THEORETIKUM ZUR QUANTENMECHANIK SS 2011

Aufgabenblatt 3 6.05.2011

Aufgabe 1: Klein-Gordon und Schrödinger (15 Punkte = 0.5 + 1.5 + 1.5 + 2 + 2 + 2 + 2.5 + 3)

Die Klein-Gordon-Gleichung für ein freies Teilchen mit Masse m lautet

$$\left(\frac{1}{c^2}\partial_t^2 - \triangle + \frac{m^2c^2}{\hbar^2}\right)\phi(t,\vec{x}) = 0 ;$$
 (1)

die Schrödinger-Gleichung für ein freies Teilchen mit Masse m lautet

$$i\hbar \frac{\partial \psi(t,\vec{x})}{\partial t} = -\frac{\hbar^2}{2m} \, \Delta \, \psi(t,\vec{x}) \; .$$
 (2)

1. Zeigen Sie, dass

$$\phi(t, \vec{x}) = Ne^{-\frac{i}{\hbar}(E(\vec{p})t - \vec{p}\cdot\vec{x})}$$
(3)

mit $E(\vec{p}) = \sqrt{\vec{p}^2c^2 + m^2c^4}$ eine Lösung der Gl. (1) ist.

- 2. Sei $\vec{p}^2 \ll m^2 c^2$. Bestimmen Sie $E(\vec{p})$ bis zur Ordnung \vec{p}^2 (nicht-relativistischer Limes). Ist Gl. (3) eine Lösung der freien Schrödinger-Gleichung (2) in diesem Limes?
- 3. Ist $\psi(t, \vec{x}) = e^{imc^2t/\hbar}\phi(t, \vec{x})$ mit $\phi(t, \vec{x})$ aus Gl. (3) eine Lösung der freien Schrödinger-Gleichung (2) im nichtrelativistischen Limes?
- 4. Sei $\phi(t, \vec{x}) = e^{-imc^2t/\hbar}\psi(t, \vec{x})$ eine beliebige Lösung von Gl. (1). Welche Bedingung muss $\psi(t, \vec{x})$ erfüllen, um eine Lösung der Schrödinger-Gleichung zu sein? Ist diese Bedingung im Aufgabenteil 1.3 erfüllt, wenn der nichtrelativistische Limes $\vec{p}^2 \ll m^2c^2$ betrachtet wird?
- 5. Sei $\psi(t)$ eine Lösung der Gl. (2), die nur von der Zeit t abhängt. Kann diese Lösung ein Teilchen im Rahmen der Wahrscheinlichkeitsinterpretation der Quantenmechanik beschreiben?
- 6. Sei $\psi(x)$ eine Lösung der Gl. (2), die nur von der Ortskoordinate x abhängt. Kann diese Lösung ein Teilchen im Rahmen der Wahrscheinlichkeitsinterpretation der Quantenmechanik beschreiben?
- 7. Sei Ω eine Raum-Region mit Volumen V und sei $\psi(t, \vec{x})$ eine Lösung der Gl. (2), die außerhalb von Ω null ist und innerhalb von Ω nur von t abhängt. Bestimmen Sie die Form der Wellenfunktion.
- 8. Sei $\psi(t, \vec{x})$ eine Lösung der Gl. (2), die außerhalb der disjunkten Raum-Regionen Ω_1 und Ω_2 (mit Volumen V_1 and V_2) verschwindet. Innerhalb von Ω_1 und Ω_2 hängt $\psi(t, \vec{x})$ nur von t ab. Bestimmen Sie die Wellenfunktion $\psi(t, \vec{x})$ unter der Voraussetzung, dass die Wahrscheinlichkeit, das Teilchen in Ω_1 zu finden, dreimal größer ist als die Wahrscheinlichkeit, das Teilchen in Ω_2 zu finden. (Bemerkung: in den Teilaufgaben 1.7 und 1.8 ignorieren Sie die Tatsache, dass die Schrödinger-Gleichung an den Rändern nicht erfüllt ist).

Aufgabe 2: Zur Wahrscheinlichkeitsinterpretation der Wellenfunktion (6 Punkte)

Die Wellenfunktion des Grundzustandes des harmonischen Oszillators ist

$$\psi_0(x) = \left(\frac{\alpha}{\pi}\right)^{1/4} \exp\left(-\frac{\alpha x^2}{2}\right) ,$$

wobei $\alpha = m\omega/\hbar$. Die Grundzustandsenergie ist

$$E_0 = \frac{\hbar\omega}{2} \ .$$

Wie groß ist die Wahrscheinlichkeit, das Teilchen in diesem Zustand außerhalb des "klassischen Bereichs" zu finden?

(Der klassische Bereich ist durch die "Umkehrpunkte" definiert.)

Hinweis: Man stößt in der Rechnung auf die Gaußsche Fehlerfunktion

$$\operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \ .$$

Um einen Zahlenwert für die Wahrscheinlichkeit anzugeben, benutzen Sie $\operatorname{erf}(1) \simeq 0,84$.

Aufgabe 3: Zeitentwicklung eines Wellenpakets (9 Punkte = 3 + 3 + 3)

 $\psi(t,x)$ sei die Lösung der zeitabhängigen Schrödinger-Gleichung eines freien Teilchens der Masse m in einer Dimension. Zum Zeitpunkt t=0 gelte

$$\psi(0,x) = A \, \exp\left(-\frac{x^2}{a^2}\right) \; .$$

- 1. Berechnen Sie die Fourier-Transformierte $\psi(0,p)$ der Funktion $\psi(0,x)$.
- 2. Berechnen Sie $\psi(t,p)$ mittels der zeitabhängigen Schrödinger-Gleichung im Impulsraum.
- 3. Transformieren Sie $\psi(t,p)$ zurück auf $\psi(t,x)$