Detecting new hadrons Excited QCD 2010

Daniel Scheirich

on behalf of ATLAS

2010/02/03

A bit of history

- 1974 Richter & Ting discovered *J*/ψ, the first hadron containing c-quark. At present day PDG table lists 22 charmed mesons, 16 charmed baryons, and 11 charmonia.
- 1977 Lederman discovered Υ, opening discovery window for b-hadrons
- At present day, PDG lists 7 b-mesons but only one b-baryon Λ⁰_b

 Parameters of b-mesons were well measured at B-factories (CLEO, BaBar, Belle, ...) but b-baryons are out of their reach. We need hadron colliders: Tevatron, LHC

- *pp* collider with c.m. energy 1.96 TeV
- Located in Fermi National Accelerator Laboratory near Chicago, Illinois, USA
- Tevatron Run II since March 2001 delivered integrated luminosity of about 5 fb⁻¹
- Two detectors CDF and D0 at collision points

Tevatron

 Tevatron Run II contributed significantly to the search for new hadrons

繁 M New Mesons at Tevatron

Before Tevatron: B^+ , B^0 , B^0_s , B^* , D-mesons

Tevatron:

- **B** $_{c}^{+}$ last unobserved B meson in ground state ¹
- Excited states B^{** 2} (B^{*}₂ seen already by LEP ³)
- Excited states B_s^{**} and D_s^{**}

¹Phys.Rev.D58, 112004 (1998); Phys.Rev.Lett.97, 012002 (2006); Phys.Rev.Lett.96, 082002 (2006) ²D0: Phys. Rev. Lett. 99, 172001 (2007); CDF Public Note 8945 (2007) ³Phys.Lett.B, Volume 425, Issues 1-2, Pages 215-226 (1998) ⁴D0: arXiv:0711.0319[hep-ex] (2007); CDF: arXiv:0710.4199[hep-ex]; (2007); D0 5034-CONF(2006).

💱 M New Baryons at Tevatron

■ Before Tevatron: only Λ_b was observed

Tevatron:

Σ

- Σ_b^{\pm} , Σ_b^{*} bottom strange-less baryon ⁵
- $\equiv \Xi_b^{-}$ bottom strange baryon ⁶
- Ω_b^0 bottom double-strange baryon ⁷

3b

D0 search for Ξ_b^- and Ω_b^0 lead by Eduard De La Cruz Burelo and Jianming Qian from the University of Michigan

J = 3/2

⁵CDF Phys. Rev. Lett. 99, 202001 (2007); arXiv:0706.3868v2 ⁶D0: Phys. Rev. Lett. 99, 052001 (2007) and CDF: Phys. Rev. Lett. 99, 052002 (2007) ⁷D0: Phys.Rev.Lett. 101, 232002 (2008); CDF: Phys.Rev D 80, 72003 (2009) < ≧ > < ≧ >

Daniel Scheirich on behalf of ATLAS

Detecting new hadrons

💱 M New Baryons at Tevatron

- Σ_b^{\pm} (buu, bdd) observed by CDF in decay channel $\Sigma_b^{\pm} \rightarrow \Lambda_b^0 \pi^{\pm}$
- Excited state Σ^{*±}_b was observed in the same decay mode
- $\overline{\Xi}_{b}^{-}$ (*dsb*) observed in decay $\Xi_{b}^{+} \rightarrow J/\psi \Xi^{-}$ (CDF, D0) and $\Xi_{b}^{+} \rightarrow \Xi_{c}^{0} \pi^{-}$ (CDF)
- Ω_b^- (bss) observed by D0 and CDF in decay channel $\Omega_b^- \to J/\psi\Omega^-$
- Σ_b^0 and Ξ_b^0 weren't observed

$$\Sigma_b^{\pm}, \Sigma_b^{*\pm}$$

its/(0.05 GeV/c

B-baryon summary table

Notation	Quark	J^P	(<i>I</i> , <i>I</i> ₃)	S		Mass (MeV)
	content					
Λ_b^0	b[ud]	$1/2^{+}$	(0,0)	0		5620.2 ± 1.6
Ξ_{b}^{-}	b[sd]	$1/2^{+}$	(1/2, -1/2)	-1		5792.4 ± 3.0
$\Sigma_{b}^{\tilde{+}}$	buu	$1/2^{+}$	(1, 1)	0		5807.8 ± 2.7
$\Sigma_{b}^{\underline{z}}$	bdd	$1/2^{+}$	(1, -1)	0		5815.2 ± 2.0
Ω_b^{-}	bss	$1/2^{+}$	(0,0)	-2	D0	$6165 \stackrel{\pm 10(stat)}{\pm 13(syst)}$
					CDF	$6054.4 \stackrel{\pm 6.8(stat)}{\pm 0.9(syst)}$
Σ_b^{*+}	buu	$3/2^{+}$	(1, 1)	0		5829.0 ± 3.4
$\Sigma_b^{\tilde{*}-}$	bdd	$3/2^{+}$	(1, -1)	0		5836.4 ± 2.8

Daniel Scheirich on behalf of ATLAS Detecting new hadrons Excited QCD 2010

э

Narge Hadron Collider

- *pp* collider with design c.m. energy 14 TeV
- Located in CERN at Swiss-Franco border near Geneva
- LHC started its operation in November 2009
- In November and December 2009 LHC experiments were collecting collision events at 900 GeV and 2.38 TeV

LHC

Four experiments occupy four interaction points along the ring
 Experiment LHCb is designed to study b-hadrons. In addition, two general purpose experiments ATLAS and CMS can be used to search for new hadrons

Detecting new hadrons

- For new searches for Heavy Flavour Hadrons the most important subsystems are **Inner Detector** (for full decay reconstruction) and Muon Spectrometer (for muon identification and trigger)
- Inner Detector consists of 3 pixel layers in barrel and 10 end-cap wheels, 4 silicon strip layers in barrel and 18 end-cap wheels, and Transition Radiation Tracker
- Trigger system has 3 levels, first one is hardware based
 - Low p_T muon trigger for $J/\psi(\mu^+\mu^-)$ final state
 - Level-1 low p_T jet with level-2 b-tagging for fully hadronic final states. It requires presence of tracks with large impact parameter in the jet.

Note: The second secon

- Level-1 muon trigger: |η| < 2.4, full φ coverage
- ATLAS level-2 trigger is Rol based. Due to timing constraints only regions of the detector around level-1 objects are reconstructed at level-2
- Two $J/\psi \rightarrow \mu^+ \mu^-$ trigger strategies are available: ⁸
 - Level-1 di-muon trigger, where each level-1 muon is confirmed at level-2 (topological trigger)
 - Only one level-1 muon is required. At level-2 both muons are found inside Rol around this level-1 muon (level-2 di-muon trigger)

arXiv:0901.0512 ; CERN-OPEN-2008-020

Daniel Scheirich on behalf of ATLAS

Detecting new hadrons

\mathfrak{R} ATLAS $J/\psi(\mu^+\mu^-)$ trigger

Efficiency of topological trigger (MC study)

Efficiency of level-2 di-muon trigger (MC study)

Daniel Scheirich on behalf of ATLAS

Detecting new hadrons

🖞 M Known hadrons at ATLAS

First step: before we start to search for new particles we have to re-discover the known ones

12

So far ATLAS has collected about 538,000 collision candidates at 900 GeV

Particles reconstructed in early data

イロト イポト イヨト イヨト

э

Particles reconstructed in early data

- These particles are final states of many heavy baryons decays
- It is important to be able to reconstruct them with good efficiency and resolution

イロト イポト イヨト イヨト

🖞 M Known hadrons at ATLAS

- Decays with J/ψ → μ⁺μ⁻ in the final state are favored because they can be used for triggering
- Several muon reconstruction algorithm are used to reconstruct low and high p_T muons
- Opposite charged muon pairs are combined in a vertex fit to reconstruct J/ψ
- Plot shows reconstructed mass peak of J/ψ in MC data of Λ⁰_b decay

Monte Carlo study

 $J/\psi(\mu^+\mu^-)$

💱 <mark>M New Heavy Flavour Hadrons at ATLAS</mark> 15

- ATLAS Beauty physics program's aim is to measure properties of b-mesons and baryons
- Part of the goal is to search for new hadrons and repeat the measurements done by Tevatron

Dec	ay		Trigger
B _c	\rightarrow	$J/\psi(\mu^+\mu^-)\pi^+$	di-muon J/ψ trigger
Λ_b	\rightarrow	$\Lambda^0(ho\pi^-)J/\psi(\mu^+\mu^-)$	di-muon J/ψ trigger
Ξ_b^-	\rightarrow	$\Xi^{-}(\Lambda^{0}\pi^{-})J/\psi(\mu^{+}\mu^{-})$	di-muon J/ψ trigger
	\rightarrow	$\Xi_c^0 \pi^-$	
	\rightarrow	$D^- \Lambda^0$	b-jet
	\rightarrow	$\Lambda_c^+ K^- \pi^-$	
Σ_b^{\pm}	\rightarrow	$\Lambda^0_b(\Lambda^0 J/\psi)\pi^\pm$	di-muon J/ψ trigger
	\rightarrow	$\Lambda^0_b (\Lambda^+_c \pi^-) \pi^\pm$	b-jet
Ω_b^-	\rightarrow	$J/\psi(\mu^+\mu^-)\Omega^-(\Lambda^0K^-)$	di-muon J/ψ trigger

💱 M New Heavy Flavour Hadrons at ATLAS 16

- Λ⁰, Ξ⁻, Ω⁻ are long living particles, therefore the decays will have cascade topology
- V⁰'s must decay inside SCT to reconstruct secondary vertex

💱 <mark>M</mark> New Heavy Flavour Hadrons at ATLAS 17

Signal reconstruction:

- **1** Reconstruction of last generation decays $(J/\psi, \Lambda^0, \Lambda_c^+, \Lambda_b^0, ...)$ using Kalman vertex fitter
- 2 Reconstructed candidates are combined to global cascade fit
- 3 Cuts on invariant mass, decay lengths, collimation, etc. reduce combinatorial background

Background estimation: wrong sign combinations, MC simulation

Daniel Scheirich on behalf of ATLAS

Detecting new hadrons

💱 M New Heavy Flavour Hadrons at ATLAS 18

Λ_b^0 example (MC study)

- J/ψ reconstruction: muon pair coming from a single vertex, cut on vertex quality and invariant mass is applied
- Λ⁰ reconstruction: opposite charge track pair coming from a single vertex. Cut on invariant mass M(pπ⁻) and vertex quality is applied. Λ⁰ must decay inside SCT to be reconstructed (only about 60%)

Daniel Scheirich on behalf of ATLAS Detecting new hadrons Excited QCD 2010

Λ_b^0 example (MC study)

- J/ψ and Λ⁰ candidates are combined in a cascade fit to reconstruct Λ⁰_b
- Cut on fit χ², invariant mass and Λ⁰_b decay length is applied to reduce background

 $\Lambda_b \to J/\psi \Lambda^0$

ATLAS should collect about 13k Λ⁰_b events with 30 fb⁻¹ of data ⁹

Daniel Scheirich on behalf of ATLAS	Detecting new hadrons	Excited OCD	= 2010	-) « (·
9 arXiv:0901.0512 CERN-OPEN-2008-020			-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Search for new heavy baryons at ATLAS

- Apart from confirmation of Tevatron results ATLAS will also look for new particles: *cb*-baryons, *bb*-baryons, etc.
- Decay modes with large enough B.R. must be used to collect sufficient number of events:
 - Tevatron CDF collected ca. 20 events of $B_c \rightarrow J/\psi(\mu^+\mu^-)/\nu$ with 0.11 fb⁻¹. B.R. of this decay is $\approx 0.3\%$
 - We assume the production cross section of double heavy quark baryons is about two times smaller
 - **Therefore** we are interested in processes with

 $\begin{array}{l} \text{B.R.}\gtrsim 6\times 10^{-4} \text{ for } 1 \text{ fb}^{-1} \text{ of data,} \\ \text{B.R.}\gtrsim 6\times 10^{-5} \text{ for } 10 \text{ fb}^{-1}, \\ \text{B.R.}\gtrsim 2\times 10^{-5} \text{ for } 30 \text{ fb}^{-1} \end{array}$

 Of course improvements in coverage, experimental techniques, and larger production cross section at LHC may allow us to access smaller B.R.

💱 <u>M</u> New Heavy Flavour Hadrons at ATLAS 22

Promising decays with J/ψ in the final state

 \blacksquare Easy to trigger but low B.R. of $b
ightarrow s \; J/\psi pprox 10^{-3}$

Decay			B.R. estimate		
Bottom ch	arme	d baryons			
$\Xi^0_{cb}(dcb)$	\rightarrow	$\Xi_c^0(\Lambda^0ar{K}^0)J/\psi$	$< 2 imes 10^{-7}$		
$\Omega^{0}_{cb}(scb)$	\rightarrow	$\Omega_c^0(\Omega^-\pi^+)J/\psi$	$< 1.5 imes 10^{-6}$		
	\rightarrow	$\Omega_c^0(\Omega^-\mu^+ u)J/\psi$	\sim		
	\rightarrow	$\Omega_c^0(\Xi^-K^-\pi^+\pi^+)J/\psi$	\sim		
	\rightarrow	$\Omega_c^0(\Omega^-\pi^+\pi^+\pi^-)J/\psi$	\sim		
$\Xi_{cb}^+(ucb)$	\rightarrow	$\Lambda_c^+(pK^-\pi^+)J/\psi$	Cabbibo suppressed		
	\rightarrow	$\Xi_{c}^{+}(\Xi^{-}\pi^{+}\pi^{+})J/\psi$	$< 2 imes 10^{-7}$		
Double bottom baryons					
$\Xi^{0}_{bb}(ubb)$	\rightarrow	$\Xi_{cb}^+\pi^-$			
00 . ,	\rightarrow	$\Lambda_{b}^{0}(\Lambda_{c}^{+}\pi^{-})J/\psi$	Cabbibo suppressed		
$\Omega_{bb}^{0}(dbb)$	\rightarrow	$\Xi_{b}^{2}J/\psi$	Cabbibo suppressed		
~~ ,		~			

💱 <mark>M</mark> New Heavy Flavour Hadrons at ATLAS 23

Promising fully hadronic decays (b-Jet trigger)

Decay		B.R. estimate		
Bottom ch	armed baryons			
$\Xi^0_{cb}(dcb)$	$\rightarrow D^{*+}(K^-\pi^+\pi^+)p\pi^-$	$^{-}K^{-}$ $\approx 4 imes 10^{-5}$		
	$\rightarrow D^0(K^-\pi^+)pK^-$			
$\Xi_{cb}^+(ucb)$	$\rightarrow D^{*+}(K^-\pi^+\pi^+)pK^+$	\sim 4 $ imes$ 10 $^{-5}$		
	$ ightarrow D^0 (K^- \pi^+) p ar{K}^0$			
Double bottom baryons				
$\Xi_{bb}^{0}(ubb)$	$\rightarrow \Xi^+_{cb}\pi^-$			
$\Xi_{bb}^{-}(ubb)$	$\rightarrow \Xi^{0}_{cb}\pi^{-}$			

- Larger B.R. but no muons to trigger on at level-1
- Low *p*^{*T*} b-jet trigger will have to be used (prescaled)
- Double heavy quark baryons will produce number of tracks with large impact parameter that can be used as level-2 trigger

💱 M Summary and conclusion

- Tevatron experiments contributed significantly to the discovery of new hadrons
- New ground state meson B_c and excited states B^{**}, B^{**}_s, D^{**}_s were discovered at Tevatron
- In heavy baryon search Tevatron contributed with discoveries of b-baryons Σ[±]_b, Σ^{*±}_b, Ξ⁻_b, and Ω⁻_b
- LHC started its operation in November 2009 and early data from ATLAS shows its capability to reconstruct long living particles like Λ^0 and K^0
- Once larger statistics is collected ATLAS will search for hadrons discovered at Tevatron
- Some promising decays of double heavy quark baryons were listed. They may be used to search for new hadrons at ATLAS