The role of the tetraquark at nonzero temperature

Achim Heinz

in collaboration with S. Strüber, F. Giacosa, D. H. Rischke

3rd February 2010

Outline

(1) Introduction

- Why do we need tetraquarks?
- What is a tetraquark?
(2) Our model
- Our potential
- Untwiddle the masses
- Nonzero T model
(3) Results
- Our potential
- Order of phase transition
- T dependence

4 Conclusion and outlook

Why do we need tetraquarks?

a simple idea to create matter is to combine a quark and an antiquark (quarkonium) to a meson

Why do we need tetraquarks?

a simple idea to create matter is to combine a quark and an antiquark (quarkonium) to a meson

- below 1.8 GeV we have more resonances than expected from an quarkonium picture
- lattice finds for scalar mesons higher masses

$$
M_{u \bar{d}}=1.4-1.5 \mathrm{GeV}
$$

- scalar quarkonia are p-wave states $(\mathrm{L}=\mathrm{S}=1)$, thus expected to be heavier than 1 GeV as tensor and axial-vector mesons
- mass degeneracy of $a_{0}(980)$ and $f_{0}(980)$

Why do we need tetraquarks?

a simple idea to create matter is to combine a quark and an antiquark (quarkonium) to a meson

- below 1.8 GeV we have more resonances than expected from an quarkonium picture
- lattice finds for scalar mesons higher masses

$$
M_{u \bar{d}}=1.4-1.5 \mathrm{GeV}
$$

- scalar quarkonia are p-wave states $(\mathrm{L}=\mathrm{S}=1)$, thus expected to be heavier than 1 GeV as tensor and axial-vector mesons
- mass degeneracy of $a_{0}(980)$ and $f_{0}(980)$
a possible solution to all these problems is to interpret the light scalars as tetraquark states

What is a tetraquark?

a tetraquark is a four quark state

What is a tetraquark?

a tetraquark is a four quark state
combine two quarks to a coloured diquark and couple two diquarks two a colourneutral particle

$$
\begin{gathered}
|q q\rangle=\mid \text { Space: } L=0\rangle \mid \text { Spin: }(\uparrow \downarrow-\downarrow \uparrow)\rangle|\mathrm{f}:(u d-d u)\rangle|\mathrm{c}:(R B-B R)\rangle \\
|q q\rangle=\rho_{k}=\sqrt{\frac{1}{2}} \epsilon_{i j k} q_{i}^{t}\left(C \gamma^{5}\right) q_{j} \\
\\
u \Leftrightarrow[\bar{d}, \bar{s}] \quad d \Leftrightarrow[\bar{s}, \bar{u}] \quad s \Leftrightarrow[\bar{u}, \bar{d}] \\
\bar{u} \Leftrightarrow[d, s] \quad \bar{d} \Leftrightarrow[s, u] \quad \bar{s} \Leftrightarrow[u, d]
\end{gathered}
$$

out of this correspondency, you can build up a tetraquark nonet

What is a tetraquark?

- tertaquark picture generates many resonances
- $f_{0}(600)$ is an s-wave state, thus it can be lighter than 1 GeV
- mass degeneracy of $a_{0}(980)$ and $f_{0}(980)$ can be explained with constituent quarks

Our potential

the model we use is the $S U(2)_{r} \times S U(2)^{\prime}$, limit of the $S U(3)_{r} \times S U(3)$, case
F. Giacosa, Phys.Rev.D75:054007 (2007)
A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, Phys.Rev.D79:037502 (2009)

Our potential

the model we use is the $S U(2)_{r} \times S U(2)^{\prime}$, limit of the $S U(3)_{r} \times S U(3)$, case
F. Giacosa, Phys.Rev.D75:054007 (2007)
A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, Phys.Rev.D79:037502 (2009)
linear sigma model + tetraquark

$$
V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi
$$

Our potential

the model we use is the $S U(2)_{r} \times S U(2)$, limit of the $S U(3)_{r} \times S U(3)$, case
F. Giacosa, Phys.Rev.D75:054007 (2007)
A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, Phys.Rev.D79:037502 (2009)
linear sigma model + tetraquark

$$
V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi+\frac{1}{2} M_{\chi}^{2} \chi^{2}-g \chi\left(\vec{\pi}^{2}+\varphi^{2}\right)
$$

tetraquark: $\chi=\rho^{\dagger} \rho$
diquark: $\quad \rho=\sqrt{\frac{1}{2}} \epsilon_{i j} q_{i}^{t}\left(C \gamma^{5}\right) q_{j}$
for $S U(2)$ each diquark ρ is invariant under chiral transformation

Untwiddle the masses

$$
\begin{aligned}
& V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi+\frac{1}{2} M_{\chi}^{2} \chi^{2}-g \chi\left(\vec{\pi}^{2}+\varphi^{2}\right) \\
& \varphi_{0}=\frac{F}{\sqrt{1-(2 g) /\left(\lambda M_{\chi}^{2}\right)}}+\frac{\epsilon}{2 \lambda F^{2}}+\ldots \text { quark condensate } \\
& \chi_{0}=\frac{g}{M_{\chi}^{2} \varphi_{0}^{2}} \text { tetraquark condensate }
\end{aligned}
$$

Untwiddle the masses

$$
V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi+\frac{1}{2} M_{\chi}^{2} \chi^{2}-g \chi\left(\vec{\pi}^{2}+\varphi^{2}\right)
$$

$$
\varphi_{0}=\frac{F}{\sqrt{1-(2 g) /\left(\lambda M_{\chi}^{2}\right)}}+\frac{\epsilon}{2 \lambda F^{2}}+\ldots
$$

quark condensate

$$
\chi_{0}=\frac{g}{M_{\chi}^{2}} \varphi_{0}^{2}
$$

tetraquark condensate
expanding the potential around the minimum:

$$
\begin{aligned}
V= & \frac{1}{2}(\chi, \varphi)\left(\begin{array}{cc}
M_{\chi}^{2} & -2 g \varphi_{0} \\
-2 g \varphi_{0} & M_{\varphi}^{2}
\end{array}\right)\binom{\chi}{\varphi}+\frac{1}{2} M_{\pi}^{2} \vec{\pi}^{2}+\ldots \\
& \text { where } M_{\varphi}^{2}=\varphi_{0}^{2}\left(3 \lambda-\frac{2 g^{2}}{M_{\chi}^{2}}\right)-\lambda F^{2} \text { and } M_{\pi}^{2}=\frac{\varepsilon}{\varphi_{0}}
\end{aligned}
$$

non diagonal mass matrix

$$
-2 g \varphi_{0} \varphi \chi
$$

since the mass matrix is not diagonal we have to diagonalize the potential

Untwiddle the masses

H and S chosen to diagonalize the potential

$$
\binom{H}{S}=\left(\begin{array}{cc}
\cos \theta_{0} & \sin \theta_{0} \\
-\sin \theta_{0} & \cos \theta_{0}
\end{array}\right)\binom{\chi}{\varphi}=B\binom{\chi}{\varphi}
$$

Untwiddle the masses

H and S chosen to diagonalize the potential

$$
\binom{H}{S}=\left(\begin{array}{cc}
\cos \theta_{0} & \sin \theta_{0} \\
-\sin \theta_{0} & \cos \theta_{0}
\end{array}\right)\binom{\chi}{\varphi}=B\binom{\chi}{\varphi} \equiv\binom{f_{0}(600)}{f_{0}(1370)}
$$

Untwiddle the masses

H and S chosen to diagonalize the potential

$$
\binom{H}{S}=\left(\begin{array}{cc}
\cos \theta_{0} & \sin \theta_{0} \\
-\sin \theta_{0} & \cos \theta_{0}
\end{array}\right)\binom{\chi}{\varphi}=B\binom{\chi}{\varphi} \equiv\binom{f_{0}(600)}{f_{0}(1370)}
$$

$$
\begin{gathered}
V=\frac{1}{2}(\chi, \varphi) B^{t} B\left(\begin{array}{cc}
M_{\chi}^{2} & -2 g \varphi_{0} \\
-2 g \varphi_{0} & M_{\varphi}^{2}
\end{array}\right) B^{t} B\binom{\chi}{\varphi}+\ldots \\
=\frac{1}{2}(H, S)\left(\begin{array}{cc}
M_{H}^{2} & 0 \\
0 & M_{S}^{2}
\end{array}\right)\binom{H}{S}+\ldots \\
\theta_{0}=\frac{1}{2} \arctan \frac{4 g \varphi_{0}}{M_{\varphi}^{2}-M_{\chi}^{2}},-\frac{\pi}{4}<\theta_{0}<\frac{\pi}{4} \\
M_{H}^{2}=M_{\chi}^{2} \cos ^{2} \theta_{0}+M_{\varphi}^{2} \sin ^{2} \theta_{0}-2 g \varphi_{0} \sin \left(2 \theta_{0}\right) \\
M_{S}^{2}=M_{\varphi}^{2} \cos ^{2} \theta_{0}+M_{\chi}^{2} \sin ^{2} \theta_{0}+2 g \varphi_{0} \sin \left(2 \theta_{0}\right) \\
\left(M_{S}^{2}-M_{H}^{2}\right)^{2}=\left(M_{\varphi}^{2}-M_{\chi}^{2}\right)^{2}+\left(4 g \varphi_{0}\right)^{2} \rightarrow\left|M_{S}^{2}-M_{H}^{2}\right| \geq 4 g \varphi_{0}
\end{gathered}
$$

Nonzero T model

we employ the CJT-formalism in the Hartree-Fock approximation to calculate the T dependency of our masses, condensates and mixing angle

Nonzero T model

we employ the CJT-formalism in the Hartree-Fock approximation to calculate the T dependency of our masses, condensates and mixing angle
masses, condensates and mixing angle become T dependent

$$
\begin{array}{lll}
M_{H} \rightarrow M_{H}(T) & M_{S} \rightarrow M_{S}(T) & M_{\pi} \rightarrow M_{\pi}(T) \\
\varphi_{0} \rightarrow \varphi(T) & \chi_{0} \rightarrow \chi(T) & \theta_{0} \rightarrow \theta(T)
\end{array}
$$

$$
\begin{array}{lll}
M_{H}(0)=M_{H} & M_{S}(0)=M_{S} & M_{\pi}(0)=M_{\pi} \\
\varphi(0)=\varphi_{0} & \chi(0)=\chi_{0} & \theta(0)=\theta_{0}
\end{array}
$$

Range of the parameters

our potential

$$
V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi+\frac{1}{2} M_{\chi}^{2} \chi^{2}-g \chi\left(\vec{\pi}^{2}+\varphi^{2}\right)
$$

Range of the parameters

our potential

$$
V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi+\frac{1}{2} M_{\chi}^{2} \chi^{2}-g \chi\left(\vec{\pi}^{2}+\varphi^{2}\right)
$$

two known values
$M_{\pi}=0.139 \mathrm{GeV}$
$\varphi_{0}=f_{\pi}=0.0924 \mathrm{GeV}$

Range of the parameters

our potential

$$
V=\frac{\lambda}{4}\left(\vec{\pi}^{2}+\varphi^{2}-F^{2}\right)^{2}-\epsilon \varphi+\frac{1}{2} M_{\chi}^{2} \chi^{2}-g \chi\left(\vec{\pi}^{2}+\varphi^{2}\right)
$$

two known values
$M_{\pi}=0.139 \mathrm{GeV}$
$\varphi_{0}=f_{\pi}=0.0924 \mathrm{GeV}$
three approximately known values
$M_{H} \approx 0.4 \mathrm{GeV} \quad f_{0}(600)=0.4 \mathrm{GeV}-1.2 \mathrm{GeV}$
$M_{S} \approx 1.2 \mathrm{GeV} \quad f_{0}(1370)=1.2 \mathrm{GeV}-1.5 \mathrm{GeV}$
g should be of the order of a few GeV
to manage these uncertainties we study variation of g, M_{S} and M_{H}
A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, Phys.Rev.D79:037502 (2009)

$M_{H}=0.4 \mathrm{GeV}$ fixed, g and M_{S} vary

- forbidden area arises from $\left|M_{S}^{2}-M_{H}^{2}\right| \geq 4 g \varphi_{0}$
- between first order and crossover region we find a second order phase transition
- $g \rightarrow 0$:
χ and φ decouple
$H \rightarrow \chi, S \rightarrow \varphi$
$M_{S}>0.948 \mathrm{GeV}:$
first order phase transition $M_{s}<0.948 \mathrm{GeV}$: crossover phase transition

T_{c} behaviour

increasing of g :

- mixing increases
- T_{c} decreases
- first order softens
- crossover is obtained for large g

$M_{S}=1.2 \mathrm{GeV}$ fixed, g and M_{H} vary

- forbidden area arises from $\left|M_{S}^{2}-M_{H}^{2}\right| \geq 4 g \varphi_{0}$
- between first order and crossover region we find a second order phase transition
- $g \rightarrow 0$:
χ and φ decouple $H \rightarrow \chi, S \rightarrow \varphi$ we get first order phase transition
- to get a crossover for a large M_{S} we need a large gap between M_{S} and M_{H}

Condensate

$$
M_{H}=0.4 \mathrm{GeV}, M_{S}=1.2 \mathrm{GeV} \text { and } g=3.4 \mathrm{GeV}
$$

- crossover phase transition at $T_{c} \approx 170 \mathrm{MeV}$
- $T<T_{c}$:
$\chi(T)$ goes like $\frac{g}{M_{\chi}^{2}} \varphi(T)^{2}$
- $T>T_{c}$:
$\chi(T)$ increases

Masses and mixing angle

$$
M_{H}=0.4 \mathrm{GeV}, M_{S}=1.2 \mathrm{GeV} \text { and } g=3.4 \mathrm{GeV}
$$

- predominantly $M_{S}(T)$ consists of quarkonium predominantly $M_{H}(T)$ consists of tetraquark
- mixing angle $\theta(T)$ increases till $T_{s}=155 \mathrm{MeV}$, then sign becomes negative T_{s} defined as $\theta\left(T_{s}\right)=\frac{\pi}{4}$
- at T_{s} both masses behave discontinously and the states interchange their roles
- for large T the mixing goes to zero and everything behaves like in the linear sigmar model

Conclusion and outlook

- a T dependent model including a tetraquark state
- order of phase transition changes with coupling g; if coupling g and mixing is large enough we also obtain a crossover phase transition for a mass of the chiral partner above 1 GeV
- mixing increases with T and at a temerature T_{s} a role interchange takes place
- include glueball states and vectormesons

Thank you
for your attention

