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Abstract

Almost 40 years after the �rst publication on the phase diagram of quantum
chromodynamics (QCD) big progress has been made but many questions
are still open. This work covers several aspects of low-energy QCD and
introduces advanced methods to calculate selected parts of the QCD phase
diagram.

Spontaneous chiral symmetry breaking as well as its restoration is a major
aspect of QCD. Two e�ective models, the Nambu�Jona-Lasinio (NJL) model
and the linear σ-model, are widely used to describe the QCD chiral phase
transition. We study the large-Nc behavior of the critical temperature Tc
for chiral symmetry restoration in the framework of both models. While in
the NJL model Tc is independent of Nc (and in agreement with the expected
QCD scaling), the scaling behavior in the linear σ-model reads Tc ∝ N

1/2
c .

However, this mismatch can be corrected: phenomenologically motivated
temperature-dependent parameters or the extension with the Polyakov-loop
renders the scaling in the linear σ-model compatible with the QCD scaling.

The requirement that the chiral condensate which is the order parameter
of the chiral symmetry is constant in space is too restrictive. Recent studies
on inhomogeneous chiral condensation in cold, dense quark matter suggest a
rich crystalline structure. These studies feature models with quark degrees
of freedom. In this thesis we investigate the formation of the chiral density
wave (CDW) in the framework of the so-called extended linear sigma model
(eLSM) at high densities and zero temperature. The eLSM is a modern de-
velopment of the linear σ-model which contains scalar, pseudoscalar, vector,
as well as axial-vector mesons, and in addition, a light tetraquark state. The
nucleon and its chiral partner are introduced as parity doublets in the mirror
assignment. The model describes successfully the vacuum phenomenology
and nuclear matter ground-state properties. As a result we �nd that an in-
homogeneous phase in the form of a CDW dominates the high density regime.
The formation of a homogeneous nuclear matter ground state depends on the
parameters determined in the vacuum. However, even in the case of a ho-
mogeneous nuclear matter ground state the onset of the CDW is not higher
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than 5.04ρ0, a density at which the eLSM is still applicable.
Motivated by the rich structure that inhomogeneous condensation pro-

duces, and in order to study inhomogeneous condensation in a general frame-
work we describe the �nite-mode approach. Former limitations of the �nite
mode approach to 1+1 dimensions and only one condensate are successively
overcome. Di�erent error sources are analyzed and strategies to minimize
them are outlined. First, the well-known analytic results for 1+1 dimensional
models are reproduced in this purely numerical approach. Second, the �nite-
mode approach shows to be capable to describe up to four inhomogeneous
condensates. Finally, the method is applied to the 3 + 1 dimensional NJL
model. The famous inhomogeneous �island� as well as the inhomogeneous
�continent� are reproduced. The continent persists for di�erent constituent
quark masses and di�erent numbers of regulators. However, in contrast to
previous �ndings the continent becomes thinner for increasing chemical po-
tential.
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Chapter 1

Introduction

1.1 The QCD Lagrangian and the QCD phase

diagram

Among the four forces in nature, the strong interaction is responsible for
most of the visible mass in the Universe. The proton and neutron, which are
the basis for almost all matter surrounding us, have a mass of ∼ 1 GeV that
arises almost entirely from nonperturbative QCD e�ects.

The QCD Lagrangian is locally SU(Nc) gauge invariant, and for Nf

quarks and N2
c − 1 gluons it reads:

LQCD =

Nf∑
i=1

q̄a,i
(
ı /D −mi

)
qa,i −

1

4
Ga
µνG

a,µν , (1.1)

with the �avor index i, the covariant derivative /D and the �eld strength
tensor Ga

µν :

/D =γµ
(
∂µ − ıgQCDA

a
µt
a
)
,

Ga
µν =∂µA

a
ν − ∂νA

a
µ + gQCDf

abcAbµA
c
ν , a, b, c = 1, . . . , N2

c − 1 . (1.2)

The gluon �elds are denoted as Aaµ and the quark �elds as qa,i. The �elds are
coupled via the QCD coupling constant gQCD. For the physical case Nc = 3
the matrices ta are ta = λa/2, with λa being the Gell-Mann matrices. A
remarkable feature is the self coupling of gluon degrees of freedom, which
follows from the non-Abelian group structure. The constants fabc are the
structure constants of the group SU(3). The charge of SU(Nc) is referred to
as color. The gluons carry adjoint, the quarks fundamental color charge.

The fundamental degrees of freedom of QCD are quarks and gluons. How-
ever, in the vacuum they are con�ned and the relevant degrees of freedom
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are hadrons. Indeed, it is believed that at high temperature and/or den-
sity a phase transition to a decon�ned gas of quarks and gluons is realized:
the quark-gluon plasma. First pioneering works suggested this rather simple
picture of the QCD phase diagram at nonzero temperature T and density µ
[1]. In Fig. 1.1 such a phase diagram is displayed, where only two phases are
present: the con�ned (I) and the decon�ned (II) phase.

Almost 40 years later the understanding of the phase diagram has im-
proved a lot, but many questions are still unsettled. Certainly the develop-
ments of lattice QCD gave an important contribution at zero density and
nonzero temperature [2, 3], but at nonzero density one has still to rely on
e�ective models [4]. In Fig. 1.2 we show a modern version of the QCD phase

Figure 1.1: Phase diagram of QCD after Parisi and Cabibbo in 1975. For
small temperature and density matter is con�ned (I), for high temperature
and density decon�ned (II) [1].

diagram. There are many di�erent phases (especially along the µ axis) which
are currently under investigation [5]. The main point here is not the descrip-
tion of the phases which have been proposed (for a detailed review see Ref.
[6]), but to show the impressive theoretical development since 1975. The
QCD phase diagram is still a very active topic of research.

Besides the invariance under SU(Nc) symmetry transformations, the QCD
Lagrangian contains several approximate symmetries. In the low-energy
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Figure 1.2: Modern view of the phase diagram of QCD from Ref. [5]. The
high-chemical potential regime is covered with a rich structure of di�erent
phases.

regime of QCD, the most important one is the chiral symmetry. The spon-
taneous breaking of chiral symmetry in the vacuum is responsible for non-
degenerate masses of so-called chiral partners [7, 8, 9] (hadrons with the same
quantum numbers except for parity and G-parity). The order parameter of
chiral symmetry breaking is the chiral condensate, denoted as ⟨q̄q⟩ ∼ ⟨σ⟩.

Due to the complicated structure of the QCD Lagrangian di�erent limits
of QCD are studied. Two important limits are the so-called chiral limit and
the pure gauge theory:

• Chiral limit and chiral symmetry: The chiral limit of QCD is ob-
tained for mq → 0 (bare masses). In this limit, chiral symmetry is an
exact symmetry of QCD. The QCD Lagrangian is then invariant un-
der global chiral SU(Nf )L × SU(Nf )R transformations. An emerging
quark condensate serves as an exact order parameter for chiral symme-
try breaking. The mass spectrum of the light mesons and baryons shows
that the assumption of the chiral limit is justi�ed [10]: the masses of
hadrons are much larger than the light bare quark masses. Their con-
tribution give only small corrections to the hadron masses. Turning
back to nonzero temperature and densities it is expected that at high
enough temperature the so-called chiral phase transition takes place:
a transition from the phase with spontaneously broken symmetry in
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the vacuum to a restored phase at nonzero temperature and/ or den-
sity [11]. For zero density this behavior could be settled with lattice
simulations [2, 3]. There, in the chiral limit the phase transition is of
second order for Nf = 2 and of �rst order for Nf > 2. For nonzero
quark masses it turns out to be a crossover phase transition, although
the chiral condensate is not an exact order parameter anymore.

• Pure gauge theory: A stunning feature of QCD is con�nement. Even
if quarks and gluons carry color charge, no colored degree of freedom has
been measured: only composite, color-neutral objects are observed. An
approximate order parameter for con�nement is the Polyakov loop [12].
It is an exact order parameter in the limit of in�nitely heavy quarks
(mq → ∞ and therefore opposite to the chiral limit). After sending all
bare quark masses to in�nity, they do not contribute anymore to the
dynamics. In pure gauge theory only the gluon degrees of freedom are
active. It follows that the Polyakov loop is an exact order parameter
of the decon�nement transition [13]:

l(x) = N−1
c Tr

[
P exp

(
ıgQCD

∫ 1/T

0

A0(τ, x)dτ

)]
, (1.3)

where the trace runs over all color degrees of freedom, P stands for
path ordering, and A0(τ, x) is the zeroth component of the gluon �eld
Aµ. The expectation value of the Polyakov loop vanishes for con�ned
matter at low temperature and density. However, it is expected that
at su�ciently high temperature and/or density a phase transition to
a decon�ned gas of interacting quarks and gluons takes place [1, 4].
The Polyakov loop reproduces this decon�nement phase transition and
the absolute value approaches unity in the decon�ned phase at asymp-
totically high temperatures. The pure gauge theory is an important
limit of QCD which can also be motivated using large-Nc arguments,
explained in detail afterwards. The order of the decon�nement phase
transition in pure gauge theory is of �rst order and can change to a
crossover transition with nonzero quark masses [14].

In the previous paragraphs two di�erent phase transitions where de-
scribed, the chiral transition and the decon�nement transition. Both follow
from limits of the QCD Lagrangian. The chiral limit requires massless quarks
which is nearly given in the vacuum where low-energy hadrons are the rele-
vant degrees of freedom. On the other hand, pure gauge theory is justi�ed
by considering only heavy quarks or by studying the large-Nc limit.
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However, in QCD none of these limits is realized. Neither the chiral
condensate nor the Polyakov loop are exact order parameters of the chiral
and the decon�nement transition of QCD. Since none of these order pa-
rameters are exact order parameters in real nature the precise connection
between the decon�nement and the chiral phase transition is in general not
yet clear. Indeed, in the last decade lattice calculations were able to show
that at zero density and nonzero temperature both, the chiral condensate
and the Polyakov loop, are inter. These calculations which follow from �rst
principles of QCD showed that both transitions take place simultaneously
[2, 3, 15]. This behavior has been con�rmed in e�ective models [16, 17]. The
transition is realized as a crossover transition: close to a critical temperature
Tc, both vacuum expectation values slowly change from a large to a small
value and vice versa. However, at nonzero density lattice simulations su�er
from technical problems, e.g. lattice methods cannot handle the complex
fermion determinant at nonzero densities (sign problem) [18], di�erent lat-
tice realizations do not agree on basic features of the QCD phase diagram,
like the critical point [19].

The QCD Lagrangian does not allow for straightforward calculations at
all energy scales. Di�erent aspects of QCD require di�erent e�ective models.
Besides the already mentioned lattice simulations which work for zero density,
e�ective models based on di�erent QCD degrees of freedom are used.

• The NJL model [20, 21, 22, 23, 24, 25] which originally dates back to
a pre-QCD era, considers in its basic version only quarks. The quarks
propagate freely at any temperature and the basic feature of con�ne-
ment is missed. Therefore, a proper description of the decon�nement
phase transition is not possible.

• The linear σ-model [8, 26, 27, 28, 29, 30], considers only hadronic de-
grees of freedom and thus is con�ned for all temperatures. On this
account it fails to describe the decon�nement phase transition as well.

Both models are used to describe the chiral phase transition at nonzero tem-
perature. However, for reasons outlined above both miss to describe the
decon�nement phase transition. Nevertheless, the chiral phase transition
in both models agrees with lattice studies. Along the density axis, where
lattice-QCD calculations are not yet available, these models, in agreement
with other phenomenological models [31, 32, 33, 34, 35], indicate that chi-
ral symmetry restoration occurs through a �rst-order phase transition. The
challenge is now to identify quantities that allow to judge the reliability of
the two models.
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Other important e�ective models have been developed in 1+1 dimensions.
The Gross-Neveu (GN) model [36, 37, 38, 39] is a quark-based model that
only considers one �avor (as a consequence chiral symmetry is realized in
a discrete way). However, in the large-Nc limit it shares QCD-like features
such as asymptotic freedom and dynamical chiral symmetry breaking. An
extension of the GN model is the chiral Gross-Neveu (χGN) model [40, 41]
which has a continuous chiral symmetry. Including a second �avor we turn to
the NJL2 model [42]. All these 1 + 1 dimensional models play an important
role in analyzing the QCD phase diagram. In fact, it can be shown that for
moderate densities and low temperatures QCD e�ectively reduces from 3+1
to 1 + 1 dimensions [43, 44, 45].

1.2 The large-Nc limit and chiral symmetry re-

storation

The large Nc-limit is a well-de�ned approximation scheme of QCD [46, 47,
48]. It was developed because of the lack of reliable approximations of the
low-energy regime of QCD. To study large-Nc scaling of QCD properties
allows to judge the applicability of e�ective models. After identifying the
large-Nc scaling of the QCD Lagrangian, it is straightforward to also imple-
ment a large-Nc scaling in e�ective models as well.

The large-Nc limit of QCD implies that we enlarge the color symmetry
group from SU(3) to SU(Nc). With the requirement that enlarging the
number of colors does not lead to a trivial theory, the large-Nc limit simpli�es
QCD. Still, mesons and baryons are present forNc ≫ 3 but QCD in the large-
Nc limit is �although not solvable� substantially simpler [49]. Properties of
QCD can now be expressed as a series in N−n

c . This allows to separate QCD
contributions which are large-Nc dominant from those which are large-Nc

suppressed. For instance one can show that the large-Nc limit allows to
understand the phenomenologically well-established Zweig rule [50].

The actual implementation of the large-Nc limit to the QCD Lagrangian
can be motivated by looking at di�erent aspects of QCD [47]. The starting
point of the large-Nc analysis is the requirement that it has to be consistent
with QCD and as a consequence the QCD coupling gQCD scales with Nc as:

Nc → ∞ , g2QCD Nc → �nite . (1.4)

As a result the masses of quark-antiquark constituents scale with N0
c and

the masses of baryons with Nc. The large-Nc scaling also a�ects the inter-
action vertices. Multiple meson interactions are suppressed in the large-Nc
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limit: a k-leg meson interaction vertex scales as N−(k−2)/2
c . Taking the limit

Nc → ∞ the interaction among mesons goes to zero: decays and scattering
processes are suppressed. At nonzero temperature and in the large-Nc limit
mesons form a gas of free noninteracting stable particles (this is true for any
temperature in the con�ned phase).

The scaling behavior can be easily included in the aforementioned e�ective
models. For the NJL model, where the gluon interaction is replaced by
an e�ective four-quark interaction the coupling constant scales with 1/Nc.
Also for the linear-σ model which only contains mesons the implementation
is straightforward: the four-meson vertices adopt a scaling proportional to
1/Nc. These simple modi�cations allow both models to follow the large-Nc

scaling of QCD. It is then possible to test the applicability of both models
for speci�c features of QCD.

The decon�nement phase transition and the chiral phase transition are
important features of QCD at nonzero temperature. It is expected that the
critical temperatures for both of them are independent of the number of
colors, see Refs. [43, 51, 52, 53] and refs. therein. The relevant scale for the
transition temperature should be the only existing QCD scale, ΛQCD ∝ N0

c .
The two e�ective models introduced above di�er in the mechanism how chiral
symmetry restoration is realized. Our investigation shows that the scaling
of the critical temperature disagrees for the two models. In the NJL model
which is based on quark interactions the chiral phase transition does not
vanish in the large-Nc limit, and it is thus in agreement with the QCD scaling.
However, in the linear σ-model where meson-interactions are responsible for
the chiral symmetry restoration the critical temperature scales as

√
Nc and

as a consequence the transition does not take place for Nc → ∞. Since
the argument is based on general aspects of the two considered models, the
result is also true for more complicated and realistic generalizations of the
models, e.g. adding �avors and vector degrees of freedom to the models will
not in�uence their scaling properties.

The problematic feature of σ-models at nonzero temperature in the large-
Nc limit can be overcome. Namely, it is possible to modify the model in
order to reproduce a consistent behavior. In a purely phenomenologically
based modi�cation, an explicit temperature dependence of at least one of
the coupling constants is added. This extension ensures the correct scaling
of the critical temperature. The correct scaling can also be achieved by
introducing the Polyakov loop degree of freedom to the linear-σ model. The
decon�nement phase transition modelled by the Polyakov-loop then triggers
the chiral phase transition for the mesons and therefore ensures the correct
scaling of the critical temperature. As a result chiral hadronic models are
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consistent with the large-Nc limit, although the e�ect of the underlying color
degrees of freedom has to be taken into account in an e�ective way.

1.3 Inhomogeneous phases at nonzero density

The physics of spontaneous symmetry breaking in QCD is enriched by the
possibility of inhomogeneous condensation. In studies of e�ective theories
of QCD at nonzero temperature and density the chiral condensate which
is the order parameter of the spontaneous symmetry breaking is taken as
a constant over space. However, there is the possibility that the e�ective
potential is minimized by an order parameter which varies as a function of
spatial coordinates.

Already in the pioneering works of Refs. [54, 55, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65] the so-called chiral density wave (CDW) where not only the chiral
condensate ⟨σ⟩ ̸= 0 but also the expectation value of the neutral pion �eld is a
function of spatial coordinates (⟨π3⟩ ≠ 0), was used to minimize the e�ective
potential. It has been suggested that such e�ects could be relevant for QCD.
However, the aforementioned approaches needed to include nucleon-nucleon
tensor forces. Without these additional forces the nuclear matter ground
state was, in contradiction to experimental �ndings, no longer homogeneous.

In the last years new developments emphasized the relevance of inhomo-
geneous condensation. It was possible to �nd an analytic expression for the
inhomogeneous phases of the 1+ 1 dimensional GN model and extensions of
it [38, 39, 66, 67, 68]. A detailed study of the phase diagram revealed that a
spatially varying order parameter indeed minimizes the e�ective potential at
high density. Furthermore, it was argued that in the large-Nc limit of QCD
at high density an inhomogeneous phase, in the form of a chiral density wave,
is realized. The state of matter realized in this regime was named �quarky-
onic matter� [45, 69]. Inhomogeneous phases were also investigated in Refs.
[70, 71, 72, 73, 74, 75, 76, 77, 78] in the framework of the NJL model as well
as in the quark-meson model and the skyrmion model.

The question on the relevance of inhomogeneous condensation in nuclear
matter is not yet fully settled. In this thesis we re-investigate the question
whether inhomogeneous condensation at nonzero density occurs in a model
based only on hadronic degrees of freedom.

• The hadronic model that we use to calculate inhomogeneous conden-
sation in nuclear matter is based on symmetries of QCD and includes
scalar, pseudoscalar, vector, and axial-vector mesons, as well as nucle-
ons and their chiral partners. The underlying symmetries are chiral
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symmetry and dilatation invariance. The resulting model, developed
in Refs. [29, 79, 80] and denoted as the eLSM, successfully describes
the hadron vacuum phenomenology, both in the meson [30, 81] and
baryon [82] sectors. The nucleon and its chiral partner are treated in
the mirror assignment [83, 84, 85], in which a chirally invariant mass
term exists (see also Refs. [82, 86, 87, 88, 89, 90, 91] and refs. therein).

In the eLSM the σ �eld is not assigned to the lightest scalar reso-
nance f0(500) (as proposed in older versions of the σ-model), but to
the heavier state f0(1370). This is in agreement with a variety of stud-
ies of low-energy QCD, e.g. Refs. [92, 93, 94, 95, 96, 97, 98] and refs.
therein. The description of the f0(500) state is not conclusive up to
now. In the literature it is interpreted as a resonance in the pion-pion
scattering continuum [99, 100, 101, 102, 103, 104, 105, 106] or as a
tetraquark state [105, 106, 107, 108, 109, 110, 111, 112, 113]. It fol-
lows that both resonances f0(500) and f0(1370) are relevant for studies
at nonzero density [80]. In the framework of the eLSM, the resonance
f0(500) was coupled in a chirally invariant manner to nucleons and their
chiral partners. In this way it was possible to successfully describe
nuclear matter ground-state properties (i.e., density, binding energy,
and compressibility). In the mean-�eld approximation, and assuming
homogeneous condensates, Ref. [91] reports the onset of a �rst-order
phase transition at a density of about 2.5ρ0. Moreover, in the nonzero
temperature study of Ref. [114] it could be shown that in a simpli�ed
version of the eLSM both aforementioned scalar resonances a�ect the
chiral phase transition. Furthermore, it was shown that in the Bonn
nucleon-nucleon potential [115] it is necessary to include both scalar-
isoscalar states f0(500) and f0(1370).

The main focus of this thesis is the question whether inhomogeneous
condensation takes place within the eLSM. Following former works in
hadronic models, we �rst restrict ourselves to a CDW-type modulation
for the spatial dependence of the condensate:

⟨σ⟩ ∼ cos(2fx) , and ⟨π3⟩ ∼ sin(2fx) , (1.5)

where x is the spatial direction and f the wave vector. Guided by the
study of nuclear matter ground-state properties in Ref. [91], we investi-
gated the formation of a CDW for di�erent choices for the chiral partner
of the nucleon. It follows that, without any additional free parameters
left, nuclear matter in the ground state is still a (homogeneous) liquid.
For the cases discussed in the literature [82] chiral condensation re-
mains homogeneous up to a baryon chemical potential of 975 MeV for
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a mass of the chiral partner of the nucleon of 1500 MeV and a chemical
potential of 1184 MeV for a mass of 1650 MeV. These correspond to
densities of 2.5ρ0 and 5.1ρ0, followed by an inhomogeneous phase with
a chiral density wavelength π/f of approximately 1.5 fm or 1.6 fm.

• Analytic expressions for inhomogeneous modulations are only known
for rare cases, e.g. CDW-like modulations [60] or soliton-like structures
[38]. Both can be described by the generalized Jacobi elliptic functions
[39]. Even with this knowledge it is challenging to calculate the phase
structure in higher dimensions [73]. A solid method to calculate general
higher-dimensional modulations does not exist at present. Exploratory
studies relied on selected higher-dimensional structures [76, 116]. A
major aspect of this thesis is the development of a robust method to
calculate inhomogeneous modulations without dimensional limitations.
To this end a method motivated by lattice QCD is used [66]. As a result
it follows that the �nite-mode approach introduced here is capable to
reproduce CDW and soliton-like modulations. The explicit form of the
modulation serves not as an input, but rather follows from the mini-
mization of an arbitrary Ansatz for the modulation. The applicability
reaches from 1 + 1 to 3 + 1 dimensional models as well as for several
inhomogeneous �elds. An extension to higher-dimensional modulations
is also possible.

In the framework of the �nite-mode approach it was not only possible
to reproduce well-known results, but also exploratory studies could be
performed. The phase structure of the GN model and the χGN model
in 1+1 dimensions could be reproduced. A detailed study of the NJL2

revealed that the phase diagram coincides with the GN model, but
there are many equivalent ground states. In the 3 + 1 dimensional
NJL model the recent �ndings on one-dimensional modulations could
be con�rmed [73]. In addition a new estimate of the size of the so-called
inhomogeneous continent is done [117, 118]. A surprising occurrence
is the �nite size of the continent and a shape similar to the GN phase
diagram at high chemical potential µ. The physical relevance of the in-
homogeneous continent is still not understood. A study on the number
of regulators is inconclusive since some parts of the continent change
and some do not change with the number of regulators. This is in con-
trast to the homogeneous regime and the inhomogeneous island which
remain unchanged.

The thesis is organized in the following way:
In chapter 2 the large-Nc scaling of the critical temperature is discussed.
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To this end we introduce the NJL model in section 2.1 and its nonzero tem-
perature behavior in section 2.2. In section 2.3 the linear σ-model at nonzero
temperature is presented and the scaling mismatch compared to the NJL
model is outlined. The concluding section 2.4 of this chapter introduces two
extensions of the linear σ-model that lead to a correct scaling behavior.

The third chapter introduces the CDW in the eLSM. Section 3.1 shows
how mesons are integrated into the eLSM and section 3.2 treats the baryons.
Section 3.3 is preparatory for the nonzero-density study of the CDW in the
eLSM and discusses the implications of the CDW to mesons and baryons.
In section 3.4 a simpli�ed eLSM is studied at nonzero density. Finally in
section 3.5 the full eLSM including also a tetraquark state is tested for CDW
formation at high density.

Chapter 4 concerns the development of the �nite-mode approach. After
some introductory remarks in section 4.1, the chapter is segmented into the
study of 1 + 1 dimensional models in section 4.2 and 3 + 1 dimensional ones
in section 4.3. First, in section 4.2.1 the GN model and several extensions
are outlined. The next section 4.2.2 describes how the model is reformulated
to �t into a box. In section 4.2.3 methods to �x the additional box param-
eters are outlined. The implementation of arbitrary inhomogeneous phases
is presented in section 4.2.4. At last in section 4.2.5 the phase diagrams for
the di�erent 1 + 1 dimensional models are presented. The structure of the
section about 3 + 1 dimensional models follows the structure of the section
for 1 + 1 dimensional ones. In section 4.3.1 the NJL model is reformulated
in order to be calculated in a box. Section 4.3.2 concerns the optimization
of the box parameters. The treatment of one-dimensional modulations in
3+1 dimensions is addressed in section 4.3.3. The phase diagram of the NJL
model is presented in section 4.3.4.

Finally, conclusion, summary, and outlook are presented in chapter 5.

11





Chapter 2

Scaling in the large-Nc limit

This chapter is based on Refs. [119, 120].

2.1 NJL model

The NJL model is an e�ective theory of QCD in the low-energy regime
[20, 22, 23, 24]. It was proposed in a pre-QCD era in terms of nucleon
�elds (quarks and gluons were unknown) in order to describe the interac-
tion between nucleons. Later on it was rewritten in terms of quarks, whose
interactions via gluons are e�ectively treated by a Fermi-like four-point inter-
action. This interaction shares some symmetries with QCD. For low energies
and small bare quark masses, chiral symmetry is one of the most important
symmetries of QCD. The NJL model considers dynamical chiral symmetry
breaking and the ensuring generation of the constituent quark masses. Thus,
it is suitable to describe light mesons and baryons. Nevertheless, there are
some restrictions. Basic features of QCD, like con�nement, are not realized.
In the NJL model at low temperatures quarks propagate freely and do not
necessarily manifest themselves in bound states. It is possible to mimic the
con�ning potential of the gluons and map their thermodynamical behavior
[16] but still there will be free quark states. Moreover, in contrast to QCD,
the NJL model is not renormalizable and therefore a regularization scheme
has to be applied. Besides the employed scheme, the energy scale (associated
to a cuto� Λ) is an important input of the model since the resulting physics
depends on this choice (it can be argued that the regularization is a crude
approximation of a crucial feature of QCD: asymptotic freedom [24]).

Notice, however, that many important relations that hold for QCD also
hold for the NJL model, e.g the Gell-Mann-Oakes-Renner relation [121] and
the Goldberger-Treiman relation [122]. Despite all these restrictions the NJL
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model is used to compute an approximate QCD phase diagram. The accuracy
of this description can be assessed with large-Nc arguments. An important
quantity is the temperature Tc for the chiral phase transition.

In order to study the large-Nc behavior of the chiral phase transition in the
medium, we can restrict ourselves to two �avors, Nf = 2. Chiral symmetry is
not an exact symmetry of QCD. However, since the current masses of u and
d quarks are small compared to the resulting constituent quark masses, it is
justi�ed to treat them as massless �elds (chiral limit). Since at this point
no �avor-speci�c calculations are performed and both �avors are treated in
the same way, the �avor index is suppressed and additional prefactors are
absorbed in the coupling constant. The basic symmetry of the NJL model is
SUV (2)⊗ SUA(2)⊗ UV (1) and is described by the Lagrangian:

L =
Nc∑
i=1

ψ̄i
(
ı/∂ −mq

)
ψi +

3G

Nc

( Nc∑
i=1

ψ̄iψi

)2

+

(
Nc∑
i=1

ψ̄iıγ5τ⃗ψi

)2
 , (2.1)

where ψi is the quark spinor, mq is the bare quark mass and τ⃗ are the Pauli
matrices. The index i = 1, . . . , Nc labels the fundamental color of the state.
G is the coupling constant with dimension [G] = energy−2 the Nc-scaling is
made explicit by the factor 3/Nc in front of G.

2.2 NJL model as a mean-�eld theory

The Lagrangian allows to pair left-handed and right-handed quarks in the
vacuum to yield the chiral condensate:

Nc∑
i=1

⟨
ψ̄iψi

⟩
= ϕ . (2.2)

This leads to the mean-�eld part of the Lagrangian:

Lmf =
Nc∑
i=1

ψ̄i
(
ı/∂ −mq

)
ψi + 2

3G

Nc

Nc∑
j=1

⟨
ψ̄jψj

⟩ Nc∑
i=1

ψ̄iψi −
3G

Nc

(
Nc∑
i=1

⟨
ψ̄iψi

⟩)2

=
Nc∑
i=1

ψ̄i

(
ı/∂ −mq + 2

3G

Nc

ϕ

)
ψi −

3G

Nc

ϕ2

=
Nc∑
i=1

ψ̄i
(
ı/∂ −m∗)ψi − λ

2
m2

0 , (2.3)
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with:

λ =
Nc

6G
, and m∗ = mq +m0 , (2.4)

which are the coupling λ and the constituent quark mass m∗. In the chiral
limit the constituent quark mass m∗ = m0 is de�ned to be directly propor-
tional to the chiral condensate:

m0 = −2
3G

Nc

Nc∑
i=1

⟨
ψ̄iψi

⟩
= −2

3G

Nc

ϕ . (2.5)

It is now possible to integrate out the quark degrees of freedom. The
resulting partition function Z is:

Z = N

∫ Nc∏
i=1

(
Dψ†

iDψi

)
exp

[
−
∫ β

0

dτ

∫
d3x Lmf

]
= N ′ detQ exp

[
−
∫ β

0

dτ

∫
d3x

λ

2
m2

0

]
, (2.6)

with β = 1/T , the operator Q = γ0(/p+ γ0µ−m∗) and m∗ = mq +m0.
The thermodynamic grand canonical potential Ω in the mean-�eld theory

follows as:

Ω = − 1

β
lnZ =

1

β
Nc ln detQ− 1

β

∫ β

0

dτ

∫
d3x

λ

2
m2

0 , (2.7)

which is equivalent to the grand canonical potential in the large-Nc limit.
Using standard expressions [123, 124, 125] we evaluate ln detQ:

Ω =Nc2V

∫
d3p

(2π)2

[
ω +

1

β
ln
(
1 + e−β(ω−µ)

)
+

1

β
ln
(
1 + e−β(ω+µ)

)]
− V

λ

2
m2

0 , (2.8)

where ω =
√
p2 +m∗2 is the energy and the spatial integral results in the

volume V . At this point it is clear why in the large Nc-limit all further
contributions from higher loop orders are neglected: they are suppressed due
to factors of 1/Nc. Also one should keep in mind that in eq. (2.8), since
λ ∝ Nc, the second part is proportional to Nc. This allows to reduce the
role of Nc to be an overall factor of Ω and therefore it does not a�ect the
thermodynamical behavior.
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As already mentioned in the introduction, for zero temperature a quark
condensate forms and the quarks obtain an additional mass contribution
dependent on the value of the condensate. Similarly to QCD, it is expected
that in the chiral limit, the condensate vanishes exactly for su�cient high
temperature and chiral symmetry is restored. It has been shown that for
QCD [52, 53] this transition is independent of the number of colors. In
conclusion, the NJL model is a suitable approach to describe e�ectively the
chiral phase transition of QCD.

Because of the divergent integral
∫
d3p ω in eq. (2.8) the NJL model

has to be regularized. The NJL model is not renormalizable and therefore
the choice of the regularization scheme has an in�uence on the extracted
thermodynamical quantities. Two di�erent regularization methods will be
introduced. One consists of a 3d cuto� in momentum space (which breaks
Lorentz invariance) and the other is the so-called Pauli-Villars scheme (which
preserves Lorentz invariance). In both cases a new parameter Λ is introduced,
which has to be adjusted to physical quantities. The results presented in this
chapter are general and do not depend on the choice of the regularization
scheme. The two schemes lead only to slightly di�erent critical temperatures,
but they do not a�ect the large-Nc scaling. However, the choice of the proper
regularization scheme is important for the considerations in chapter IV.

We now describe in more detail the regularization schemes:

• For the 3d momentum cuto� the upper integration limit is simply re-
placed according to:∫ ∞

0

dp p2

2π2
ω →

∫ Λ3d

0

dp p2

2π2
ω , (2.9)

then the integration is straightforward and leads to the expression:

1

16π2

[
Λ3d

√
Λ2

3d +m∗2
(
2Λ2

3d +m∗2)−m∗4Arsinh

(
Λ3d

m∗

)]
. (2.10)

The 3d momentum cuto� forces all allowed momenta to be smaller
than a cuto� Λ3d. For this kind of regularization Lorentz invariance
is broken. In a thermodynamical context a preferred reference frame
already exists: this is the reference frame of the medium.

• The Pauli-Villars regularization is more involved [22, 126]. An arbi-
trary number N > 1 of regulating masses Ma and coe�cients Ca are
introduced. These parameters are chosen in a way that the following
di�erence is �nite:

N∑
a=0

Ca

∫ ∞

0

dk k2
(√

k2 +Ma(m∗)2 −
√
k2 +Ma(0)2

)
, (2.11)

16



with:

Ma(m
∗)2 = m∗2 + αaΛ

2
PV . (2.12)

In order for the di�erence to be �nite one must impose the conditions:

N∑
a=0

Ca = 0 , and
N∑
a=0

CaM
2
a = 0 . (2.13)

With the choice α0 = 0 and C0 = 1 and for N = 2 this leads to:

C1 + C2 = −1 ,

α1C1 + α2C2 = 0 . (2.14)

A solution to these equations is α1 = 2 and α2 = 1 with C1 = 1 and
C2 = −2. The Pauli-Villars scheme preserves Lorentz invariance. Also
the suppression increases with momentum but is smooth, since it allows
for contributions larger than the cuto� ΛPV .

Both regularization schemes result in an NJL model which has two pa-
rameters in the chiral limit: the coupling constant G and the cuto� Λ. These
parameters have to adjusted to �t two physical quantities e.g. the pion de-
cay constant and the constituent quark mass (alternatively it is possible to
use the critical temperature Tc and the quark condensate). In any case, one
sees that the extracted physical quantities can depend on the choice of the
regularization scheme and its parameters.

The behavior at nonzero temperature and density is obtained by mini-
mizing the pressure with respect to the chiral condensate or the constituent
quark mass:

0 =
∂P

∂m∗ , with P = T
∂

∂V
Ω . (2.15)

Using eq. (2.8) and the 3d momentum cuto� the constituent quark mass m∗

as a function of T [22] reads in the mean-�eld approximation:

1 =
mq

m∗ + 6G

∫ Λ3d

0

dk k2

π2

2 tanh
(√

k2+m∗2

2T

)
√
k2 +m∗2

, (2.16)

where the cuto� Λ3d regularizes the loop integral. In the chiral limit mq → 0
the critical temperature for chiral symmetry restoration Tc is obtained as the
temperature at which the e�ective mass m∗ (and therefore also the chiral
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condensate
⟨
ψ̄iψi

⟩
) vanishes. To leading order in Nc and in the chiral limit

(mq = 0 and m0 = m∗) the expression for Tc reads:

Tc(Nc) ≃ Λ3d

√
3

π2

√
1− π2

6Λ2
3dG

∝ N0
c . (2.17)

The phase transition is of second order and is independent of Nc.
For mq > 0, the order of the phase transition changes to a crossover tran-

sition. In this case we de�ne the point at which the �rst derivative |dm∗/dT |
is maximized as the (pseudo-)critical temperature. However, the transition
temperature is also Nc-independent. Including the s-quark and (axial-)vector
degrees of freedom does not change the result, since Tc is determined by gen-
eral scaling arguments. Moreover, adding the 't Hooft term which describes
the UA(1) anomaly also does not modify the result, because at Tc the con-
tributions from the 't Hooft term are suppressed in the large-Nc limit. We
thus conclude that the critical temperature for chiral symmetry restoration
(second order or crossover) is independent of the number of colors in all ver-
sions of the NJL model. The scaling is, as expected, the same as for the
decon�nement phase transition as it is obtained from QCD.

2.3 Linear σ-model

The linear σ-model is a purely hadronic model constructed from the require-
ment of chiral symmetry and its spontaneous breaking [26, 29, 105], in which
the pions emerge as Goldstone bosons in the chiral limit. Namely, the chiral
symmetry is spontaneously broken in the vacuum and a non-vanishing chiral
condensate emerges. This phenomenon leads to a mass splitting between the
chiral partners. At su�cient high temperature chiral symmetry is restored
and the chiral partners become degenerate in mass.

In order to study the large-Nc behavior of the chiral phase transition we
consider, as in the NJL model, the two-�avor case Nf = 2. We restrict
ourselves to the most simple version of the model, which includes only the
chiral partners σ and π⃗. However, our conclusions are general for all hadronic
σ-models.

The large-Nc scaling is obtained by using general large-Nc arguments: for
large Nc the meson masses are independent of Nc, while the coupling of the
meson interactions depends on Nc. Decays scale as 1/

√
Nc and four-point

meson interactions scale as 1/Nc. It is convenient to implement this scaling
behavior via a rescaling of the four-point coupling λ→ 3

Nc
λ. The Lagrangian
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for the standard SU(2) linear σ-model reads [26]:

Lσ(Nc) =
1

2
(∂µΦ)

2 +
1

2
µ2Φ2 − λ

4

3

Nc

Φ4 , (2.18)

where Φt = (σ, π⃗) describes the scalar �eld σ and the pseudoscalar pion
isospin triplet π⃗. For µ2 > 0 chiral symmetry is broken and a nonzero chiral
condensate emerges as:

φ0 = φ(T = 0) = µ

√
Nc

3λ
. (2.19)

The large-Nc scaling of the chiral condensate compensates the scaling in the
four-point coupling and thus results inNc-independent masses. The tree-level
masses for the sigma and pions �elds are:

m2
σ = 3

3λ

Nc

φ2
0 − µ2 = 3λf 2

π − µ2 ,

m2
π = 0 . (2.20)

It follows that the chiral condensate φ in the vacuum can be rewritten as:

φ0 =

√
Nc

3
fπ . (2.21)

In order to study the behavior of the linear σ-model at nonzero tem-
perature we apply the Cornwall-Jackiw-Tomboulis (CJT) formalism [127] in
the so-called double-bubble approximation. Similar studies are common in
literature and can be found in refs. [128, 129, 130] and Refs. therein. The
thermodynamical behavior is found by minimizing the pressure with respect
to the physical masses Mπ, Mσ, and the chiral condensate φ:

0 =
∂P

∂φ
,

0 =
∂P

∂Mσ

,

0 =
∂P

∂Mπ

. (2.22)

The gap equations read:

0 = φ(T )

(
3λ

Nc

φ(T )2 − µ2

)
+ 3

3λ

Nc

φ(T )

(∫
Gσ +

∫
Gπ

)
,

Mσ(T )
2 = 3

3λ

Nc

φ(T )2 − µ2 + 3
3λ

Nc

(∫
Gσ +

∫
Gπ

)
,

Mπ(T )
2 =

3λ

Nc

φ(T )2 − µ2 +
3λ

Nc

(∫
Gσ + 5

∫
Gπ

)
. (2.23)
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Neglecting the vacuum �uctuations, the tadpole integrals over the full meson
propagators Gσ and Gπ are:

∫
Gi =

∫ ∞

0

dk k2

2π2
√
k2 +M2

i

[
exp

(√
k2 +M2

i

T

)
− 1

]−1

, (2.24)

where Mi is the physical mass of either the σ meson or the pion π.
In the chiral limit and at the critical temperature only one of these equa-

tions is relevant since the chiral condensate and the masses vanish:

Mπ(Tc) = 0 ,

Mσ(Tc) = 0 ,

φ(Tc) = 0 . (2.25)

Dropping the trivial solution, the gap equation for the chiral condensate at
the critical temperature reduces to:

0 = −µ2 + 18
λ

Nc

∫
G , (2.26)

with a tadpole contribution that can be calculated analytically:∫
G =

∫ ∞

0

dk k

2π2

[
exp

(
k

Tc

)
− 1

]−1

=
T 2
c

12
. (2.27)

The critical temperature as a function of Nc is then obtained as:

Tc(Nc) =
√
2fπ

√
Nc

3
∝ N1/2

c . (2.28)

For Nc = 3 the known result Tc =
√
2fπ from Ref. [129] is obtained. The

critical temperature is Nc-dependent and increases for increasing Nc. As a
consequence, for Nc → ∞ the chiral phase transition will not take place at
all. This is the case for all purely hadronic models. Namely, hadronic models
in the large-Nc limit consist of a gas of non-interacting mesons: meson loops
which are responsible for the restoration of chiral symmetry are suppressed.
In the large-Nc limit the chiral restoration inevitably disappears.

In conclusion, purely hadronic models are not in agreement with the large-
Nc limit of QCD at high temperature. This result changes if Nc-dependent
degrees of freedom such as gluons and/ or quarks [131] are introduced or if
parameters with an explicit temperature dependence are used.
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2.4 Phenomenologically improved linear σ-mo-

del

The result of the previous section is puzzling. Both, the NJL model and the
linear σ-model, are built from the same symmetries. Moreover, the linear
σ-model can be obtained as the hadronized version of the NJL model. How-
ever, the hadronization procedure is only performed at a single temperature
T = 0. A more convenient way would be to hadronize at each temperature
T and, as a consequence, the coupling constants in the linear σ-model would
become functions of T . In particular, the chiral condensate φ(T ) of the σ-
model should not be larger than in the corresponding NJL model. In the
following we will discuss two improvements of the linear σ-model in order to
overcome the mismatch with QCD in the Nc-scaling of Tc.

Explicit temperature dependence: A hadronization scheme applied
at every temperature should lead to temperature-dependent parameters. In
Refs. [132, 133] it is argued that the T 2-scaling of the order parameter is
general and should hold also in the large-Nc limit. Therefore, we choose the
mass parameter µ to be temperature-dependent:

µ2 → µ(T )2 = µ2

(
1− T 2

T 2
d

)
, (2.29)

where a new temperature scale Td (of the order of ΛQCD) is introduced.
This term modi�es the gap equation (2.23) and leads to a modi�ed critical
temperature with a di�erent large-Nc scaling:

Tc(Nc) = Td
1√

1 +
T 2
d

2f2π

3
Nc

. (2.30)

Thus, for a large number of colors the critical temperature is constant and
coincides with the newly introduced scale Tc = Td. It is also clear how the
mesons a�ect the chiral phase transition. They are responsible for the term
∝ 3/(Ncf

2
π) in eq. (2.30) and thus lead to a decrease of Tc: Tc < Td for

any �nite value of Nc. Thus, mesonic �uctuations represent only a large-Nc

subdominant contribution to the critical value Tc. In the case Nc = 3, using
the numerical value fπ = 92.4 MeV and setting the temperature scale Td =
ΛQCD ≃ 225 MeV, the critical temperature Tc is lowered to Tc ≃ 113 MeV.
Interestingly, in the framework of sigma models with (axial-)vector mesons,
one has to make the replacement fπ → Zfπ with Z ≃ 1.67 [29]. This leads
to a critical temperature Tc ≃ 157 MeV, which is remarkably close to lattice
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results [2, 3]. With the help of the modi�cation in eq. (2.29) the linear σ-
model respects the large-Nc limit and is compatible with the NJL model.
Moreover these numerical results show that the role of mesons is stable for
the case Nc = 3.

From eq. (2.26) it follows that our result for Tc(Nc ≫ 3) depends only on
the ratio µ2/λ. Thus, including a T -dependence of the parameter λ would
not alter the results, as long as the ratio µ2(T )/λ(T ) scales quadratically as
in eq. (2.29). In general, it is su�cient that the ratio µ2(T )/λ(T ) goes to
zero for T → Td in order to obtain the desired property:

lim
Nc→∞

Tc(Nc) = Td . (2.31)

Notice that the quadratic form of µ(T ) in eq. (2.29) mimics well the quali-
tative behavior of quark-loop contributions to mesonic masses, see Ref. [22].
For this reason we expect that the quark-meson model of Ref. [17], which
naturally implements these contributions, shows the correct large-Nc scaling
of Tc.

The additional scale Td does not only a�ect the critical temperature but
also the order of the phase transition. To show this, we study the case where
Nc = 3. The full Lagrangian including a second scale Td reads:

Lσ(Td) =
1

2
(∂µΦ)

2 +
1

2
µ2

(
1− T 2

T 2
d

)
Φ2 − λ

4

3

Nc

Φ4 + ϵσ , (2.32)

with an explicit symmetry breaking term ϵσ. All parameters can be �xed by
the masses and the pion decay constant:

ϵ = fπm
2
π , λ =

m2
σ −m2

π

2f 2
π

, µ2 =
m2
σ − 3m2

π

2
. (2.33)

The quantity Td is set to the value Td = 0.27 GeV. The vacuum properties
are chosen as follows: the mass of the σ-�eld is mσ = 1.2 GeV (for the
discussion of the value of the σ mass in the vacuum, see Refs. [30, 105] and
refs. therein), the mass of the pion π is mπ = 0.135 GeV, and the pion decay
constant is fπ = 0.093 GeV.

The nonzero-temperature behavior of the chiral condensate φ is strongly
a�ected by the additional temperature scale Td. It is remarkable that the
order of the phase transition is changed from �rst order to a crossover tran-
sition. In addition, the interplay of the temperature scale Td and the meson
loops leads to a lower critical temperature Tc ≈ 200 MeV. Both phenomena
can be seen in Fig. 2.1, where the case Nc → ∞ is also included: in this
limit the chiral symmetry is restored because of the new temperature scale
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Figure 2.1: The chiral condensate for di�erent number of colors and temper-
ature scales Td. Continuous line: Nc = 3 and Td = 270 MeV. Dotted line:
Nc = 3 and Td → ∞. Dashed line: Nc → ∞ and Td = 270 MeV (in this
case φ(T ) is rescaled by a factor 1/Nc).
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Figure 2.2: The masses Mπ and Mσ as a function of the temperature. The
dashed line represents the mass of the pions and the continuous line the mass
of the σ. Above a critical temperature of Tc ≈ 200 MeV the masses become
degenerate.
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Td (and not via mesonic loops). The nonzero-temperature behavior for the
masses is shown in Fig. 2.2. Until the critical temperature Tc is reached the
temperature dependence of the pion mass and the σ mass varies only slowly.
Close to Tc the mass of σ drops and slightly above Tc it becomes degenerate
with the pion. At high temperature both masses rise linearly.

Inclusion of the Polyakov loop: Our second suggestion for improving
the linear σ-model is to incorporate the coupling to the Polyakov loop [13].
In the pure gauge theory the expectation value of the Polyakov loop l(T ) =
|⟨l(x)⟩| is an order parameter for the decon�nement phase transition, where
l = 0 in the con�ned phase and l → 1 in the decon�ned phase, see the review
in Ref. [134] and refs. therein.

Following Ref. [135] (for a similar approach see also Ref. [136]) we couple
the σ-model to the Polyakov loop:

Lσ-Pol(Nc) = Lσ(Nc) +
αNc

4π
|∂µl|2T 2 − V(l)− h2

2
Φ2|l|2T 2 , (2.34)

where Lσ(Nc) is taken from eq. (2.18) and the Polyakov loop is coupled to the
meson �elds. Moreover, a kinetic term and a potential V(l) for the Polyakov
�eld l have been introduced. Since we are only interested in the large-Nc

behavior, the precise form of V(l) is irrelevant in the following. Terms of
the kind ∼ lT 2Φ2 could also be included [136] but they would not a�ect
the overall Nc-scaling, although they might change the order of the phase
transition. Applying the CJT formalism in the double-bubble approximation
the gap equation for the condensate φ(T ) reads:

0 = φ(T )2 − Nc

3λ

(
µ2 − h2|l|2T 2

)
+ 3

∫
(Gσ +Gπ) , (2.35)

from which the following expression for the critical temperature Tc is derived:

Tc =
µ√

h2|l(Tc)|2 + 6λ
Nc

. (2.36)

Assuming here that l(Tc) is independent of Nc, we again obtain Tc ∝ N0
c in

the limit Nc → ∞. While the independence of l(Tc) has not been analytically
proven, it is in agreement with recent lattice simulations of Yang Mills the-
ories (e.g. Ref. [53]), in which l(T ) has been investigated for increasing Nc.
The important point here is that it is natural to recover the desired large-Nc

limit when the hadronic model is coupled to the Polyakov loop. The reason
for this is that the chiral phase transition is triggered by the Polyakov loop
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[137].

In conclusion, purely hadronic models fail to describe the chiral phase
transition in the QCD in large-Nc limit. Nevertheless, it is possible to mo-
tivate and implement corrections that lead to the expected Nc dependence.
Hadronic degrees of freedom play a sizable role close to Tc and lower the
critical temperature substantially. However, they are not the driving force
behind this transition. Quarks and gluons dominate the thermodynamics
close to the phase transition and at higher temperatures.
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Chapter 3

Chiral density wave in the eLSM

The chapter is based on Refs. [138, 139].

3.1 Mesons in the eLSM

The extended Linear Sigma Model (eSLM) is a generalization of the linear
σ-model which has been developed in Refs. [29, 30, 80]. The eSLM is based
on chiral symmetry and dilatation invariance. Moreover, vector and axial-
vector mesons are taken into account. The mesonic Lagrangian is constructed
in the following way: di�erent quark-antiquark bilinear terms are identi�ed
with meson �elds sharing the same quantum numbers:

ψ̄jΓψi ≡ Mesonsij , (3.1)

with ψ = (u, d) and Γ = {14, γ5, γ
µ, γ5γµ}, each leading to mesons with

di�erent quantum numbers. Here we present the eLSM for Nf = 2, but this
Ansatz can be generalized to any number of �avors Nf , e.g. for the Nf = 3
case a detailed study can be found in Ref. [30]. The four resulting building
blocks are the scalar/ pseudoscalar and the vector/ axial-vector �elds. The
(pseudo)scalars have the following structure:

Φ =
3∑

a=0

ϕata = (σ + ıηN) t
0 + (⃗a0 + ıπ⃗) · t⃗ ,

Φ† =
3∑

a=0

ϕata = (σ − ıηN) t
0 + (⃗a0 − ıπ⃗) · t⃗ , (3.2)

where t⃗ = τ⃗ /2, with the vector of Pauli matrices τ⃗ , and t0 = 12/2 (In the case
of Nf = 3 the Pauli matrices are replaced by the Gell-Mann matrices). The
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vector mesons V µ and the axial-vector mesons Aµ have a similar structure:

V µ =
3∑

a=0

V µ
a ta = ωµt0 + ρ⃗µ · t⃗ ,

Aµ =
3∑

a=0

Aµata = fµ1 t
0 + a⃗µ1 · t⃗ . (3.3)

It is useful to introduce right-handed and left-handed �elds Rµ and Lµ:

Rµ ≡ V µ − Aµ = (ωµ − fµ1 ) t0 + (ρ⃗µ − a⃗µ1) · t⃗ ,
Lµ ≡ V µ + Aµ = (ωµ + fµ1 ) t0 + (ρ⃗µ + a⃗µ1) · t⃗ . (3.4)

The transformation rules under a chiral U(2)L × U(2)R transformation for
the �elds are given by:

Φ → ULΦU
†
R ,

Φ† → URΦ
†U †

L ,

Rµ → URR
µU †

R ,

Lµ → ULL
µU †

L , (3.5)

where UL and UR are independent U(2) unitary matrices. Using these trans-
formation rules, one can construct chirally invariant terms. Later it will
be argued that, in order to simultaneously keep analyticity in the dilaton
�eld and dilatation invariance [79], only terms up to fourth order need to be
considered. The �nal result is summarized by the following Lagrangian:

LM = Tr
[
(DµΦ)

† (DµΦ)−m2Φ†Φ− λ2
(
Φ†Φ

)2]− λ1
(
Tr
[
Φ†Φ

])2
+ c
(
detΦ† − detΦ

)2
+ h0Tr

[
Φ† + Φ

]
− 1

4
Tr [LµνL

µν +RµνR
µν ] +

1

2
m2

1Tr [LµL
µ +RµR

µ]

+
1

2
h1Tr

[
Φ†Φ

]
Tr [LµL

µ +RµR
µ] + h2Tr

[
Φ†LµLµΦ + ΦRµRµΦ

†]
+ 2h3Tr

[
ΦRµΦ

†Lµ
]
− 2ıg2 (Tr{Lµν [Lµ, Lν ]}+ Tr{Rµν [R

µ, Rν ]})
− 2g3{Tr[(∂µRν + ∂νRµ){Rµ, Rν}] + Tr[(∂µLν + ∂νLµ){Lµ, Lν}]}
+ g4{Tr[LµLνLµLν ] + Tr[RµRνRµRν ]}
+ g5{Tr[LµLµLνLν ] + Tr[RµRµR

νRν ]}
+ g6Tr[R

µRµ]Tr[L
νLν ] + g7{Tr[RµRµ]Tr[R

νRν ] + Tr[LµLµ]Tr[L
νLν ]} ,

(3.6)
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with the short notation for the covariant derivative:

DµΦ = ∂µΦ− ıg1(ΦR
µ − LµΦ) , (3.7)

and the �eld-strength tensors of the left- and right-handed �elds:

Lµν = ∂µLν − ∂νLµ ,

Rµν = ∂µRν − ∂νRµ . (3.8)

Spontaneous symmetry breaking is realized for m2 < 0 (Mexican-hat form
of the potential). The term proportional to c represents the axial anomaly.
The nonzero bare quark masses lead to explicit chiral symmetry breaking:
this is modelled by the term proportional to h0.

Besides the terms proportional to c (axial anomaly) and h0 (bare quark
masses), dilatation invariance of LM is broken by the dimensionful coupling
constants m2 and m2

1. The breaking of dilatation invariance is a general fea-
ture of models with dimensionful coupling constants. However, in a model
where these emerge only as the vacuum expectation value of other �elds,
dilatation invariance in preserved [79]. In order to render the eLSM dilata-
tion invariant these dimensionful coupling constants are replaced with the
condensate of the dilaton �eld, Ḡ:

αG2Tr
[
Φ†Φ

]
→ αḠ2Tr

[
Φ†Φ

]
≡ m2Tr

[
Φ†Φ

]
,

βG2Tr [LµL
µ +RµR

µ] → βḠ2Tr [LµL
µ +RµR

µ] ≡ m2
1Tr [LµL

µ +RµR
µ] ,
(3.9)

with the dimensionless coupling constants α and β.
The condensation (σ → σ+ ϕ) leads to mixing terms between ηN -f 1

µ and
π⃗-⃗aµ1 . These terms arise from the covariant derivatives:

Tr
[
(DµΦ)

† (DµΦ)
]
σ→σ+ϕ
=

1

2
(∂µσ + g1π⃗ · a⃗1µ + g1ηNf1µ)

2

+
1

2
(∂µηN − g1σf1µ − g1ϕf1µ − g1a⃗0 · a⃗1µ)2

+
1

2
(∂µa⃗0 + g1ρ⃗µ × a⃗0 + g1ηN a⃗1µ + g1π⃗f1µ)

2

+
1

2
(∂µπ⃗ − g1π⃗ × ρ⃗µ − g1σa⃗1µ − g1ϕa⃗1µ − g1a⃗0f1µ)

2

= · · · − g1ϕ∂µηNf
1µ − g1ϕ∂µπ⃗ · a⃗µ1 + . . . . (3.10)

In order to determine vacuum quantities like masses and decays, these mixing
terms have to be removed [29]. The bilinear mixing terms can be canceled
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by a shift of the �elds f1µ and a⃗1µ:

f1µ → f1µ + w∂µηN ,

a⃗1µ → a⃗1µ + w∂µπ⃗ . (3.11)

The parameter w is to chosen in such a way that all mixing terms vanish.

Lmix

=

[
−g1ϕ+ w

(
ϕ2g21 +m2

1 +
1

2
ϕ2h1 +

1

2
ϕ2h2 −

1

2
ϕ2h3

)]
∂µπ⃗ · a⃗µ1 + . . . .

(3.12)

From the shifted Lagrangian one can read o� the condition for which all the
mixing terms cancel:

w =
g1ϕ

m2
1 + g21ϕ

2 + 1
2
ϕ2(h1 + h2 + h3)

. (3.13)

Care is needed because also the kinetic terms of the pions and ηN are a�ected
by this shift. For example, in the case of the pions it reads:

Lπ

=
1

2

{
1− 2g1ϕ− w2

[
g21ϕ

2 +m2
1 + ϕ2(h1 + h2 − h3)

]}
(∂µπ⃗)

2 + . . . . (3.14)

The term for ηN looks the same. Both �elds have to be renormalized in such
a way that for the new �elds π⃗phys and ηphys the canonical form holds:

Lπ =
1

2

(
∂µπ⃗

phys
)2

+ . . . . (3.15)

This leads to a rescaling of the two �elds:

π⃗ → Zπ⃗phys , ηN → ZηphysN . (3.16)

The numerical value of the parameter Z can be found in the literature and
is Z = 1.67± 0.2 [29].

Besides the mesonic quark-antiquark ((pseudo)scalar and (axial-)vector)
contributions, also the tetraquark �elds are included. This is especially im-
portant for a study at nonzero density. In the Nf = 2 case there is only one
scalar tetraquark state which we denote as χ [114]. The tetraquark is then a
scalar �eld that couples to chirally invariant terms of second order:

Lχ =
1

2
∂µχ∂

µχ− 1

2
m2
χχ

2 + gχTr
(
Φ†Φ

)
. (3.17)
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The last two terms violate dilatation invariance. However, using the same
argument as before the dimensionful couplings g and mχ can be replaced
with dimensionless couplings γ and ζ and the dilaton condensate:

γG χTr
(
Φ†Φ

)
→ γḠ χTr

(
Φ†Φ

)
≡ g χTr

(
Φ†Φ

)
,

ζG2 χ2 → ζḠ2 χ2 ≡ m2
χ χ

2 . (3.18)

Chiral symmetry would also allow a term ∝ χ2Tr
(
Φ†Φ

)
, but such a term is

suppressed in the large-Nc limit [105]. The spontaneous breaking of chiral
symmetry also induces a tetraquark condensate χ̄. Moreover, also a mixing
between the scalar states σ and χ arises:

Lmix = −2gϕσχ . (3.19)

The mixing can be removed by an O(2) rotation into two physical states
(σ, χ) = O(H,S) [114]. The relation for the masses of H and S read:

m2
H = m2

χ cos
2 θ +m2

σ sin
2 θ − 4gϕ cos θ sin θ

=
1

2

[
m2
χ +m2

σ − sign(m2
σ −m2

χ)
√

(m2
σ −m2

χ)
2 + (4gϕ)2

]
,

m2
S = m2

χ sin
2 θ +m2

σ cos
2 θ + 4gϕ cos θ sin θ

=
1

2

[
m2
χ +m2

σ + sign(m2
σ −m2

χ)
√

(m2
σ −m2

χ)
2 + (4gϕ)2

]
, (3.20)

with the mixing angle θ:

θ =
1

2
arctan

4gϕ

m2
σ −m2

χ

; − π

4
< θ <

π

4
. (3.21)

After these steps it is possible to identify the mesons listed in Ref. [10].
The �elds π⃗ and ηN correspond to the pion and the nonstrange part of the η
meson. The �elds ωµ and ρ⃗µ represent the vector states ω(782) and ρ(770),
and the �elds fµ1 and a⃗µ1 the axial-vector mesons f1(1285) and a1(1260).
The three scalar �elds are assigned as: S ∼ f0(1370), H ∼ f0(500) and
a⃗0 ∼ a0(1450). The chiral condensate reads ϕ = ⟨σ⟩ = Zfπ = 154.4 MeV.

3.2 Baryons in the eLSM

A novel aspect of the eLSM is the chiral invariance of the Lagrangian, which
is also preserved in the baryon sector at any density and temperature. This
is a crucial di�erence to other hadronic models, as for example the Walecka
model which is already not chirally invariant in the vacuum [140]. Two
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possible ways to implement chiral symmetry for the baryons are presented:
the naive assignment and the mirror assignment. The nucleon and its chiral
partner are included into the eLSM by using two baryon doublets.

In both cases the �elds are separated into left-handed and right-handed
ones by the projection operators PL and PR:

ψi,R = PR ψi , ψi,L = PL ψi , (3.22)

ψ̄i,R = ψ̄i PL , ψ̄i,L = ψ̄i PR . (3.23)

• Naive assignment: In the naive assignment the doublets transform
independently under chiral symmetry transformation. In the Lagran-
gian the (pseudo)scalar as well as the (axial-)vector mesons are coupled
independently to the nucleons ψ1 and ψ2. Both baryon �elds have the
same chiral transformation, and the Lagrangian has the form:

LB = ψ̄1,Lı /D1,Lψ1,L + ψ̄1,Rı /D1,Rψ1,R − ĝ1
(
ψ̄1,LΦ

†ψ1,R + ψ̄1,RΦψ1,L

)
+ ψ̄2,Lı /D2,Lψ2,L + ψ̄2,Rı /D2,Rψ2,R − ĝ2

(
ψ̄2,LΦ

†ψ2,R + ψ̄2,RΦψ2,L

)
+ . . . , (3.24)

with the notations for the covariant derivatives:

Dµ
1,R = ∂µ − ıc1R

µ , Dµ
1,L = ∂µ − ıc1L

µ ,

Dµ
2,R = ∂µ − ıc2R

µ , Dµ
2,L = ∂µ − ıc2L

µ . (3.25)

Additional mixing terms of the kind ψ̄1,RΦ
†ψ2,L − ψ̄1,LΦψ2,R . . . could

be introduced but they can be removed [82].

After condensation (σ → ϕ, ω0 → ω̄0, all other �elds e.g. π and a1 do
not condense) the Lagrangian for the baryons reads:

LB = ψ̄1ı/∂ψ1 − g(1)ω ψ̄1ıγ0ω̄0ψ1 −
1

2
ĝ1ψ̄1ϕψ1

+ ψ̄2ı/∂ψ2 − g(2)ω ψ̄2ıγ0ω̄0ψ2 −
1

2
ĝ2ψ̄2ϕψ2 + . . . . (3.26)

The masses of the baryon �elds ψ1 and ψ2 correspond to the masses of
the nucleon resonances N and N∗, which can be read o� directly:

mψ1 = mN =
1

2
ĝ1ϕ ,

mψ2 = mN∗ =
1

2
ĝ2ϕ . (3.27)

In the case of restored chiral symmetry (ϕ → 0) the masses of N and
N∗ vanish exactly: mN = mN∗ = 0.
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• Mirror assignment: In contrast to the naive assignment, in the mir-
ror assignment the baryons ψ1 and ψ2 are introduced as chiral partners.
Under chiral transformation the baryon ψ2 transforms in a mirror way
w.r.t. ψ1:

ψ1,R → UR ψ1,R , ψ1,L → UL ψ1,L ,

ψ2,R → UL ψ2,R , ψ2,L → UR ψ2,L ,

ψ̄1,R → ψ̄1,R U
†
R , ψ̄1,L → ψ̄1,L U

†
L ,

ψ̄2,R → ψ̄2,R U
†
L , ψ̄2,L → ψ̄2,L U

†
R . (3.28)

Besides the usual terms, the mirror assignment allows for a further
chirally invariant term:

m0(ψ̄2γ5ψ1 − ψ̄1γ5ψ2)

= m0(ψ̄2,Lψ1,R − ψ̄2,Rψ1,L − ψ̄1,Lψ2,R + ψ̄1,Rψ2,L) , (3.29)

which introduces a chirally invariant mass contribution m0. The full
Lagrangian reads:

LB = ψ̄1,Lı /D1,Lψ1,L + ψ̄1,Rı /D1,Rψ1,R + ψ̄2,Lı /D2,Lψ2,L + ψ̄2,Rı /D2,Rψ2,R

− ĝ1
(
ψ̄1,LΦψ1,R + ψ̄1,RΦ

†ψ1,L

)
− ĝ2

(
ψ̄2,LΦ

†ψ2,R + ψ̄2,RΦψ2,L

)
+m0

(
ψ̄2,Lψ1,R − ψ̄2,Rψ1,L − ψ̄1,Lψ2,R + ψ̄1,Rψ2,L

)
. (3.30)

It is evident that the �elds ψ1 and ψ2 mix and that the chiral eigenstates
do not correspond to the mass eigenstates. In order to obtain the
physical masses the mass matrix has to be diagonalized:(

ψ̄1, ψ̄2γ5
)
M

(
ψ1

−γ5ψ2

)
=
(
ψ̄1, ψ̄2γ5

)( 1
2
ĝ1ϕ m0

m0 −1
2
ĝ2ϕ

)(
ψ1

−γ5ψ2

)
. (3.31)

The physical masses of the baryon resonances N and N∗ follow from
zeros of the polynomial:

det(λ·12 −M) =

(
λ− 1

2
ĝ1ϕ

)(
λ+

1

2
ĝ2ϕ

)
−m2

0 = 0 , (3.32)

and read explicitly:

λ1 = mN =

√(
ĝ1 + ĝ2

4

)2

ϕ2 +m2
0 +

1

4
(ĝ1 − ĝ2)ϕ , (3.33)

−λ2 = mN∗ =

√(
ĝ1 + ĝ2

4

)2

ϕ2 +m2
0 −

1

4
(ĝ1 − ĝ2)ϕ . (3.34)
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Figure 3.1: Masses of N and N∗ as a function of ϕ. Black lines: in the
naive assignment the chiral condensate ϕ generates the masses. Blue lines:
in the mirror assignment the chiral condensate ϕ is responsible for a mass
splitting. For both cases the vacuum masses read mN = 0.939 GeV and
mN∗ = 1.5 GeV. For simplicity the physical point is for Z = 1: ϕ = fπ.

The masses in the mirror assignment compared to the masses in the naive
assignment as function of ϕ are depicted in Fig. 3.1. The behavior of the
masses in the mirror assignment allows for a di�erent interpretation of the
origin of the nucleon mass. In the naive assignment (black lines) the chiral
condensate ϕ is solely responsible for the mass generation of the nucleon N
and its chiral partner N∗. In the case of chiral symmetry restoration, both
masses become degenerate and vanish. The masses increase in both cases
linearly with ϕ. On the contrary, in the mirror assignment (blue lines) there
is a remnant mass m0. The chiral condensate is not solely responsible for the
complete mass generation of the nucleons, but for a mass splitting of N and
N∗:

mN −mN∗ =
1

2
(ĝ1 − ĝ2)ϕ . (3.35)

For vanishing ϕ the mass of the nucleon N becomes degenerate with the mass
of N∗:

mN = mN∗ = m0 . (3.36)

Also, the dependence of the mass on the condensate ϕ is not linear.
In order to preserve chiral symmetry and dilatation invariance, the con-

stant m0 is identi�ed with scalar �elds such as the tetraquark �eld χ and/
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or the dilaton �eld G:

m0 = a < χ > +b < G >= aχ̄+ bḠ . (3.37)

For the sake of simplicity the dilaton is neglected here and only the tetraquark
state is retained (to be identi�ed with the light scalar state f0(500)). The
full dilatation invariant baryonic Lagrangian is given by:

LB = ψ̄1,Lı /D1,Lψ1,L + ψ̄1,Rı /D1,Rψ1,R + ψ̄2,Lı /D2,Lψ2,L + ψ̄2,Rı /D2,Rψ2,R

− ĝ1
(
ψ̄1,LΦψ1,R + ψ̄1,RΦ

†ψ1,L

)
− ĝ2

(
ψ̄2,LΦ

†ψ2,R + ψ̄2,RΦψ2,L

)
+ aχ

(
ψ̄2,Lψ1,R − ψ̄2,Rψ1,L − ψ̄1,Lψ2,R + ψ̄1,Rψ2,L

)
. (3.38)

Notice that by setting the coupling a to zero the Lagrangian in the naive
assignment is obtained (but the �elds ψ1 and ψ2 still transform in a mirror
way).

3.3 CDW in the eLSM with m0 = const. and

without axial-vector mesons

The �rst nonzero-density study is performed in a simpli�ed version of the
eLSM. Chiral symmetry is reduced to an O(4) symmetry and in the (axial-
)vector-sector only the ω-meson is included. In this case there is no shift of
the axial-vector mesons (the wave-function renormalization results in Z = 1).
In addition, m0 is treated as a constant and therefore the scalar resonances
do not mix. Although the eLSM is simpli�ed, it is still possible to describe
nuclear matter ground-state properties in the mean-�eld approximation [86,
138].

The remaining mesonic Lagrangian contains only those �elds that will
eventually condense in a mean-�eld study (σ, ωµ, π3):

Lmes =
1

2
∂µσ∂

µσ +
1

2
∂µπ3∂

µπ3 −
1

4
(∂µων − ∂νωµ)

2

+
1

2
m2(σ2 + π2

3) +
1

2
m2
ωωµω

µ − λ

4
(σ2 + π2

3)
2 + εσ . (3.39)

The baryon Lagrangian reduces to:

Lbar = Ψ1ıγµ∂
µΨ1 +Ψ2ıγµ∂

µΨ2

− ĝ1
2
Ψ1(σ + ıγ5τ

3π3)Ψ1 −
ĝ2
2
Ψ2(σ − ıγ5τ

3π3)Ψ2

− gωΨ1ıγµω
µΨ1 − gωΨ2ıγµω

µΨ2 −m0(Ψ2γ5Ψ1 −Ψ1γ5Ψ2) .
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Since ω0 is proportional to the γ0 matrix, it forms a condensate at nonzero
baryon chemical potential µ, which we denote as ⟨ω0⟩ = ω̄0.

The Ansatz of a chiral density wave (CDW) assumes a periodic structure
for σ as well as for the neutral pion π3:

⟨σ(z)⟩ = ϕ cos(2fz) , ⟨π3(z)⟩ = ϕ sin(2fz) , (3.40)

where ϕ is the amplitude and f the wave vector of the CDW. This Ansatz
has many consequences. In the mesonic part, two additional contributions
arise: one contribution stems from the kinetic term of the �elds σ and π3.
This contribution is positive and does not favor the formation of a CDW.
Another contribution comes from the explicit symmetry breaking term, which
also suppresses the formation of an inhomogeneous condensation. All other
mesonic contributions remain the same as in the case with homogeneous
condensation, since only chirally invariant bilinear terms of the kind σ2 + π2

3

are present. The contributions can be summarized as:

(∂µσ)
2 + (∂µπ3)

2 −→ (2fϕ sin(2fz))2 + (2fϕ cos(2fz))2 = 4f 2ϕ2 ,

σ2 + π2
3 −→ (ϕ cos(2fz))2 + (ϕ sin(2fz))2 = ϕ2 ,

εσ −→ εϕ cos(2fz) . (3.41)

Notice that, in a spatial volume V > (π/f)3, the spatially dependent term
∼ cos(2fz) averages to zero for any nonzero value of f . Finally the resulting
mean-�eld potential reads:

Umean-�eld
mes = 2f 2ϕ2 − 1

2
m2
ωω̄

2
0 +

λ

4
ϕ4 − 1

2
m2ϕ2 − εϕ cos(2fz) . (3.42)

The CDW leads also to space-dependent baryonic terms:

ĝ1ϕψ̄1 [cos(2fz) + ıγ5τ3 sin(2fz)]ψ1 + ĝ2ϕψ̄2 [cos(2fz)− ıγ5τ3 sin(2fz)]ψ2

=ĝ1ϕψ̄1 exp (+ı2γ5τ3fz)ψ1 + ĝ2ϕψ̄2 exp (−ı2γ5τ3fz)ψ2 . (3.43)

However, there is a neat transformation which changes the space dependence
into a momentum dependence:

ψ1 → exp[−ıγ5τ3fz]ψ1 , ψ̄1 → ψ̄1 exp[−ıγ5τ3fz] , (3.44)

ψ2 → exp[+ıγ5τ3fz]ψ2 , ψ̄2 → ψ̄2 exp[+ıγ5τ3fz] .

This transformation is applied to all bilinear terms and leads to the following
changes. The interaction between (pseudo-)scalar mesons and baryons reads:

ψ̄1 exp[+ıγ5τ32fz]ψ1 → ψ̄1ψ1 ,

ψ̄2 exp[−ıγ5τ32fz]ψ2 → ψ̄2ψ2 . (3.45)
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For the bilinear terms that include γµ we use the relation γµ exp(+ıγ5a) =
exp(−ıγ5a)γµ. The transformations in eq. (3.44) leave the terms invariant:

ψ̄1γµψ1 → ψ̄1 exp[−ıγ5τ3fz]γµ exp[−ıγ5τ3fz]ψ1 = ψ̄1γµψ1 ,

ψ̄2γµψ2 → ψ̄2 exp[+ıγ5τ3fz]γµ exp[+ıγ5τ3fz]ψ2 = ψ̄2γµψ2 . (3.46)

The additional baryon mass contribution (m0-term) is invariant as well:

ψ̄2γ5ψ1 → ψ̄2 exp[+ıγ5τ3fz]γ5 exp[−ıγ5τ3fz]ψ1 = ψ̄2γ5ψ1 ,

ψ̄1γ5ψ2 → ψ̄1 exp[−ıγ5τ3fz]γ5 exp[+ıγ5τ3fz]ψ2 = ψ̄1γ5ψ2 . (3.47)

For all the terms shown above the transformation of eq. (3.44) is a great
simpli�cation. However, it is the kinetic term that gives rise to the afore-
mentioned momentum-dependent structure:

ψ̄1ı/∂ψ1 →ψ̄1 exp[−ıγ5τ3fz]ı
(
/∂ exp[−ıγ5τ3fz]ψ1

)
=ψ̄1 exp[−ıγ5τ3fz]ıγµ exp[−ıγ5τ3fz] (∂µψ1)

+ ψ̄1 exp[−ıγ5τ3fz]ıγµ (∂µ exp[−ıγ5τ3fz])ψ1

=ψ̄1ı/∂ψ1 + ψ̄1γ1γ5τ3fψ1 ,

ψ̄2ı/∂ψ2 →ψ̄2 exp[+ıγ5τ3fz]ı
(
/∂ exp[+ıγ5τ3fz]ψ2

)
=ψ̄2 exp[+ıγ5τ3fz]ıγµ exp[+ıγ5τ3fz] (∂

µψ2)

+ ψ̄2 exp[+ıγ5τ3fz]ıγµ (∂
µ exp[+ıγ5τ3fz])ψ2

=ψ̄2ı/∂ψ2 − ψ̄2γ1γ5τ3fψ2 . (3.48)

The additional terms still allow to calculate the energy eigenvalues in an
analytic way but for our study a numerical treatment is used. The quadratic
form of the Lagrangian in a matrix form is:

LB

=
(
ψ̄1, ψ̄2γ5

)( ı/∂ + γ1γ5τ3f − 1
2
ĝ1ϕ m0

m0 ı/∂ − γ1γ5τ3f + 1
2
ĝ2ϕ

)(
ψ1

−γ5ψ2

)
=
(
ψ̄1, ψ̄2γ5

)
Q

(
ψ1

−γ5ψ2

)
, (3.49)

where the contribution −ıgωω̄0 is not displayed since it is absorbed in a shift
of the baryon chemical potential µ∗ = µ−gωω̄0. The condensation of ω0 takes
place at nonzero chemical potential µ. The energy eigenvalues are calculated
as numerical solutions of the characteristic polynomial (see Appendix A for
details). As a �rst result a level splitting in the inhomogeneous regime is
observed. The energy levels have the form:

Ek(px, py, pz) =
√
p2x + p2y + p2z +mk(pz)2 ≡ Ek(pz) , (3.50)
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with k = 1, 2, 3, 4. In the absence of the CDW the energy eigenvalues reduce
to:

E1 = E2 = EN =
√
p2x + p2y + p2z +m2

N ,

E3 = E4 = EN∗ =
√
p2x + p2y + p2z +m2

N∗ . (3.51)

In order to calculate the grand canonical potential, the mean-�eld approxi-
mation is applied [138, 141]:

Ue�(ϕ, ω̄0, f) = Umean-�eld
mes +

4∑
k=1

∫
2d3p

(2π)3
[Ek(pz)− µ∗]Θ[µ∗ − Ek(pz)]

= 2f 2ϕ2 +
1

4
λϕ4 − 1

2
m2ϕ2 − εϕΘ(f)− 1

2
m2
ωω̄

2
0

+
4∑

k=1

∫ ∞

−∞

dpz
(2π)2

[
µ∗
√
p2z +mk(pz)2

2
− (µ∗)3

3

− 2

3

√
p2z +mk(pz)2

3
]
Θ
(
µ∗ −

√
p2z +mk(pz)2

)
,

(3.52)

where µ∗ = µ−gωω̄0 is the shifted baryon chemical potential. The thermody-
namical behavior follows from the extrema in ω̄0 and the absolute minimum
in ϕ and f :

0
!
=
∂Ue�

∂ϕ
,

0
!
=
∂Ue�

∂ω̄0

,

0
!
=
∂Ue�

∂f
. (3.53)

The numerical solution of these equations will be discussed in the next sec-
tion.

As a concluding part of this section we discuss a rather subtle issue.
The transformation of the fermions could (at least in certain models) leads
to an additional contribution in the potential ∝ f 2 [142]. Such a term is
unphysical and has to be subtracted. However, in our approach this is not
the case. Following studies of the NJL model such a term is independent of
ϕ [142]. For that reason we consider the case ϕ = 0. The meson potential
Umean-�eld
meson reduces to:

Umean-�eld
mes = −1

2
m2
ωω̄

2
0 , (3.54)
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thus leading to the e�ective potential:

U e�(ϕ = 0, ω̄0, f) =
4∑

k=1

∫
2d3p

(2π)3
[Ek(pz)− µ∗]Θ[µ∗ − Ek(pz)] + Umean-�eld

mes .

(3.55)

In the case ϕ = 0 the four energy levels can be calculated analytically even
for �nite f . As a result only two degenerate energy levels emerge:

E1 =E2 =
√
(px − f)2 + p2y + p2z +m2

0 ,

E3 =E4 =
√
(px + f)2 + p2y + p2z +m2

0 . (3.56)

The remaining f -dependence can be removed by two shifts: pz → p′z+ f and
pz → p′z−f . Thus, only one energy level, which is independent of f , remains:

E1 = E2 = E3 = E4 =
√
p2x + p2y + p2z +m2

0 . (3.57)

As a result the e�ective potential Ue� is independent of f for the case ϕ = 0
at any µ∗. In the mean-�eld theory no unphysical potential ∝ f 2 arises for
ϕ = 0 and for nonzero ϕ a numerical study shows that Ue� is bounded from
below in the variable f .

3.4 Nonzero-density study of the eLSM with

m0 = const.

In order to understand the behavior at nonzero chemical potential µ two dis-
tinct choices for the mass of the chiral partner of the nucleon are considered:
mN∗ = 1200 MeV and mN∗ = 1500 MeV. In addition the parameter m0 is
varied following the discussion of Ref. [86]. The parameters λ, m and ε are:

λ =
1

2fπ

(
m2
σ −m2

π

)
,

m =

√
1

2
(m2

σ − 3m2
π) ,

ε = m2
πfπ . (3.58)

The numerical values read fπ = ϕ0 = 92.4 MeV, mπ = 134.9 MeV (ε =
(118.9 MeV)3), mN = 939 MeV and mω = 783 MeV. The chirally invariant
mass contribution to the nucleon is tuned between m0 = 600 MeV and m0 =
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800 MeV. These six values determine the parameters (mσ, λ, ĝ1, ĝ2, gω, and
m) in order to obtain nuclear saturation at µ = 923 MeV (ρ = ρ0, binding
energy −16 MeV):

mN∗ 1200 MeV
m0 600.0 MeV 700.0 MeV 800.0 MeV

mσ 423.6 MeV 375.6 MeV 303.0 MeV
λ 9.393 7.146 4.263
ĝ1 16.30 14.68 12.54
ĝ2 21.80 20.33 18.19
gω 11.23 8.811 5.989
m 247.3 MeV 204.9 MeV 131.7 MeV
ϕ 33.68 MeV 42.25 MeV 49.19 MeV
ω̄0 21.26 MeV 16.67 MeV 11.33 MeV

mN∗ 1500 MeV
m0 600.0 MeV 700.0 MeV 800.0 MeV

mσ 447.5 MeV 410.4 MeV 356.4 MeV
m 266.8 MeV 235.0 MeV 185.8 MeV
λ 10.60 8.733 6.306
gω 11.54 9.277 6.766
ĝ1 16.90 15.54 13.85
ĝ2 29.10 27.69 25.99
ϕ 36.02 MeV 44.77 MeV 52.17 MeV
ω̄0 21.83 MeV 17.55 MeV 12.80 MeV

At µ = 923 MeV the values for the condensates of the �elds σ and ω0 are ϕ
and ω̄0.

These parameters lead to the nonzero-density behavior displayed in Fig.
3.2. For all cases a phase transition to homogeneous nuclear matter at
µ = 923 MeV is found. All six cases share a small regime of homogeneous
nuclear matter. The transition to the CDW phase depends on an interplay
of m0 and mN∗ . In general, a large m0 leads to a transition at high µ. The
CDW state shows only a small dependence on µ: ϕ remains almost �at and
starts to increase only for high µ. Conversely, in the homogeneous phase the
chiral condensate shows a strong dependence on µ and reduces signi�cantly
with increasing µ. With inhomogeneous condensation the transition to a
restored chirally symmetric phase does not take place [86]. Instead, the in-
homogeneous phase is realized. The intermediate homogeneous phase is not
present in the chiral limit as it will be discussed in the next paragraph. For
a reasonable choice of parameters no homogeneous nuclear matter ground
state is found.
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Figure 3.2: The condensate ϕ as a function of the baryon chemical poten-
tial µ. Red color indicates a homogeneous phase and green color an inho-
mogeneous (CDW) phase. The mass of the chiral partner of the nucleon
is mN∗ = 1.2 GeV for the upper and mN∗ = 1.5 GeV for the lower plot.
Dashed curves correspond to m0 = 0.8 GeV, dash-dotted to m0 = 0.7 GeV,
and straight to m0 = 0.6 GeV.
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The e�ect of explicit chiral symmetry breaking can easily be understood
when looking at the e�ective potential Ue� in the chiral limit at di�erent
baryon chemical potentials µ. In the chiral limit there is a 1st order transition
from the vacuum to a CDW state. In Fig. 3.3 and Fig. 3.4 the potentials at
four di�erent values of µ are shown. The potential is plotted as a function of
ϕ at the extrema of ω̄0 and f . The left-hand side of Fig. 3.3 shows the case in
the vacuum, with µ = 800 MeV. The solution for homogeneous condensation
coincides with the solution based on the CDW because f = 0 for all ϕ. The
absolute minimum at ϕ = fπ corresponds to the vacuum. On the right-hand
side, µ = 900 MeV, the system is still in the vacuum but the e�ect of the
CDW is visible. There are local minimum at ϕ ∼ 40 MeV that correspond
to homogeneous condensation and to the CDW.

In Fig. 3.4 two cases for µ > 923 MeV are shown. In the left panel
µ = 950 MeV and the homogeneous absolute minimum (that would allow for
a homogeneous ground state) is replaced by the CDW absolute minimum.
In the right panel µ = 1500 MeV and chiral symmetry would be restored if
only homogeneous condensation were taken into account. However, the CDW
prevents chiral symmetry restoration and even for higher µ the CDW remains
the ground state. The four plots also show that the CDW, as expected, does
not modify the potential at ϕ = 0. Also, the overall behavior does not depend
on the precise choice of the parameters.

In the chiral limit the CDW replaces the homogeneous minimum that is
not associated with the vacuum. Comparing this result with the aforemen-
tioned �ndings it is clear that the explicit symmetry breaking is important in
order to obtain homogeneous nuclear matter. The explicit symmetry break-
ing term tilts the potential and lowers the local homogeneous minimum to
an absolute minimum. Notice that, as we will see in the next section, this is
not the case in the eLSM where the explicit symmetry breaking only plays a
minor role and homogeneous nuclear matter is also found in the chiral limit.

3.5 CDW in the eLSM with a light tetraquark

The eLSM is studied at nonzero density including a light tetraquark �eld.
This allows us to connect results of vacuum physics with properties of dense
nuclear matter. The results of the previous section allow for a straightforward
calculation. Considering the relevant degrees of freedom of the eLSM and
keeping only terms involving �elds which will eventually condense, i.e., σ, π3,
ωµ, and χ, leads to the e�ective potential of the mesonic Lagrangian in the
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Figure 3.3: The potential Ue� as function of ϕ at the extrema of the other
dynamical variables. Left-hand side µ = 800 MeV, right-hand side µ =
900 MeV. On the right-hand side there is a further local minimum that
corresponds to the CDW.
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Figure 3.4: The potential Ue� as function of ϕ at the extrema of the other
dynamical variables. Left-hand side µ = 950 MeV, right-hand side µ =
1500 MeV. The CDW is the new ground state. A homogeneous phase is not
possible for intermediate and high µ.
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mean-�eld approximation [139, 141]:

Umean-�eld
mes = 2f 2ϕ2 +

λ

4
ϕ4 − 1

2
m2ϕ2 − εϕ cos(2fz)

− 1

2
m2
ωω̄

2
0 +

1

2
m2
χχ̄

2 − gχ̄ϕ2 . (3.59)

The relevant baryon Lagrangian in which only the mesons σ, π3, ωµ, and χ
are retained reads:

Lbar =Ψ1ıγµ∂
µΨ1 +Ψ2ıγµ∂

µΨ2 − gωΨ1ıγµω
µΨ1 − gωΨ2ıγµω

µΨ2

− ĝ1
2
Ψ1(σ + ıγ5τ

3π3)Ψ1 −
ĝ2
2
Ψ2(σ − ıγ5τ

3π3)Ψ2

− aχ(Ψ2γ5Ψ1 −Ψ1γ5Ψ2) . (3.60)

Following the steps of the previous section leads to the full e�ective potential:

U eff(ϕ, χ̄, ω̄0, f) =
4∑

k=1

∫
2d3p

(2π)3
[Ek(p)− µ∗]Θ[µ∗ − Ek(p)] + Umean-�eld

mes ,

(3.61)

where µ∗ = µ − gωω̄0 and Ek(p) =
√
p2 +mk(pz)2. Again, in the case of

homogeneous condensation there are only two (two-fold degenerate) energy
eigenstates, corresponding to the nucleon and its chiral partner, while for
inhomogeneous condensation the degeneracy is lifted and four di�erent en-
ergy eigenstates emerge. The values for Ek(p) are calculated numerically as
solutions of a characteristic polynomial (Appendix [A]). In order to obtain
the dynamical behavior at nonzero µ four gap equations (instead of three as
in the previous section) have to be solved simultaneously:

0
!
=
∂Ue�

∂ϕ
,

0
!
=
∂Ue�

∂ω̄0

,

0
!
=
∂Ue�

∂χ̄
,

0
!
=
∂Ue�

∂f
. (3.62)

The Tables 3.1-3.3 display the parameter sets used to calculate nuclear
matter properties. The parameters are �tted following the procedure in the
previous section. In addition the tetraquark state is included and, as a conse-
quence a mixing in the scalar sector arises. The predominantly quarkonium
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resonance f0(1300) is assigned to the heavy scalar state mS = 1300 MeV
and f0(500) with the light predominately tetraquark state mH = 600 MeV
[80, 114].

For the mass of the chiral partner of the nucleon, there are now three
candidates that will be considered mN∗ = 1200, 1500, and 1650 MeV. A
state with the mass mN∗ = 1200 MeV has not been seen experimentally
yet, but has been suggested in Ref. [86]. The other two states are the well
established resonances N∗(1535) and N∗(1650). For each case the parameter
m0 is varied in steps of 50 MeV from m0 = 400 MeV to m0 = 700 MeV,
a range which is in agreement with Ref. [82]. The rest of the parameters
are determined by vacuum masses, the pion decay constant and matched to
nuclear matter conditions [91].

To �x the parameters a system of seven coupled equations has to be
solved: eqs. (3.62), eqs. (3.20), and the nuclear matter ground-state condi-
tions (E/nB = 923 MeV and nB = 0.16 fm−3). These equations are used to
�x the parametersmσ, mχ, gω, and g, as well as to determine ϕn, ω̄0, and χ̄ in
the nuclear matter ground state. Subsequently the other parameters follow
directly from vacuum considerations. As a last step the compressibility K is
calculated:

K = 9
∂P

∂ρ
|ρ=ρ0 . (3.63)

It follows that for a broad range of parameters the value for K is consistent
with the range 200 − 300 MeV given in Ref. [143, 144, 145]. For increasing
m0 also K increases; in addition a light mN∗ implies a smaller K than a
large mN∗ . The parameters in Tables 3.1-3.3 can be divided into two groups:
one type remains almost una�ected by changing m0 and another type varies
strongly with m0. Within 10% the values mσ, mχ, m, and λ as well as ϕn
are unchanged when changing m0 from 400 MeV to 700 MeV. The other
parameters g, gω, and a, as well as χ̄, ω̄0, and K change in the same order
that m0 changes.

We turn our attention to a detailed study of the case in which the chi-
ral partner of the nucleon has the mass mN∗ = 1500 MeV and the chirally
invariant nucleon mass parameter is m0 = 500 MeV ( Table 3.2, column 3).
In Fig. 3.5 we show the e�ective potential as a function of ϕ for the chemi-
cal potential µ = 923 MeV, which corresponds to the nuclear matter ground
state. The e�ective potential is numerically minimized with respect to χ̄
and f and maximized with respect to ω̄0, respectively. There are two degen-
erate global minima, one for ϕ = Zfπ = 154.3 MeV, corresponding to the
vacuum, and one for ϕ = 149.5 MeV, corresponding to the nuclear matter
ground state. The di�erence in the chiral condensate compared to the vac-
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mN∗ 1200.0
m0 400.00 450.00 500.00 550.00 600.00 650.00 700.00

mσ 1297.2 1295.3 1292.7 1289.1 1284.3 1277.6 1268.3
mχ 606.04 610.04 615.56 623.00 632.93 646.23 664.39
m 904.43 898.43 890.27 879.50 865.51 847.46 823.96
g 318.12 409.99 510.21 620.05 741.40 877.27 1033.1
gω 4.2002 4.8782 5.5031 6.0981 6.6794 7.2607 7.8561
λ 35.192 35.089 34.947 34.754 34.492 34.135 33.635
a 19.395 17.155 15.595 14.459 13.616 12.995 12.561
ĝ1 11.165 10.884 10.563 10.197 9.7836 9.3166 8.7889
ĝ2 14.547 14.267 13.945 13.580 13.166 12.699 12.172

ϕn 149.77 149.56 149.30 148.97 148.56 148.03 147.33
χ̄ 8.9000 12.806 17.055 21.532 26.116 30.663 34.996
ω̄0 7.9472 9.2301 10.412 11.538 12.638 13.738 14.864
K 158.05 189.15 215.63 239.02 260.39 280.60 300.46

Table 3.1: The quantities mN∗ , m0, mσ, mχ, m, and g have dimension MeV.
The couplings gω, λ, a, ĝ1, and ĝ2 are dimensionless. The resulting ϕn, χ̄, ω̄0,
and K again have dimension MeV.

mN∗ 1500.0
m0 400.00 450.00 500.00 550.00 600.00 650.00 700.00

mσ 1297.9 1296.5 1294.5 1291.8 1288.1 1283.2 1276.6
mχ 604.47 607.56 611.82 617.54 625.11 635.08 648.32
m 906.81 902.15 895.79 887.38 876.49 862.55 844.69
g 273.61 355.73 444.75 541.67 647.78 765.06 896.70
gω 3.8088 4.4789 5.0831 5.6472 6.1871 6.7149 7.2410
λ 35.231 35.153 35.044 34.896 34.699 34.435 34.078
a 22.434 19.611 17.673 16.262 15.201 14.391 13.780
ĝ1 11.296 11.055 10.781 10.472 10.125 9.7381 9.3072
ĝ2 18.567 18.326 18.052 17.743 17.396 17.009 16.578

ϕn 149.86 149.69 149.48 149.22 149.89 148.48 147.97
χ̄ 7.0733 10.525 14.345 18.446 22.739 27.127 31.495
ω̄0 7.2067 8.4746 9.6178 10.685 11.707 12.705 13.701
K 138.66 170.44 197.02 220.00 240.45 259.18 276.85

Table 3.2: The quantities mN∗ , m0, mσ, mχ, m, and g have dimension MeV.
The couplings gω, λ, a, ĝ1, and ĝ2 are dimensionless. The resulting ϕn, χ̄, ω̄0,
and K again have dimension MeV.
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mN∗ 1650.0
m0 400.00 450.00 500.00 550.00 600.00 650.00 700.00

mσ 1298.2 1296.9 1295.1 1292.7 1289.5 1285.3 1279.5
mχ 603.88 606.63 610.41 615.49 622.19 630.96 642.48
m 907.71 903.55 897.88 890.37 880.66 868.26 852.47
g 254.92 333.05 417.48 509.12 609.07 718.96 841.31
gω 3.6316 4.3019 4.9003 5.4543 5.9804 6.4904 6.9939
λ 35.246 35.177 35.080 34.950 34.775 34.544 34.236
a 24.032 20.882 18.741 17.188 16.016 15.116 14.424
ĝ1 11.350 11.124 10.868 10.581 10.259 9.9020 9.5058
ĝ2 20.565 20.339 20.084 19.796 19.475 19.117 18.721

ϕn 149.89 149.74 149.55 149.31 149.02 148.65 148.20
χ̄ 6.3208 9.5705 13.194 17.112 21.246 25.512 29.816
ω̄0 6.8713 8.1396 9.2719 10.320 11.316 12.281 13.233
K 129.77 162.01 188.82 211.80 232.08 250.45 267.53

Table 3.3: The quantities mN∗ , m0, mσ, mχ, m, and g have dimension MeV.
The couplings gω, λ, a, ĝ1, and ĝ2 are dimensionless. The resulting ϕn, χ̄, ω̄0,
and K again have dimension MeV.

uum is very small, which is a consequence of the pseudoscalar wave-function
renormalization Z = 1.67 > 1 (and thus, indirectly, of the presence of (axial-
)vector mesons; for the results where (axial-)vector mesons were not taken
into account, see the previous section and Ref. [138]). Moreover, we also no-
tice the presence of a local minimum at ϕ = 38.3 MeV, which corresponds to
inhomogeneous condensation. For increasing µ the position of this minimum
changes only slightly with ϕ, but it eventually becomes the global minimum
and thus the thermodynamically realized ground state.

In Fig. 3.6 the behavior of the other dynamical quantities ω̄0, χ̄, and f
is displayed. For small ϕ the tetraquark condensate χ̄ almost vanishes and
N and N∗ decouple, the nucleons behave just as in the naive assignment.
In this regime the CDW is present: f ̸= 0. The suppression of χ̄ correlates
strongly with a large ω̄0. However, close to the vacuum at ϕ = 154.4 MeV it
vanishes for ω̄ = 0 and the tetraquark condensate is χ̄ ∝ ϕ2. In the transition
range when ω̄0 decreases and χ̄ increases, nuclear matter properties can be
reproduced.

In Fig. 3.7 the condensates ϕ and χ̄ are shown as functions of µ. For
µ = 923 MeV a �rst-order phase transition to the nuclear matter ground
state takes place. Both condensates drop and then further decrease slowly
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Figure 3.5: The potential Ueff as a function of ϕ at µ = 923 MeV for mN∗ =
1500 MeV and m0 = 500 MeV at the extrema of χ̄, ω̄0, and f . In the upper
right corner a zoom of the region close to the vacuum state ϕ0 = 154.4 MeV
and nuclear matter ground-state ϕn = 149.5 MeV is shown. In addition,
there is a further minimum corresponding to a CDW state at ϕ = 38.3 MeV.
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Figure 3.6: The values of the dynamical quantities f (black line), ω̄0 (green
line) and χ̄ (blue line) as a function of ϕ at µ = 923 MeV formN∗ = 1500 MeV
and m0 = 500 MeV which extremize the e�ective potential. The inhomo-
geneous regime is con�ned to ϕ < 110 MeV. Note that only values for
ϕ > 10 MeV are displayed. ω̄0 decreases with increasing ϕ and vanishes
close to the vacuum state. χ̄ is strongly suppressed for small ϕ.
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Figure 3.7: The condensates ϕ (solid line) and χ̄ (dashed line) are plotted as
functions of µ. At µ = 923 MeV a �rst-order phase transition to the nuclear
matter ground-state takes place. Above µ > 975 MeV the CDW becomes the
thermodynamically realized state. In this regime the condensate χ̄ is very
small (but nonzero).

for increasing µ. At µ = 973 MeV a transition to the inhomogeneous phase
occurs. The condensate χ̄ drops to (almost) zero and the chiral condensate ϕ
to the value ϕ = 37.6 MeV. For larger µ the condensates χ̄ and ϕ change very
slowly. Notice that ϕ does not vanish, thus chiral symmetry is not restored.
In terms of density, the onset of inhomogeneous condensation takes place
at 2.5ρ0; this density is still small enough such that a hadronic description
of the system can be applied. Then, a mixed phase is realized between
2.5ρ0 to 10.8ρ0. The latter value is too large to be trusted in a hadronic
description, thus we are led to believe that somewhere in the mixed phase
the decon�nement phase transition occurs.

The onset of the CDW phase can be at best shown by plotting the be-
havior of the parameter f , see Fig. 3.8: f vanishes for small µ, but jumps to
a nonzero value (f = 389.5 MeV) at the critical value µ = 973 MeV and then
slightly increases for increasing µ. This is the CDW, with a one-dimensional
harmonic modulation with a wavelength of about 1.5 fm.

After analyzing the systematics for a selected case, we turn our attention
to a study of the in�uence of di�erent values of the parameters mN∗ and m0.
In Figs. 3.9-3.11 the mass of the chiral partner of the nucleon mN∗ is raised
from 1200 MeV to 1500 MeV and �nally to 1650 MeV. The parameters are
found in Tables 3.1-3.3 (including the compressibility K obtained for these
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Figure 3.8: The parameter f as a function of µ.

values).
For all aforementioned cases nuclear matter ground-state properties are

reproduced, if no inhomogeneous condensation occurs. As a result the nuclear
matter ground state is always near ϕn ∼ 149 MeV close to the vacuum at
ϕ = Zfπ = 154.3 MeV. Around these minima the shape of the potential
depends only slightly on the two input parameters. In this regime also f = 0
holds, in contrast to ϕ ≲ 110 MeV where f ̸= 0 and the CDW dominates
the potential. The CDW leads to a minimum at ϕ ∼ 45 MeV for small m0

and lowers the potential for large m0. This e�ect is more pronounced for
large mN∗ . The interplay of these e�ects determines a possible homogeneous
nuclear matter ground state. The chirally invariant mass contribution ∝ aχ̄
plays a crucial role in the onset of the CDW. However, taking other quantities
into account, one notices that it a�ects the properties of the CDW phases
only indirectly. Since the tetraquark condensate vanishes for small ϕ, the
values of gω and ĝ1 are relevant.

Following the discussion in Ref. [82] two sets of parameters are used to
describe the chiral partner of the nucleon. The �rst set covers a state with
the mass about mN∗ = 1535 ± 15 MeV and a rather small m0 contribution
m0 = 459 ± 117 MeV. The second set uses a mass mN∗ = 1650 ± 15 MeV
with a larger m0 contribution m0 = 659 ± 146 MeV. In the former case the
lower limit of the compressibility K can only be achieved for the upper limit
of m0; in addition, nuclear matter is not necessarily homogeneous. Using the
second parameter set these problems are resolved: the compressibility K is
correct and a homogeneous nuclear matter ground state is always obtained.
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Figure 3.9: The e�ective potential as a function of ϕ at µ = 923 MeV for
mN∗ = 1200 MeV at the extrema of χ̄, ω̄0, and f . The parameter m0 is
varied in the range 400 − 700 MeV (brown, purple, red, green, blue, gray,
black). For all cases the CDW modi�es the potential at ϕ ∼ 50 MeV.
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Figure 3.10: The e�ective potential as a function of ϕ at µ = 923 MeV for
mN∗ = 1500 MeV at the extrema of χ̄, ω̄0, and f . The parameterm0 is varied
in the range 400− 700 MeV (brown, purple, red, green, blue, gray, black).

The behavior at nonzero µ is shown in Fig. 3.12. As already mentioned
for mN∗ = 1500 MeV and small m0 = 450 MeV no homogeneous ground
state is present. However, for m0 = 500 MeV we have the already discussed
case with a transition at µ = 975 MeV and the corresponding mixed phase
from ρ = 2.49ρ0 to ρ = 10.75ρ0. For mN∗ = 1650 MeV and m0 = 600 MeV a
homogeneous ground state is realized up to µ = 1103 MeV. This translates
into a homogeneous phase up to ρ = 4.19ρ0 and a mixed phase up to ρ =
9.50ρ0. For a slightly higher m0 = 650 MeV the homogeneous phase ends
at µ = 1184 MeV which corresponds to a mixed phase between ρ = 5.04ρ0
and ρ = 9.46ρ0. The three cases that lead to a homogeneous nuclear matter
ground state di�er only in the appearance of the second phase transition:
the larger m0 and mN∗ are, the higher µ. In the homogeneous phase as well
as in the CDW phase the curves overlap. These results are summarized in
Table 3.4.

52



m0 = 400 MeV

m0 = 450 MeV

m0 = 500 MeV

m0 = 550 MeV

m0 = 600 MeV

m0 = 650 MeV

m0 = 700 MeV

50 100 150
Φ @MeVD

-1500

-1000

-500

0

500

1000

1500

Ueff @MeVD

Figure 3.11: The e�ective potential as a function of ϕ at µ = 923 MeV for
mN∗ = 1650 MeV at the extrema of χ̄, ω̄0, and f . The parameterm0 is varied
in the range 400− 700 MeV (brown, purple, red, green, blue, gray, black).

mN∗ m0 h.g. µCDW ρl ρu color

1500 450 no < 923 − − brown
1500 500 yes 975 2.49 10.75 green
1650 600 yes 1103 4.19 9.50 red
1650 650 yes 1184 5.04 9.46 blue

Table 3.4: The presence of a homogeneous nuclear matter ground state (h.g.)
as a function of mN∗ and m0. The entries for mN∗ , m0, and µCDW are
measured in MeV, ρl and ρu in units of ρ0. µCDW gives the value for the
onset of the CDW. ρl and ρu are the lower and upper bound of the mixed
regime. The color corresponds to Fig. 3.12.
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Figure 3.12: The absolute minimum ϕ of the e�ective potential as a function
of µ for di�erent combinations of mN∗ and m0. The straight lines correspond
to the case where the minimum is homogeneous and the dashed line to the
case where the minimum is the CDW state. Brown line: mN∗ = 1500 MeV
and m0 = 450 MeV, green line: mN∗ = 1500 MeV and m0 = 500 MeV
(compare with ϕ in Fig. 3.7), red line: mN∗ = 1650 MeV and m0 = 600 MeV,
blue line: mN∗ = 1650 MeV and m0 = 650 MeV. The di�erent values for the
transitions are found in Table 3.4.
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Chapter 4

Arbitrary inhomogeneous
modulations in 1 + 1 and 3 + 1
dimensions

4.1 Introductory remarks

The appearance of inhomogeneous condensation at high densities is an im-
portant phenomenon in e�ective models. However, the computation is in
most cases not straightforward: only for very few examples the full solution
is known. In this chapter we introduce the so-called �nite-mode approach
which was discussed for the Gross-Neveu (GN) model in Ref. [66]. We im-
prove the �nite-mode approach and apply it to a broad range of e�ective
models in order to calculate inhomogeneous condensation. As a �rst step it
is necessary to test the method by reproducing well-known results. The GN
model and several variations of it will serve as a benchmark.

The �nite-mode approach is formulated in the framework of nonzero-
temperature �eld theory, but instead of calculating quantities in the thermo-
dynamical limit, the spatial and temperature dimensions retain a �nite size.
In addition, the energy eigenstates are determined numerically: this allows
to calculate thermodynamical quantities without the knowledge of the ana-
lytic expression of the energy. In principle the method allows to calculate the
behavior of fermions in a magnetic �eld and for inhomogeneous modulation
of the order parameter. The only limitation arises from computational time
and the working precision of the operating system.

There are both advantages and disadvantages: The advantages are that in
contrast to common lattice computations there is no sign problem at nonzero
densities [18], namely it is possible to reproduce known analytic results valid
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in the high-density regime. The �nite-mode approach has no statistical er-
rors, therefore quantities behave as smooth functions. This allows to optimize
parameters beyond the parameter choice in lattice simulations. The deter-
mination of the optimal parameters is numerically involved, but the gained
precision justi�es the e�ort. Also, it is possible to test the convergence of
physical quantities and analyze di�erent error sources. The disadvantages
are that, in order to �nd physically relevant results, all results have to be
extrapolated to the continuum limit or alternatively one has to show that
the extracted values are already close to the continuum limit. At the present
stage it is not possible to describe zero-temperature physics since this would
need an in�nite number of temporal modes. The method is also limited in
the high-temperature regime. However, a way around this problem will be
introduced at the end of the following section.

In order to introduce the method, known results for the inhomogeneous
condensation are veri�ed. In a �rst step the already known results for the
GN model and NJL2 model in 1+1 dimensions are reproduced and studied in
detail. Afterwards the knowledge gained is applied to the 3 + 1 dimensional
NJL model. The peculiarities of the NJL model induced us to use a slightly
di�erent version of the method used in 1 + 1 dimensions.

4.2 Inhomogeneous phases in 1 + 1 dimensions

4.2.1 The Gross-Neveu model and extensions

The GN model is rather simple, but it shares features of QCD, such as
asymptotic freedom, dynamical chiral symmetry breaking and its restoration,
dimensional transmutation, as well as meson and baryon bound states [146].
The Lagrangian of the GN model and the NJL model, both introduced in
chapter I, have a similar structure. At nonzero density it reads:

LGN =
N∑
i=1

ψ̄i (ıγµ∂
µ + γ0µ−m0)ψi +

1

2
g2

(
N∑
i=1

ψ̄iψi

)2

, (4.1)

with γ0 = −σ1 and γ1 = ıσ3 leading to {γµ, γν} = 2δµν . Notice that chiral
symmetry is realized in a discrete way, ψ → γ5ψ, and the term proportional
to m0 breaks chiral symmetry explicitly (analogous to a bare quark mass).
The 't Hooft limit N → ∞ with g2 ∝ 1/N is of interest since in this case
�uctuations are suppressed and chiral symmetry is spontaneously broken [36].
However, spontaneous symmetry breaking is only realized in the limit N →
∞ [147], for any �nite number N there is no spontaneous symmetry breaking.
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Moreover, in the 't Hooft limit an analytic solution for the thermodynamical
pressure including inhomogeneous condensation can be found [146].

There are several extensions of the GN model that concern chiral symme-
try. Adding the con�guration η = ψ̄iıγ5ψi, the Lagrangian which is invariant
under a continuous chiral symmetry (a.k.a. χGN model), reads:

LχGN =
N∑
i=1

ψ̄i (ıγµ∂
µ + γ0µ)ψi +

1

2
g2

( N∑
i=1

ψ̄iψi

)2

+

(
N∑
i=1

ψ̄iıγ5ψi

)2
 .

(4.2)

The invariance under chiral transformations can be easily shown when
one considers the fermion bilinear terms in the left-right decomposition ψ =
ψL + ψR,

ψ̄ψ = ψ̄RψL + ψ̄LψR ,

ψ̄γ5ψ = −
(
ψ̄RψL − ψ̄LψR

)
,

ψ̄γµψ = ψ̄RγµψR + ψ̄LγµψL . (4.3)

The chiral transformations of the left-handed and right-handed fermion �elds
are:

ψL → exp(ıθL)ψL , ψ̄L → ψ̄L exp(−ıθL) ,
ψR → exp(ıθR)ψR , ψ̄R → ψ̄R exp(−ıθR) . (4.4)

The bosonized version of the Lagrangian reads:

LχGN =
N∑
i=1

ψ̄i (ıγµ∂
µ + γ0µ+ σ + ıγ5η)ψi +

1

2
λ
(
σ2 + η2

)
. (4.5)

This version of the GN model is interesting since it favors the CDW as a
ground state. The phase diagram at nonzero µ and T only shows two phases
that are distinct at Tc = eC/π (with the Euler constant C) for all µ [148, 149].

The O(4) version of the GN model (a.k.a NJL2 which includes the σ-like
and pion-like con�gurations) reads:

LNJL2 =
N∑
i=1

ψ̄i (ıγµ∂
µ + γ0µ)ψi

+
1

2
g2

( N∑
i=1

ψ̄iψi

)2

+ ı

(
N∑
i=1

ψ̄iτ⃗ γ5ψi

)2
 , (4.6)
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with ψ̄i = (ū, d̄). The NJL2 model has two �avors, f = 1, 2. For simplic-
ity both are assumed to be degenerate and massless. After bosonization it
reduces to:

LNJL2 =
N∑
i=1

ψ̄i (ıγµ∂
µ + γ0µ+ σ + ıγ5τ⃗ · π⃗)ψi +

1

2
λ
(
σ2 + π⃗2

)
. (4.7)

In contrast to the χGN model, the ground state is not a CDW. The phase
diagram coincides with the GN model.

4.2.2 1 + 1 dimensional models in a box

The method of choice is the numerical Ansatz introduced in Ref. [66] to
which we also refer for a detailed presentation. For simplicity we consider the
chiral limit m0 = 0. Since the discretization is the same for the GN, χGN,
and NJL2 model we will only discuss it for the GN model. The partition
function of the GN model reads:

Z =

∫ ( N∏
i=1

Dψ̄iψi

)
e−S , (4.8)

where S is the action of the GN model:

S =

∫
d2x

 N∑
i=1

ψ̄i (ıγµ∂
µ + γ0µ)ψi +

1

2
g2

(
N∑
i=1

ψ̄iψi

)2
 . (4.9)

Using the standard procedure we replace the four fermion-interaction with a
scalar �eld σ and perform a Wick rotation to Euclidean space time:

SE =

∫
d2xE

[
1

2g2
σ2 +

N∑
i=1

ψ̄i (γµ∂
µ + γ0µ+ σ)ψi

]

=

∫
d2xE

(
1

2g2
σ2 +

N∑
i=1

ψ̄iQψi

)
, (4.10)

with the implicit de�nition of the Dirac operator Q. At this point the
fermions can be integrated out, leading to the e�ective action:

SE = N

∫
d2xE

[
1

2λ
σ2 − ln (detQ)

]
, (4.11)

with the rescaled coupling λ = Ng2. The nonzero-temperature and -density
behavior is found by minimizing the action SE with respect to σ. Due to
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technical problems discussed in detail in [66], it is advantageous1 to use the
operator product Q†Q instead of Q:

SE
N

=

∫
d2xE

[
1

2λ
σ2 − 1

2
ln
(
detQ†Q

)]
. (4.14)

Up to this point no assumption regarding σ has been made: σ and, as a
consequence Q are functions of the space variable x.

In order to �x the free parameters we consider homogeneous condensation
σ(x) = σ. The product Q†Q is calculated analytically:∑

k0,k1

ln det
(
Q†Q

)
=
∑
k0,k1

ln det
(
Q†)+∑

k0,k1

ln det (Q)

=
∑
k0,k1

ln (−ıγ0(k0 − ıµ)− γ1k1 − σ)

+
∑
k0,k1

ln (ıγ0(k0 + ıµ) + γ1k1 − σ)

=
∑
k0,k1

ln
(
k20 + k21 + σ2 − µ2 + ı2µk0

)
+
∑
k0,k1

ln
(
k20 + k21 + σ2 − µ2 − ı2µk0

)
=
∑
k0,k1

ln
[(
k20 + k21 + σ2 − µ2

)2
+ (2µk0)

2
]
. (4.15)

The e�ective action is evaluated in a �nite box of size V = L0L1. Within
our approximation this leads to a �nite number of modes N0 and N1; the
discrete momenta k1 and energies k0 read:

k0 =
2π

L0

(
1

2
+ n0

)
, and k1 =

2π

L1

n1 . (4.16)

1It is possible to use the product Q†Q since:∑
k0,k1

lndetQ =
∑
k0,k1

lnλk0,k1 =
∑
k0,k1

ln |λk0,k1|+ ı
∑
k0,k1

θk0,k1 + 2mπ , (4.12)

where λk0,k1 are the complex eigenvalues of Q and θk0,k1 is a complex phase. The parame-
ter m is an arbitrary integer constant that can be neglected. For the operator Q the phase
θk0,k1 is antisymmetric in the index k0: θk0,k1 = −θ−k0,k1. Therefore, it follows that:∑

k0,k1

lndetQ =
∑
k0,k1

ln |λk0,k1| =
1

2

∑
k0,k1

ln detQ†Q . (4.13)
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The e�ective action in the box changes to:

SB
N

=
1

2λ
L1L0σ

2

− 1

2

N0−1∑
n0=1−N0

N1∑
n1=−N1

ln


[(

2π

L0

(
1

2
+ n0

))2

+

(
2π

L1

n1

)2

+ σ2 − µ2

]2

+

[
2µ

2π

L0

(
1

2
+ n0

)]2}
. (4.17)

The length L0 and L1 correspond to di�erent cuto�s, the inverse temperature
cuto� ∆ and momentum cuto� Λ:

L0 =
1

T
= N0∆ , and L1 = 2π

N1

Λ
. (4.18)

The thermodynamic limit requires that L1 approaches in�nity (continuum
limit). Also the cuto� Λ has to approach in�nity. Hereafter it is shown that
both requirements are met for increasing N1. In addition, increasing N0 has
to lead to ∆ → 0.

It is convenient to express all variables in terms of a physical scale. To
this end we rewrite them as multiples of σ0:

Λ = f̂σ0 , ∆ = ŝ
1

σ0
, T = t̂σ0 =

σ0
ŝN0

, µ̂ =
µ

σ0
, and σ̂ =

σ

σ0
,

(4.19)

where σ0 is the vacuum expectation value of the �eld σ. Namely the quantity
σ0 has dimension energy and sets the energy scale of the system. The e�ective
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action reads:
SB
N

=
1

2λ
2π

N1

f̂σ0

ŝ

σ0
N0(σ0σ̂)

2

−
N0−1∑
n0=0

N1∑
n1=−N1

ln


( 2π

ŝ
σ0
N0

(
1

2
+ n0

))2

+

(
2π

2π N1

f̂σ0

n1

)2

+ (σ0σ̂)
2 − (σ0µ̂)

2
]2

+

[
2σ0µ̂

2π
ŝ
σ0
N0

(
1

2
+ n0

)]2
=
π

λ
N1N0

ŝ

f̂
σ̂2

−
N0−1∑
n0=0

N1∑
n1=−N1

ln


[(

2π

ŝN0

(
1

2
+ n0

))2

+

(
f̂
n1

N1

)2

+ σ̂2 − µ̂2

]2

+

[
2µ̂

2π

ŝN0

(
1

2
+ n0

)]2}
.

(4.20)

By minimizing the e�ective action SB/N w.r.t. the dynamical variable σ̂,
the homogeneous phase diagram can be analyzed. The only missing link is
the determination of the parameters f̂ , ŝ, and σ0, which will be shown in the
following section.

4.2.3 Fitting the parameters

The optimal �tting procedure ensures a small error and the best use of com-
putational resources. At this stage the model has many parameters that
have to be �xed, the number of modes N1 and N0 as well as the two cuto�s
ŝ and f̂ . In order to �x them one has to make use of already known results
and/or has to �guess� the correct behavior. In case of the GN model this
is rather simple. For low temperatures chiral symmetry is spontaneously
broken. Therefore at low temperatures the condensate σ shows only a small
temperature dependence and remains almost constant:

σ(T → 0) ≃ const. → σ0 . (4.21)

For the following calculation this sets the energy scale of the model. A further
speci�c quantity is the critical temperature Tc at which chiral symmetry gets
restored and the condensate vanishes:

σ(Tc) = 0 . (4.22)
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These two conditions are already enough to �x the parameters, as we will
see in the following.

First, we consider the e�ective action at µ̂ = 0. The gap equation in units
of the scale σ0 reads:

0
!
=
∂(SB/N)

∂σ̂

= 2σ̂

 π

2λ
N1N0

ŝ

f̂
−

N0−1∑
n0=0

N1∑
n1=−N1

1[
2π
ŝN0

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
+ σ̂2

 .

(4.23)

The gap equation has three solutions: the trivial one at σ̂ = 0 and two further
ones which satisfy the equation:

π

2λ
N1

ŝ

f̂
=

1

N0

N0−1∑
n0=0

N1∑
n1=−N1

1[
2π
ŝN0

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
+ σ̂2

. (4.24)

The left-hand side is independent of temperature and σ̂. Therefore the equa-
tion can be used to connect the behavior of σ̂ at di�erent temperatures.
Especially at the two temperatures t̂→ 0 and t̂ = t̂c the gap equation has to
be satis�ed. In order to achieve a low temperature t̂0 and as a consequence
σ̂(t̂ ≈ 0) = σ̂0, the number of temperature modes N0 has to be large. The
value of N0 that corresponds to the lowest temperature is denoted as N00,
with N00 > 0. This leads to the equation (in the following the e�ective
coupling λ′ = π

2λ
N1

ŝ

f̂
is used):

λ′ =
1

N00

N00−1∑
n0=0

N1∑
n1=−N1

1[
2π
ŝN00

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
+ σ̂0

2
. (4.25)

A second temperature of interest is the critical temperature t̂c, since at this
point σ̂(t̂c) = 0. The temperature t̂c corresponds to a certain number of
temperature modes N0 denoted as N0c, with N00 > N0c > 0. The gap
equation follows as:

λ′ =
1

N0c

N0c−1∑
n0=0

N1∑
n1=−N1

1[
2π
ŝN0c

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2 . (4.26)
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These two eqs. (4.25) and (4.26) can be subtracted from each other:

1

N00

N00−1∑
n0=0

N1∑
n1=−N1

1[
2π
ŝN00

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
+ σ̂2

=
1

N0c

N0c−1∑
n0=0

N1∑
n1=−N1

1[
2π
ŝN0c

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2 . (4.27)

This equation (4.27) will be referred to as the balanced gap equation (BGE).
Among the parameter ŝ, f̂ , and σ̂0 only two are independent, so it is possible
to absorb one. The common lattice choice is to set 1/ŝ = f̂ and calculate
the lattice spacing σ̂0. However, in our case it is more convenient to rescale
ŝ and f̂ with σ̂0 and set, with out loss of generality, σ̂0 = 1. The cuto�s ŝ
and f̂ are treated independently (due to comparisons with 3+1 dimensional
models this choice is more intuitive, since for 3 + 1 dimensional models it
allows to connect the cuto� f̂ directly to the physical cuto� of the model).
Nevertheless, all the results are independent of this choice. Notice, however,
that in the case of an explicit energy scale, e.g. the bare quark mass, the
lattice measure σ̂0 is no longer a free parameter. The BGE (in our case
without additional scales) reads:

0 =

N1∑
n1=−N1

 1

N00

N00−1∑
n0=0

1[
2π
ŝN00

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
+ 1

− 1

N0c

N0c−1∑
n0=0

1[
2π
ŝN0c

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
 .

(4.28)

At a �rst sight the BGE does not determine all di�erent parameters. In
order to constrain them further it is necessary to take a close look at their
interpretation.

The parameters can be divided in to three types:

• The �rst type accounts for the maximum number of temperature modes
N00 and the number of spatial modes N1. They are limited by the avail-
able computational power. Thus they are responsible for the overall
precision that can be achieved. The computational e�ort to calculate
the e�ective potential is of order O(N0N1) (with N0 smaller or equal
to N00). It is crucial to achieve the maximum precision by the given
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number of modes, since computational time exceeds very fast the given
resources with increasing number of modes.

• There is a second type of parameter that relate the numerical quantities
to physical meaningful observables. This is the temperature cuto� ŝ
which us related to the temperature t̂ by:

t̂ =
1

N0ŝ
. (4.29)

The BGE allows to connect the critical temperature t̂c and the tem-
perature t̂0 and therefore allows for the determination of ŝ.

• The third and last type of parameter which contains f̂ and N0c de�nes
the actual precision. In detail these are the momentum cuto� of the
box f̂ and the number of modes N0c related to the critical temperature
t̂c. In order to �x these remaining parameters, we choose them in such
a way that the physical quantity t̂c which follows from the BGE is
independent of f̂ and N0c:

∂t̂c

∂f̂
= 0 , and

∂t̂c
∂N0c

= 0 . (4.30)

These conditions guarantee the best convergence and also ensure small
cuto� e�ects. Studying the second derivative allows to judge the qual-
ity of the approximation, since for the optimal choice the curvature
approaches zero. For the BGE the derivative ∂t̂c

∂f̂
can be calculated

analytically. It reads:

0 =

N1∑
n1=−N1

n2
1


1

N0c

N0c−1∑
n0=0

1{[
2π
N0cŝ

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2}2

− 1

N00

N00−1∑
n0=0

1{[
2π
N00ŝ

(
1
2
+ n0

)]2
+
(
f̂ n1

N1

)2
+ 1

}2

 .

(4.31)

Remember that t̂c = 1/(N0cŝ) and t̂0 = 1/(N00ŝ) = N0c/N00 t̂c. Since
N0c is discrete, ∂t̂c

∂N0c
has to be calculated numerically.
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With these considerations the parameters can be �xed and the phase dia-
gram can be calculated. The parameter σ̂0 is excluded in the aforementioned
characterization since it is a free parameter and has therefore no in�uence
on the precision or convergence.

Further manipulations of the BGE allow to pin down the error sources.
Let us assume we have an in�nite number of modes N1. In this limit the sum
over N1 is replaced by an integral and can be solved immediately:

0 =
1

f̂N00

N00−1∑
n0=0

arctan

 f̂√[
2π

ŝN00
( 1
2
+n0)

]2
+1


√[

2π
ŝN00

(
1
2
+ n0

)]2
+ 1

(4.32)

− 1

f̂N0c

N0c−1∑
n0=0

arctan

[
f̂

2π
ŝN0c

( 1
2
+n0)

]
2π
ŝN0c

(
1
2
+ n0

) .

Then, taking the limit f̂ → ∞, the BGE reads:

0 =
1

N00

N00−1∑
n0=0

1√[
2π
ŝN00

(
1
2
+ n0

)]2
+ 1

−
N0c−1∑
n0=0

1
2π
ŝ

(
1
2
+ n0

) . (4.33)

Since the dependence of f̂ and N1 drops out, it is a fruitful Ansatz to pin
down the error arising from N00 and to choose the optimal value of N0c.
Doing so, we �nd t̂c as a function of N0c and N00. For a su�ciently large
number of modes N00 the critical temperature t̂(N0c) has to converge to the
analytically known value [37]:

t̂c = lim
N00→∞

t̂(N0c) =
eC

π
. (4.34)

The solution for the integrated BGE for di�erent values for N00 is displayed
in Fig. 4.1. Suboptimal choices of N00 and N0c lead to di�erent error contri-
butions. A too small number of modes N00 should be avoided, since it limits
the achievable precision in the determination of t̂c. Also the number N0c is
connected to the accuracy. A too small number of N0c cannot reproduce the
behavior in the high-temperature regime. For a number close to N00 one has
not enough modes to calculate the low-temperature regime and σ̂0 is likely
not a constant. After all the resulting critical temperature is too large. The
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graphical representation of the BGE in Fig. 4.1 ful�lls the requirement:

∂t̂c
∂N0c

= 0 , (4.35)

for best convergence, as far as a discrete quantity allows to ful�ll such a
condition. For a large number of modes N00 the critical temperature t̂c only
depends slightly on the number N0c. Therefore, it is possible to consider
temperatures above t̂c and below t̂0, at least for a small range. The nu-
merical studies showed that the exact value for the critical temperatures
is approached from higher values. Therefore the temperature cuto� leads
always to a slightly too high critical temperature.
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N00�N0 c=t
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Figure 4.1: The plot shows t̂c as the solution to the integrated BGE (4.33)
for di�erent choices of N00 as a function of N0c: green dots: N00 = 32, red
dots: N00 = 128, blue dots: N00 = 512, black line: analytic result t̂c = eC/π.
We distinguish three di�erent sources for an error in the calculation of t̂c. It
also shows how for a larger number of N00 the minimum moves to a smaller
ratio N00/N0c.

Table 4.1 shows how the continuum limit for the temperature modes is
realized. Already a very small number of modes is enough to have a precise
determination of the critical temperature t̂c. However, in order to study
the very low-temperature behavior the required number of modes quickly
exceeds achievable sizes. For increasing box sizes the temperature cuto� ŝ
slowly converges to zero.

With the knowledge of the behavior of the temperature cuto� ŝ as a
function of N00 and N0c, the in�uence of the momentum cuto� f̂ can be
analyzed. Therefore we turn our attention back to the BGE (4.27). For
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N00 N0c N00/N0c = t̂c/t̂0 ŝ 1− t̂c/
eC

π
L0

32 6 5.33 2.94 · 10−1 −6.316 · 10−4 9.408
48 9 5.33 1.96 · 10−1 −3.187 · 10−4 9.408
64 11 5.82 1.60 · 10−1 −1.980 · 10−4 10.24
96 16 6.00 1.10 · 10−1 −1.005 · 10−4 10.56
128 20 6.40 8.82 · 10−2 −6.157 · 10−5 11.29
256 36 7.11 4.90 · 10−2 −1.881 · 10−5 12.54
512 66 7.76 2.67 · 10−2 −5.650 · 10−6 13.67
1024 120 8.53 1.47 · 10−2 −1.672 · 10−6 15.05
2048 222 9.23 7.95 · 10−3 −4.886 · 10−7 16.28
4096 412 9.94 4.28 · 10−3 −1.413 · 10−7 17.53

Table 4.1: The table clearly shows the convergence towards the exact ana-
lytic result. Even for a small number of modes the result has only a minor
error. In order to express a low temperature t̂0, compared to the critical t̂c,
a signi�cantly large number of modes N00 is required.

simplicity we chose the number of modes N00 and N0c to be constant, e.g.
N00 = 512 and N0c = 66. From the previous study one knows that these
values already lead to a very precise t̂c. Deviations from this value have to
arise from the �nite number of modes N1 and a �nite cuto� f̂ .

Fig. 4.2 shows the di�erent error sources for the determination of f̂ . For a
too small number of N1 the exact value cannot be achieved. However, a high
number of modes does also not guarantee a precise determination of t̂c. For a
too small cuto� f̂ a high number of modes does not improve the convergence,
since the cuto� is just too small do describe the relevant physics. To choose
a too large cuto� is also ine�ective since the given number of modes is not
enough to describe the desired physics. The comparison with the exact value
of t̂c shows that for an optimal choice for the cuto� f̂ the distribution is �at
and almost independent of f̂ , thus verifying the requirement:

∂t̂c

∂f̂
= 0 . (4.36)

Table 4.2 gives an overview on how to approach the continuum limit
by solving the BGE and ∂t̂c

∂f̂
= 0 simultaneously. The sign change in the

deviation from the exact critical temperature t̂c = eC/π results from the two
distinct error sources. In the given example, for N1 = 512 the two errors
almost cancel exactly, however for other quantities this is not necessarily the
case. It is remarkable that for N00 = N1 the sizes L0 and L are approximately
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Figure 4.2: The critical temperature t̂c that follows from the BGE (4.24)
is plotted as a function of f̂ for di�erent numbers N1: red line: N1 = 12,
blue line: N1 = 48, green line: N1 = 144, black line: analytic result. For
a too small number of modes N1 it is not possible to calculate the critical
temperature. For small f̂ the resulting critical temperature is independent
of the number of modes and it is always too small. For large cuto�s and for
a large number of modes the result converges towards the exact result. The
low temperature is calculated with N00 = 512 and the high temperature with
N0c = 66.

equal. A detailed study shows that the errors cancel also for di�erent sizes,
namely for the pairs:

(N00 = 32, N1 = 30) ,

(N00 = 64, N1 = 62) ,

(N00 = 128, N1 = 125) ,

(N00 = 256, N1 = 249) ,

(N00 = 512, N1 = 497) ,

(N00 = 1024, N1 = 993) ,

(N00 = 2048, N1 = 1984) ,

(N00 = 4096, N1 = 3956) . (4.37)

These mode pairs give the smallest error of the quantity t̂c compared to
the exact result. With this setup it is now possible to calculate a precise
homogeneous phase diagram. In order to ensure a small error, the system
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size will always be chosen to symmetric, N00 = N1. The �tting procedure is

N f̂ ŝ 1− t̂c/
eC

π
L

12 1.022 · 101 2.680 · 10−2 2.750 · 10−3 7.375
24 1.773 · 101 2.675 · 10−2 9.305 · 10−4 8.507
48 3.117 · 101 2.673 · 10−2 2.998 · 10−4 9.677
64 3.954 · 101 2.673 · 10−2 1.849 · 10−5 10.17
128 7.078 · 101 2.673 · 10−2 5.497 · 10−5 11.36
256 1.283 · 102 2.673 · 10−2 1.324 · 10−5 12.54
288 1.421 · 102 2.673 · 10−2 9.747 · 10−6 12.74
512 2.345 · 102 2.673 · 10−2 −3.099 · 10−7 13.72
1024 4.266 · 102 2.673 · 10−2 −4.410 · 10−6 15.08
2048 7.715 · 102 2.673 · 10−2 −5.409 · 10−6 16.68
4096 1.397 · 103 2.673 · 10−2 −5.608 · 10−6 18.42

Table 4.2: Already a reasonably small number of modesN1 is enough to calcu-
late the critical temperature to an acceptable precision. The low temperature
is calculated with N00 = 512 and the high temperature with N0c = 66.

the same for the GN, χGN, and NJL2 models.
It is also possible to integrate over the temperature component instead of

the momentum. Such a procedure allows to continuously change the temper-
ature and even to investigate zero temperature. However, the convergence
for t̂c is very slow and a huge number of modes is necessary. The achievable
precision can be found in Table 4.3.

4.2.4 Space-dependent operators in 1 + 1 dimensions

With the aforementioned steps it is already possible to calculate the homo-
geneous phase diagram. In order to implement inhomogeneous condensation
all the operators are in the matrix representation. At this point the explicit
form of the operator Q is relevant. The nonzero-temperature studies are
done in Euclidean space time. For the GN model the choice for the gamma
matrices is γ0 = −σ1, γ1 = ıσ3, and γ5 = −σ2. The explicit form of the
operator Q is:

Q = γ0(−∂0 + µ) + ıγ1∂1 − σ(x) . (4.38)
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N1 f̂ 1− t̂c/
eC

π

48 3.542 · 100 5.156 · 10−2

125 5.086 · 100 2.750 · 10−2

500 8.210 · 100 1.094 · 10−2

1000 1.377 · 101 6.895 · 10−3

9000 2.167 · 101 1.594 · 10−3

18000 2.626 · 101 1.086 · 10−3

36000 3.442 · 101 6.326 · 10−4

Table 4.3: The number of modes grows rapidly with a small gain in precision.
Only a huge number of modes allows for a precise determination of t̂c in
comparison to Table 4.1.

The space-dependent condensate is introduced as a Fourier decomposition,
e.g. an x-dependent condensate:

σ̂(x) =
N∑

n=−N

cne
ınx . (4.39)

The operator QM reads:

QM = ⟨k0 k|Q |k′0 k′⟩

=

∫
x0,x′0

∫
x,x′

e−ı(k0x0+kx)

× [−γ0∂0 + γ0µ+ ıγ1∂1 − σ(x)] eı(k
′
0x

′
0+k

′x′)δx0,x′0δx,x′

= δk0,k′0δk,k′ (−ıγ0k0 + γ0µ− γ1k)− δk0,k′0

N∑
n=−N

cnδk,k′+n

= δk0,k′0δk,k′ (−ıγ0k0 + γ0µ− γ1k − c0)

− δk0,k′0

N∑
n=1

(cnδk,k′+n + c∗nδk+n,k′) . (4.40)

In the matrix representation of the operatorQM it is now possible to calculate
the e�ective action in equation (4.11).

4.2.5 Phase diagram of the GN, χGN, and NJL2 model

The di�erent phase diagrams of the GN model, the χGN model, and the
NJL2 model will be presented in the following:
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• GN model: The phase diagram of the GN model can be reproduced
with high precision. In Fig. 4.3 the phase diagram is shown for a large
volume. The number of modes is N1 = 192 and N00 = 192. Three
di�erent phases are realized.

For small µ̂ chiral symmetry is spontaneously broken and a homoge-
neous broken phase is present (I), for high temperature one obtains a
chirally restored phase (II) and for low t̂ and large µ̂ an inhomogeneous
phase dominates the diagram (III). The three phases meet at a tricritial
point M3. In order to calculate the phase boundaries, di�erent meth-
ods are used. The phase boundary I/II follows from the minimum of
the e�ective action for a spatially independent condensate: σ̂ = const.
For the boundary I/III the e�ective action is minimized for a spatially
dependent condensate: σ̂ = σ̂(x). In that case all Fourier coe�cients
of σ̂(x) are treated as dynamical variables. The resulting minimum is
compared to the minimum that results from a homogeneous conden-
sate. At last, the boundary II/III follows from the zero of the curvature
of the potential at σ̂ = 0 because it is a 2nd order transition (a detailed
discussion is found in Appendix B).

II
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Figure 4.3: Phase diagram of the GN model for N00 = N1 = 192 modes.
Three distinguished phases are present: (I) homogeneous chirally broken
phase, (II) chirally restored phase, and (III) inhomogeneous broken phase.

A case in which a di�erent number of modes was used is presented in
Fig. 4.4. On can see that only small �nite-size e�ects close to the tri-
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critical point are present. The value for the tricritical point is known

III
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Figure 4.4: Same plot as in Fig. 4.3 but for di�erent number of modes. Red:
N00 = N1 = 48, green: N00 = N1 = 96, blue: N00 = N1 = 144, and black
N00 = N1 = 196. Except close to the tricritical point the overall behavior
agrees very well.

analytically as M3 = (µ̂3, t̂3) = (0.608221, 0.318329) and the compari-
son with the �nite-box calculations shows a good agreement:

N00 = N µ̂3,N 1− µ̂3,N/µ̂3 t̂3,N 1− t̂3,N/t̂3

48 0.62847 −3.3292 · 10−2 0.25051 2.1306 · 10−1

96 0.61144 −5.2934 · 10−3 0.30830 3.1509 · 10−2

144 0.60977 −2.5458 · 10−3 0.31353 1.5078 · 10−2

192 0.60938 −1.9108 · 10−3 0.31474 1.1274 · 10−2

0.60822 0.31833

The phase boundaries I/II, I/III and II/III at large µ̂ change very
little. The extrapolation to the continuum limit is not necessary at this
point since the changes are only marginal and the achieved precision is
already remarkable. For a larger number of modes the phase diagram
extends to lower temperatures. As a consequence, the inhomogeneous
phase extends to higher µ̂. The boundary II/III shows small changes
going from small to large sizes. The shape close to the phase boundary
I/III is shown in Fig. 4.5. The plot justi�es the description of the
inhomogeneous phase with only few Fourier coe�cients.
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Figure 4.5: The explicit shape of the condensate close to the phase transition
I to III at low temperatures. The upper panel shows the shape for a high
number (15) and a small number (6) of Fourier coe�cients, both coincide.
However, from the lower plot where the ratio is displayed it follows that the
higher-order contribution to the shape is < 1 %, and where σ̂ goes through
zero the contribution increases up to ∼ 2.5 %.

• χGN model: For the χGN model the phase diagram changes com-
pletely when compared to the GN model. For temperatures above
t̂c = eC/π and for any µ̂ chiral symmetry is restored. For lower tem-
peratures there are two phases. For µ̂ = 0.0 the homogeneous broken
phase coexists with the CDW. For any µ̂ > 0.0 the CDW is favored
compared to the homogeneous phase as well as to soliton-like modu-
lations. This can be seen in Fig. 4.6, where the e�ective potential is
plotted for di�erent t̂. The system size is N00 = N1 = 96. In this ex-
ample σ̂ and η̂ are allowed to form an inhomogeneous condensate. The
Fourier expansion for both is truncated after the �rst eleven complex
coe�cients:

σ̂(x) =
10∑
n=0

cne
ınx , and η̂(x) =

10∑
n=0

dne
ınx . (4.41)

The e�ective action is minimized for all 22 coe�cients. As a result, for
any t̂ and µ̂ several local minima are obtained. The minima assigned
to the CDW have only two nonzero coe�cients: one for the σ̂ and
one for the η̂, where the absolute value of both coe�cient as well as
the index of the Fourier coe�cient coincide (|cn| = |dn|). In Fig. 4.7
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the explicit shape for selected cases are shown. In a box only discrete
wave vectors are realized and the index of the Fourier coe�cient is
proportional to the wave vector. This allows to distinguish the di�erent
local minima in Fig. 4.6 and to enumerate them according to the index
of the corresponding Fourier coe�cient (color coding in Fig. 4.6). The
�nite-size e�ects are corrected in the e�ective action with a straight
line between the lowest values of the e�ective action at di�erent µ
(dotted line in Fig. 4.6). However, for low temperatures the minima
that correspond to a CDW with an even coe�cient index (c0, c2, c4 . . . )
are used. As expected, along the interpolation the wave vector grows
linearly with µ̂. The resulting phase diagram is shown in Fig. 4.8
where only two phases are present: for low temperature the CDW is
the ground state and for high temperature chiral symmetry is restored.

• NJL2 model: The phase diagram of the NJL2 model is exactly the
same as the one of the GN model. However, there is a small di�erence.
The absolute minimum is degenerate with respect to the O(4) symme-
try. This follows from the fact that the condensation is not necessarily
aligned with the σ �eld. The general solution reads as:√

σ2 + π2
1 + π2

2 + π2
3 ×

M(x)

A
, (4.42)

where now σ and π⃗ are bare numbers. The function M(x) is the gen-
eral solution of the GN model for the inhomogeneous condensation,
normalized by its amplitude A. Fig. 4.9 shows several examples and
Fig. 4.10 shows how the degeneracy works. However, it is not possible
to lower the energy further in the NJL2 model.

4.3 One-dimensional modulations in 3 + 1 di-

mensions

4.3.1 The NJL model in a box

The generalization of the �nite-mode approach to higher dimensions is a non-
trivial task. As outlined in chapter II the cuto� Λ of the NJL model has a
physical meaning. Also the computational e�ort exceeds the GN model by
several magnitudes.

Since the cuto� Λ has a physical meaning, the regularization scheme in�u-
ences the results. As already mentioned in earlier chapters the regularization
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schemes can be divided into covariance-conserving and covariance violating
schemes. In any case, the physical cuto� Λ is introduced as a multiple l̂ of
the physical scale m∗

0, the constituent quark mass in the vacuum. In general
m∗

0 sets the energy scale of the system.

• 3d cuto�: Considering that we study the system at nonzero density,
there is a preferred frame: the one of the medium at rest. The 3d
cuto� Λ3d is introduced in this frame and therefore violates covariance.
It is rather simple to implement since the 3d cuto� limits the three
momenta to be ki < Λ3d. The physical cuto� l̂ is equal to the cuto� f̂ .
In the �nite-mode approach each direction is treated separately:

|k1| < Λ3d , |k2| < Λ3d , and |k3| < Λ3d , with Λ3d = l̂σ0 = f̂σ0 .
(4.43)

It follows that in this case the procedure to �nd the optimal f̂ is not
necessary. Still, ŝ has to be optimized, but increasing the modes Ni

simply increases the precision. The cuto� can be modi�ed by a smear-
ing function g(ki):

ki → ki, g(ki) =

(
1− 1

1 + e−(|ki|−Λ)/r

)
g(ki) , (4.44)

where r parametrizes the smearing (r → 0 : g(ki) → Θ(Λ2
3d − k2i )).

This leads to a cuto� l̂ = Λ3d/σ0 which is di�erent from the cuto� f̂ .
However, they ful�ll the relation f̂ ≥ l̂ (with r → 0 : f̂ = l̂).

• Pauli-Villars regularization: This scheme, introduced in chapter II,
leaves the covariance intact. Again, the cuto� ΛPV is introduced as a
multiple l̂ of the scale m∗

0, but in contrast to the 3d scheme the cuto�
l̂ is never equal to f̂ (f̂ > l̂ must hold). The Pauli-Villars regulariza-
tions comes with one disadvantage: the computational time increases
strongly with the number of regulators. For a homogeneous condensate
the grand canonical potential with an arbitrary number of regulators
has the form:

SB =g′N0m̂
∗2

−
∑
a

Ca
∑
n0,n⃗

ln

[(
k̂20 +

ˆ⃗
k2 + m̂∗2 − µ̂2 + αal̂

2
)2

+ 4µ̂2k20

]
,

(4.45)
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with

k̂0 =
2π

ŝN0

(
1

2
+ n0

)
,

1

ŝN0

= t̂ , and k̂i = f̂
ni
Ni

. (4.46)

The sum over n0 runs from 0 to N0 − 1 and for n⃗ from −Ni to Ni for
i = 1 . . . 3. The coupling g′ already takes into account the di�erent
scales and multiple factors of π. In order to compare the phase dia-
gram for di�erent number of regulators, the parameters are �xed to the
constituent quark mass m∗ and the pion decay constant fπ [22]:

f 2
π = − 3

4π2
m̂∗2

∑
a

Ca ln

(
1 + αa

Λ2
PV

m∗2

)
. (4.47)

For the NJL model in the chiral limit the pion decay constant is: fπ =
88 MeV [73].

4.3.2 Fitting the parameters

The �tting procedure requires the balanced gap equation (BGE) for the NJL
model. The derivation of the BGE for the NJL model is equivalent to the
GN model in chapter 4.2.3. Minimizing SB from eq. (4.45) with respect to
m̂∗ at a low temperature t̂0 and the critical temperature t̂c, one �nds the
BGE that allows for �xing the parameters. Also in this case, without loss
of generality one parameter is set to one: m̂∗

0 = 1. For low temperature t̂0
the constituent quark mass is constant: m̂∗(t̂0) ≃ const. = m̂∗

0 = 1. At
the critical temperature t̂c the constituent quark mass vanishes: m̂∗(t̂c) = 0.
The resulting BGE reads:

0 =
∑
a

Ca

[
1

N0c

N0c−1∑
n0=0

∑
n⃗

(
1

k̂20 +
ˆ⃗
k2 + αal̂2

)

− 1

N00

N00−1∑
n0=0

∑
n⃗

(
1

k̂20 +
ˆ⃗
k2 + 1 + αal̂2

)]
.

(4.48)

The notation is the same as in chapter 4.3.1, but for illustrative purpose we
set µ̂ = 0.

In order to test the �nite-mode approach, the convergence of the critical
temperature t̂c as function of N00 and Ni will be studied in detail (the deriva-
tion follows the steps outlined in chapter 4.2.3). The knowledge about the
convergence is crucial due to limited resources. The computational e�ort to
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calculate the e�ective potential is of order O(N0

∏d
i Ni) (d is the number of

spatial dimensions, N0 is smaller or equal to N00). Therefore it results that
increasing the number of spatial modes by a factor of two gives an additional
factor 2d of computational time. The computational time for the e�ective
action using Pauli-Villars regularization exceeds the time needed for the 3d
cuto� regularization. The Pauli-Villars regularization, for the case of three
regulators ( C0 = 1, C1 = 1, and C2 = −2 with α0 = 0, α1 = 2, and α2 = 1)
with a mass m∗ = 300 MeV and a cuto� Λ = 647.41 MeV, will serve as a
benchmark for the achievable precision.

In Fig. 4.11 the convergence of t̂c is shown. The whole �tting procedure
is analog to the GN model in chapter 4.2.3. Again, two distinguished error
sources can be identi�ed. Similar to the GN model, a too small N00 gives
rise to a too large t̂c, and a too small Ni leads to a too small t̂c. As in the
GN model both error contributions almost cancel for the choice N00 = Ni

(indicated by the markers in the plot in Fig. 4.11), therefore for further
considerations a symmetric system is chosen. The precision is very high,
however this does not imply that other quantities have the same precision.
Still, the phase diagram at high densities reaches faster the continuum limit
with the symmetric choice of parameters Ni and N00.

4.3.3 Space dependent operators in 3 + 1 dimensions

The operator QM of chapter 4.2.4 can easily be generalized to 3 + 1 dimen-
sions, with an inhomogeneous condensation in z ≡ x3-direction:

Q3d,M =δk0,k′0δk⃗,⃗k′
(
−ıγ0k0 + γ0µ− γ⃗k⃗ − c0

)
− δk0,k′0

N∑
n=1

(
cnδk3,k′3+n − c∗nδk3,k′3−n

)
. (4.49)

However, the computational time increases a lot for the 3 + 1 dimensional
case. Although the operator is diagonal in k0, k1, and k2, one has to calculate
the determinant for each combination of these three variables. A faster way
with almost the same precision follows a sightly di�erent Ansatz. For certain
operators QM it is possible to separate them into di�erent orthogonal parts.
Each contribution to the energy needs only to be calculated once and is
independent of the other components. The single fermion energy is:

γ0(ıγ⃗∂⃗ − σ(x3))ψ(x⃗) = Eψ(x⃗) . (4.50)
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Applying the energy operator again results in:

γ0(ıγ⃗∂⃗ − σ(x3))γ0(ıγ⃗∂⃗ − σ(x3))ψ(x⃗) = E2ψ(x⃗)

⇔
[
∂1∂

1 + ∂2∂
2 + (−ıγ3∂3 − σ(x3))(ıγ3∂

3 − σ(x3))
]
ψ(x⃗) = E2ψ(x⃗) .

(4.51)

It is now possible to make a separation Ansatz and add up the eigenvalues to
the total energy. For the �rst two this is rather simple and straightforward
but the third part needs some attention. The matrix representation reads:

Q3,M = ⟨k3| ıγ3∂3 − σ(x3) |k′3⟩

=

∫
x3

e−ıx3k3
(
ıγ3∂

3 − σ(x3)
)
eıx3k

′
3

= −δk3,k′3γ3k
3 −

N∑
n=−N

cnδk3,k′3+n

= −δk3,k′3(γ3k
3 − c0)−

N∑
n=1

(cnδk3,k′3+n + c∗nδk3+n,k′3) . (4.52)

After calculating the eigenvalues of Q3,M and labeling them λ3, the energy
follows as:

Ek2,k2,λ3 =
√
k21 + k22 + |λ3|2 . (4.53)

This method has proved to be faster than calculating the determinant; it is
also possible to apply it to the 3d momentum cuto� and to the Pauli-Villars
regularization.

Both methods have a di�erent scaling of the computational time with the
number of modes. In the case of a one-dimensional modulation the time for
a brute-force calculation of the determinant is O(N3). For d+ 1 dimensions
with a one-dimensional modulation, this leads to a computational time for
the e�ective action of:

tb ∼ N0N
d−1N3 . (4.54)

Using the energy eigenvalues reduces the computational time. The calcula-
tion of the eigenvalues of a matrix is an O(N3) problem as well, but it has
to be done only once and therefore the computational time for the e�ective
action reads:

te = #N0N
d +#N3 . (4.55)

The �rst term measures the time to sum over all energy eigenstates while the
second is the time that is needed to calculate the eigenvalues. In the end the
computational time te scales with N3 for a number of dimensions d ≤ 3.
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4.3.4 Phase diagram of the NJL model in 3 + 1 dimen-

sions

The phase diagram of the NJL model in 3 + 1 dimensions has a rich struc-
ture depending on the regularization scheme. With the 3d cuto� scheme no
inhomogeneous phases are present. However, the picture changes completely
when using the Pauli-Villars regularization. The resulting phase diagram
for an inhomogeneous condensation in one direction σ(x3), see Fig. 4.12, is
similar to the one found in the GN model, see Fig. 4.3. However, they di�er
at moderate µ̂ and, for certain choices of the input parameters for the NJL
model, two separate inhomogeneous phases are present.

In order to have a general understanding di�erent sets of parameters
as well as di�erent number of regulators will be considered. At �rst the
overall phase diagram will be compared for di�erent lattice sizes for the case
m0 = 300 MeV with three regulators. Hereafter three di�erent masses m0

are considered. Finally, the phase diagram for two di�erent sets of regulators
will be compared. The parameters for these studies can be found in Table
4.4 and Table 4.5.

m∗[MeV] Λ[MeV]

250 736.79
300 647.41
350 608.68

Table 4.4: Parameter set for three regulators: C0 = 1, C1 = 1, and C2 = −2
with α0 = 0, α1 = 2, and α2 = 1.

m∗[MeV] Λ[MeV]

250 856.71
300 757.05
350 716.20

Table 4.5: Parameter set for four regulators: C0 = 1, C1 = −3, C2 = 3, and
C3 = −1 with α0 = 0, α1 = 1, α2 = 2, and α3 = 3.

The resulting phase diagram for the benchmark case (m0 = 300 MeV)
shows only minor dependence on the number of modes: already small sys-
tem sizes display the same structure. In Fig. 4.12 it is shown for di�erent
values of N00 = Ni. The phase diagram has two distinguished inhomoge-
neous phases IIIa and IIIb which are referred to as the inhomogeneous island
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(IIIa) and inhomogeneous continent (IIIb) [117]. However, in contrast to
previous �ndings [117], the continent remains �nite and shares the shape of
the GN model at high µ̂. The right boundary of the inhomogeneous island
shows that an interpolation scheme which is similar to the one of the GN
model (Appendix B) cannot compensate all the �nite-size e�ects. However,
for a large number Ni the shape of the phases coincide.s As a future task
the interpolation scheme for small sizes has to be improved. Nevertheless,
for the continent the �nite-size e�ects are small, the deviations that can be
found are moderate. The di�erences at µ̂ ∼ 1 GeV can be explained by the
discrete temperature steps.

The comparison between di�erent constituent quark masses m∗
0 in Fig.

4.13 reveals di�erent phase structures depending on m∗
0. The number of

regulators is three and the parameters are found in Table 4.4. For m∗
0 =

250 MeV and 300 MeV the island and the continent are separated, still the
gap between them decreases with a larger m∗

0. The inhomogeneous island
almost disappears for m∗

0 = 250 MeV. In contrast, for a large m∗
0 = 350 MeV

the island reaches the continent and both merge. The results in the region
below µ < 0.4 GeV are in systematic agreement with the �ndings of Ref.
[73]. The shape at high µ is very similar for di�erent m∗

0 and it follows the
GN behavior in 1 + 1 dimensions.

The number of regulators only a�ects the shape of the phase diagram in
a minor way, see Fig. 4.14. The di�erences are marginal for the homogeneous
regime and the inhomogeneous island as well as the inhomogeneous continent
for low temperature. However, at moderate µ and T the inhomogeneous con-
tinent becomes larger when a larger number of regulators is considered. In
principle one should consider an in�nite number of regulators [150]. This is
numerically not achievable, nevertheless already a �nite number of regula-
tors results in a stable phase diagram. The in�uence of a larger number of
regulators is regarded to be small.

80



0.2 0.4 0.6 0.8 1.0
Μ
`

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

S
`

eff

0.2 0.4 0.6 0.8 1.0
Μ
`

-4

-3

-2

-1

S
`

eff

0.2 0.4 0.6 0.8 1.0
Μ
`

-6

-5

-4

-3

-2

-1

S
`

eff

0.2 0.4 0.6 0.8 1.0
Μ
`

-8

-6

-4

-2

S
`

eff

Figure 4.6: The e�ective action of the χGN model in the presence of the
CDW. From the upper left to the lower right corner the temperature changes:
t̂ = 0.378 (N0 = 24), t̂ = 0.189 (N0 = 48), t̂ = 0.126 (N0 = 72), and
t̂ = 0.0945 (N0 = N00 = 96); for a symmetric box N00 = N1 = 96. The
colored lines are di�erent local minima and the absolute minima as a function
of µ̂. For the CDW only two Fourier coe�cients are nonzero, one for σ̂ and
one for η̂. Since the index for both is the same it is possible to assign the
minima to a corresponding nonzero coe�cient: c0/d0 (blue), c1/d1 (red),
c2/d2 (green), c3/d3 (gray). The dotted line is the interpolation between
the di�erent absolute minima. The wave vector of the CDW is directly
proportional to the index of the Fourier coe�cient. As expected, at the
absolute minimum the wave vector grows linearly with µ̂.
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Figure 4.7: The explicit form of the inhomogeneous condensation in the χGN
model. The CDW is shown for di�erent µ̂ (up: µ̂ = 0.295, middle: µ̂ = 0.585,
down: µ̂ = 0.875) at t̂ = 0.0945.
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Figure 4.8: Phase diagram of the χGN model. The two phases are separated
at the critical temperature t̂c = 0.567.
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Figure 4.9: The explicit condensation in the NJL2 model for a speci�c µ̂
close to the homogeneous/ inhomogeneous phase boundary at a low temper-
ature. All four cases describe the same degenerate inhomogeneous absolute
minimum. In the upper left corner only one �eld condenses, the upper right
corner shows the case where three �elds condense with the same amplitude,
in the lower left corner four �elds condense with the same amplitude and in
the lower right four �elds with di�erent amplitude condense.
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Figure 4.10: The numerical veri�cation of eq. (4.42). All four aforemen-
tioned cases from Fig. 4.9 are plotted at once. The squares of all four curves
coincides.
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Figure 4.11: The critical temperature t̂c as a function of Ni. The di�erent
colored curves represent di�erent numbers N00 = 48, . . . , 192, increasing in
steps of ∆N00 = 16 from red to magenta. The black markers indicate q sym-
metric number of modes and the black line is the result from a computation
in the continuum limit t̂c = 0.595935071.
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Figure 4.12: Phase diagram of the NJL model for di�erent sizes: N00 = Ni =
48, 72, 96, 120 (red, green, blue, and black). Four distinguished phases are
present: (I) homogeneous chirally broken phase, (II) chirally restored phase
and (IIIa/b) inhomogeneous broken phase. The upper panel shows a zoom of
the low energy regime. The lower panel shows the phase diagram including
the whole (IIIb) phase.
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Figure 4.13: Phase diagram of the NJL model for N00 = Ni = 120, but for
three di�erent constituent quark masses m∗

0 = 250, 300, 350 MeV (red, green,
and black). Three to four distinguished phases are present: (I) homogeneous
chirally broken phase, (II) chirally restored phase and (IIIa/b) inhomoge-
neous broken phase. In the case of m∗

0 = 350 MeV the phases (IIIa) and
(IIIb) merge. The upper panel shows the phase (IIIa) and how it changes
with m∗

0. In the lower panel the whole inhomogeneous region is shown.
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Figure 4.14: Phase diagram of the NJL model for: N00 = Ni =
120. The structure changes for di�erent constituent quark masses m∗

0 =
250, 300, 350 MeV (top, middle, and bottom). The number of regulators is
changed from three (blue) to four (black) regulators.
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Chapter 5

Outlook and Summary

5.1 Summary

The QCD phase diagram is still far from being completely understood. In
this thesis we discussed several facets of it. The realization of spontaneous
chiral symmetry breaking in the vacuum as well as its restoration at nonzero
temperature and density were topics of detailed discussions in a broad range
of models. In chapter II it could be shown that various aspects of QCD re-
quire di�erent e�ective models. In chapter III a model, called the extended
linear extended model (eLSM) that covers a broad range of QCD physics, was
introduced. It could be shown that at high densities inhomogeneous phases
in the form of a CDW are realized. In order to study inhomogeneous conden-
sation beyond the CDW Ansatz the �nite-mode approach was introduced in
chapter IV. In this chapter we summarize and review the main results that
we have found.

5.2 Concluding remarks about the scaling of Tc
in the large-Nc limit

The NJL model and the linear σ-model predict a di�erent scaling of the
critical temperature as a function of Nc. The mismatch between the two
models has been studied. The critical temperature Tc is independent of Nc

in the NJL model which is based on quark degrees of freedom. The critical
temperature Tc scales in the same way as the decon�nement phase transition
and is Tc ∝ N0

c . In contrast to the NJL model, in the linear σ-model the
scaling is Tc ∝

√
Nc.

The di�erent scaling behavior can be explained by the distinct mecha-
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nisms that trigger the phase transition. For the NJL model, quark loops
are responsible for chiral symmetry restoration. Since quarks carry a color
degree of freedom these loops survive in the large-Nc limit. Conversely, in
the linear σ-model meson loops induce the chiral phase transition. Mesons
are color neutral states and the interaction among themselves vanishes in
the large-Nc limit. Therefore the critical temperature rises and approaches
in�nity for large Nc.

The two models are closely related and the linear σ-model can be de-
rived from the NJL model through a hadronization procedure. However, the
hadronization is only performed once at zero temperature. In order to obtain
the same scaling behavior the hadronization should be performed at each T .
This would actually lead to temperature-dependent parameters in the linear
σ-model.

Motivated by these arguments we have chosen one parameter of the σ-
model to be temperature dependent. Such a temperature-dependent param-
eter introduces an additional temperature scale. This modi�cation leads to a
large-Nc limit which is in agreement with the expected behavior. By tuning
the additional temperature scale it is possible to lower the critical tempera-
ture to Tc ≈ 200 MeV, a value which is in line with recent models and lattice
results on the chiral phase transition. Furthermore it is clear that meson
loops give a substantial reduction of the critical temperature for small Nc,
they also smoothen the transition and can in�uence the order of the tran-
sition. However, meson loops alone are not the driving contribution behind
the QCD chiral phase transition.

The aforementioned phenomenological modi�cation of the σ-model is
primitive, but there are other possibilities. Following Ref. [135] we have
coupled the linear σ-model to the Polyakov loop. In the large-Nc limit the
Polyakov loop dominates the properties at nonzero temperature. The chiral
phase transition is triggered by the decon�nement phase transition and, as
a consequence, Tc scales as N0

c .
In conclusion, studies of the chiral phase transition within purely hadronic

models are possible, but it is important to modify them to be in agreement
with the large-Nc limit.

5.3 Basis for upcoming studies of inhomoge-

neous condensation in the eLSM

The eLSM includes (pseudo)scalar as well as (axial-)vector mesons and is
capable of describing vacuum phenomenology such as the masses and decay
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rates. In addition dilatation invariance can be preserved when including
the dilaton �eld. In the baryon sector the nucleons are introduced as parity
doublets. The so-called mirror assignment allows for a chirally invariant mass
contribution to the nucleons, which does not originate directly from the chiral
condensate. In order to ensure dilatation invariance in the baryon sector an
additional scalar resonance is included: a light tetraquark/molecular state.

With the outlined model it is possible to reproduce, besides vacuum phe-
nomenology, also nuclear matter ground-state properties, such as the binding
energy and the compressibility. These achievements are in contrast to other
models, e.g. the Walecka model or the Bonn potential which is not invariant
under chiral transformations. The NJL model is invariant under chiral trans-
formations, but nuclear-matter cannot be reproduced. Even in the eLSM,
the reproduction of nuclear-matter properties remains a �ne tuning problem.
Therefore, the nuclear matter ground state serves as input parameter (except
compressibility). The compressibility is calculated after all parameters were
�xed and turns out to be in agreement with the experiment.

A question that arises at this point is about the nature of the nuclear
matter ground state. In the eLSM the nuclear matter ground state remains
homogeneous for a broad range of parameters. Still, inhomogeneous con-
densation in the form of a chiral density wave (CDW) at high densities is a
relevant phenomenon. It is possible to change the transition from homoge-
neous to inhomogeneous matter by changing the mass of the chirally partner
of the nucleon and the chiral invariant mass contribution.

In order to obtain these results, �rst a simpli�ed version of the model was
used. The explorative study showed that for mπ = 139 MeV homogeneous
nuclear matter is obtained. However, the picture changes when sending the
pion mass to zero (chiral limit). It is no longer possible to �nd a homogeneous
nuclear matter ground state. At any non-zero baryon density the CDW is
the favored state of matter. Therefore, the homogeneous ground state follows
from the explicit symmetry breaking. Furthermore, chiral symmetry does not
get restored at high baryon chemical potential and the chiral condensate even
increases for increasing density.

In the next step, we showed that inhomogeneous condensation, when us-
ing the eLSM with a physical pion mass, is relevant as well. At high densities
the favored ground state is always a CDW. The mechanism that ensures the
formation of a homogeneous nuclear matter ground state depends on general
aspects of the parity-doublet model. In the simpli�ed version of the model,
the homogeneous ground state followed from the explicit symmetry breaking.
This is in contrast to the full version of the eLSM where the explicit symmetry
breaking is suppressed due to the pion-wave renormalization. However, the
wave-function renormalization also enables the formation of nuclear matter,
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since it separates the minimum assigned to the nuclear matter ground state
and the one for the CDW. The absolute location of the CDW minimum as a
function of ϕ does not change much when exchanging the σ-model with the
eLSM, but the location assigned to the nuclear matter ground state moves
towards larger values of ϕ.

In the regime of the CDW the structure of the model changes. The link
between the nucleon and its chiral partner disappears, since the tetraquark
condensate approaches almost zero (the small remnant prevents a level cross-
ing, the overall results do not change when assuming the tetraquark conden-
sate to be zero). This allows to simplify the model in the CDW regime by
considering only the nucleon. Moreover, it is believed that at high densities
the transition to quark matter occurs between ρ0 − 10ρ0.

The eLSM was tested for CDW formation for three di�erent possible
chiral partners of the nucleon: N∗(1535), N∗(1650), and a hypothetical
N∗(1200). It follows that all three allow to form a homogeneous nuclear
matter ground state and at high densities they lead to a CDW. However,
the onset of the CDW is sensitive to m0 and the demand for homogeneous
nuclear matter sets a lower bound m0 ≳ 450 MeV.

Using a set of parameters which allows for a correct description of the
nuclear matter ground-state properties, we �nd that the onset of the inho-
mogeneous phase occurs at 2.49ρ0 for mN∗ = 1.50 GeV and at 4.19ρ0 for
mN∗ = 1.65 GeV. This transition is followed by a mixed phase, where homo-
geneous and inhomogeneous matter coexist until 10.75ρ0 formN∗ = 1.50 GeV
and 9.50ρ0 for mN∗ = 1.65 GeV. For higher densities forms the CDW.

Upcoming studies in the framework of the parity-doublet model at non-
zero densities should be performed in the Nf = 3 version of the model in the
baryon sector. Also further parity-doublets have to be included. This leads
to an enlarged mixing scenario in which the two positive-parity states N(940)
and N(1440) together with the two-negative states N(1535) and N(1650) are
described at the same time. Furthermore, the delta resonances are important
to describe vacuum phenomenology and have to be taken adequately into ac-
count, which in the framework of the mirror assignment implies the presence
of positive and negative parity JP = 3

2

±
multiplets [151]. Also, in future

studies one should go beyond the CDW Ansatz. The �nite-mode approach,
introduced in chapter IV, allows to perform a more detailed numerical anal-
ysis of the phases that are realized.
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5.4 Remarks and promising applications of the

�nite-mode approach

Inhomogeneous condensation is an important phenomenon at high density. A
broad range of e�ective models show the existence of inhomogeneous phases.
However, in most cases a straightforward analytic calculation is not possible.
The �nite-mode approach is a solid method for future studies of inhomoge-
neous condensation. The connection to lattice calculations allow to rely on
existing results and strategies. However, since the introduced method has
no statistical error, it is feasible to go beyond the limitation that arises in
common lattice calculations. Also no sign problem is present. Thus, it is
possible to determine di�erent error sources and ensure the optimal criteria
for convergence. The convergence is stable and for most quantities a contin-
uum extrapolation is not necessary. Also a method to correct for �nite-size
e�ects is introduced. However, for certain cases the interpolation method
needs improvement.

The parameters are optimized to show best convergence. As a result we
�nd that the extension of the box with an almost symmetric number of modes
in space and temperature directions is favored. The optimization procedure
leads to a very high precision at certain points of the phase diagram. One
future task will be to translate this high precision to all points of the phase
diagram.

Besides the extension to higher dimensions, multiple �eld minimization
is an achievement and an interesting application for the future. Namely, we
showed that the �nite-mode approach has no limitation concerning the num-
ber of inhomogeneous �elds. Analytic results for up to four inhomogeneous
�elds are reproduced. The only limiting factor is the computational time that
increases quadratically when doubling the number of Fourier coe�cients de-
scribing the condensing �elds.

The phase diagram of the Gross-Neveu (GN) model and of several vari-
ations of it were reproduced in great detail. It was shown that the method
is capable of dealing with di�erent box sizes and a huge number of dynam-
ical variables. Close to the homogeneous/ inhomogeneous phase boundary
soliton-like solutions minimize the potential. However, these can be approx-
imated with a small number of Fourier coe�cients. Close to the inhomoge-
neous/ restored phase transition sinusoidal shapes are the realized con�gu-
rations.

As a �rst extension the so-called χGN model was introduced. The χGN
model has only one �avor, but besides the σ also the η is present. The phase
diagram of the χGN features a low-temperature phase where the CDW in
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realized, and a high-temperature phase where chiral symmetry is restored.
For low temperature the ground state is a CDW with a wave vector ∝ µ.
Within the �nite-mode approach this result can be reproduced through a
dynamical minimization of two arbitrary functions, where the CDW was not
an input.

Another extension is the NJL2 model. It contains two �avors which corre-
spond to the σ and the pion triplet degrees of freedom. The NJL2 shows the
same phase diagram as the GN model, but �in addition� the ground state is
degenerate. However, no lower minimum of the potential, compared to the
GN model solution, is found.

As a next step the method was extended to 3 + 1 dimensions in the
framework of the NJL model. Existing results could be reproduced: for the
3d momentum cuto� no inhomogeneous phases where obtained. However,
with the Pauli-Villars regularization it is possible to obtain inhomogeneous
phases. In addition the Pauli-Villars regularization allowed to describe the
inhomogeneous continent. The continent was reported to be in�nite [117]
but in our analyses it remains �nite and shares the shape of the GN model
at high µ. This e�ect is stable against changes in the constituent quark mass
as well as the number of regulators. In addition, for a large constituent quark
mass the inhomogeneous island and continent merge. However, the physical
interpretation of the inhomogeneous continent is not yet clear, further studies
are needed.

At this point the method has proven to reproduce all test scenarios. These
are only simple examples of what is possible. Two future applications are
outlined here: the implementation of magnetic �elds and higher-dimensional
modulations.

The e�ect of magnetic �elds in quark matter is an important aspect of
recent discussions [152, 153, 154]. The implementation of magnetic �elds is
challenging and in many cases the e�ects are approximated by the lowest
Landau level. The description of magnetic �elds and inhomogeneous con-
densation at the same time was rarely studied in literature. However, with
the �nite-mode approach it is possible to answer this interesting question.
Guided by the idea behind the lowest Landau-level approximation, we as-
sume a magnetic �eld parallel to a possible inhomogeneous phase. The low-
est Landau-level approximation results in an e�ective dimensional reduction.
Strong magnetic �elds will only allow for dynamics parallel to the magnetic
�eld. Therefore a 3 + 1 dimensional model reduces to a 1 + 1 dimensional
one. The �nite-mode approach allows for a straightforward implementation
of magnetic �elds. The covariant derivative ∂µ is replaced by Dµ = ∂µ+ıeAµ,
with the external magnetic �eld B (Aµ = (0, 0,−Bx, 0)). Calculating the en-
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ergy squared one �nds that a separation Ansatz can be applied:

γ0(ıγ⃗D⃗ − σ(x3))γ0(ıγ⃗D⃗ − σ(x3))ψ(x⃗) = E2ψ(x⃗)

⇔
[
D1D

1 +D2D
2 + (−ıγ3∂3 − σ(x3))(ıγ3∂

3 − σ(x3))
]
ψ(x⃗) = E2ψ(x⃗) .

(5.1)

Therefore the �nite-mode approach allows for a study of the e�ect of magnetic
�elds on inhomogeneous condensation. Following the outlined argument for
both regularizations, the 3d cuto� as well as the Pauli-Villars, should lead
to a GN-like phase diagram at high magnetic �elds. This is even more in-
teresting since for the 3d cuto� no inhomogeneous condensation is present
and using Pauli-Villars regularization the inhomogeneous phases in the NJL
model already share, up to some extent, the structure of the GN model.

Another topic of major interest are higher-dimensional modulations. It
is possible to calculate any higher-dimensional inhomogeneous structure in
the �nite-mode approach. However, computational resources limit such an
endeavour. The calculation of a full phase diagram at a large volume and for
a large variety of multidimensional inhomogeneous modulations of several
�elds are not yet numerically feasible. It is, however, possible to access a
special class of higher-dimensional modulations. For instance in an O(4)
symmetric model three �elds condense in di�erent spatial directions:

π1 → π1(x)

π2 → π2(y)

π3 → π3(z) . (5.2)

Since all �elds are orthogonal the energy separates in three distinguished
parts:

E2ψ(x⃗) =
{[
−ıγ1∂1 − ıγ5τ1π1(x)

] [
ıγ1∂

1 − ıγ5τ1π1(x)
]

+
[
−ıγ2∂2 − ıγ5τ2π2(y)

] [
ıγ2∂

2 − ıγ5τ2π2(y)
]

+
[
−ıγ3∂3 − ıγ5τ3π3(z)

] [
ıγ3∂

3 − ıγ5τ3π3(z)
]}
ψ(x⃗) . (5.3)

This Ansatz leads to a self-consistent solution of the NJL model in 3 + 1
dimensions with Jacobi elliptic functions as the general solution for each
�eld [39]. Unfortunately, knowing these solutions does not provide us with
an answer to the question, if higher-dimensional modulations are relevant or
not. However, guided by these solutions it is possible to answer the question
partially.

These are only two examples of many possible applications. Other promis-
ing applications are the eLSM or other hadronic models, which show that

95



inhomogeneous condensation is relevant at high densities. The �nite-mode
approach provides a strong tool to investigate them in a general framework.

On a long-term scale the �nite-mode approach should contain gluon de-
grees of freedom (a least in an e�ective way). With this setup it will be
possible to study inhomogeneous phases, magnetic �elds, and a con�ning
potential at the same time.
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Appendix A

Characteristic polynomial

The characteristic polynomial:

0 = det (Qparity doublet − λ18) , (A.1)

where Qparity doublet contains all prefactors of the bilinear terms found in eq.
(3.38). Since Qparity doublet is diagonal in p0 − µ+ gωω̄0, a shift is performed:

p0 − µ+ gωω̄0 − λ→ p0 . (A.2)

This manipulation leads to the determinant:

0 =det

(
/p+ γ3γ5τ3f − 1

2
ĝ1φ m0

m0 /p− γ3γ5τ3f + 1
2
ĝ2φ

)
=det

[(
/p+ γ3γ5τ3f − 1

2
ĝ1φ

)(
/p− γ3γ5τ3f +

1

2
ĝ2φ

)
−m2

0

]
=

{[
p20 − p⃗2 − f 2 −m2

0 −
1

4
ĝ1ĝ2ϕ

2

]2
− (p20 − p⃗2)

(
1

2
ĝ1 −

1

2
ĝ2

)
ϕ2

− f 2

[
4p2z +

(
1

2
ĝ1 +

1

2
ĝ2

)2

ϕ2

]}2

− (p20 − p⃗2 + p2z)

[(
1

2
ĝ1

)2

−
(
1

2
ĝ2

)2
]2

4f 2ϕ4

=
∏

e=±1, k=1...4

[
p0 + e

√
p⃗2 +mk(pz)2

]
. (A.3)

Eight di�erent energy eigenstates emerge, four positive and four negative
ones, enumerated with k = 1, . . . , 4. Sending the wave vector f to zero the
energy levels of the parity-doublet model for homogeneous condensation are
obtained. This result does not change for m0 = aχ̄.
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Appendix B

Phase boundary II/III

The phase boundary can be calculated in di�erent ways. The boundary
between homogeneous condensation and inhomogeneous condensation can
be found by comparing the e�ective action at the homogeneous minimum
and the e�ective action minimized for all Fourier coe�cients cn. In order
to �nd the second-order phase transition from an inhomogeneous phase to a
restored phase, it is advantageous to use the curvature of the e�ective action
SB from eq. (4.14). In general the curvature at the absolute minimum SM of
the e�ective action SB vanishes for a second-order phase transition:

0 =
∂2

∂σ̂2
SM

∣∣∣∣
σ̂=0

. (B.1)

This is also true for a second-order phase transition from inhomogeneous
condensation to restored chiral symmetry. However, for inhomogeneous con-
densation, σ̂ is a function of x with a discrete spectrum. We de�ne the
curvature k̂ as a function of the Fourier coe�cients cn:

k̂ = min
n>0

{
∂2

∂c2n
SB(σ̂(x))

∣∣∣∣
σ̂(x)=0

}
. (B.2)

The coe�cient c0 is not considered since it corresponds to a homogeneous
condensate. For what concerns the phase transition from an inhomogeneous
phase to a restored phase, one needs to calculate the curvature at SM =
SB(σ̂(x) = 0). If k̂ > 0 the phase is restored and no nonzero cn can lower the
e�ective potential further. On the contrary, in the case k̂ < 0 it is possible to
lower the e�ective potential with at least one nonzero cn. The second-order
phase transition takes place at k̂ = 0.

Figs. B.1, B.2 and B.3 show the curvature k̂ at σ̂ = 0 as a function of
µ̂. Each plot in the left panel shows a di�erent temperature and di�erent
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colors stand for di�erent N1. The curvature k̂ is a function of the discrete
parameter n of the Fourier coe�cients cn and therefore of the discrete wave
vector. This is visible in the plots as a kind of wave structure which is more
pronounced for low temperatures. This structure is a �nite-size e�ect for
which k̂ can be corrected. The interpolation is done with a parabola. The
parabola is chosen in such a way that it intersects each one of the three curves
k̂ (red, black and green) in only three points. In addition, at each intersection
point the derivative of k̂ coincides with the derivative of the parabola. The
three marker points are the intersection points of the parabola. The zero of
the parabola that is between the lowest and highest of the three intersection
points of k̂ with the parabola is the transition point.

The right panels of Figs. B.1, B.2, and B.3 show the interpolation of
the dots of the left plot. The parabolas for di�erent sizes N1 coincide in
their transition point. We conclude that the interpolation procedure leads
to a stable �nite-size correction over all temperatures t̂ and at high chemical
potential µ̂. For low temperatures the structure is more complicated and the
interpolation is done with the waves with smaller k̂.
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Figure B.1: k̂ as function of µ at t̂ = 0.189 (N0 = 48). The size is N00 = 96
with di�erent N1 = 72, 96, 120 (red, green, black). The left panel shows k̂
as a function of µ̂ and the three intersection points of k̂ with the parabola.
The right panel shows the three intersection points of k̂ with the parabola
and the parabola itself. The interpolated transition point coincides nicely for
di�erent sizes N1, the curves are very close to each other.

The NJL model follows the aforementioned pattern with the exception
that only two points are used for the interpolation. This follows from the
complicated structure of the phase diagram, which is also re�ected in k̂.
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Figure B.2: k̂ as function of µ at t̂ = 0.126 (N0 = 72). The size is N00 = 96
with di�erent N1 = 72, 96, 120 (red, green, black). The left panel shows k̂ as
a function of µ̂ and the three intersection points of k̂ with the parabola. The
interpolation is done with every second wave, this procedure is supported by
the comparison of di�erent sizes N1. The curves are very close to each other.
The right panel shows the three intersection points of k̂ with the parabola
and the parabola itself. The interpolated transition point coincides nicely for
di�erent sizes N1.
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Figure B.3: k̂ as function of µ at t̂ = 0.0945 (N0 = N00 = 96). The size is
N00 = 96 with di�erent N1 = 72, 96, 120 (red, green, black). The left panel
shows k̂ as a function of µ̂ and the three intersection points of k̂ with the
parabola. The interpolation is done with every second wave. This procedure
is supported by the comparison of di�erent sizes N1. The curves are close
to each other. The right panel shows the three intersection points of k̂ with
the parabola and the parabola itself. The interpolated transition point is in
good agreement for di�erent sizes N1.
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Deutschsprachige
Zusammenfassung

Das QCD Phasendiagramm ist bei Weitem noch nicht vollständig verstanden
und in dieser Arbeit werden verschiedene Aspekte beleuchtet. Das Auftreten
der spontanen Symmetriebrechung der chiralen Symmetrie im Vakuum, sowie
ihre Restauration bei endlicher Temperatur und Dichte, werden in mehreren
Modellen im Detail besprochen.

Zusammenfassende Bemerkungen über das Ska-

lieren von Tc im Large-Nc Limes

Das NJL Modell und das lineare σ-Modell sagen ein unterschiedliches ska-
lieren der kritischen Temperatur Tc, als Funktion von Nc, voraus. Diese
Diskrepanz der beiden Modelle wird in der vorliegenden Arbeit untersucht.
Im NJL Modell, welches auf Quark Freiheitsgraden basiert, ist die kritische
Temperatur Tc unabhängig von Nc. Die kritische Temperatur Tc skaliert
somit in der gleichen Weise, wie die Temperatur des Decon�nement-Phasen-
übergangs. Im Gegensatz zum NJL Modell, skaliert im linearen σ-Modell die
kritische Temperatur mit Tc ∝

√
Nc.

Das unterschiedliche Skalierungsverhalten kann auf die unterschiedlichen
Mechanismen, die hinter dem Phasenübergang stehen, zurückgeführt wer-
den. Im NJL Modell sind Quark Schleifen für die chirale Symmetrie-Wie-
derherstellung verantwortlich. Da Quarks einen Farbfreiheitsgrad tragen,
bleiben sie im large-Nc Limit erhalten. Im Gegensatz hierzu steht das lineare
σ-Modell, in welchem Mesonschleifen den chiralen Phasenübergang verant-
worten. Mesonen sind farbneutrale Zustände, deren Wechselwirkung untere-
inander im Large-Nc Limit unterdrückt wird. Aus diesem Grund steigt die
kritische Temperatur und geht gegen Unendlich für groÿes Nc.

Die beiden Modelle stehen miteinander in enger Verbindung und das lin-
eare σ-Modell kann über eine Hadronisierungsprozedur aus dem NJL Modell
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abgeleitet werden. Grundsätzlich wird die Hadronisierung nur im Vakuum
durchgeführt. Um das gleiche Skalierungsverhalten zu erhalten, muss die
Hadronisierung zu jedem T durchgeführt werden, welches zu temperaturab-
hängigen Parameter im linearen σ-Modell führen würde.

Motiviert durch dieses Resultat, führen wir einen temperaturabhängigen
Parameter im σ-Modell ein. Eine solcher temperaturabhängiger Parameter
führt zu einer weiteren Energie-Skala. Diese Modi�kation führt schlieÿlich
zu einem Large-Nc Limit, der mit dem erwarteten Verhalten übereinstimmt.
Über diese weitere Energie-Skala ist es möglich die kritische Temperatur auf
Tc ≈ 200 MeV zu reduzieren, einen Wert, der mit aktuellen Modellen und
Gitterrechnungen für den chiralen Phasenübergang übereinstimmt. Zusät-
zlich reduzieren die Mesonenschleifen die kritische Temperatur für Nc = 3
substantiell, glätten den Phasenübergang und können die Ordnung beein-
�ussen. Letztlich sind Mesonenschleifen also nicht die verantwortliche Kraft
für den chiralen Phasenübergang.

Neben einer einfachen phänomenologischen Modi�kation des linearen σ-
Modells, ist es auch möglich, die Polyakov-Schleife an das lineare σ-Modell
zu koppeln. Im Large-Nc Limit dominiert die Polyakov-Schleife das Verhal-
ten bei endlicher Temperatur. Der chirale Phasenübergang wird durch den
Decon�nement-Phasenübergang ausgelöst und als Konsequenz skaliert Tc wie
N0
c .
Studien des chiralen Phasenübergangs mit rein Hadronischen Modellen

sind möglich, aber es ist notwendig diese Modelle zu modi�zieren, um in
Übereinstimmung mit dem Large-Nc Limit zu sein.

Grundlage für Studien von inhomogenen Phasen

im eLSM

Das eLSM beinhaltet (Pseudo-)Skalare, sowie (Axial-)Vektor-Mesonen und
ist in der Lage, Vakuum-Phänomenologie, wie Massen und Zerfallsraten, zu
beschreiben. Zusätzlich kann durch Hinzunahme des Dilatonfeldes die Di-
lationsinvarianz sichergestellt werden. Der Baryonensektor beschreibt die
Nukleonen als Paritätsdoublets und die sogenannte Spiegel Zuordnung er-
laubt chiral invariante Massenbeiträge zur Nukleonenmasse, welche nicht di-
rekt aus dem chiralen Kondensat folgen. Um schlieÿlich die Dilationsinvar-
ianz der Neukleonen aufrecht zu halten, wird eine weitere skalare Resonanz
eingeführt: ein leichter Tetraquark/molekularer Zustand.

Mit dem eLSM ist es möglich, neben der Vakuum-Phänomenologie auch
den Nuklearen Grundzustand zu beschreiben, also z.B. die Bindungsenergie,
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oder die Kompressibilität. Dies steht im Gegensatz zu anderen e�ektiven
Modellen, wie dem Walecka Modell oder dem Bonn-Potential.

Neben diesen Erfolgen stellt sich die Frage nach dem Aufbau des Nuk-
learen Grundzustandes. Als Resultat unserer Studie zeigt sich, dass für eine
breite Wahl von Parametern der Grundzustand im eLSM homogen ist. Des
Weiteren zeigt sich die Relevanz inhomogener Kondensation in Form einer
CDW bei hohen Dichten. Es ist möglich den Übergang zu dieser Phase durch
die Wahl des chiralen Partners des Nukleons, sowie des chiral-invarianten
Massebeitrages zu beein�ussen.

Der Mechanismus, der einen homogenen Grundzustand sicherstellt, ba-
siert auf grundlegenden Eigenschaften des eLSM. Die notwendige Wellenre-
normierung der Pionen ermöglicht die Formation von homogener Materie. In
einer einfacheren Variante des Modells, die keine Wellenrenormierung bein-
haltet, folgt ein homogener Materie-Grundzustand aus der expliziten Bre-
chung der chiralen Symmetrie.

Für einen CDW Grundzustand ändert sich die Struktur des Modells. Die
direkte Verbindung zwischen Nukleonen und ihrem chiralen Partner ist stark
unterdrückt. Dies erlaubt es für hohe Dichten Vereinfachungen vorzunehmen
und das Modell auf das Nukleon zu reduzieren. Auch muss bei hohen Dichten
der Übergang zur Quarkmaterie in Betracht gezogen werden.

Die Formation eines homogenen Nukleare-Materie-Grundzustandes wurde
für drei verschiedene, mögliche chirale Partner des Nukleons getestet: ein
hypothetischer N∗(1200), N∗(1535) und N∗(1650). Alle drei Fälle erlauben
einen homogenen Materie Grundzustand und führen zu einer CDW bei hohen
Dichten. Das Einsetzen der CDW ist abhängig vom Massebeitrag m0 zum
Nukleon, der nicht aus dem chiralen Kondensat folgt. Die Notwendigkeit von
homogener Materie setzt eine untere Grenze für m0 ≳ 450 MeV.

Für die Parametersets, die eine Beschreibung des Grundzustandes zu-
lassen, zeigt sich ein Einsetzen der inhomogenen Phase bei 2.49ρ0 für mN∗ =
1.50 GeV und bei 4.19ρ0 für mN∗ = 1.65 GeV. Diesem Übergang folgt eine
gemischte Phase, in der homogene Materie und inhomogene Materie koex-
istieren und diese endet mit 10.75ρ0 für mN∗ = 1.50 GeV und 9.50ρ0 für
mN∗ = 1.65 GeV. Höhere Dichten führen zu einer CDW.

Weiterführende Studien im Rahmen des eLSM sollten Erweiterungen auf
Nf = 3 berücksichtigen. Auch könnten weitere Paritätsdoublets eingeführt
werden, was zu einem erweiterten Mischungsszenario führen würde, welches
die Paritäts-positiven Zustände N(940) und N(1440) zusammen mit den
Paritäts-negativen Zuständen N(1535) und N(1650) in einem Modell be-
schriebe. Eine weitere wichtige Erweiterung betri�t die Delta Resonanz.
Abschlieÿend sollte eine, über den Ansatz einer CDW hinaus gehende, inho-
mogene Kondensation studiert werden.
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Anmerkungen zum �nite-mode approach

Inhomogene Kondensation ist ein wichtiges Phänomen bei hoher Dichte. Eine
Vielzahl von e�ektiven Modellen zeigt die Existenz von inhomogenen Phasen,
wobei in den meisten Fällen eine unkompliziert Berechnung nicht möglich ist.
Es konnte gezeigt werde, dass der �nite-mode approach eine solide Meth-
ode für zukünftige Studien im Bereich der inhomogenen Phasen bildet. Die
Verbindung zu Gitterrechnungen erlaubt es, auf existierende Resultate und
Strategien zurückzugreifen. Da der �nite-mode approach keinen statistischen
Fehler besitzt, ist es möglich, Limitierungen herkömmlicher Gitterrechnungen
zu überwinden, so gibt es z.B. kein Vorzeichen Problem. Aus diesem Grund
können verschiedene Fehlerquellen identi�ziert und Ansätze diese zu min-
imieren, entwickelt werden. Dies führt zu soliden Kriterien, die zu schneller
Konvergenz der Observablen führen und in bestimmten Fällen kann sogar
von einer Kontinuumsextrapolation abgesehen werden. Zusätzlich werden
Wege zur Volumenkorrektur aufgezeigt.

Die Parameter werden für eine bestmögliche Konvergenz optimiert, was
wiederum zu einer symmetrischen Modenanzahl führt. Das Optimierungsver-
fahren sorgt für sehr hohe Präzision in bestimmten Punkten des Phasendi-
agramms. Eine Aufgabe für zukünftige Weiterentwicklungen ist es, diese
Genauigkeit in alle Bereiche des Phasendiagramms zu übertragen.

Neben der Weiterentwicklung zu mehreren räumlichen Dimensionen, ist
die Minimierung für mehrere Felder ein weiterer Erfolg und erlaubt für die
Zukunft breit gefächerte Studien. Im Detail konnten im �nite-mode approach
bis zu vier inhomogene Felder simultan beschrieben werden. Der einzig lim-
itierende Faktor ist der Rechenaufwand, welcher stark mit der Anzahl der
Fourierkoe�zienten, die die zu minimierenden Felder beschreiben, ansteigt.

Das Phasendiagramm des Gross-Neveu (GN) Modells, sowie verschie-
dener Variationen, konnte im Detail reproduziert werden. Neben verschiede-
nen Modenanzahlen wurde auch eine groÿe Anzahl dynamisch minimierter
Fourierkoe�zienten getestet. Nahe der Phasengrenze zwischen homogener
und inhomogener Kondensation wird das Potential durch Soliton-ähnliche
Strukturen minimiert. Es folgt, dass diese schon mit einer geringen Anzahl
von Fourierkoe�zienten beschrieben werden können. An der Phasengrenze
zwischen inhomogener und restaurierter Phase sind sinusförmige Strukturen
die bevorzugte Kon�guration.

Eine der ersten Erweiterungen des GN Modells ist das sogenannte chirale
GN (χGN) Modell, welches neben dem σ, auch den η Zustand beschreibt.
Das Phasendiagramm des χGN Modells unterteilt sich in eine Phase bei
niedriger Temperatur, in der die CDW realisiert ist und eine Phase bei hoher
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Temperatur, in der die chirale Symmetrie wiederhergestellt ist. Für niedrige
Temperaturen ist der Wellenvektor der CDW ∝ µ. Mit dem �nite-mode
approach kann dieses Resultat durch eine dynamische Minimierung zweier
beliebiger Funktionen reproduziert werden, wobei angemerkt sei, dass die
CDW keine Eingabe der Lösung ist.

Eine andere Weiterentwicklung ist das NJL2 Modell. Dieses Modell bein-
haltet neben dem σ auch das Pionen-Triplett als Freiheitsgrade. Das NJL2

Modell resultiert im selben Phasendiagramm, wie das GNModell, aber zusät-
zlich ist der Grundzustand entartet. Trotz alledem kann im Vergleich zum
GN Modell kein bevorzugtes Minimum gefunden werden.

In einem weiteren Schritt wurde der �nite-mode approach für das NJL
Modell in 3 + 1 Dimensionen weiterentwickelt. Bereits existierende Resul-
tate konnten reproduziert werden: für eine 3d Impuls-Regularisierung wur-
den keine inhomogenen Phasen gefunden. Demgegenüber war es möglich,
mit der Pauli-Villars Regularisierung inhomogene Phasen zu erhalten. Des
Weiteren erlaubte die Pauli-Villars Regularisierung eine detaillierte Unter-
suchung der inhomogenen Phase. Der inhomogene Kontinent wurde in der
gängigen Literatur als unendlich groÿ beschrieben, wohingegen unsere Anal-
yse auf einen kleineren Kontinent schlieÿen lässt, der für hohes chemischen
Potential eine Form, ähnlich der des GN Modells aufweist. Dieser E�ekt
ist stabil gegenüber verschiedenen Konstituentenquarkmassen, sowie einer
unterschiedlichen Anzahl von Regulatoren. Zusätzlich zeigt sich für groÿe
Konstituentenquarkmassen ein Verschmelzen des inhomogenen Kontinents
mit der inhomogenen Insel. Allerdings ist die physikalische Bedeutung des
inhomogenen Kontinents mit dieser Studie nicht geklärt und weitere Unter-
suchungen sind notwendig.

Der �nite-mode apporach konnte alle Testszenarien erfolgreich berech-
nen. Dies sind aber nur wenige einfache Beispiele. Zwei weitere, sehr vielver-
sprechende Anwendungsbeispiele, sind mehrdimensionale Modulationen, so-
wie das Einbinden magnetischer Felder. In einem Langzeit-Ziel sollten auch
gluonische Freiheitsgrade (zumindest in einer e�ektiven Beschreibung) einge-
bunden werden. Mit diesem Aufbau wäre es möglich, den E�ekt von mag-
netischen Feldern, inhomogener Kondensation und eines kon�nierenden Po-
tentials zu untersuchen.
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