values G0 can be somewhat larger than Λdil.
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4.3 Determination of the mixing matrix B: The full study

In the following we present the full determination of the scalar-isoscalar mixing matrix B, where

Λdil is fitted as well.

4.3.1 The χ2 analysis

Using the χ2 analysis,

χ2 ≡ χ2(xi) =
8

∑
j=1

⎛
⎝
Qthj (xi) −Qexj

∆Qexj

⎞
⎠

2

, with i = 1, . . . ,5 , (4.18)

we fit eight experimental quantities to the five parameters

xi = Λdil , mG , λ1 , h1 , εS (4.19)

of our chiral model summarized in Tables 4.6 and 4.7.

For the mass of f0(1370) we use the value mf0(1370) = (1350 ± 150) MeV and we increase the

experimental errors of mf0(1500) = (1505 ± 6) MeV and mf0(1710) = (1720 ± 6) [11] to 5%. This

procedure was also applied in Ref. [81], arguing that the precision of our model cannot be better

than 5% since it does not account e.g. for isospin breaking effects. Moreover, in order to better

constrain the fit we use the value Γf0(1370)→ππ = 325 MeV [210] together with an estimated

uncertainty of about 100 MeV, which is not given in Ref. [210]. The parameters in Table 4.6,

for which

χ2/d.o.f. ≈ 0.35 (4.20)

was achieved, and the masses as well as the decay widths of the scalar-isoscalar resonances in Table

4.7 correspond to the solution in which σ′N ≡ f0(1370) ≅ (ūu + d̄d)/
√

2 is predominantly a non-

strange, σ′S ≡ f0(1500) ≅ s̄s predominantly a strange q̄q state, and G′ ≡ f0(1710) predominantly

a glueball state.

Parameter Value

Λdil 3297 [MeV]
mG 1525 [MeV]
λ1 6.25

h1 −3.22

εS 0.421 × 106 [MeV2]

Table 4.6: Parameters obtained from the fit with the solution: {σ′N , σ′S , G′} ≡ {f0(1370),
f0(1500), f0(1710)}.
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Quantity Fit [MeV] Experiment [MeV]

mf0(1370) 1444 1200-1500

mf0(1500) 1534 1505 ± 6

mf0(1710) 1750 1720 ± 6

f0(1370) → ππ 423.6 -

f0(1500) → ππ 39.2 38.04 ± 4.95

f0(1500) →KK 9.1 9.37 ± 1.69

f0(1710) → ππ 28.3 29.3 ± 6.5

f0(1710) →KK 73.4 71.4 ± 29.1

Table 4.7: Fit with the solution: {σ′N , σ′S , G′} ≡ {f0(1370), f0(1500), f0(1710)}.

The bare fields σN ≅ (ūu + d̄d) /
√

2, σS ≅ s̄s, and G generate the resonances f0(1370), f0(1500),
and f0(1710), where the corresponding mixing matrix B, cf. Eq. (4.10), is given by

B =
⎛
⎜⎜
⎝

−0.91 0.24 −0.33

0.30 0.94 −0.17

−0.27 0.26 0.93

⎞
⎟⎟
⎠
, (4.21)

which implies the following admixtures of the bare fields to the resonances

f0(1370) ∶ 83%σN , 6%σS , 11%G ,

f0(1500) ∶ 9%σN , 88%σS , 3%G , (4.22)

f0(1710) ∶ 8%σN , 6%σS , 86%G .

For other results of the mixing matrix B using different theoretical models, we refer to Refs.

[20, 203, 204, 205, 207, 213, 214] and references therein. Moreover, our branching ratio

Γf0(1710)→ππ

Γf0(1710)→KK
= 0.39 (4.23)

is very close to the experimental one

Γf0(1710)→ππ

Γf0(1710)→KK
= 0.41 , (4.24)

see Table 3.6. The branching ratio (4.23) is also in good agreement with those of Refs.[218,

219, 220]. Note that the resonance f0(1710) is not a pure glueball but contains quark-antiquark

components, therefore the branching ratios (4.23) and (4.24) can differ from the expected one of

a pure glueball
ΓG→ππ
ΓG→KK

= 3

4
. (4.25)

For further approaches which favor the resonance f0(1710) as predominantly gluonic we refer to

Refs. [215, 216, 217, 221, 222] and references therein.

4.3.2 Discussion of the χ2 analysis

The parameters λ1 and h1 are small, in agreement with the large-Nc expectation (they scale as

N−2
c and not as N−1

c ). The numerical value Λdil ≈ 3.3 GeV suppresses the quarkonium-glueball
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mixing: this is why the admixtures in Eq. (4.22) are small.

In the pure Yang-Mills sector the vev of the dilaton field G is given by G0 = Λdil. The nu-

merical value Λdil ≈ 3.3 GeV implies that the resulting gluon condensate in pure Yang-Mills

theory, which is parametrized by the constant C defined in Eq. (1.134), reads C ≈ 1.8 GeV,

which is a factor 3 larger than the lattice value C ≈ 0.61 GeV obtained in Ref. [105] in the

quenched approximation. When quarks are included, the value of G0 is such that G0 ≈ Λdil to

a very good level of precision, see Eq. (4.7). Similarly, using Eq. (4.6) the value of the bare

glueball mass in the presence of quarks reads MG ≈mG. The fact that G0 ≈ Λdil and MG ≈mG

is also a consequence of the large value of Λdil. For small Λdil ≲ 0.6 GeV the differences are larger.

Our determination of the parameter C is based on the assumption that the glueball is narrow,

see Figure 4.7 and the discussion in section 1.3. If this assumption does not hold, the glueball is

very broad and would probably remain undetected. If, however, the narrow-glueball hypothesis is

correct, our results imply that either (i) the value of the constant C cannot be directly compared

to the corresponding one appearing in lattice QCD or QCD sum rules (which is entirely possible

because there may be corrections to the tree-level Lagrangian (2.105) arising from renormaliza-

tion), or (ii) that it is not allowed to assume that the dilaton field saturates the trace anomaly.

In turn, Eqs. (2.22) and (2.24) would not hold and other contributions should appear in order

to reconcile the mismatch.

The stability of the fit has been also tested by repeating the minimum search for different values

of the parameters, by increasing or reducing the errors in some channels and by including and/or

removing some experimental quantities. The same pattern has always been found: in all solu-

tions the resonance f0(1710) is (by far) predominantly a glueball, while f0(1370) and f0(1500)
are predominantly (ūu + d̄d)/

√
2 and s̄s quark-antiquark states, respectively.

In the future, one should also go beyond the present two-step fit and perform a unique fit in which

all 15 parameters (4.11) are determined at once. However, we do not expect large variations for

the parameters determined in Ref. [81] and listed in Table 4.1 otherwise the agreement with

mesonic masses and decays calculated in Ref. [81] would inevitably be spoiled.

4.3.3 Consequences of the χ2 analysis

As a consequence of our fit we calculate the decay processes given in Table 4.8. We discuss our

results in the following.

� At present, the different decay channels of the resonance f0(1370) are experimentally not

yet well known because conflicting experimental results exist [11]. Only the full decay

width is listed in Ref. [11]: Γexp
f0(1370) = (200 − 500) MeV. In our solution the dominant

decay channel of f0(1370) is the one into two pions with a decay width of about 400 MeV.

This corroborates that f0(1370) is predominantly a non-strange q̄q state as also found in

Refs. [1, 80, 81]. The total decay width of f0(1370) obtained with the parameters of

Table 4.6 is 598 MeV. In addition, we found non-negligible contributions from the decays
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f0(1370) → ηη and f0(1370) → ρρ → 4π, where in the latter case we have integrated over

the corresponding ρ spectral function. These results are in qualitative agreement with the

experimental analysis of Ref. [210], where

Γf0(1370)→ππ = 325 MeV , (4.26)

Γf0(1370)→4π ≈ 50 MeV , (4.27)

and
Γf0(1370)→ηη

Γf0(1370)→ππ
= 0.19 ± 0.07 . (4.28)

Note that the channel

f0(1370) → f0(500)f0(500) → 4π (4.29)

is not included in our model, so our determination of the 4π–decay mode is not complete.

� When omitting the quantity Γf0(1370)→ππ from the fit, a solution with a similar phenomenol-

ogy is found. However, the state f0(1370) would be somewhat too wide (≈ 700 MeV.) This

is why we have decided to include the value Γf0(1370)→ππ = 325 MeV [210] in the fit.

� The decay channel f0(1500) → ηη turns out to be in good agreement with the experiment.

� Experimentally, there is also a sizeable contribution of the channel

f0(1500) → 4π ∶ Γexp
f0(1500)→4π

= (54.0 ± 7.1) MeV . (4.30)

We have calculated the decay of f0(1500) into 4π only through the intermediate ρρ state,

as in the case of f0(1370) and f0(1710), respectively, including the ρ spectral function.

We found that this decay channel is strongly suppressed. However, we expect a further

and much larger contribution to this decay channel through the intermediate state of two

f0(500) resonances, but f0(500) is not implemented in the present model.

� The decay channel f0(1710) → ηη is slightly larger than the experiment.

� In comparison with the Nf = 2 results of Ref. [1], we now find that the decay channel

f0(1710) → ρρ→ 4π is strongly suppressed. The reason is the scaling

Γf0(1710)→ρρ→4π ∝ G−1
0 . (4.31)

This is indeed an important point: in Ref. [1] two scenarios were phenomenologically ac-

ceptable, one in which f0(1500) and one in which f0(1710) is predominantly a glueball.

The latter case was, however, slightly disfavored because Γf0(1710)→ρρ→4π was too large in

virtue of the vev G0 ≈ Λdil, which was much smaller in that case. A solution of that type

was possible because only one quarkonium existed and less experimental information was

taken into account.
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Decay Channel Our Value [MeV] Experiment [MeV]

f0(1370) →KK 117.5 −
f0(1370) → ηη 43.3 −

f0(1370) → ρρ→ 4π 13.8 −
f0(1500) → ηη 4.7 5.56 ± 1.34

f0(1500) → ρρ→ 4π 0.2 > 54.0 ± 7.1

f0(1710) → ηη 57.9 34.3 ± 17.6

f0(1710) → ρρ→ 4π 0.5 −

Table 4.8: Consequences of the fit with the solution: {σ′N , σ′S , G′} ≡ {f0(1370), f0(1500),
f0(1710)}.
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Chapter 5

Pseudoscalar Glueball within the

eLSM

In this chapter we present and discuss the results for the pseudoscalar glueball G̃, JPC = 0−+,

following Refs. [6, 7, 8, 9]. The corresponding effective chiral interaction chiral Lagrangian

Lint
G̃

= icG̃ΦG̃ ( detΦ − detΦ�) , (5.1)

which we already introduced in chapter 2, enables us to study the decay widths for the processes

G̃ → PPP and G̃ → PS, where P and S are pseudoscalar and scalar quark-antiquark fields,

respectively. Our intention is to study the properties of the pseudoscalar glueball in order to give

a useful hints for an experimental search of this still undetected but theoretically expected state,

e.g. the ongoing BESIII experiment [123] and the upcoming P̄ANDA experiment at the FAIR

facility near Darmstadt [124].

The numerical results of the pseudoscalar glueball within the eLSM presented in this chapter are

obtained from a Mathematica algorithm which was developed in Refs. [6, 7, 8, 9] and this work,

except for the calculations in (5.3.4) which have been done by Klaus Neuschwander in Ref. [223]

and the calculations in (5.4) which have been done by Antje Peters in Ref. [224].

5.1 Implications of the chiral interaction Lagrangian Lint
G̃

5.1.1 Assignment of the fields and the free parameter

For our calculations we fixed the mass of the pseudoscalar glueball to mG̃ = 2.6 GeV. This value

is obtained by studying of the pure Yang-Mills sector in lattice QCD [52, 53, 54, 55, 56, 57]. The

assignment of the (pseudo)scalar quark-antiquark fields of the multiplet Φ to the physical reso-

nances corresponds to the discussion of section1 2.4. By evaluating the decays of the pseudoscalar

glueball G̃ we have to take into account that the spontaneous breaking of chiral symmetry takes

1For the numerical calculations in this chapter we used for all masses the values of Ref. [11] as well as the

standard values fπ = 0.0922 GeV and fK = 0.110 GeV [11].
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place. This implies the usual shift of the scalar-isoscalar fields as well as the procedure of elim-

inating the bilinear terms in the (axial-)vector sector which we already performed in chapter 2.

Thus the chiral interaction Lagrangian (5.1) contains the relevant tree-level vertices for the two-

and three-body decay processes of G̃, G̃ → PPP , and G̃ → PS, which are explicitly shown in

Appendix B.1.

This chiral Lagrangian contains only one unknown coupling constant cG̃Φ, whose determination

would require experimental data or a more microscopic model. The branching ratios can be

calculated and do not depend on cG̃Φ: they are a clear prediction of the model and may present a

useful guideline for experimental search of the pseudoscalar glueball in the energy region between

2 to 3 GeV. In this respect, the planned P̄ANDA experiment at the FAIR facility [124] will be

capable to scan the mass region above 2.5 GeV. The experiment is based on proton-antiproton

scattering, thus the pseudoscalar glueball G̃ can be directly produced as an intermediate state.

We shall therefore present our results for the branching ratios for a putative pseudoscalar glueball

with a mass of 2.6 GeV.

On the other hand, it is also possible that the pseudoscalar glueball G̃ has a mass that is a

bit lower than the lattice-QCD prediction and that it has been already observed in the BESIII

experiment, where pseudoscalar resonances have been investigated in J/ψ decays [225, 226, 227].

In particular, the resonance X(2370) which has been clearly observed in the π+π−η′ channel

represents a good candidate, because it is quite narrow (∼ 80 MeV) and its mass lies just below

the lattice-QCD prediction. For this reason we repeat our calculation for a pseudoscalar glueball

mass of 2.37 GeV, and thus make predictions for the resonance X(2370), which can be tested in

the near future.

5.1.2 Constraints on the coupling constant cG̃Φ
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Figure 5.1: Solid (blue) line: Total decay width of the pseudoscalar glueball with the bare mass

mG̃= 2.6 GeV as function of the coupling constant cG̃Φ. Dashed (red) line: Same curve for

mG̃= 2.37 GeV [6].

As mentioned previously, the chiral interaction Lagrangian contains an unknown coupling con-

stant which cannot be determined without experimental data. In Figure 5.1 we show the behavior
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of the total decay width

Γtot
G̃

= ΓG̃→PPP + ΓG̃→PS (5.2)

as a function of the coupling constant cG̃Φ for both choices of the pseudoscalar glueball mass.

We assume here that other decay channels, such as decays into vector mesons or baryons are

negligible. In the case of mG̃ = 2.6 GeV, one expects from large-Nc considerations that the total

decay width

Γtot
G̃

≲ 100 MeV . (5.3)

In fact, as discussed in the Introduction, the scalar glueball candidates f0(1500) and f0(1710)
are roughly 100 MeV broad and the tensor candidate fJ(2220) is even narrower. In the present

work, the condition (5.3) implies that

cG̃Φ ≲ 5 . (5.4)

Moreover, in the case of mG̃ = 2.37 GeV in which the identification G̃ ≡X(2370) has been made,

we can indeed use the experimental knowledge on the full decay width

ΓX(2370) = 83 ± 17 MeV (5.5)

[225, 226, 227] to determine the coupling constant to be

cG̃Φ = 4.48 ± 0.46 . (5.6)

However, we also refer to the recent work of Ref. [228], where the possibility of a broad pseu-

doscalar glueball is discussed.

5.1.3 Mixing in the pseudoscalar-isoscalar sector

Once the shifts of the scalar-isoscalar fields by their vacuum expectation values have been per-

formed, there are also bilinear mixing terms in the JPC = 0−+ isoscalar sector of the form ∝ ηN G̃

and ∝ ηSG̃ which lead to a non-diagonal mass matrix. In principle, one should take these terms

into account, in addition to the already mentioned ηN -ηS mixing (2.110) [19, 81, 157, 186, 200],

and solve a three-body mixing problem in order to determine the physical masses of the pseu-

doscalar particles. This will also affect the calculation of the decay widths. However, due to the

large mass difference of the bare glueball field G̃ to the other quark-antiquark pseudoscalar fields,

the corresponding admixtures of G̃ are expected be very small and can be safely neglected. In

the following we will present the calculation of this three-body mixing problem in order to show

that for the numerical calculations of the decay widths the field G̃ can be considered as a pure

state.

The contribution of the pseudoscalar-isoscalar fields to the tree-level potential of the chiral in-

teraction Lagrangian (5.1), which is of second order in the fields, reads

V
(2)
ηNηSG̃

= 1

2
Σ̃T M̃ Σ̃ , Σ̃ ≡

⎛
⎜⎜
⎝

ηN

ηS

G̃

⎞
⎟⎟
⎠
, (5.7)
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where

M̃ ≡
⎛
⎜⎜⎜
⎝

m2
ηN

−c1ZπZηSφ3
NφS/2 −cG̃ΦZπφNφS/

√
2

−c1ZηSZπφ3
NφS/2 m2

ηS
−cG̃ΦZπφN /2

√
2

−cG̃ΦZπφNφS/
√

2 −cG̃ΦZπφN /2
√

2 m2
G̃

⎞
⎟⎟⎟
⎠

(5.8)

is the non-diagonal mass matrix and

− c1ZπZηSφ3
NφS/2 (5.9)

is the mixing parameter of the ηN -ηS mixing studied in Refs. [19, 81, 186]. Following the usual

diagonalization procedure, which corresponds to an SO(3) rotation, an orthogonal matrix B̃

is introduced such that the matrix M̃ ′ = B̃M̃B̃T is diagonal. As a consequence, B̃ links the

bare pseudoscalar-isoscalar fields to the physical resonances η and η′(958) and to a hypothetical

pseudoscalar glueball, which we denote as ηg, as follows

⎛
⎜⎜
⎝

η

η′(958)
ηg

⎞
⎟⎟
⎠
≡ Σ̃′ =

⎛
⎜⎜
⎝

η′N
η′S
G̃′

⎞
⎟⎟
⎠
= B̃ Σ̃ = B̃

⎛
⎜⎜
⎝

ηN

ηS

G̃

⎞
⎟⎟
⎠
. (5.10)
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Figure 5.2: Physical masses of pseudoscalar-isoscalar fields as a function of the coupling constant

cG̃Φ.

In Figure 5.2 we show the masses of the pseudoscalar states, after diagonalization of the bare

mass matrix (5.8), as a function of the coupling constant cG̃Φ. It turns out that the mass of

the mixed state which is predominantly a glueball increases very slowly. For the value of the

coupling constant, cG̃Φ = 4.48 ± 0.46, determined in the previous subsection, where we assumed

that the resonance X(2370) is a glueball, we obtain the physical masses of the pseudoscalar states

presented in Table 5.1. For solving the three-body mixing issue we used for the masses of the

bare fields mηN = 766 MeV, mηS = 770 MeV [186] and the mass mG̃ = 2.6 GeV which corresponds

to a lattice-QCD calculation in the quenched approximation [52, 53, 54, 55, 56, 57].

The corresponding mixing matrix reads

B̃ =
⎛
⎜⎜
⎝

0.71 0.70 0.02

−0.70 0.71 −0.01

−0.02 −0.01 0.99

⎞
⎟⎟
⎠
, (5.11)
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Mass eLSM [MeV] Experiment [MeV]

mη 517 (547.862 ± 0.018)
mη′(958) 954 (957.78 ± 0.06)
mηg 2600.52 −

Table 5.1: Masses of the pseudoscalar-isoscalar mesons.

which implies the following admixtures of the bare fields to the two physical resonances as well

as to the hypothetical state ηg

η ∶ 51%ηN , 49%ηS , ≈ 0% G̃ ,

η′(958) ∶ 49%ηN , 51%ηS , ≈ 0% G̃ , (5.12)

ηg ∶ ≈ 0%ηN , ≈ 0%ηS , ≈ 100% G̃ .

Equations (5.11) and (5.12) show that the mixing of the two pseudoscalar-isoscalar quark-

antiquark fields is almost maximal as also determined in Ref. [19, 81, 186] and the mixing of the

pseudoscalar glueball with the pseudoscalar quarkonia is almost ideal. Hence, for the numerical

calculation of the decay widths we must only consider the ηN -ηS mixing and use mG̃ ≈mηg .

5.2 Decay of the pseudoscalar glueball G̃

In this section we present the analytical tree-level expressions for the decay of the pseudoscalar

glueball G̃. The relevant vertices are extracted from the chiral interaction Lagrangian (5.1) whose

explicit form is shown in Appendix B.1. These vertices are then applied to the decay formulas

(1.144) and (1.148).

5.2.1 Decay widths of the type G̃→ PPP

We begin with listing the decay amplitudes and widths of the pseudoscalar glueball into three

ordinary pseudoscalar mesons.

Decay channel G̃→KKη:

− iAG̃→K−K+η = −iAG̃→K0K̄0η =
1

2
cG̃ΦZ

2
KZπ cos2 ϕη , (5.13)

ΓG̃→KKη = 2ΓG̃→K−K+η . (5.14)

Decay channel G̃→KKη′:

− iAG̃→K−K+η′ = −iAG̃→K0K̄0η′ =
1

2
cG̃ΦZ

2
KZπ sin2 ϕη , (5.15)

ΓG̃→KKη′ = 2ΓG̃→K−K+η′ . (5.16)
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Decay channel G̃→ ηηη:

− iAG̃→ηηη =
1

2
√

2
cG̃ΦZηSZ

2
π cos4 ϕη sin2 ϕη , (5.17)

ΓG̃→ηηη ∝ 6 ∣−iAG̃→ηηη ∣
2
. (5.18)

Decay channel G̃→ ηηη′:

− iAG̃→ηηη′ =
1

2
√

2
cG̃ΦZηSZ

2
π(cos3 ϕη − 2 sin2 ϕη cosϕη) , (5.19)

ΓG̃→ηηη′ ∝ 2 ∣−iAG̃→ηηη′ ∣
2
. (5.20)

Decay channel G̃→ ηη′η′:

− iAG̃→ηη′η′ =
1

2
√

2
cG̃ΦZηSZ

2
π(sin3 ϕη − 2 cos2 ϕη sinϕη) , (5.21)

ΓG̃→ηη′η′ ∝ 2 ∣−iAG̃→ηη′η′ ∣
2
. (5.22)

Decay channel G̃→KKπ:

− iAG̃→K−K+π0 = −iAG̃→K0K̄0π0 =
1

2
cG̃ΦZ

2
KZπ , (5.23)

− iAG̃→K̄0K+π− = −iAG̃→K0K−π+ =
1√
2
cG̃ΦZ

2
KZπ , (5.24)

ΓG̃→KKπ = ΓG̃→K−K+π0 + ΓG̃→K0K̄0π0 + ΓG̃→K̄0K+π− + ΓG̃→K0K−π+ = 6ΓG̃→K−K+π0 . (5.25)

Decay channel G̃→ ηππ:

− iAG̃→ηπ0π0 =
1

2
√

2
cG̃ΦZηSZ

2
π sinϕη , (5.26)

− iAG̃→ηπ+π− =
1√
2
cG̃ΦZηSZ

2
π sinϕη , (5.27)

ΓG̃→ηππ = 2ΓG̃→ηπ0π0 + ΓG̃→ηπ+π− . (5.28)

Decay channel G̃→ η′(958)ππ:

− iAG̃→ηπ0π0 =
1

2
√

2
cG̃ΦZηSZ

2
π sinϕη , (5.29)

− iAG̃→ηπ+π− =
1√
2
cG̃ΦZηSZ

2
π sinϕη , (5.30)

ΓG̃→ηππ = 2ΓG̃→ηπ0π0 + ΓG̃→ηπ+π− . (5.31)
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5.2.2 Decay widths of the type G̃→ PS

Now we consider the decay channels of the pseudoscalar glueball into an ordinary pseudoscalar

and a scalar meson.

Decay channel G̃→KK⋆
0 :

− iAG̃→K−K⋆+
0

= −iAG̃→K+K⋆−
0

= −iAG̃→K̄0K⋆0
0
= −iAG̃→K0K̄⋆0

0
= 1

2
√

2
cG̃ΦZK⋆ZKφN , (5.32)

ΓG̃→K⋆
0K

= ΓG̃→K−K⋆+
0
+ ΓG̃→K+K⋆−

0
+ ΓG̃→K̄0K⋆0

0
+ ΓG̃→K0K̄⋆0

0
= 4ΓG̃→K−K⋆+

0
. (5.33)

Decay channel G̃→ πa0:

− iAG̃→π0a00
= −iAG̃→π+a−0 = iAG̃→π−a+0 =

1√
2
cG̃ΦZπφS , (5.34)

ΓG̃→πa0 = ΓG̃→π0a00
+ ΓG̃→π+a−0

+ ΓG̃→π−a+0
= 3ΓG̃→π0a00

. (5.35)

Decay channel G̃→ ησN :

− iAG̃→ησN = − 1√
2
cG̃Φ(ZηSφN sinϕη +ZπφS cosϕη) , (5.36)

ΓG̃→ησN ∝ ∣−iAG̃→ησN ∣2 . (5.37)

Decay channel G̃→ ησS:

− iAG̃→ησS = 1√
2
cG̃ΦZπφN cosϕη , (5.38)

ΓG̃→ησS ∝ ∣−iAG̃→ησS ∣
2
. (5.39)

Decay channel G̃→ η′σN :

− iAG̃→η′σN = 1√
2
cG̃Φ(ZηNφS sinϕη −ZηSφN cosϕη) , (5.40)

ΓG̃→η′σN ∝ ∣−iAG̃→η′σN ∣2 . (5.41)

Decay channel G̃→ η′σS:

− iAG̃→η′σS = 1√
2
cG̃ΦZπφN sinϕη , (5.42)

ΓG̃→η′σS ∝ ∣−iAG̃→η′σS ∣
2
. (5.43)
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5.2.3 Amplitudes for G̃→ Pf 0

Concerning the decay channels of G̃ involving scalar-isoscalar mesons one should take into account

the full mixing pattern above 1 GeV, in which the resonances f0(1370), f0(1500), and f0(1710)
are mixed states of the pure quark-antiquark contributions σN and σS and a pure scalar glueball

field G which is absent in this study2. This mixing, which is described by an orthogonal 3 ×
3 matrix, was studied in detail in chapter 3 of this work [3, 4, 5] as well as e.g. in Refs.

[1, 20, 203, 204, 205, 207, 208, 213, 214, 229]. Now we present the corresponding amplitudes for

the decay of the pseudoscalar glueball into η and η′(958) and one of the f0 resonances.

− iAG̃→ηf0(1370) = −
1√
2
cG̃Φ(ZηSφN sinϕηb11 +ZπφS cosϕηb11 +ZπφN cosϕηb31) , (5.44)

− iAG̃→ηf0(1500) = −
1√
2
cG̃Φ(ZηSφN sinϕηb12 +ZπφS cosϕηb12 +ZπφN cosϕηb32) , (5.45)

− iAG̃→ηf0(1710) = −
1√
2
cG̃Φ(ZηSφN sinϕηb13 +ZπφS cosϕηb13 +ZπφN cosϕηb33) , (5.46)

− iAG̃→η′f0(1370) =
1√
2
cG̃Φ(ZπφS sinϕηb11 −ZηSφN cosϕηb11 +ZπφN sinϕηb31) , (5.47)

− iAG̃→η′f0(1500) = −
1√
2
cG̃Φ(ZπφS sinϕηb12 −ZηSφN cosϕηb12 +ZπφN sinϕηb32) , (5.48)

and

− iAG̃→η′f0(1710) = −
1√
2
cG̃Φ(ZπφS sinϕηb13 −ZηSφN cosϕηb13 +ZπφN sinϕηb33) , (5.49)

where bij with i, j = 1,2,3 are elements of a mixing matrix B of the three f0 resonances.

5.3 Branching ratios of the decay of G̃

In order to make parameter-free predictions we present our numerical results as branching ratios.

5.3.1 Branching ratios of G̃→ PPP

The branching ratios of G̃ for the decays into three pseudoscalar mesons are reported in Table

5.2 for both choices of the pseudoscalar masses, 2.6 and 2.37 GeV, which are relevant for the

P̄ANDA and BESIII experiments, respectively. The branching ratios are presented relative to

the total decay width of the pseudoscalar glueball Γtot
G̃

.

2As already discussed scalar-isoscalar states below 1 GeV are predominantly tetraquarks or mesonic molecular

states, see Refs.[133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147] and references therein,

and are not considered here.

88



Quantity Case (i): mG̃ = 2.6 GeV Case (ii): mG̃ = 2.37 GeV

ΓG̃→KKη/ΓtotG̃ 0.049 0.043

ΓG̃→KKη′/ΓtotG̃ 0.019 0.011

ΓG̃→ηηη/ΓtotG̃ 0.016 0.013

ΓG̃→ηηη′/ΓtotG̃ 0.0017 0.00082

ΓG̃→ηη′η′/ΓtotG̃ 0.00013 0

ΓG̃→KKπ/ΓtotG̃ 0.47 0.47

ΓG̃→ηππ/ΓtotG̃ 0.16 0.17

ΓG̃→η′ππ/ΓtotG̃ 0.095 0.090

Table 5.2: Branching ratios for the decay of the pseudoscalar glueball G̃ into three pseudoscalar

mesons.

5.3.2 Branching ratios of G̃→ PS

Next we turn to the decay process G̃→ PS. The results, for both choices of mG̃, are reported in

Table 5.3 for the cases in which the pure resonance σS is assigned to f0(1710) or to f0(1500).

Ratio Case (i): mG̃ = 2.6 GeV Case (ii): mG̃ = 2.37 GeV

ΓG̃→KKS /Γ
tot
G̃

0.060 0.070

ΓG̃→a0π/Γ
tot
G̃

0.083 0.10

ΓG̃→ησN /Γtot
G̃

0.0000026 0.0000030

ΓG̃→η′σN /Γtot
G̃

0.039 0.026

ΓG̃→ησS /Γ
tot
G̃

0.012 (0.015) 0.0094 (0.017)
ΓG̃→η′σS /Γ

tot
G̃

0 (0.0082) 0 (0)

Table 5.3: Branching ratios for the decay of the pseudoscalar glueball G̃ into a scalar and a

pseudoscalar meson. In the last two rows σS is assigned to f0(1710) or to f0(1500) (values in

parentheses).

5.3.3 Branching ratios of G̃→ Pf0

Due to the mixing in the scalar-isoscalar channel we evaluated explicitly the decays of the pseu-

doscalar glueball G̃ into η and η′(958), respectively, and one of the scalar-isoscalar resonances

f0(1370), f0(1500), or f0(1710). Therefore, we use the solution of the mixing scenario of our

chiral approach discussed in chapter four where the corresponding mixing matrix reads

B =
⎛
⎜⎜
⎝

−0.91 0.24 −0.33

0.30 0.94 −0.17

−0.27 0.26 0.93

⎞
⎟⎟
⎠
. (5.50)

We also use two other solutions of Ref. [207] and the solution of Ref. [213] where the corresponding

results can be found in Appendix B.2. The branching ratios which correspond to our solution of

the mixing of the f0 are presented in Table 5.4.
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Quantity Sol. of eLSM. (4.21)

ΓG̃→ηf0(1370)/ΓtotG̃ 0.0012 (0.0014)
ΓG̃→ηf0(1500)/ΓtotG̃ 0.013 (0.015)
ΓG̃→ηf0(1710)/ΓtotG̃ 0.00078 (0.00062)
ΓG̃→η′f0(1370)/ΓtotG̃ 0.043 (0.029)
ΓG̃→η′f0(1500)/ΓtotG̃ 0.00095 (0)
ΓG̃→η′f0(1710)/ΓtotG̃ 0 (0)

Table 5.4: Branching ratios for the decays of the pseudoscalar glueball G̃ into η and η′, respec-

tively, and one of the scalar-isoscalar resonance f0(1370), f0(1500), and f0(1710) by using the

mixing matrix B, Eq. (4.21), of scalar-isoscalar states [3]. The mass of the pseudoscalar glueball

is mG̃ = 2.6 GeV and mG̃ = 2.37 GeV (values in parentheses), respectively.

5.3.4 Interference phenomena

An interesting and subtle issue is that the scalar states decay further into two pseudoscalar ones.

For instance, K⋆
0 ≡ K∗

0 (1430) decays into Kπ. There are two possible decay amplitudes for the

process G̃→KKπ. One is the direct decay mechanism reported in Table 5.2, the other is the de-

cay chain G̃→KK⋆
0 →KKπ. Both have the same final state. The immediate question is whether

interference effects emerge which spoil the results presented in Table 5.2 and 5.3. Namely, simply

performing the sum of the direct three-body decay Table 5.2 and the corresponding two-body

decay Table 5.3, is not fully correct.

We now describe this point in more detail by using the neutral channel G̃ → K0K̄0π as an

illustrative case. To this end, we describe the coupling K⋆
0 to Kπ via the Lagrangian

LK⋆
0Kπ

= gK⋆
0 K̄0π

0 +
√

2gK⋆
0K

−π+ + h.c. . (5.51)

The coupling constant ∣g∣ = 2.73 GeV is obtained by using the experimental value for the total

decay width ΓK∗
0
= 270 MeV [11]. The full amplitude for the process G̃→K0K̄0π0 results as

Afull
G̃→K0K̄0π0

= Adirect
G̃→K0K̄0π0 +AinteractG̃→K0K⋆

0→K0K̄0π0 . (5.52)

Thus the full decay width reads:

Γfull
G̃→K0K̄0π0

= Γdirect
G̃→K0K̄0π0 + Γinteract

G̃→K0K⋆
0→K0K̄0π0 + ζmixG̃→K0K̄0π0 . (5.53)

We can then investigate how large the mixing term ζmix
G̃→K0K̄0π0 is, and thus the error done in

neglecting it. For instance, explicit calculation for the K0K̄0π0 case gives a relative error of
RRRRRRRRRRRRR

ζmix
G̃→K0K̄0π0

Γdirect
G̃→K0K̄0π0

+ Γinteract
G̃→K0K⋆

0→K0K̄0π0

RRRRRRRRRRRRR
≈ 7.3% (g > 0)

2.2% (g < 0)
. (5.54)

Present results from the model in Ref. [81] show that g < 0: the estimates presented in Ref.

[6] can be regarded as upper limits. We thus conclude that the total error for the channel

G̃ → K0K̄0π0 is not large and can be neglected at the present stage. However, future detailed

and precise theoretical predictions should implement these interference effects [6, 7, 223].
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5.4 Interaction of G̃ with baryons

In the planned P̄ANDA experiment at FAIR [124], antiprotons collide on a proton-rich target.

It is then also interesting to study how the pseudoscalar glueball interacts with the nucleon and

with its chiral partner. In the so-called mirror assignment [148, 230], one starts from two nucleon

fields Ψ1 and Ψ2 which transform under chiral transformations as follows

Ψ1R(L) → Ψ′
1R(L) = UR(L)Ψ1R(L) , Ψ2R(L) → Ψ′

2R(L) = UL(R)Ψ2R(L) . (5.55)

In this way, it is possible to write down a chirally invariant mass term of the type

Lµ0 = −µ0 (Ψ̄2γ5Ψ1 − Ψ̄1γ5Ψ2) . (5.56)

Eventually, µ0 can be seen as a condensation of a tetraquark and/or a glueball field, see details

in Ref. [148]. The nucleon fields N and its chiral partner, which is associated to the resonance

N∗(1535), are obtained as

Ψ1 =
1√

2 cosh δ
(Neδ/2 + γ5N

∗e−δ/2) (5.57)

and

Ψ2 =
1√

2 cosh δ
(γ5Ne

−δ/2 −N∗eδ/2) , (5.58)

where

cosh δ = mN +mN∗

2µ0
. (5.59)

The value µ0 = (460 ± 136) MeV was obtained by a fit to vacuum properties [148].

We now write down a chirally invariant Lagrangian which describes the interaction of G̃ with the

baryon fields Ψ1 and Ψ2

Lint
G̃-bar

= icG̃ΨG̃ (Ψ̄2Ψ1 − Ψ̄1Ψ2) . (5.60)

Thus, the fusion of a proton and an antiproton is described by Lint
G̃-bar

, showing that it is not

chirally suppressed. Moreover, although the coupling constant cG̃Ψ cannot be determined, we

can easily predict the ratio of the decay processes ΓG̃→N̄N and ΓG̃→N̄∗N+h.c.[7, 224]:

ΓG̃→N̄N
ΓG̃→N̄∗N+h.c.

= 1.94 . (5.61)

5.5 Discussion

� The results depend only slightly on the glueball mass, thus the two columns of Table 5.2

and 5.3 are similar. It turns out that the channel KKπ is the dominant one (almost 50%).

Also the ηππ and η′ππ channels are sizeable. On the contrary, the two-body decays into a

scalar and a pseudoscalar are subdominant and reach only 20% of the full mesonic decay

width.

� The decay of the pseudoscalar glueball into three pions vanishes:

ΓG̃→πππ = 0 . (5.62)

This result represents a further simple and testable prediction of our approach.
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� The decays of the pseudoscalar glueball into a scalar-isoscalar meson amount only to 5%

of the total decay width. Moreover, the mixing pattern in the scalar-isoscalar sector has

a negligible influence on the total decay width of G̃. Nevertheless, in the future it may

represent an interesting and additional test for scalar-isoscalar states.

� If a standard linear sigma model without (axial-)vector mesons is studied, the replacements

Zπ = ZK = ZηN = ZηS = 1 (5.63)

need to be performed. Most of the results of the branching ratios for the three-body decay

are qualitatively, but not quantitatively, similar to the values of Table 5.2 (variations of

about 25-30%). However, the branching ratios for the two-body decay change sizeably

with respect to the results of Table 5.3. This fact shows once more that the inclusion

of (axial)vector d.o.f. has sizeable effects also concerning the decays of the pseudoscalar

glueball.

� In principle, the three-body final states for the decays shown in Table 5.2 can also be

obtained through a sequential decay from the two-body final states shown in Table 5.3,

where the scalar particle S further decays into PP , (for instance, K∗
0 (1430) →Kπ). There

are then two possible decay amplitudes, one from the direct three-body decay and one from

the sequential decay, which have to be added coherently before taking the modulus square

to obtain the total three-body decay width. The results shown in Table 5.2 and 5.3 gives a

first estimate which neglects interference terms for the magnitude of the total three-body

decay width. We have verified that the correction from the interference term to this total

three-body decay width in a given channel is at most of the order of 10% for mG̃ = 2.6 GeV

and 15% for mG̃ = 2.37 GeV. For a full understanding of the contribution of the various

decay amplitudes to the final three-body state, one needs to perform a detailed study of

the Dalitz plot for the three-body decay.
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Jede Lösung eines Problems ist ein neues

Problem.
Johann Wolfgang von Goethe

Chapter 6

Conclusions and Outlook

The existence of glueballs is a clear prediction of QCD, confirmed by numerous and accurate

predictions of lattice QCD, but their existence and properties need to be further studied both

experimentally and theoretically. In this thesis we have studied the scalar-isoscalar sector,

IG (JPC) = 0+ (0++) ,

in the low-energy region below 2 GeV, where a scalar glueball is naturally expected. In addition,

we have investigated the properties of a pseudoscalar glueball and written down the Lagrangian

for a vector glueball. In the following we summarize the most important insights that we have

achieved in this work and give some useful suggestions for future progress.

6.1 The scalar glueball

One of the challenges of hadronic physics is the full understanding of the scalar-isoscalar sector

below 2 GeV where at the present five well-established f0 resonances exist [11]. A variety of

works indicate that the 0++ isoscalar resonances below 1 GeV,

f0(500) and f0(980) ,

belong to a nonet of tetraquarks or are mesonic molecular states. In the energy region between

1 and 2 GeV there are three further resonances

f0(1370), f0(1500) and, f0(1710) .

Out of these resonances only two can be interpreted as predominantly q̄q mesons. Namely, one

as the non-strange,

σN ≅ (ūu + d̄d) /
√

2 ,

and the other one as the strange,

σS ≅ s̄s ,

meson. Hence a natural question arises whether one of them is the scalar glueball, which is,

due to the quantum numbers of vacuum, directly connected with the trace anomaly of the pure
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Yang-Mills sector of QCD. If that is the case then the final question is which of the f0 resonances

possesses the largest gluonic content.

In order to answer these questions we used an effective hadronic model, the extended Linear Sigma

Model, whose d.o.f. are scalar and pseudoscalar (0−+) as well as vector (1−−) and axial-vector

(1++) quark-antiquark mesons. The scalar glueball is described in the eLSM as the excitation of a

scalar dilaton field G. Our model is built in agreement with the symmetry properties of the QCD

Lagrangian. Since the eLSM is a confined effective field theory, the dynamics is dictated by the

global chiral and dilation symmetries rather than the local SUc(3) symmetry, which is trivially

fulfilled. In the full implementation of the eLSM (Nf = 3) the bare quark-antiquark mesons

σN and σS as well as the bare glueball G mix and generate the physical resonances f0(1370),
f0(1500), and f0(1710).

Implementation of the eLSM with two flavors (Nf = 2) We started our search for the

scalar glueball within the two-flavor version of the eLSM, which does not contain mesons with

strange quarks. In this case a two-body mixing scenario in the scalar-isoscalar sector takes place,

where the bare non-strange quark-antiquark meson σN and the bare scalar glueball G mix and

produce two physical f0 resonances. Thus, several assignments of the bare fields σN and G to

the f0 resonances are possible which we investigated by using a χ2 analysis. As an input we

used physical quantities of the scalar-isoscalar resonances such as masses and decay widths [11].

Our calculations were done in vacuum, that is at vanishing temperature (T = 0) and chemical

potential (µ = 0), and at tree level, which means that loop corrections were not considered. We

found two acceptable solutions where in both cases the resonance f0(1370) was predominantly

the non-strange q̄q state while the glueball was in one solution predominantly f0(1500) and in

the other one predominantly f0(1710). The reasons for the ambiguous result are that the Nf = 2

approach of the eLSM is not complete, mainly because the bare strange field σS was neglected.

The solution of the assignment

σN ≅ f0(1370) and G ≅ f0(1500)

is slightly favored with respect to those of the assignment

σN ≅ f0(1370) and G ≅ f0(1710) ,

because the latter exhibits a too large

G′ ≡ f0(1710) → ρρ→ 4π

decay width, which however is not experimentally observed [1, 17]. On the other hand, if the

resonance f0(1500) is interpreted as predominantly a glueball then the following issues occur.

� Flavor blindness of a pure glueball state requires that

ΓG′→ππ
ΓG′→KK

= 3

4
. (6.1)
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This branching ratio reads for the two putative scalar glueball candidates

Γf0(1500)→ππ

Γf0(1500)→KK
= 4.06 , (6.2)

Γf0(1710)→ππ

Γf0(1710)→KK
= 0.41 . (6.3)

This shows that the requirement of flavor blindness is rather fulfilled by the resonance

f0(1710) than f0(1500). Note that the branching ratio (6.1) corresponds to a pure glueball,

but the f0 resonances contain q̄q components. In addition, the errors of the decay widths

of f0(1710) are sufficient large, thus it is possible to find a match between the theoretical

expectation of Eq. (6.1) and the experiment, see Eq. 6.3 and Table 3.5. This is not possible

for the resonance f0(1500), see Eq. (6.2) and Table 3.2.

� Lattice-QCD calculations predict a scalar glueball mass of

mlat
G ≈ 1.7 GeV

which corresponds to the mass of f0(1710) rather than to f0(1500) [55, 58].

� The production rate in radiative J/ψ decay is higher for f0(1710) than for f0(1500) [215].

These arguments support the scenario in which G′ ≡ f0(1710). In order to obtain a conclusive

result, a study of three-body mixing scenario is required where three bare fields σN , σS , and G

are involved and generate f0(1370), f0(1500), and f0(1710).

In the end, we also tested for completeness assignments with the resonance f0(500) as a predom-

inantly non-strange q̄q meson [1, 2] but it turns out that its decay width is with

Γσ′
N
→ππ ≲ 180 MeV .

considerably narrower than the experimental one

Γexf0(500)→ππ = (400 − 700) MeV .

Therefore, scenarios in which f0(500) is interpreted as a quark-antiquark state are strongly

disfavored.

Implementation of the eLSM with three flavors (Nf = 3) The three-flavor eLSM requires

a solution of a three-body mixing problem in order to figure out which of the f0 resonances can

be interpreted as the scalar glueball. Contrary to the calculations of the eLSM in the case Nf = 2

we now obtained an unique result.

Our fit with

χ2/d.o.f. ≈ 0.35 (6.4)

95



describes the phenomenology in the scalar-isoscalar sector very well and yields

Γf0(1710)→ππ

Γf0(1710)→KK
= 0.39 . (6.5)

Similar results were also found in Refs. [218, 219, 220]. We found that the resonance f0(1710) is

predominantly the scalar glueball, while the resonances f0(1370) and f0(1500) are predominantly

non-strange σN and strange σS quark-antiquark meson.

⎛
⎜⎜
⎝

f0(1370)
f0(1500)
f0(1710)

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

−0.91 0.24 −0.33

0.30 0.94 −0.17

−0.27 0.26 0.93

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

σN ≅ (ūu + d̄d) /
√

2

σS ≅ s̄s
G ≅ glueball

⎞
⎟⎟
⎠
. (6.6)

This solution is based on the assumption that the decay width of the scalar glueball is narrow

(ΓG ≲ 100 GeV) which is in accordance with large-Nc arguments. As an interesting consequence,

we obtained for the scale parameter Λdil, which arises from the trace anomaly, a large value and

this implies a large gluon condensate ⟨αs
π
GaµνG

µν
a ⟩.

We emphasize that the inclusion of (axial-)vector d.o.f. was crucial for the results of our approach.

These fields affect the phenomenology in the (pseudo)scalar sector, e.g. our model suggests that

f0(1370) is the chiral partner of the pion. In addition, it is to our knowledge the first time

where a full Nf = 3 mixing of f0(1370), f0(1500), and f0(1710) in a chiral hadronic model with

a scalar glueball, described by a dilaton field, and the presence of (axial-)vector fields was studied.

6.2 The pseudoscalar glueball

Motivated by the glueball spectrum of lattice QCD, we constructed an effective interaction La-

grangian in the framework of the eLSM in order to study vacuum properties of the pseudoscalar

glueball G̃ . Accordingly, we used for our calculations the glueball mass obtained by lattice QCD

in the quenched approximation mG̃ = 2.6 GeV. The upcoming P̄ANDA experiment at FAIR near

Darmstadt will cover this energy range. Our predictions can be used as a guideline for the search

of glueballs.

The results regarding the pseudoscalar glueball are given as branching ratios in order to make

parameter-free prediction. We found that G̃ → KKπ is the dominant decay channel (∼ 47%)

followed by G̃ → ηππ (∼ 16%) and G̃ → η′ππ (∼ 10%), while G̃ → πππ is predicted to vanish. In

addition, we repeat the calculations for a glueball mass of 2.37 GeV which corresponds to the

mass of the pseudoscalar resonance X(2370) observed in the BESIII experiment.

6.3 Outlook

Finally, there are further interesting developments of this work, which will be discussed in the

following.

96



The vector glueball In case of the vector glueball Oµ with a lattice-QCD mass mOµ = 3.8

GeV we presented a chiral interaction Lagrangian with which the following two- and three-body

decay processes can be evaluated: Oµ → V A, Oµ → V P , Oµ → PB, Oµ → V PP , Oµ → V SS,

Oµ → APS, and Oµ → eV PP . The numerical calculations are in progress and will be presented

in Ref. [166].

Inclusion of light tetraquark fields In the future, one should include the nonet of light scalar

states f0(500), f0(980), a0(980), and K∗
0 (800), which then allow to describe all scalar states up

to 1.7 GeV. Indeed, in the two-flavor case the resonance f0(500) has been already included as a

tetraquark/molecular field in a simplified version of the eLSM [231], in which chiral symmetry

restoration at non-zero temperature has been studied, and in the extension of the eLSM to the

baryonic sector [232, 233]. The role of f0(500) is important because it induces a strong attraction

between nucleons and affects the properties of nuclear matter at non-zero density.

In the three-flavor case chiral models with tetraquark fields but without (axial-)vector mesons

were studied [145, 146, 147]. The isovector resonances a0(1450) and a0(980) arise as a mixing of

a bare quark-antiquark and a bare tetraquark/molecular field configuration. A similar situation

holds in the isodoublet sector for K∗
0 (1430) and K∗

0 (800). The mixing angle turns out to be

small [138]. In the scalar-isoscalar sector one has a more complicated system with the mixing

of five bare fields, which leads to the five resonances f0(500), f0(980), f0(1370), f0(1500), and

f0(1710) [146].

In the framework of the eLSM, the inclusion of the light scalars should also contain their coupling

to (axial-)vector d.o.f. as well as to the dilaton field. A variety of decays, such as the decays of

the light scalars

f0(500) → ππ , f0(980) →KK ,

etc. as well as decays into them

a1(1230) → f0(500)π , f0(1500) → f0(500)f0(500) ,

etc. can be studied. Moreover, the mixing in the isovector, isodoublet, and most importantly in

the isoscalar sector can be investigated in such a framework. In this general scenario, a mixing

of five scalar-isoscalar states takes place, which allows to describe all relevant scalar-isoscalar

resonances listed in the PDG below 1.8 GeV [11]

Inclusion of other glueball fields In analogy to the scalar, pseudoscalar, and vector glueballs,

further glueballs with different quantum numbers, as predicted by lattice QCD [55], can be

studied in the framework of the eLSM, e.g. a pseudovector (1+−) or a tensor (2++) glueball.

Such studies can be based on ideas similar to those pursued in this work. This can be done by

making use of the symmetries of the QCD and introducing effective couplings and constructing

the corresponding Lagrangians. In this way, decay ratios can be calculated which can be used as

a further guide for future experimental search for gluballs.
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Appendix A

Decay Widths of the

Scalar-Isoscalar fields

Using the formula (1.144) we compute two-body decays of the the scalar-isoscalar fields. All

relevant expressions for these decay processes are extracted from the Lagrangian (2.104) and are

presented in the following [1, 3, 17, 19, 81].

A.1 Decays of the scalar-isoscalar fields into ππ

For the decay widths of the scalar-isoscalar resonances into ππ we obtain

Γf0→ππ = 6

√
m2
f0

4
−m2

π

8πm2
f0

∣−iAf0→ππ(mf0)∣
2
, (A.1)

where mf0 is the mass of the physical f0 resonance. The bare amplitudes (as functions of mf0)

are

− iAσN→ππ(mf0) = i(AσNππ −BσNππ
m2
f0
− 2m2

π

2
−CσNππm2

π) , (A.2)

− iAσS→ππ(mf0) = i(AσSππ −BσSππ
m2
f0
− 2m2

π

2
) , (A.3)

− iAG→ππ(mf0) = i(AGππ −BGππ
m2
f0
− 2m2

π

2
) , (A.4)

with the corresponding constants

AσNππ = −(λ1 +
λ2

2
)Z2

πφN , (A.5)

BσNππ = −2g1Z
2
πwa1 + (g2

1 +
h1 + h2 − h3

2
)Z2

πw
2
a1φN , (A.6)

CσNππ = −g1Z
2
πwa1 , (A.7)

AσSππ = −λ1Z
2
πφS , (A.8)
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BσSππ =
h1

2
Z2
πw

2
a1φS , (A.9)

AGππ = −
m2

0

G0
Z2
π , (A.10)

BGππ =
m2

1

G0
Z2
πw

2
a1 . (A.11)

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-

isoscalar fields σ′N ≡ f0(1370), σ′S ≡ f0(1500), and G′ ≡ f0(1710):

− iAσ′
N
→ππ(mσ′

N
) = i [AσN→ππ(mσ′

N
)b11 +AσS→ππ(mσ′

N
)b12 +AG→ππ(mσ′

N
)b13] , (A.12)

− iAσ′
S
→ππ(mσ′

S
) = i [AσN→ππ(mσ′

S
)b21 +AσS→ππ(mσ′

S
)b22 +AG→ππ(mσ′

S
)b23] , (A.13)

− iAG′→ππ(mG′) = i [AσN→ππ(mG′)b31 +AσS→ππ(mG′)b32 +AG→ππ(mG′)b33] , (A.14)

where bij , i, j = 1,2,3, are the corresponding elements of the mixing matrix B from Eq. (4.10).

A.2 Decays of the scalar-isoscalar fields into KK

For the decay widths of the scalar-isoscalar resonances into KK we obtain

Γf0→KK = 2

√
m2
f0

4
−m2

KK

8πm2
f0

∣−iAf0→KK(mf0)∣
2
, (A.15)

where the bare amplitudes are

− iAσN→KK(mf0) = i [AσNKK − (BσNKK − 2CσNKK)
m2
f0
− 2m2

K

2
+ 2CσNKKm

2
K] , (A.16)

− iAσS→KK(mf0) = i [AσSKK − (BσSKK − 2CσSKK)
m2
f0
− 2m2

K

2
+ 2CσSKKm

2
K] , (A.17)

− iAG→KK(mf0) = i(AGKK −BGKK
m2
f0
− 2m2

K

2
) , (A.18)

and the corresponding constants read

AσNKK = Z
2
K√
2
[λ2 (φS −

√
2φN) − 2

√
2λ1φN] , (A.19)

BσNKK = g1

2
Z2
KwK1 [−2 + g1wK1 (φN +

√
2φS)] +

Z2
Kw

2
K1

2
[(2h1 + h2)φN −

√
2h3φS] , (A.20)

CσNKK = g1

2
Z2
KwK1 , (A.21)

AσSKK = Z
2
K√
2
[λ2 (φN − 2

√
2φS) − 2

√
2λ1φS] , (A.22)

BσSKK =
√

2g1

2
Z2
KwK1 [−2 + g1wK1 (φN +

√
2φS)]+

Z2
Kw

2
K1√

2
[
√

2 (h1 + h2)φS − h3φN] , (A.23)
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CσSKK =
√

2g1

2
Z2
KwK1 , (A.24)

AGKK = −2m2
0

G0
Z2
K , (A.25)

BGKK = 2m2
1

G0
Z2
Kw

2
K1

. (A.26)

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-

isoscalar fields

− iAσ′
N
→KK(mσ′

N
) = i [AσN→KK(mσ′

N
)b11 +AσS→KK(mσ′

N
)b12 +AG→KK(mσ′

N
)b13] , (A.27)

− iAσ′
S
→KK(mσ′

S
) = i [AσN→KK(mσ′

S
)b21 +AσS→KK(mσ′

S
)b22 +AG→KK(mσ′

S
)b23] , (A.28)

− iAG′→KK(mG′) = i [AσN→KK(mG′)b31 +AσS→KK(mG′)b32 +AG→KK(mG′)b33] , (A.29)

which we assign to the physical resonances as follows: σ′N ≡ f0(1370), σ′S ≡ f0(1500), and

G ≡ f0(1710).

A.3 Decays of the scalar-isoscalar fields into ηη

For the decay widths of the scalar-isoscalar resonances into ηη we obtain

Γf0→ηη = 2

√
m2
f0

4
−m2

η

8πm2
f0

∣−iAf0→ηη(mf0)∣
2
, (A.30)

where the bare amplitudes are

− iAσN→ηη(mf0) = i(AσNηη −BσNηη
m2
f0
− 2m2

η

2
+CσNηη

m2
f0

2
) , (A.31)

− iAσS→ηη(mf0) = i(AσSηη −BσSηη
m2
f0
− 2m2

η

2
+CσSηη

m2
f0

2
) , (A.32)

−iAG→ηη(mf0) = −i(AGηNηN −BGηNηN
m2
f0
− 2m2

η

2
) cosϕη

+i(AGηSηS −BGηSηS
m2
f0
− 2m2

η

2
) sinϕη (A.33)

and the corresponding constants read

AσNηη = −Z2
πφN (λ1 +

λ2

2
+ c1φ2

S) cos2 ϕη −Z2
ηS
φN (λ1 +

c1
2
φ2
N) sin2 ϕη

−3

4
c1ZπZηSφ

2
NφS sin(2ϕη) , (A.34)

BσNηη = −
Z2
πw

2
a1

φN
(m2

1 +
h1

2
φ2
S + 2δN) cos2 ϕη +

h1

2
Z2
ηS
w2
f1S
φN sin2 ϕη , (A.35)

CσNηη = g1Z
2
πwa1 cos2 ϕη , (A.36)
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AσSηη = −Z2
ηS
φS (λ1 + λ2) sin2 ϕη −Z2

πφS (λ1 + c1φ2
N) cos2 ϕη −

1

4
c1ZπZηSφ

3
N sin(2ϕη) , (A.37)

BσSηη = −
Z2
ηS
w2
f1S

φS
(m2

1 +
h1

2
φ2
N + 2δS) sin2 ϕη +

h1

2
Z2
πw

2
a1φS cos2 ϕη , (A.38)

CσSηη =
√

2g1Z
2
ηS
wf1S sin2 ϕη , (A.39)

AGηNηN = −m
2
0

G0
Z2
π , (A.40)

BGηNηN = m2
1

2G0
Z2
πw

2
f1N

, (A.41)

AGηSηS = −m
2
0

G0
Z2
ηS
, (A.42)

BGηSηS = m
2
1

G0
Z2
ηS
w2
f1S

. (A.43)

After performing an orthogonal transformation we obtain the amplitudes for the physical scalar-

isoscalar fields

− iAσ′
N
→ηη(mσ′

N
) = i [AσN→ηη(mσ′

N
)b11 +AσS→ηη(mσ′

N
)b12 +AG→ηη(mσ′

N
)b13] , (A.44)

− iAσ′
S
→ηη(mσ′

S
) = i [AσN→ηη(mσ′

S
)b21 +AσS→ηη(mσ′

S
)b22 +AG→ηη(mσ′

S
)b23] , (A.45)

− iAG′→ηη(mG′) = i [AσN→ηη(mG′)b31 +AσS→ηη(mG′)b32 +AG→ηη(mG′)b33] , (A.46)

which we assign to the physical resonances as follows: σ′N ≡ f0(1370), σ′S ≡ f0(1500), and

G ≡ f0(1710).

A.4 Decays of the scalar-isoscalar fields into ρρ→ 4π

The decay processes f0 → ρρ → 4π are on the threshold, hence we use for the calculation of the

decay widths the spectral function of the ρ meson

dρ(Xmρ) = N
X2
mρΓρ→ππ(Xmρ)

(X2
mρ −m2

ρ)2 +X2
mρΓ

2
ρ→ππ(Xmρ)

θ(Xmρ − 2mπ) , (A.47)

where N is a normalization constant, which guaranties that

∫
∞

0
dρ(Xmρ)dXmρ = 1 . (A.48)

Here dρ(Xmρ) is the probability mass distribution. Considering the polarization of the ρ mesons

the general amplitude reads

∣−iAf0→ρρ(mf0 ,Xi,mρ)∣
2

= A2
ρρ

⎡⎢⎢⎢⎣
4 −

X2
1,mρ +X

2
2,mρ

m2
ρ

+
(m2

f0
−X2

1,mρ −X
2
2,mρ)

2

4m4
ρ

⎤⎥⎥⎥⎦
, (A.49)
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where i = 1,2 and Aρρ is one of the corresponding constants

AσNρρ =
φN
2

(h1 + h2 + h3) , (A.50)

AσSρρ =
φS
2
h1 , (A.51)

AGρρ =
m2

1

G0
. (A.52)

The physical amplitudes of the scalar-isoscalar fields read

∣−iAσ′
N
→ρρ(mf0 ,Xi,mρ)∣

2

= [AσNρρb11 +AσSρρb12 +AGρρb13]2
⎡⎢⎢⎢⎣
4 −

X2
1,mρ +X

2
2,mρ

m2
ρ

+
(m2

f0
−X2

1,mρ −X
2
2,mρ)

2

4m4
ρ

⎤⎥⎥⎥⎦
, (A.53)

∣−iAσ′
S
→ρρ(mf0 ,Xi,mρ)∣

2

= [AσNρρb21 +AσSρρb22 +AGρρb23]2
⎡⎢⎢⎢⎣
4 −

X2
1,mρ +X

2
2,mρ

m2
ρ

+
(m2

f0
−X2

1,mρ −X
2
2,mρ)

2

4m4
ρ

⎤⎥⎥⎥⎦
, (A.54)

∣−iAG′→ρρ(mf0 ,Xi,mρ)∣
2

= [AσNρρb31 +AσSρρb32 +AGρρb33]2
⎡⎢⎢⎢⎣
4 −

X2
1,mρ +X

2
2,mρ

m2
ρ

+
(m2

f0
−X2

1,mρ −X
2
2,mρ)

2

4m4
ρ

⎤⎥⎥⎥⎦
. (A.55)

The formula for the decays of the scalar-isoscalar fields into ρ mesons and 4π, respectively, reads

Γf0→ρρ(mf0 ,Xi,mρ) = 6
kf(mf0 ,Xi,mρ)

8πm2
f0

∣−iAf0→ρρ(mf0 ,Xi,mρ)∣
2

θ(mf0 −X1,mρ −X2,mρ) , (A.56)

Γf0→ρρ→4π = ∫
∞

0
∫

∞

0
Γf0→ρρ(mf0 ,Xi,mρ)dρ(X1,mρ)dρ(X2,mρ)dX1,mρdX2,mρ . (A.57)

103



104



Appendix B

Details of the study of the

pseudoscalar Glueball

B.1 Explicit form of the pseudoscalar glueball Lagrangian

After performing the field transformations in Eqs. (2.122) and (2.132)-(2.133), the effective

Lagrangian (5.1) takes the form:

Lint
G̃

= cG̃Φ

2
√

2
G̃(

√
2ZK⋆ZKa

0
0K

⋆0
0 K̄0 +

√
2ZKZK⋆a0

0K
0K̄⋆0

0 − 2ZK⋆ZKa
+
0K

⋆0
0 K−

− 2ZK⋆ZKa
+
0K

⋆−
0 K0 − 2ZK⋆ZKa

−
0K̄

⋆0
0 K+ −

√
2ZK⋆ZKa

0
0K

⋆−
0 K+ −

√
2Z2

KZηNK
0K̄0ηN

+
√

2Z2
K⋆ZηNK

⋆0
0 K̄⋆0

0 ηN −
√

2Z2
KZηNK

−K+ηN +ZηSa0
0

2
ηS + 2ZηSa

−
0a

+
0ηS

+Z2
ηN
ZηSη

2
NηS −

√
2Z2

KZπK
0K̄0π0 +

√
2Z2

K⋆ZπK
⋆0
0 K̄⋆0

0 π0 +
√

2Z2
KZπK

−K+π0

−ZηSZ2
πηS π

02 + 2Z2
KZπK̄

0K+π− + 2Z2
KZπK

0K−π+ − 2Z2
K⋆ZπK

⋆0
0 K⋆−

0 π+

− 2ZηSZ
2
πηSπ

−π+ − 2ZK⋆ZKa
−
0K

⋆+
0 K̄0 +

√
2Z2

K⋆ZηNK
⋆+
0 K⋆−

0 ηN −
√

2Z2
K⋆ZπK

⋆+
0 K⋆−

0 π0

− 2Z2
K⋆ZπK

⋆+
0 K̄⋆0

0 π− −
√

2ZK⋆ZKa
0
0K

⋆+
0 K− +

√
2ZKZK⋆K−K⋆+
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This expression is used to determine the coupling of the field G̃ to scalar and pseudoscalar mesons.

B.2 Further results for the decays G̃→ Pf0

In order to calculate the decay of the pseudoscalar glueball into an ordinary pseudoscalar meson

and an f0 resonance we consider, as in Refs. [6, 8], other solutions of mixing of the resonances

f0(1370), f0(1500), and f0(1710). Two solutions are from Ref. [207] and one solution is from
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Ref. [213]. The corresponding mixing matrices read:

B1 =
⎛
⎜⎜
⎝

0.86 0.24 0.45

−0.45 −0.06 0.89

−0.24 0.97 −0.06

⎞
⎟⎟
⎠
, (B.2)

B2 =
⎛
⎜⎜
⎝

0.81 0.19 0.54

−0.49 0.72 0.49

0.30 0.67 −0.68

⎞
⎟⎟
⎠
, (B.3)

B3 =
⎛
⎜⎜
⎝

0.78 0.51 −0.36

−0.54 0.84 0.03

0.32 0.18 0.93

⎞
⎟⎟
⎠
. (B.4)

In all three solutions f0(1370) is predominantly described by the bare field σN , but the assign-

ments for the other resonances vary. In the first solution of Ref. [207], Eq. (B.2), the resonance

f0(1500) is predominantly gluonic, while in the other two solutions, Eqs. (B.3) and (B.4), the

resonance f0(1710) has the largest gluonic content. The corresponding branching ratios are

reported in Table B.1.

Quantity Sol. 1 of Ref. [207] Sol. 2 of Ref. [207] Sol. of Ref. [213]

ΓG̃→ηf0(1370)/ΓtotG̃ 0.00093 (0.0011) 0.00058 (0.00068) 0.0044 (0.0052)
ΓG̃→ηf0(1500)/ΓtotG̃ 0.000046 (0.000051) 0.0082 (0.0090) 0.011 (0.012)
ΓG̃→ηf0(1710)/ΓtotG̃ 0.011 (0.0089) 0.0053 (0.0042) 0.00037 (0.00029)
ΓG̃→η′f0(1370)/ΓtotG̃ 0.038 (0.026) 0.033 (0.022) 0.043 (0.029)
ΓG̃→η′f0(1500)/ΓtotG̃ 0.0062 (0) 0.00020 (0) 0.00013 (0)
ΓG̃→η′f0(1710)/ΓtotG̃ 0 (0) 0 (0) 0 (0)

Table B.1: Branching ratios for the decays of the pseudoscalar glueball G̃ into η and η′, re-

spectively and one of the scalar-isoscalar resonances f0(1370), f0(1500), and f0(1710) by using

three different mixing scenarios of these scalar-isoscalar states reported in Refs. [207, 213]. The

mass of the pseudoscalar glueball is mG̃ = 2.6 GeV and mG̃ = 2.37 GeV (values in parentheses),

respectively.
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Deutschsprachige

Zusammenfassung

Theoretische Grundlagen

Das Standardmodell der Elementarteilchen Das gegenwärtige physikalische Weltbild be-

ruht auf den vier uns bekannten fundamentalen Kräften bzw. Wechselwirkungen. Drei dieser

Wechselwirkungen, die elektromagnetische, die schwache und die starke, bilden das Standard-

modell der Elementarteilchen (SM) und werden mit lokalen Quantenfeldtheorien (QFT) beschrie-

ben1. Diese Theorien basieren auf einigen wenigen Symmetrien, die sich in der Natur beobachten

lassen. Die fundamentalen Symmetrien dieser Wechselwirkungen bzw. des SM, U(1) × SU(2) ×
SU(3), resultieren aus der Forderung nach einer lokalen Eichinvarianz, wodurch die entsprechen-

den Eichbosonen mit Spin S = 1 hervorgehen und diese als Austauschteilchen zwischen den

Materieteilchen, die der jeweiligen Wechselwirkung unterliegen, interpretiert werden. Sowohl die

zwölf Eichbosonen des SM als auch die Materieteilchen, zu denen die sechs Quarks und sechs

Leptonen zählen und auf Grund ihres halbzahligen Spins S = 1
2

zu den Fermionen gehören,

weisen im Rahmen der Genauigkeit heutiger Hochenergie-Experimente keine Substruktur auf

und gelten daher als elementar2. Die Beschreibung der Natur auf der Basis solcher lokalen QFT

hat sich als erfolgreich und vielversprechend herausgestellt. Dies belegen einerseits viele ex-

perimentelle Befunde, einige, für diese Arbeit relevante, werden wir noch erwähnen, andererseits

ist beispielsweise die Quantenelektrodynamik (QED), die die elektromagnetische Wechselwirkung

beschreibt, derzeitig die am genauesten experimentell überprüfte Theorie. Darüberhinaus konnte

diese mit der Eichtheorie der schwachen Wechselwirkung zur elektroschwachen Theorie verein-

heitlicht werden. Eine weitere Vereinheitlichung, bei der noch die Theorie der starken Wechsel-

wirkung, die Quantenchromodynamik (QCD), einbezogen ist, die Große Vereinheitlichte Theorie

(Grand Unified Theory), konnte bis jetzt noch nicht erfolgreich umgesetzt werden, da beispiels-

weise entsprechende Theorien einen Zerfall des Protons vorhersagen und dies konnte bis jetzt

noch nicht experimentell bestätigt werden. Außerdem sind zu weiteren experimentellen Veri-

fikationen solcher Theorien Beschleunigerenergien, die der Planckskala (1019 GeV) entsprechen,

1Die vierte fundamentale Wechselwirkung ist die Gravitation und wird durch die allgemeine Relativitätstheorie

beschrieben. Diese konnte bis jetzt noch nicht einwandfrei in das SM implementiert werden, da konzeptionelle

Schwierigkeiten, wie ihre Nicht-Renormierbarkeit und die tensorielle Natur der Gravitonen, vorliegen und noch

nicht überbrückt werden konnten.
2Man beachte, dass zu jedem Materieteilchen des SM ein entsprechendes Antiteilchen existiert. Ihr Unterschied

liegt in den entgegengesetzten additiven Quantenzahlen, während ihre Massen, falls vorhanden, exakt gleich sind.
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notwendig, die jedoch (noch) nicht realistisch sind.

Hadronen Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von Hadronen. Dies

sind Teilchen, die der starken Wechselwirkung unterliegen und aus Quarks3 und Gluonen, den

Eichbosonen der QCD, zusammengesetzt sind. Eine besondere Eigenschaft der QCD ist, dass

sowohl Quarks als auch Gluonen nicht isoliert, sondern in Hadronen eingeschlossen sind. Diese

Hadronen haben eine Ausdehnung von Λ−1
QCD, wobei ΛQCD ≃ 200 MeV die typische hadronische

Energieskala ist. Diesen experimentell bewiesenen, theoretisch jedoch nicht vollkommen ver-

standenen Umstand bezeichnet man als Confinement. Hadronen werden bezüglich ihres Spins in

Baryonen und Mesonen unterschieden.

Die Baryonen besitzen einen halbzahligen Spin, sind somit Fermionen, und bestehen aus drei

Quarks. Die bekanntesten Vertreter dieser Hadronen-Gruppe stellen die Protonen und Neutro-

nen dar, die als Nukleonen zusammengefasst werden und aus den up und down Quarks aufgebaut

sind. Eine wichtige Erhaltungsgröße der Baryonen in der QCD ist die Baryonenzahl B = 1 bzw.

Antibaryonen B = −1. Dies impliziert, dass die Quarks Bq = 1
3

und die Antiquarks entsprechend

Bq̄ = − 1
3

besitzen.

Die Mesonen, die relevant für diese Arbeit sind, besitzen einen ganzzahligen Spin, wodurch sie den

Bosonen angehören und deren allgemeinste Definition durch die Baryonenzahl B = 0 gewährleistet

ist. Die Konstituenten der gewöhnlichen Mesonen sind Quarks und Antiquarks. Um jedoch die

große Breite des bekannten hadronischen Spektrums theoretisch beschreiben zu können, insbeson-

dere im skalaren Bereich JPC = 0++, wurden weitere Mesonen postuliert, welche die Bedingung

B = 0 erfüllen. Dies sind beispielsweise Tetraquarks, die aus einem Diquark und einem An-

tidiquark (qqq̄q̄) bestehen. Darüber hinaus werden Mesonen vorhergesagt, deren Konstituenten

nicht Quarks, genauer gesagt Valenzquarks, sind, sondern Gluonen bzw. Valenzgluonen, die so-

genannten Gluebälle, die eine zentrale Rolle in dieser Arbeit spielen. Im Folgenden werden wir

auf deren Rechtfertigung sowie ihre Eigenschaften und Bedeutung kurz eingehen.

Farbladung und Eigenschaften der Gluonen Hinsichtlich der Tatsache, dass Quarks in

drei Farbzuständen, i. d. R. als rot, grün und blau bezeichnet, vorkommen, wurde zu deren

Beschreibung die lokale SUc(Nc)-Farbsymmetrie, wobei Nc = 3 die Anzahl der Farben ist,

gewählt. Die Farbladung wurde zunächst postuliert, um die Wellenfunktion der Delta-Resonanz

∆++ bzw. heute bezeichnet als ∆(1232) zu antisymmetrisieren und dadurch die Gültigkeit des

als physikalisch fundamental betrachteten Spin-Statistik-Theorems von Wolfgang Pauli zu erhal-

ten. Die späteren experimentellen Beweise, wie beispielsweise der Zerfall des neutralen Pions

in zwei Photonen, π → γγ, oder das Verhältnis der Wirkungsquerschnitte für hadronische und

leptonische Elektron-Positron-Vernichtung, konnten mit theoretischen Berechnungen nur dann

übereinstimmten, wenn angenommen wurde, dass drei Farbfreiheitsgrade (Nc = 3) existieren.

Diese experimentellen Befunde führten schließlich dazu, dass die lokale Farbsymmetrie der QCD

als physikalisch fundamental angesehen wurde. Dies begünstigte ihre Weiterentwicklung und nach

3Genauer gesagt bestehen sie aus drei Valenz- bzw. Konstituentenquarks, die die Quantenzahlen sowie die

Massen der Hadronen bestimmen.
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dem theoretischen Beweis der Renormierbarkeit der nicht-abelschen Yang-Mills-Theorien sowie

der asymptotischen Freiheit wurde QCD zur wohletablierten Theorie der starken Wechselwirkung.

Als Konsequenz der nicht-abelschen Natur der SUc(3)-Farbsymmetrie sind die Gluonen selbst

Träger der Farbladung, was eine Selbstkopplung der Gluonen impliziert. Auf Grund dieser Selbst-

kopplung zusammen mit dem Confinement erwartet man gebundene gluonische Zustände, die

Gluebälle, die invariant unter den Transformationen der Farbsymmetrie sind, sowie entsprechend

ihrer Konstituenten B = 0 aufweisen. Aus experimenteller Sicht konnten Gluonen einerseits di-

rekt bei Elektron-Positron-Vernichtungsprozessen durch Beobachtung von Drei-Jet-Ereignissen

nachgewiesen werden. Andererseits konnte durch Analyse von Vier-Jet-Ereignissen die Selbst-

kopplung der Gluonen experimentell verifiziert werden. Der eindeutige experimentelle Beweis

von Gluebällen steht jedoch noch aus und ist mit großen Herausforderungen verbunden. Eine

eindeutige Identifikation von Gluebällen würde zum Einen ein weiterer stützender Beweis für

die QCD als fundamentale Theorie der Natur sein. Zum Anderen würde man wichtige Erkennt-

nisse über die Natur des Confinements bzw. den nicht-störungstheoretischen Bereich der QCD

gewinnen.

Gluebälle, Motivation und das hadronische Modell

Zugang und Eigenschaften von Gluebällen Aus theoretischer Sicht ist die Existenz von

Gluebällen eine eindeutige Vorhersage der QCD. Um deren Eigenschaften zu studieren bzw. zu

erhalten müsste man die QCD-Lagrangedichte, insbesondere den Eichsektor der QCD, analytisch

in (3+1) Dimensionen lösen. Dies ist aufgrund der Nichtlinearität der Yang-Mills-Gleichungen

gegenwärtig leider noch nicht gelungen. Überdies ist die Anwendung von störungstheoretischen

Methoden nicht möglich, da im niederenergetischen Bereich der QCD, welcher unter anderem für

Gluebälle interessant ist, die von Energie bzw. einer Renormierungsskala abhängige starke Kop-

plungskonstante groß ist, gs ≳ 1. Dennoch gibt es andere vielversprechende Methoden, die einen

Zugang zur Untersuchung von Gluebällen bzw. diesen nicht-störungstheoretischen Bereich der

QCD liefern. Dies sind einerseits auf der QCD, und insbesondere auf ihren Symmetrieeigen-

schaften, basierende effektive quantenfeldtheoretische Modelle. Im Rahmen solcher Modelle

haben sich auch Betrachtungen der QCD in der N−1
c Entwicklung mit dem Grenzfall Nc →∞ als

sehr nützlich erwiesen. Dadurch können Größenordnungen freier Parameter sowie das Verhalten

wichtiger physikalischer Größen, wie z. B. Massen, Amplituden und folglich auch Zerfallsbre-

iten, abgeschätzt werden. Mit dem sogenannten erweiterten Linearen Sigma Modell (eLSM)

werden wir in der vorliegenden Arbeit diese Herangehensweise verfolgen und werden im weiteren

Verlauf auf Eigenschaften unseres Modells zu sprechen kommen. Andererseits kann die QCD

auf dem Gitter simuliert werden. In diesem Fall bedient man sich direkt den ersten Prinzipien

der QCD, indem man die Zwei-Punkt-Korrelations-Funktion heranzieht und aus deren Zerfall

die Massen der Gluebälle extrahiert. Mit solchen QCD-Gitterrechnungen konnte ein komplettes

Massenspektrum der Gluebälle berechnet werden, bei dem ein skalarer Glueball (JPC = 0++) mit

einer Masse von etwa mlat
G ≈ 1.7 GeV den leichtesten Zustand darstellt. Eine wichtige Eigen-

schaft der Gluebälle ist ihre Flavorblindheit, da die Gluonen mit der gleichen Stärke an alle

Quarkflavors koppeln. Außerdem erwartet man eine Mischung zwischen Gluebällen und Quark-

Antiquark-Mesonen, sofern ihre Quantenzahlen übereinstimmen. Entsprechend der Stärke der
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Mischung kann dies eine große und zusätzliche Herausforderung bei der experimentellen Suche

nach Gluebällen sein, da die Unterscheidung zwischen einem Zustand, der überwiegend Glue-

ball, und einem, der überwiegend ein gewöhnliches Meson ist, nicht trivial ist. Um Gluebälle

zu untersuchen, eignen sich besonders die sogenannten gluon-reichen Prozesse, da in solchen

eine Formierung von Gluebällen sehr wahrscheinlich ist. Eine große Bedeutung haben dabei

die radiativen J/ψ Zerfälle J/ψ → G → γHadronen, welche z. B. beim BEijing Spectrometer

(BES) III-Experiment intensiv und mit einem sehr großen Umfang an Daten untersucht wurden.

Weitere solche gluon-reichen Prozesse sind die zentralen Kollisionen, bei denen hochenergetische

Hadronen gestreut werden, sowie die Proton-Antiproton-Vernichtung. Bei Letzteren können

Gluebälle direkt oder zusammen mit anderen Teilchen als Zwischenzustände erzeugt werden, die

ihrerseits weiter zerfallen. Ein vielversprechendes, auf p̄p Vernichtung basierendes Experiment,

bei dem unter anderem Gluebälle im Massenbereich von 2.1− 5.5 GeV erzeugt und studiert wer-

den können, ist das AntiProton ANnihilations at DArmstadt (P̄ANDA) Experiment innerhalb

der sich im Aufbau befindenden Facility for Antiproton and Ion Research (FAIR)-Anlage bei

Darmstadt, sowie auch das GLUonic EXcitations (GlueX) Experiment am Jefferson national

LABoratory (JLAB).

Der skalare Glueball Eine der größten Herausforderungen der hadronischen Physik ist das

Verständnis des skalaren-isoskalaren Sektors, IG(JPC) = 0+(0++), unterhalb der Energie von 2

GeV. In diesem Energiebereich werden gegenwärtig fünf f0-Resonanzen der Particle Data Group

(PDG) aufgeführt. Viele Studien deuten daraufhin, dass die beiden Resonanzen f0(500) und

f0(980), deren Massen unterhalb 1 GeV liegen, keine Quark-Antiquark-Mesonen sind, sondern zu

einem Tetraquark-Nonet gehören oder sie sind mesonische Moleküle. Im Energiebereich zwischen

1 und 2 GeV befinden sich die weiteren Resonanzen f0(1370), f0(1500) und f0(1710). Allerdings

können höchstens zwei dieser Resonanzen als überwiegende q̄q Zustände interpretiert werden, und

zwar eine als ein nicht-seltsames σN ≅ (ūu + d̄d) /
√

2 und die andere als ein seltsames σS ≅ s̄s
Meson. Folglich stellt sich die Frage, ob sich der skalare Glueball unter diesen drei Resonanzen

befindet, welcher wegen seiner Quantenzahlen des Vakuums direkt mit der Spuranomalie des

Yang-Mills-Sektors der QCD zusammenhängt. Falls ja, dann ergibt sich eine weitere Frage,

nämlich, welche dieser f0-Resonanzen besitzt den größten gluonischen Anteil.

Der pseudoskalare und vektorielle Glueball Wie schon bereits angedeutet, wird es mit

dem P̄ANDA Experiment möglich sein, schwere Zustände zu erzeugen und somit auch mögliche

schwere Gluebälle. Man erwartet, dass diese Gluebälle weniger mit gewöhnlichen Quark-Anti-

quark-Mesonen mischen und daher möglicherweise leichter zu identifizieren sein werden, im

Gegensatz zu dem skalaren Glueball, der sich wahrscheinlich unter den f0-Resonanzen verbirgt.

Aus diesem Grund interessieren wir uns in dieser Arbeit einerseits für den pseudoskalaren Glue-

ball (JPC = 0−+) mit der Masse von etwa 2.6 GeV, wie Gitterrechnungen der QCD vorhersagen.

Andererseits ist es der Vektorglueball (JPC = 1−−) mit der Masse von etwa 3.8 GeV, die ebenfalls

aus den Gitterrechnungen der QCD folgt. Auf Grund der Quantenzahlen ist der Vektorglue-

ball aus mindestens drei Gluonen zusammengesetzt und damit sollte seine Umwandlung in einen

Quark-Antiquark-Meson unwahrscheinlich sein. Folglich wird eine kleine Zerfallsbreite dieses

Glueballs erwartet.
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Das hadronische Modell Um die bereits diskutierten Fragestellungen der hadronischen Physik

im mesonischen Sektor zu untersuchen, wird das eLSM herangezogen. Die Freiheitsgrade des

eLSM sind auf Grund des Confinements von Beginn an Hadronen, nämlich Quark-Antiquark-

Mesonen sowie ein skalarer Glueball, welcher durch die Anregungen des skalaren Dilatons beschrieben

wird. Weitere Gluebälle lassen sich leicht in das eLSM einbetten. Die q̄q-Felder beinhalten nicht

nur skalare (S,0++) und pseudoskalare (P , 0−+) Mesonen, sondern auch Vektor- (Vµ, 1−−) und

Axial-Vektor (Aµ, 1++) Mesonen. Die letztgenannten Vektorfelder sind von großer Bedeutung,

um die Phänomenologie korrekt zu beschreiben, da diese auch den (pseudo)skalaren Sektor bee-

influssen. Das effektive feldtheoretische Modell ist im Einklang mit den Eigenschaften der QCD

bzw. ihrer Lagrangedichte. Da das eLSM eine auf dem Confinement basierende effektive Feldthe-

orie ist, wird die Dynamik durch die globale chirale und die Dilatations-Symmetrie bestimmt

und weniger durch die lokale SUc(3)-Farbsymmetrie, die folglich trivial erfüllt ist. Die Real-

isierung des eLSM mit drei Quarkflavors beinhaltet im skalaren-isoskalaren Sektor zwei nackte

Quark-Antiquark-Mesonen, nämlich σN und σS , als auch einen skalaren Glueball G, die alle-

samt miteinander mischen und die physikalischen Resonanzen f0(1370), f0(1500) und f0(1710)
generieren. Da die Felder σN , σS und G die Quantenzahlen des Vakuums besitzen, treten in

unserem Modell drei verschiedene Kondensate in Erscheinung, nämlich das nicht-seltsame und

das seltsame Quarkkondensat ⟨ūu + d̄d⟩ /
√

2 ≠ 0 und ⟨s̄s⟩ ≠ 0, als auch das Gluonkondensat

⟨αs
π
GaµνG

µν
a ⟩ ≠ 0. Folglich ist es interessant zu lernen, wie groß die entsprechenden Beiträge zur

Erzeugung der Hadronenmassen sind.

Mischung im skalaren-isoskalaren Sektor des eLSM

Das eLSM im Fall von Nf = 2 Die Untersuchungen des skalaren Glueballs im eLSM wur-

den zunächst für den Fall Nf = 2 durchgeführt. In dieser Realisierung des eLSM sind Mesonen,

die aus den seltsamen Quarks zusammengesetzt sind, nicht enthalten. Ferner ergibt sich im

skalaren-isoskalaren Sektor ein Zwei-Körper-Mischungsszenario, in dem das nackte nicht-seltsame

Quark-Antiquark-Meson σN und der nackte skalare Glueball G mischen und zwei physikalische

f0-Resonanzen erzeugen. Folglich lassen sich verschiedene Zuweisungen der nackten Felder σN

und G zu den f0-Resonanzen durchführen und mit Hilfe der χ2-Methode untersuchen. Dazu

wurden physikalische Größen der skalaren-isoskalaren Resonanzen, wie beispielsweise ihre Massen

und Zerfallsbreiten, herangezogen. Die Rechnungen wurden durchgeführt im Vakuum, d. h. bei

verschwindender Temperatur (T = 0) und bei verschwindendem chemischen Potential (µ = 0),

und auf Baumdiagrammniveau, d. h. ohne Schleifenkorrekturen. Dabei wurden zwei akzeptable

Lösungen gefunden, bei denen jeweils die Resonanz f0(1370) überwiegend das nicht-seltsame

q̄q-Meson ist, während der Glueball in einer Lösung überwiegend f0(1500) und in der anderen

überwiegend f0(1710) ist. Der Grund für das nicht eindeutige Ergebnis liegt darin, dass die Re-

alisierung des eLSM mit Nf = 2 unvollständig ist, da das nackte seltsame Feld σS vernachlässigt

wurde.

Es gibt jedoch eine Reihe von Argumenten, die die Resonanz f0(1710) als überwiegenden Glueball-

Zustand unterstützen. Die wichtige Eigenschaft der Flavorblindheit erfordert für einen reinen
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Glueball
ΓG′→ππ
ΓG′→KK

= 3

4
.

Die entsprechenden Verzweigungsverhältnisse für die zwei mutmaßlichen Kandidaten für den

skalaren Glueball lauten
Γf0(1500)→ππ

Γf0(1500)→KK
= 4.06

und
Γf0(1710)→ππ

Γf0(1710)→KK
= 0.41 .

Dies zeigt, dass die Forderung nach der Flavorblindheit eher für die Resonanz f0(1710) als für die

f0(1500) erfüllt ist. An dieser Stelle wollen wir noch anmerken, dass die Verzweigungsverhältnisse

der f0-Resonanzen q̄q-Komponenten enthalten. Außerdem sind die experimentellen Fehler der

Zerfallsbreiten von f0(1710) hinreichend groß, so dass eine Übereinstimmung zwischen den theo-

retischen und experimentellen Werten möglich ist, während eine entsprechende Übereinstimmung

für die Resonanz f0(1500) nicht vorliegt. Des Weiteren sagen Gitterrechnungen der QCD eine

Masse des skalaren Glueballs von mlat
G ≈ 1.7 GeV voraus, welcher der Masse von f0(1710) sehr

nah ist. Schließlich soll noch auf die Produktionsrate in den radiativen J/ψ Zerfällen hingewiesen

werden, die für f0(1710) höher ist als für f0(1500).

Diese Argumente sprechen für das Szenario, in dem G′ ≡ f0(1710) ist. Um jedoch ein schlüssiges

Ergebnis innerhalb des eLSM zu erzielen, ist eine Studie notwendig, die ein Drei-Körper-Mi-

schungsszenario beinhaltet, in dem die nackten Felder σN , σS und G involviert sind und die

Resonanzen f0(1370), f0(1500) und f0(1710) erzeugen.

Abschließend haben wir auch Szenarien untersucht, in denen die Resonanz f0(500) überwiegend

als das nicht-seltsame q̄q-Meson interpretiert wurde. Es stellte sich jedoch heraus, dass diese

Szenarien stark nicht-favorisiert sind, da sie die experimentellen Daten nicht beschreiben können

z. B. ist die Zerfallsbreite Γσ′
N
→ππ ≲ 180 MeV deutlich schmaler als der entsprechende experi-

mentelle Wert Γexf0(500)→ππ = (400 − 700) MeV.

Das eLSM im Fall von Nf = 3 Die Realisierung des eLSM mit drei Quarkflavors erfordert

die Lösung eines Drei-Körper-Mischungsproblems, um herauszufinden, welche f0-Resonanz man

als den skalaren Glueball interpretieren kann. Im Gegensatz zur Realisierung des eLSM im

Fall von zwei Quarkflavors konnten wir in diesem Fall eine eindeutige Lösung finden, die die

Phänomenologie in dem skalaren-isoskalaren Sektor sehr gut beschreibt. Wir fanden heraus, dass

die Resonanz f0(1710) überwiegend der skalare Glueball ist, während die Resonanzen f0(1370)
und f0(1500) überwiegend das nicht-seltsame σN und das seltsame σS Quark-Antiquark-Meson

sind
⎛
⎜⎜
⎝

f0(1370)
f0(1500)
f0(1710)

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

−0.91 0.24 −0.33

0.30 0.94 −0.17

−0.27 0.26 0.93

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

σN ≅ (ūu + d̄d) /
√

2

σS ≅ s̄s
G ≅ glueball

⎞
⎟⎟
⎠
.

Diese Lösung basiert auf der Annahme, dass die Zerfallsbreite des Glueballs schmal ist (ΓG ≲ 100

GeV), was mit den Argumenten des large-Nc Formalismus übereinstimmt. Dies hat eine interes-

sante Konsequenz zur Folge, nämlich einen großen Energieskalenparameter Λdil, dessen Ursprung
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in der Spuranomalie liegt, und das impliziert ein großes Gluonkondensat ⟨αs
π
GaµνG

µν
a ⟩.

An dieser Stelle wollen wir noch einmal hervorheben, dass die Einbindung der (Axial-)Vektor-

Freiheitsgrade entscheidend für die erzielten Ergebnisse des eLSM war. Durch ihre Beeinflussung

des (pseudo)skalaren Sektors, beispielsweise geht aus unserem Modell hervor, dass der chirale

Partner des Pions die Resonanz f0(1370) ist. Des Weiteren ist es nach unserer Kenntnis das erste

Mal, dass eine vollständige Mischung, Nf = 3, über der Energie von 1 GeV von zwei skalaren-

isoskalaren Quarkonia und einem skalaren Glueball, der durch das Dilaton-Feld beschrieben wird,

in einem chiralen hadronischen Modell mit (axial-)vektor Mesonen, untersucht wurde.

Der pseudoskalare Glueball im Rahmen des eLSM

Ferner wurden in dieser Arbeit die Vakuumeigenschaften des pseudoskalaren Glueballs G̃ un-

tersucht. In diesem Zusammenhang haben wir im Einklang mit dem eLSM eine effektive Lag-

rangedichte konstruiert, die diesen pseudoskalaren Glueball mit Quark-Antiquark-Mesonen kop-

pelt. Die entsprechende Masse ist mG̃ = 2.6 GeV, die aus den Gitterrechnungen der QCD in

der sogenannten quenched-Näherung folgt. Diese Masse liegt im Energiebereich der geplanten

Experimente P̄ANDA oder GlueX. Wir präsentieren die entsprechenden Ergebnisse als Verzwei-

gungsverhältnisse, um eine parameterfreie Vorhersage machen zu können, die als eine Richtlinie

für die Suche nach Gluebällen dienen kann. Unsere Rechnungen zeigen, dass G̃ → KKπ der

dominierende Zerfallskanal des pseudoskalaren Glueballs ist (∼ 47%), gefolgt von G̃ → ηππ

(∼ 16%) und G̃ → η′ππ (∼ 10%), während der Zerfall G̃ → πππ verschwindet. Wir wieder-

holten diese Berechnungen für eine Glueballmasse von 2.37 GeV. Diese entspricht der Masse der

pseudoskalaren Resonanz X(2370), welche im BESIII-Experiment beobachtet wurde. Die gleiche

Prozedur kann in naher Zukunft auf andere Gluebälle angewendet werden. Einen sehr interes-

santen Fall bietet der Vektorglueball Oµ mit einer Masse von mOµ = 3.8 GeV, welche ebenfalls

durch Gitterrechnungen der QCD erhalten wurde, dessen Zerfall in Quark-Antiquark-Mesonen

studiert werden kann. In der vorliegenden Arbeit haben wir die entsprechende Lagrangedichte

präsentiert und ihre wesentlichen Eigenschaften diskutiert.
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Unterstützung und die angenehme Arbeitsatmosphäre ganz herzlich bedanken.
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Springer-Verlag (2006).

[17] S. Janowski, Phänomenologie des Dilatons in einem chiralen Modell mit (Axial-) Vek-

tormesonen, Diploma Thesis, Faculty of Physics at the J. W. Goethe University in Frank-

furt am Main (2010).

[18] F. Giacosa, Ein effektives chirales Modell der QCD mit Vektormesonen, Dilaton und

Tetraquarks: Physik im Vakuum und bei nichtverschwindender Dichte und Temperatur,

Habilitation Thesis, Faculty of Physics at the J. W. Goethe University in Frankfurt am

Main (2012).

[19] D. Parganlija, Quarkonium Phenomenology in Vacuum, PhD Thesis, Faculty of Physics at

the J. W. Goethe University in Frankfurt am Main (2012) arXiv:1208.0204 [hep-ph].

[20] V. Mathieu, N. Kochelev and V. Vento, The Physics of Glueballs, Int. J. Mod. Phys. E 18,

1 (2009) [arXiv:0810.4453 [hep-ph]].

[21] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General The-

ory of Relativity, John Wiley & Sons, Inc. (1972).

[22] S. Weinberg, The Making of the standard model, Eur. Phys. J. C 34, 5 (2004) [hep-

ph/0401010].

[23] W. Greiner, B. Müller, Quantenmechanik Symmetrien, Verlag Harri Deutsch (2005).

[24] M. Gell-Mann, The Eightfold Way: A Theory of strong interaction symmetry, Synchrotron

Laboratory Report CTSL-20, California Institute of Technology (1961).

[25] M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8, 214 (1964).

[26] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 1,

CERN-TH-401, (1964).

[27] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2,

Developments in the Quark Theory of Hadrons, Volume 1. Edited by D. Lichtenberg and

S. Rosen. pp. 22-101, (1964).

[28] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the Color Octet Gluon Picture,

Phys. Lett. B 47, 365 (1973).

[29] W. Pauli, The Connection Between Spin and Statistics, Phys. Rev. 58, 716 (1940).

126



[30] R. Aaij et al. [LHCb Collaboration], Observation of J/ψp resonances consistent with pen-

taquark states in Λ0
b → J/ψK−p decays, arXiv:1507.03414 [hep-ex].

[31] M. Y. Han and Y. Nambu, Three Triplet Model with Double SU(3) Symmetry, Phys. Rev.

139, B1006 (1965).

[32] D. P. Barber, U. Becker, H. Benda, A. Boehm, J. G. Branson, J. Bron, D. Buikman and

J. Burger et al., Discovery of Three Jet Events and a Test of Quantum Chromodynamics

at PETRA Energies, Phys. Rev. Lett. 43, 830 (1979).

[33] P. Soding, On the discovery of the gluon, Eur. Phys. J. H 35, 3 (2010).

[34] P. Duinker, Review of e+e− physics at PETRA, Rev. Mod. Phys. 54, 325 (1982).

[35] B. R. Stella and H. J. Meyer, Υ (9.46 GeV) and the gluon discovery (a critical recollection

of PLUTO results), Eur. Phys. J. H 36, 203 (2011) [arXiv:1008.1869 [hep-ex]].

[36] P. Abreu et al. [DELPHI Collaboration], Experimental study of the triple gluon vertex,

Phys. Lett. B 255, 466 (1991).

[37] P. Abreu et al. [DELPHI Collaboration], Study of orientation of three jet events in Z0

hadronic decays using the DELPHI detector Phys. Lett. B 274, 498 (1992).

[38] P. M. Zerwas, QCD: Testing basic properties in jet physics, DESY-92-139, C91-11-26.

[39] http://www.quantumdiaries.org/author/flip-tanedo/page/5/

[40] G. ’t Hooft and M. J. G. Veltman, Regularization and Renormalization of Gauge Fields,

Nucl. Phys. B 44, 189 (1972).

[41] D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev.

Lett. 30, 1343 (1973).

[42] H. D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30,

1346 (1973).

[43] M. Gell-Mann and M. Levy, The axial vector current in beta decay, Nuovo Cim. 16, 705

(1960).

[44] Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an

Analogy with Superconductivity. I., Phys. Rev. 122, 345 (1961).

[45] Y. Nambu and G. Jona-Lasinio, Dynamical Model Of Elementary Particles Based On An

Analogy With Superconductivity. II., Phys. Rev. 124, 246 (1961).

[46] P. Ko and S. Rudaz, Phenomenology of scalar and vector mesons in the linear sigma model,

Phys. Rev. D 50, 6877 (1994).

[47] J. Schechter, Introduction to effective Lagrangians for QCD, eConf C 010815, 76 (2002)

[hep-ph/0112205].

127



[48] T. Hatsuda and T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian,

Phys. Rept. 247, 221 (1994) [hep-ph/9401310].

[49] http://th.physik.uni-frankfurt.de/ ˜giacosa/effectivehadronictheories.html

[50] G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72, 461 (1974).

[51] E. Witten, Baryons in the 1/N expansion, Nucl. Phys. B 160, 57 (1979).

[52] C. J. Morningstar and M. J. Peardon, Efficient glueball simulations on anisotropic lattices,

Phys. Rev. D 56, 4043 (1997) [hep-lat/9704011].

[53] C. J. Morningstar and M. J. Peardon, Glueball spectrum from an anisotropic lattice study,

Phys. Rev. D 60, 034509 (1999) [hep-lat/9901004].

[54] C. J. Morningstar and M. J. Peardon, Simulating the scalar glueball on the lattice, AIP

Conf. Proc. 688, 220 (2004) [nucl-th/0309068].

[55] Y. Chen, A. Alexandru, S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu and

N. Mathur et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys.

Rev. D 73, 014516 (2006) [hep-lat/0510074].

[56] M. Loan, X. Q. Luo and Z. H. Luo, Monte Carlo study of glueball masses in the Hamiltonian

limit of SU(3) lattice gauge theory, Int. J. Mod. Phys. A 21, 2905 (2006) [hep-lat/0503038].

[57] E. B. Gregory, A. C. Irving, C. C. McNeile, S. Miller and Z. Sroczynski, Scalar glueball and

meson spectroscopy in unquenched lattice QCD with improved staggered quarks, PoS LAT

2005, 027 (2006) [hep-lat/0510066].

[58] E. B. Gregory, A. C. Irving, B. Lucini, C. C. McNeile, A. Rago, C. Richards and E. Ri-

naldi, Towards the glueball spectrum from unquenched lattice QCD, JHEP 1210, 170 (2012)

[arXiv:1208.1858 [hep-lat]].

[59] W. Ochs, The Status of Glueballs, J. Phys. G 40, 043001 (2013) [arXiv:1301.5183 [hep-ph]].

[60] E. Klempt and A. Zaitsev, Glueballs, Hybrids, Multiquarks. Experimental facts versus QCD

inspired concepts, Phys. Rept. 454, 1 (2007) [arXiv:0708.4016 [hep-ph]].

[61] M. Wagner, S. Diehl, T. Kuske and J. Weber, An introduction to lattice hadron spectroscopy

for students without quantum field theoretical background arXiv:1310.1760 [hep-lat].

[62] K. G. Wilson, Confinement of Quarks, Phys. Rev. D 10, 2445 (1974).

[63] D. H. Rischke, The Quark gluon plasma in equilibrium, Prog. Part. Nucl. Phys. 52, 197

(2004) [nucl-th/0305030].

[64] R. D. Pisarski, Notes on the deconfining phase transition, hep-ph/0203271 (2002).

[65] G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys.

B 138, 1 (1978).

128



[66] A. M. Polyakov, Thermal Properties of Gauge Fields and Quark Liberation, Phys. Lett. B

72, 477 (1978).

[67] O. W. Greenberg, CPT violation implies violation of Lorentz invariance, Phys. Rev. Lett.

89, 231602 (2002) [hep-ph/0201258].

[68] F. Halzen, A. D. Martin, Quarks and Leptons: An Introductory Course in Modern Particle

Physics, John Wiley & Sons, Inc. (1984).

[69] E. Noether, Invariante Variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen, 235

(1918).

[70] K. Fujikawa, Path Integral Measure for Gauge Invariant Fermion Theories, Phys. Rev.

Lett. 42, 1195 (1979).

[71] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13,

508 (1964).

[72] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys.

Rev. Lett. 13, 321 (1964).

[73] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12, 132

(1964).

[74] G. Aad et al. [ATLAS Collaboration], Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1

(2012) [arXiv:1207.7214 [hep-ex]].

[75] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235

[hep-ex]].

[76] V. Koch, Aspects of chiral symmetry, Int. J. Mod. Phys. E 6, 203 (1997) [nucl-th/9706075].

[77] J. Bernstein, Spontaneous symmetry breaking, gauge theories, the higgs mechanism and all

that, Rev. Mod. Phys. 46, 7 (1974) [Rev. Mod. Phys. 47, 259 (1975)] [Rev. Mod. Phys. 46,

855 (1974)].

[78] W. Weise, The QCD vacuum and its hadronic excitations, nucl-th/0504087.

[79] J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19, 154 (1961).

[80] D. Parganlija, F. Giacosa and D. H. Rischke, Vacuum properties of mesons in a linear

sigma model with vector mesons and global chiral invariance, Phys. Rev. D 82, 054024

(2010) [arXiv:1003.4934 [hep-ph]].

[81] D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Meson vacuum phe-

nomenology in a three-flavor linear sigma model with (axial-)vector mesons, Phys. Rev. D

87, 014011 (2013) [arXiv:1208.0585 [hep-ph]].

129



[82] J. T. Lenaghan, D. H. Rischke and J. Schaffner-Bielich, Chiral symmetry restoration at

nonzero temperature in the SU(3)r × SU(3)l linear sigma model, Phys. Rev. D 62, 085008

(2000) [nucl-th/0004006].

[83] S. Struber and D. H. Rischke, Vector and axialvector mesons at nonzero temperature within

a gauged linear sigma model, Phys. Rev. D 77, 085004 (2008) [arXiv:0708.2389 [hep-th]].

[84] V. M. Braun, G. P. Korchemsky and D. Mueller, The Uses of conformal symmetry in QCD,

Prog. Part. Nucl. Phys. 51, 311 (2003) [hep-ph/0306057].

[85] D. J. Gross and J. Wess, Scale invariance, conformal invariance, and the high-energy be-

havior of scattering amplitudes, Phys. Rev. D 2, 753 (1970).

[86] F. Karbstein, A. Peters and M. Wagner, Λ
(nf=2)
MS

from a momentum space analysis of the

quark-antiquark static potential, JHEP 1409, 114 (2014) [arXiv:1407.7503 [hep-ph]].

[87] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, QCD and Resonance Physics. Sum

Rules, Nucl. Phys. B 147, 385 (1979).

[88] L. J. Reinders, H. R. Rubinstein and S. Yazaki, QCD Sum Rules for Heavy Quark Systems,

Nucl. Phys. B 186, 109 (1981).

[89] J. Marrow, J. Parker and G. Shaw, QCD Sum Rules: Charmonium, Z. Phys. C 37, 103

(1987).

[90] B. V. Geshkenbein, On the Value of Gluonic Condensate in Quantum Chromodynamics,

Sov. J. Nucl. Phys. 51, 719 (1990) [Yad. Fiz. 51, 1121 (1990)].

[91] D. J. Broadhurst, P. A. Baikov, V. A. Ilyin, J. Fleischer, O. V. Tarasov and V. A. Smirnov,

Two loop gluon condensate contributions to heavy quark current correlators: Exact results

and approximations, Phys. Lett. B 329, 103 (1994) [hep-ph/9403274].

[92] F. J. Yndurain, Gluon condensate from superconvergent QCD sum rule, Phys. Rept. 320,

287 (1999) [hep-ph/9903457].

[93] B. L. Ioffe and K. N. Zyablyuk, Gluon condensate in charmonium sum rules with three loop

corrections, Eur. Phys. J. C 27, 229 (2003) [hep-ph/0207183].

[94] K. N. Zyablyuk, Gluon condensate and c quark mass in pseudoscalar sum rules at three

loop order, JHEP 0301, 081 (2003) [hep-ph/0210103].

[95] A. Samsonov, Gluon condensate in charmonium sum rules for the axial-vector current,

hep-ph/0407199.

[96] J. Kripfganz, Gluon Condensate From SU(2) Lattice Gauge Theory, Phys. Lett. B 101,

169 (1981).

[97] A. Di Giacomo and G. C. Rossi, Extracting ⟨(α/π)∑a,µν GaµνGaµν⟩ from gauge theories on

a lattice, Phys. Lett. B 100, 481 (1981).

130



[98] A. Di Giacomo and G. Paffuti, Precise determination of ⟨(α/π)∑a,µν GaµνGaµν⟩ from lattice

gauge theories, Phys. Lett. B 108, 327 (1982).

[99] E. M. Ilgenfritz and M. Müller-Preussker, SU(3) Gluon Condensate From Lattice MC Data,

Phys. Lett. B 119, 395 (1982).

[100] S. s. Xue, Gluon Condensate Matter From Analytic Data in SU(2) Lattice Theory, Phys.

Lett. B 191, 147 (1987).

[101] M. Campostrini, A. Di Giacomo and Y. Gunduc, Gluon Condensation in SU(3) Lattice

Gauge Theory, Phys. Lett. B 225, 393 (1989).

[102] A. Di Giacomo, H. Panagopoulos and E. Vicari, The Topological Susceptibility and Lattice

Universality, Nucl. Phys. B 338, 294 (1990).

[103] X. D. Ji, Gluon condensate from lattice QCD, hep-ph/9506413.

[104] G. Boyd and D. E. Miller, The Temperature dependence of the SU(Nc) gluon condensate

from lattice gauge theory, hep-ph/9608482.

[105] A. Di Giacomo, H. G. Dosch, V. I. Shevchenko and Y. A. Simonov, Field correlators in

QCD: Theory and applications, Phys. Rept. 372, 319 (2002) [hep-ph/0007223].

[106] S. Strauss, C. S. Fischer and C. Kellermann, Analytic structure of the Landau gauge gluon

propagator, Phys. Rev. Lett. 109, 252001 (2012) [arXiv:1208.6239 [hep-ph]].

[107] D. Binosi, D. Ibanez and J. Papavassiliou, The all-order equation of the effective gluon

mass, Phys. Rev. D 86, 085033 (2012) [arXiv:1208.1451 [hep-ph]].

[108] A. C. Aguilar and A. A. Natale, A Dynamical gluon mass solution in a coupled system of

the Schwinger-Dyson equations, JHEP 0408, 057 (2004) [hep-ph/0408254].

[109] K. Johnson, The M.I.T. Bag Model, Acta Phys. Polon. B 6, 865 (1975).

[110] R. L. Jaffe and K. Johnson, Unconventional States of Confined Quarks and Gluons, Phys.

Lett. B 60, 201 (1976).

[111] R. Konoplich and M. Shchepkin, Glueballs’ Masses in the Bag Model, Nuovo Cim. A 67,

211 (1982).

[112] M. Jezabek and J. Szwed, Glueballs In The Bag Models, Acta Phys. Polon. B 14, 599

(1983).

[113] R. L. Jaffe, K. Johnson and Z. Ryzak, Qualitative Features of the Glueball Spectrum, Annals

Phys. 168, 344 (1986).

[114] M. Strohmeier-Presicek, T. Gutsche, R. Vinh Mau and A. Faessler, Glueball quarko-

nia content and decay of scalar-isoscalar mesons, Phys. Rev. D 60, 054010 (1999) [hep-

ph/9904461].

[115] F. E. Close, Gluonic Hadrons, Rept. Prog. Phys. 51, 833 (1988).

131



[116] S. Godfrey and J. Napolitano, Light meson spectroscopy, Rev. Mod. Phys. 71, 1411 (1999)

[hep-ph/9811410].

[117] C. Amsler and N. A. Tornqvist, Mesons beyond the naive quark model, Phys. Rept. 389,

61 (2004).

[118] V. Crede and C. A. Meyer, The Experimental Status of Glueballs, Prog. Part. Nucl. Phys.

63, 74 (2009) [arXiv:0812.0600 [hep-ex]].

[119] S. Okubo, ϕ-meson and unitary symmetry model, Phys. Lett. 5 (1963) 165.

[120] J. Iizuka, K. Okada and O. Shito, Systematics and phenomenology of boson mass levels. 3,

Prog. Theor. Phys. 35, 1061 (1966).

[121] J. Iizuka, Systematics and phenomenology of meson family, Prog. Theor. Phys. Suppl. 37,

21 (1966).

[122] S. Okubo, Consequences of Quark Line (Okubo-Zweig-Iizuka) Rule, Phys. Rev. D 16, 2336

(1977).

[123] D. M. Asner, T. Barnes, J. M. Bian, I. I. Bigi, N. Brambilla, I. R. Boyko, V. Bytev and

K. T. Chao et al. [BESIII Collaboration], Physics at BES-III, Int. J. Mod. Phys. A 24, S1

(2009) [arXiv:0809.1869 [hep-ex]].

[124] M. F. M. Lutz et al. [P̄ANDA Collaboration], Physics Performance Report for P̄ANDA:

Strong Interaction Studies with Antiprotons, arXiv:0903.3905 [hep-ex].

[125] J. G. Messchendorp [P̄ANDA Collaboration], Hadron Physics with Anti-Protons: The

P̄ANDA Experiment at FAIR, eConf C 070910, 123 (2007) [arXiv:0711.1598 [nucl-ex]].

[126] D. Bettoni, The P̄ANDA experiment at FAIR, eConf C 070805, 39 (2007) [arXiv:0710.5664

[hep-ex]].

[127] F. Giacosa, Non-conventional mesons at P̄ANDA, J. Phys. Conf. Ser. 599, no. 1, 012004

(2015) [arXiv:1502.02682 [hep-ph]].

[128] J. R. Ellis and J. Lanik, Is Scalar Gluonium Observable?, Phys. Lett. B 150, 289 (1985).

[129] P. Minkowski and W. Ochs, B decays into light scalar particles and glueball, Eur. Phys. J.

C 39, 71 (2005) [hep-ph/0404194].

[130] P. Minkowski and W. Ochs, The Glueball among the light scalar mesons, Nucl. Phys. Proc.

Suppl. 121, 123 (2003) [hep-ph/0209225].

[131] P. Minkowski and W. Ochs, Identification of the glueballs and the scalar meson nonet of

lowest mass, Eur. Phys. J. C 9, 283 (1999) [hep-ph/9811518].

[132] G. Mennessier, S. Narison and W. Ochs, Glueball nature of the σ/f0(600) from ππ and γγ

scatterings, Phys. Lett. B 665, 205 (2008) [arXiv:0804.4452 [hep-ph]].

132



[133] R. L. Jaffe, Multi-Quark Hadrons. 1. The Phenomenology of (2 Quark 2 anti-Quark)

Mesons, Phys. Rev. D 15, 267 (1977).

[134] R. L. Jaffe, Multi-Quark Hadrons. 2. Methods, Phys. Rev. D 15, 281 (1977).

[135] L. Maiani, F. Piccinini, A. D. Polosa and V. Riquer, A New look at scalar mesons, Phys.

Rev. Lett. 93, 212002 (2004) [hep-ph/0407017].

[136] F. Giacosa, Strong and electromagnetic decays of the light scalar mesons interpreted as

tetraquark states, Phys. Rev. D 74, 014028 (2006) [hep-ph/0605191].

[137] F. Giacosa and G. Pagliara, Decay of light scalar mesons into vector-photon and into pseu-

doscalar mesons, Nucl. Phys. A 833, 138 (2010) [arXiv:0905.3706 [hep-ph]].

[138] F. Giacosa, Mixing of scalar tetraquark and quarkonia states in a chiral approach, Phys.

Rev. D 75, 054007 (2007) [hep-ph/0611388].

[139] E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond, G. Rupp and J. E. Ribeiro, A

Low Lying Scalar Meson Nonet in a Unitarized Meson Mode, Z. Phys. C 30, 615 (1986)

[arXiv:0710.4067 [hep-ph]].

[140] N. A. Tornqvist, Understanding the scalar meson q anti-q nonet, Z. Phys. C 68, 647 (1995)

[hep-ph/9504372].

[141] M. Boglione and M. R. Pennington, Dynamical generation of scalar mesons, Phys. Rev. D

65, 114010 (2002) [hep-ph/0203149].

[142] E. van Beveren, D. V. Bugg, F. Kleefeld and G. Rupp, The Nature of σ, κ, a0(980) and

f0(980), Phys. Lett. B 641, 265 (2006) [hep-ph/0606022].

[143] J. R. Pelaez, On the Nature of Light Scalar Mesons from their Large-Nc Behavior, Phys.

Rev. Lett. 92, 102001 (2004) [hep-ph/0309292].

[144] J. A. Oller and E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovec-

tor channels and the σ, f0(980), a0(980) scalar mesons, Nucl. Phys. A 620, 438 (1997)

[Erratum-ibid. A 652, 407 (1999)] [hep-ph/9702314].

[145] A. H. Fariborz, R. Jora and J. Schechter, Toy model for two chiral nonets, Phys. Rev. D

72, 034001 (2005) [hep-ph/0506170].

[146] A. H. Fariborz, Isosinglet scalar mesons below 2-GeV and the scalar glueball mass, Int. J.

Mod. Phys. A 19, 2095 (2004) [hep-ph/0302133].

[147] M. Napsuciale and S. Rodriguez, A Chiral model for q̄q and q̄q̄qq mesons, Phys. Rev. D

70, 094043 (2004) [hep-ph/0407037].

[148] S. Gallas, F. Giacosa and D. H. Rischke, Vacuum phenomenology of the chiral partner of

the nucleon in a linear sigma model with vector mesons, Phys. Rev. D 82, 014004 (2010)

[arXiv:0907.5084 [hep-ph]].

133



[149] F. Giacosa, T. Gutsche, V. E. Lyubovitskij and A. Faessler, Decays of tensor mesons and

the tensor glueball in an effective field approach, Phys. Rev. D 72, 114021 (2005) hep-

ph/0511171].

[150] L. Burakovsky and J. T. Goldman, Towards resolution of the enigmas of P wave meson

spectroscopy, Phys. Rev. D 57, 2879 (1998) [hep-ph/9703271].

[151] A. Masoni, C. Cicalo and G. L. Usai, The case of the pseudoscalar glueball, J. Phys. G 32,

R293 (2006).

[152] T. Gutsche, V. E. Lyubovitskij and M. C. Tichy, η(1405) in a chiral approach based on

mixing of the pseudoscalar glueball with the first radial excitations of eta and eta-prime,

Phys. Rev. D 80, 014014 (2009) [arXiv:0904.3414 [hep-ph]].

[153] H. Y. Cheng, H. n. Li and K. F. Liu, Pseudoscalar glueball mass from η-η′-G mixing, Phys.

Rev. D 79, 014024 (2009) [arXiv:0811.2577 [hep-ph]].

[154] V. Mathieu and V. Vento, Pseudoscalar glueball and η-η′ mixing, Phys. Rev. D 81, 034004

(2010) [arXiv:0910.0212 [hep-ph]].

[155] C. Di Donato, G. Ricciardi and I. Bigi, η-η′ Mixing - From electromagnetic transitions to

weak decays of charm and beauty hadrons, Phys. Rev. D 85, 013016 (2012) [arXiv:1105.3557

[hep-ph]].

[156] B. A. Li, Chiral field theory of 0−+ glueball, Phys. Rev. D 81, 114002 (2010)

[arXiv:0912.2323 [hep-ph]].

[157] F. Ambrosino, A. Antonelli, M. Antonelli, F. Archilli, P. Beltrame, G. Bencivenni,

S. Bertolucci and C. Bini et al. [KLOE Collaboration], A Global fit to determine the pseu-

doscalar mixing angle and the gluonium content of the eta-prime meson, JHEP 0907, 105

(2009) [arXiv:0906.3819 [hep-ph]].

[158] R. Escribano and J. Nadal, On the gluon content of the η and η′ mesons JHEP 0705, 006

(2007) [hep-ph/0703187].

[159] R. Escribano, J/ψ → V P decays and the quark and gluon content of the η and η′, Eur.

Phys. J. C 65, 467 (2010) [arXiv:0807.4201 [hep-ph]].

[160] D. Robson, Identification of a Vector Glueball?, Phys. Lett. B 66, 267 (1977).

[161] G. W. S. Hou, (Vector) glueballs and charmonium decay revisited, In *Minneapolis 1996,

Particles and fields, vol. 1* 399-401 [hep-ph/9609363].

[162] J. Z. Bai et al. [BES Collaboration], Search for a vector glueball by a scan of the J/ψ
resonance, Phys. Rev. D 54, 1221 (1996) [Phys. Rev. D 57, 3187 (1998)].

[163] M. Suzuki, Elusive vector glueball, Phys. Rev. D 65, 097507 (2002) [hep-ph/0203012].

[164] W. S. Hou, Glueballs: Charmonium decay and p̄p annihilation, Phys. Rev. D 55, 6952

(1997) [hep-ph/9610411].

134



[165] G. W. S. Hou, The Case for a vector glueball, hep-ph/9707526 (1997).

[166] S. Janowski and F. Giacosa et al., in preparation.

[167] M. E. B. Franklin et al., Measurement of ψ(3097) and ψ′(3686) Decays Into Selected

Hadronic Modes Phys. Rev. Lett. 51, 963 (1983).

[168] S. J. Brodsky, G. P. Lepage and S. F. Tuan, Exclusive Charmonium Decays: The J/ψ(ψ′)
→ ρπ, K∗K̄ Puzzle, Phys. Rev. Lett. 59, 621 (1987).

[169] D. S. Carman, GlueX: The Search for gluonic excitations at Jefferson Laboratory, AIP

Conf. Proc. 814, 173 (2006) [hep-ex/0511030].

[170] F. Giacosa and G. Pagliara, On the spectral functions of scalar mesons, Phys. Rev. C 76,

065204 (2007) [arXiv:0707.3594 [hep-ph]].

[171] D. J. Griffiths, Introduction to Elementary Particles, by John Wiley & Sons, Inc. (1987).

[172] http://th.physik.uni-frankfurt.de/˜ giacosa/decays.html.

[173] S. Weinberg, Tetraquark Mesons in Large N Quantum Chromodynamics, Phys. Rev. Lett.

110, 261601 (2013) [arXiv:1303.0342 [hep-ph]].

[174] C. Rosenzweig, A. Salomone and J. Schechter, A Pseudoscalar Glueball, the Axial Anomaly

and the Mixing Problem for Pseudoscalar Mesons, Phys. Rev. D 24, 2545 (1981).

[175] A. Salomone, J. Schechter and T. Tudron, Properties of Scalar Gluonium, Phys. Rev. D

23, 1143 (1981).

[176] C. Rosenzweig, A. Salomone and J. Schechter, How Does A Pseudoscalar Glueball Come

Unglued?, Nucl. Phys. B 206, 12 (1982) [Erratum-ibid. B 207, 546 (1982)].

[177] H. Gomm and J. Schechter, Goldstone Bosons and Scalar Gluonium, Phys. Lett. B 158,

449 (1985).

[178] R. Gomm, P. Jain, R. Johnson and J. Schechter, Scale Anomaly and the Scalars, Phys.

Rev. D 33, 801 (1986).

[179] A. A. Migdal and M. A. Shifman, Dilaton Effective Lagrangian in Gluodynamics, Phys.

Lett. B 114, 445 (1982).

[180] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Are All Hadrons

Alike?,Nucl. Phys. B 191, 301 (1981).

[181] D. Parganlija, F. Giacosa and D. H. Rischke, How Universal is the Coupling in the Sigma

Model?, AIP Conf. Proc. 1030, 160 (2008) [arXiv:0804.3949 [hep-ph]].

[182] S. Vandoren and P. van Nieuwenhuizen, Lectures on instantons, arXiv:0802.1862 [hep-th].

[183] G. ’t Hooft, How Instantons Solve the U(1) Problem, Phys. Rept. 142, 357 (1986).

135



[184] E. Witten, Current Algebra Theorems for the U(1) Goldstone Boson, Nucl. Phys. B 156,

269 (1979).

[185] G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159, 213 (1979).

[186] D. Parganlija, P. Kovacs, G. Wolf, F. Giacosa and D. H. Rischke, Eta, Eta’ and eLSM,

PoS ConfinementX , 117 (2012) [arXiv:1301.3478 [hep-ph]].

[187] C. Rosenzweig, J. Schechter and C. G. Trahern, Is the effective Lagrangian for quantum

chromodynamics a σ model?, Phys. Rev. D 21, 3388 (1980).

[188] K. Kawarabayashi and N. Ohta, The problem of η in the Large N limit: Effective La-

grangian approach, Nucl. Phys. B 175, 477 (1980).

[189] L. S. Geng and E. Oset, Vector meson-vector meson interaction in a hidden gauge unitary

approach, Phys. Rev. D 79, 074009 (2009) [arXiv:0812.1199 [hep-ph]].

[190] L. S. Geng, F. K. Guo, C. Hanhart, R. Molina, E. Oset and B. S. Zou, Study of thef2(1270),

f ′2(1525), f0(1370) and f0(1710) in the J/ψ radiative decays, Eur. Phys. J. A 44, 305

(2010) [arXiv:0910.5192 [hep-ph]].

[191] A. Martinez Torres, K. P. Khemchandani, F. S. Navarra, M. Nielsen and E. Oset, The Role

of f0(1710) in the φω Threshold Peak of J/ψ → γφω, Phys. Lett. B 719, 388 (2013)

[arXiv:1210.6392 [hep-ph]].

[192] F. Divotgey, L. Olbrich and F. Giacosa, Phenomenology of axial-vector and pseudovec-

tor mesons: decays and mixing in the kaonic sector, Eur. Phys. J. A 49, 135 (2013)

[arXiv:1306.1193 [hep-ph]].

[193] S. Gasiorowicz and D. A. Geffen, Effective Lagrangians and field algebras with chiral sym-

metry, Rev. Mod. Phys. 41, 531 (1969).

[194] K. Nakamura et al. [Particle Data Group Collaboration], Review of particle physics, J.

Phys. G 37, 075021 (2010).

[195] J. Beringer et al. [Particle Data Group Collaboration], Review of particle physics, Phys.

Rev. D 86, 010001 (2012).

[196] I. Caprini, G. Colangelo and H. Leutwyler, Mass and width of the lowest resonance in

QCD, Phys. Rev. Lett. 96, 132001 (2006) [hep-ph/0512364].

[197] F. J. Yndurain, R. Garcia-Martin and J. R. Pelaez, Experimental status of the ππ isoscalar

S wave at low energy: f0(600) pole and scattering length Phys. Rev. D 76, 074034 (2007)

[hep-ph/0701025].

[198] R. Kaminski, R. Garcia-Martin, P. Grynkiewicz and J. R. Pelaez, Sigma pole position and

errors of a once and twice subtracted dispersive analysis of pi-pi scattering data, Nucl. Phys.

Proc. Suppl. 186, 318 (2009) [arXiv:0811.4510 [hep-ph]].

136



[199] R. Garcia-Martin, R. Kaminski, J. R. Pelaez and J. Ruiz de Elvira, Precise determination

of the f0(600) and f0(980) pole parameters from a dispersive data analysis, Phys. Rev.

Lett. 107, 072001 (2011) [arXiv:1107.1635 [hep-ph]].

[200] F. Giacosa, Two-photon decay of light scalars: A Comparison of tetraquark and quarkonium

assignments, in XII International Conference on Hadron Spectroscopy, Frascati, Italy, 2007

(Istituto Nazionale di Fisica Nucleare, Frascati, Italy, 2007), arXiv:0712.0186 [hep-ph].

[201] D. Parganlija, F. Giacosa and D. H. Rischke, Decay widths of resonances and pion scatter-

ing lengths in a globally invariant linear sigma model with vector mesons, PoS CONFINE-

MENT 8, 070 (2008) [arXiv:0812.2183 [hep-ph]].

[202] M. Urban, M. Buballa and J. Wambach, Vector and axial vector correlators in a chirally

symmetric model, Nucl. Phys. A 697, 338 (2002) [hep-ph/0102260].

[203] C. Amsler and F. E. Close, Is f0(1500) a scalar glueball?, Phys. Rev. D 53, 295 (1996)

[hep-ph/9507326].

[204] F. E. Close and A. Kirk, Scalar glueball-qq̄ mixing above 1 GeV and implications for lattice

QCD, Eur. Phys. J. C 21, 531 (2001) [hep-ph/0103173].

[205] F. Giacosa, T. Gutsche and A. Faessler, Covariant constituent quark-gluon model for the

glueball-quarkonia content of scalar-isoscalar mesons, Phys. Rev. C 71, 025202 (2005) [hep-

ph/0408085].

[206] T. Teshima, I. Kitamura and N. Morisita, Effects to scalar meson decays of strong mixing

between low and high mass scalar mesons, J. Phys. G 30, 663 (2004) [hep-ph/0305296].

[207] F. Giacosa, T. Gutsche, V. E. Lyubovitskij and A. Faessler, Scalar nonet quarkonia and

the scalar glueball: Mixing and decays in an effective chiral approach, Phys. Rev. D 72,

094006 (2005) [hep-ph/0509247].

[208] F. Giacosa, T. Gutsche, V. E. Lyubovitskij and A. Faessler, Scalar meson and glueball

decays within a effective chiral approach, Phys. Lett. B 622, 277 (2005) [hep-ph/0504033].

[209] A. H. Fariborz, Mass Uncertainties of f0(600) and f0(1370) and their Effects on Determi-

nation of the Quark and Glueball Admixtures of the I=0 Scalar Mesons Phys. Rev. D 74,

054030 (2006) [hep-ph/0607105].

[210] D. V. Bugg, A Study in Depth of f0(1370), Eur. Phys. J. C 52, 55 (2007) [arXiv:0706.1341

[hep-ex]].

[211] G. E. Brown and M. Rho, Scaling effective Lagrangians in a dense medium, Phys. Rev.

Lett. 66, 2720 (1991).

[212] D. Parganlija, F. Giacosa and D. H. Rischke, Influence of Vector Mesons on the f0(600)
Decay Width in a Linear Sigma Model with Global Chiral Invariance, arXiv:0911.3996

[nucl-th].

137



[213] H. Y. Cheng, C. K. Chua and K. F. Liu, Scalar glueball, scalar quarkonia, and their mixing,

Phys. Rev. D 74, 094005 (2006) [hep-ph/0607206].

[214] W. J. Lee and D. Weingarten, Scalar quarkonium masses and mixing with the lightest scalar

glueball, Phys. Rev. D 61, 014015 (2000) [hep-lat/9910008].

[215] L. C. Gui, Y. Chen, G. Li, C. Liu, Y. B. Liu, J. P. Ma, Y. B. Yang and J. B. Zhang,

Scalar glueball in radiative J/ψ decay on lattice, Phys. Rev. Lett. 110, 021601 (2013)

[arXiv:1206.0125 [hep-lat]].

[216] H. Y. Cheng, C. K. Chua and K. F. Liu, Revisiting Scalar Glueballs, arXiv:1503.06827

[hep-ph].

[217] V. Vento, Glueball-Meson Mixing, arXiv:1505.05355 [hep-ph].

[218] M. Albaladejo and J. A. Oller, Identification of a Scalar Glueball, Phys. Rev. Lett. 101,

252002 (2008) [arXiv:0801.4929 [hep-ph]].

[219] M. Ablikim et al., Partial wave analyses of J/ψ → γπ+π− and γπ0π0, Phys. Lett. B 642,

441 (2006) [hep-ex/0603048].

[220] S. Dobbs, A. Tomaradze, T. Xiao and K. K. Seth, Comprehensive Study of the Radiative

Decays of J/ψ and ψ(2S) to Pseudoscalar Meson Pairs, and Search for Glueballs, Phys.

Rev. D 91, no. 5, 052006 (2015) [arXiv:1502.01686 [hep-ex]].

[221] F. Brünner, D. Parganlija and A. Rebhan, Glueball Decay Rates in the Witten-Sakai-

Sugimoto Model, Phys. Rev. D 91, no. 10, 106002 (2015) [arXiv:1501.07906 [hep-ph]].

[222] J. M. Frère and J. Heeck, Scalar glueball: seeking help from ηη′ decays, arXiv:1506.04766

[hep-ph].

[223] K. Neuschwander, Three-body decays in effective hadronic models, Bachelor Thesis, Faculty

of Physics at the J. W. Goethe University in Frankfurt am Main (2012).

[224] A. Peters, Baryonic decays in the eLSM, Bachelor Thesis, Faculty of Physics at the J. W.

Goethe University in Frankfurt am Main (2012).

[225] M. Ablikim et al. [BES Collaboration], Observation of a Resonance X(1835) in J/ψ →
γπ+π−η′, Phys. Rev. Lett. 95, 262001 (2005) [hep-ex/0508025].

[226] N. Kochelev and D. P. Min, X(1835) as thelowest mass pseudoscalar glueball and proton

spin problem, Phys. Lett. B 633, 283 (2006) [hep-ph/0508288].

[227] M. Ablikim et al. [BESIII Collaboration], Confirmation of the X(1835) and Observation

of the Resonances X(2120) and X(2370) in J/ψ → γπ+π−η′, Phys. Rev. Lett. 106, 072002

(2011) [arXiv:1012.3510 [hep-ex]].

[228] D. V. Bugg, An Alternative interpretation of Belle data on γγ → η′π+π−, Phys. Rev. D 86,

114006 (2012) [arXiv:1209.3480 [hep-ex]].

138



[229] P. Chatzis, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Hadronic and radiative three-

body decays of J/ψ involving the scalars f0(1370), f0(1500) and f0(1710), Phys. Rev. D

84, 034027 (2011) [arXiv:1105.1676 [hep-ph]].

[230] C. E. Detar and T. Kunihiro, Linear σ Model With Parity Doubling, Phys. Rev. D 39,

2805 (1989).

[231] A. Heinz, S. Struber, F. Giacosa and D. H. Rischke, Role of the tetraquark in the chiral

phase transition, Phys. Rev. D 79, 037502 (2009) [arXiv:0805.1134 [hep-ph]].

[232] S. Gallas, F. Giacosa and G. Pagliara, Nuclear matter within a dilatation-invariant parity

doublet model: the role of the tetraquark at nonzero density, Nucl. Phys. A 872, 13 (2011)

[arXiv:1105.5003 [hep-ph]].

[233] A. Heinz, F. Giacosa and D. H. Rischke, Chiral density wave in nuclear matter, Nucl. Phys.

A 933, 34 (2015) [arXiv:1312.3244 [nucl-th]].

139


	Introduction
	Units and conventions
	Aspects of Quantum Chromodynamics (QCD)
	From hadrons and quarks to QCD
	Symmetries of the QCD Lagrangian

	Glueballs
	Motivation
	Objectives
	Approach


	A Hadronic Model: The eLSM
	Properties of the eLSM
	General remarks
	Symmetries of the eLSM

	The pure Yang-Mills sector of QCD
	The quark-gluon sector of QCD
	Mesonic fields of the eLSM
	Mesonic Lagrangian of the eLSM

	Assignment of the fields of the eLSM
	Assignment of the fields in the scalar and pseudoscalar sector
	Assignment of the fields in the vector and axial-vector sector

	Vacuum expectation values
	Spontaneous breaking of the global chiral symmetry in the eLSM
	Bilinear terms of the eLSM

	Embedding of further gluballs into the eLSM
	Lagrangian of the pseudoscalar glueball
	Excited vector and pseudovector quark-antiquark mesons
	Assignment of the fields in the excited vector and pseudovector sector
	Lagrangian of the vector glueball


	Mixing in the Scalar-Isoscalar Sector of the Nf=2 eLSM
	eLSM in the case of Nf=2
	Assignment of the fields in the Nf=2 eLSM
	Explicit symmetry breaking terms
	Lagrangian, masses, and mixing matrix of the scalar-isoscalar fields in the case Nf=2
	Parameters of the Nf=2 eLSM

	Results and Discussion
	Assigning N and G to f0(1370) and f0(1500)
	Assigning N and G to f0(1370) and f0(1710)
	Assignments with f0(500) as N

	Final remarks

	Mixing in the Scalar-Isoscalar Sector of the Nf=3 eLSM
	Lagrangian, masses, and mixing matrix of the scalar-isoscalar fields
	Determination of the mixing matrix B: Preliminary studies
	Parameters of the model
	Simplified procedure
	Decay of the pure glueball and the gluon condensate

	Determination of the mixing matrix B: The full study
	The 2 analysis
	Discussion of the 2 analysis
	Consequences of the 2 analysis


	Pseudoscalar Glueball within the eLSM
	Implications of the chiral interaction Lagrangian Lint
	Assignment of the fields and the free parameter
	Constraints on the coupling constant c
	Mixing in the pseudoscalar-isoscalar sector

	Decay of the pseudoscalar glueball 
	Decay widths of the type PPP
	Decay widths of the type PS
	Amplitudes for Pf0

	Branching ratios of the decay of 
	Branching ratios of PPP
	Branching ratios of PS
	Branching ratios of Pf0
	Interference phenomena

	Interaction of  with baryons
	Discussion

	Conclusions and Outlook
	The scalar glueball
	The pseudoscalar glueball
	Outlook

	Decay Widths of the Scalar-Isoscalar fields
	Decays of the scalar-isoscalar fields into 
	Decays of the scalar-isoscalar fields into KK
	Decays of the scalar-isoscalar fields into 
	Decays of the scalar-isoscalar fields into 4

	Details of the study of the pseudoscalar Glueball
	Explicit form of the pseudoscalar glueball Lagrangian
	Further results for the decays Pf0


