THEORETIKUM ZUR QUANTENMECHANIK SS 2011

Aufgabenblatt 7 3.06.2011

Aufgabe 1: Adjungierte und hermitesche Operatoren (10 Punkte = 2 + 3 + 2 + 3 Punkte)

- 1. Sei A hermitesch. Zeigen Sie, dass auch A^n hermitesch ist.
- 2. Zeigen Sie, dass $\hat{x} \equiv x$, $\hat{p} \equiv -i\hbar\partial_x$, \hat{p}^2 und $\hat{H} = \frac{\hat{p}^2}{2m} + V$ hermitesche Operatoren sind und bestimmen Sie den zu $\hat{x}\,\hat{p}$ adjungierten Operator.
- 3. Seien A und B hermitesch. Zeigen Sie, dass [A, B] anti-hermitesch ist und $\{A, B\}$ hermitesch ist.
- 4. Sei A hermitesch. Zeigen Sie, dass der Operator $U=\exp(iA)$ die Gleichung $U^{\dagger}U=UU^{\dagger}=1$ erfüllt.

Aufgabe 2: Messung einer Observablen (8 Punkte = 4 + 4)

Eine Observable H sei bzgl. der Basis $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ durch die hermitesche Matrix aus Aufgabe 6.2 gegeben,

$$H = \begin{pmatrix} 0 & i/\sqrt{2} & -i/\sqrt{2} \\ -i/\sqrt{2} & 1 & 1 \\ i/\sqrt{2} & 1 & 1 \end{pmatrix} .$$

Das quantenmechanische System sei im Zustand $|u_3\rangle$

- 1. Welche möglichen Ergebnisse können bei einer Messung von H auftreten? Mit welchen Wahrscheinlichkeiten mißt man diese Ergebnisse?
- 2. Berechnen Sie den Erwartungswert $\langle H \rangle$ und die Standardabweichung ΔH im Zustand $|u_3\rangle$.

Aufgabe 3: Nochmals die Kontinuitätsgleichung (12 Punkte = 2 + 2 + 4 + 4)

Betrachten Sie ein System in einer räumlichen Dimension x. Sei p der Impuls-Operator, für den $[x,p]=i\hbar$ gilt.

1. Zeigen Sie, dass

$$[x, f(p)] = i\hbar \frac{df(p)}{dp} , \qquad (1)$$

wobei f(p) eine beliebig oft differenzierbare Funktion des Operators p ist.

2. Zeigen Sie, dass

$$[p, f(x)] = -i\hbar \frac{df(x)}{dx} , \qquad (2)$$

wobei f(x) eine beliebig oft differenzierbare Funktion des Operators x ist.

3. Zeigen Sie, dass

$$[p^2, f(x)] = -i\hbar \left(2p \frac{df(x)}{dx} + i\hbar \frac{d^2 f(x)}{dx^2} \right) . \tag{3}$$

wobei f(x) eine beliebig oft differenzierbare Funktion des Operators x ist.

4. Zeigen Sie, dass

$$[p^n, f(x)] = -i\hbar \left(np^{n-1} \frac{df(x)}{dx} \right) + O(\hbar^2) , \qquad (4)$$

wobei f(x) eine beliebig oft differenzierbare Funktion des Operators x ist.