Introduction	Our model	Results	Conclusion and outlook

The role of the tetraquark at nonzero temperature

Achim Heinz

in collaboration with S. Strüber, F. Giacosa, D. H. Rischke

3rd February 2010

Introduction	Our model	Results	Conclusion and outlook
000	0000	000000	
Outline			

- Why do we need tetraquarks?
- What is a tetraquark?

Our model

- Our potential
- Untwiddle the masses
- Nonzero T model

3 Results

- Our potential
- Order of phase transition
- T dependence

Introduction	Our model	Results	Conclusion and outlook
●○○	0000	000000	
Why do we need	tetraquarks?		

a simple idea to create matter is to combine a quark and an antiquark (quarkonium) to a meson

Introduction	Our model	Results	Conclusion and outlook
●○○	0000	000000	
Why do we need	tetraquarks?		

a simple idea to create matter is to combine a quark and an antiquark (quarkonium) to a meson

- below 1.8 GeV we have more resonances than expected from an quarkonium picture
- lattice finds for scalar mesons higher masses $M_{u\overline{d}} = 1.4 1.5 GeV$
- scalar quarkonia are p-wave states (L = S = 1), thus expected to be heavier than 1 GeV as tensor and axial-vector mesons
- mass degeneracy of $a_0(980)$ and $f_0(980)$

Introduction	Our model	Results	Conclusion and outlook
●○○	0000	000000	
Why do we need	tetraquarks?		

a simple idea to create matter is to combine a quark and an antiquark (quarkonium) to a meson

- below 1.8 GeV we have more resonances than expected from an quarkonium picture
- lattice finds for scalar mesons higher masses $M_{u\overline{d}} = 1.4 1.5 GeV$
- scalar quarkonia are p-wave states (L = S = 1), thus expected to be heavier than 1 GeV as tensor and axial-vector mesons
- mass degeneracy of $a_0(980)$ and $f_0(980)$

a possible solution to all these problems is to interpret the light scalars as tetraquark states

Introduction	Our model	Results	Conclusion and outlook
○●○	0000	000000	
What is a tetraq	uark?		

a tetraquark is a four quark state

a tetraquark is a four quark state

combine two quarks to a coloured diquark and couple two diquarks two a colourneutral particle

$$|qq\rangle = |\text{Space: } L = 0\rangle |\text{Spin: } (\uparrow \downarrow - \downarrow \uparrow)\rangle |\text{f: } (ud - du)\rangle |\text{c: } (RB - BR)\rangle$$
$$|qq\rangle = \rho_k = \sqrt{\frac{1}{2}} \epsilon_{ijk} q_i^t (C\gamma^5) q_j$$
$$\frac{u \Leftrightarrow [\overline{d}, \overline{s}]}{\overline{u} \Leftrightarrow [d, s]} \quad \frac{d \Leftrightarrow [\overline{s}, \overline{u}]}{\overline{d} \Leftrightarrow [s, u]} \quad \frac{s \Leftrightarrow [\overline{u}, \overline{d}]}{\overline{s} \Leftrightarrow [u, d]}$$

out of this correspondency, you can build up a tetraquark nonet

What is a te	traquark?		
000	0000	000000	00
Introduction	Our model	Results	Conclusion and outlook

$$\begin{split} & \underset{a_{0}^{-}(980) = \frac{1}{2}[\overline{u},\overline{s}][d,s] = a_{0}(980) = \frac{1}{2\sqrt{2}}[\overline{u},\overline{s}][u,s] - [\overline{d},\overline{s}][d,s] = a_{0}^{+}(980) = \frac{1}{2}[\overline{d},\overline{s}][u,s] \\ & f_{0}(980) = \frac{1}{2\sqrt{2}}[\overline{u},\overline{s}][u,s] + [\overline{d},\overline{s}][d,s] \\ & & f_{0}(980) = \frac{1}{2}[\overline{u},\overline{s}][u,d] = \overline{\kappa}^{0}(800) = \frac{1}{2}[\overline{u},\overline{d}][u,s] \\ & & \kappa^{0}(800) = \frac{1}{2}[\overline{u},\overline{d}][d,s] = \kappa^{+}(800) = \frac{1}{2}[\overline{u},\overline{d}][u,d] \\ & & \kappa^{-}(800) = \frac{1}{2}[\overline{u},\overline{d}][d,s] = \kappa^{+}(800) = \frac{1}{2}[\overline{d},\overline{s}][u,d] \\ & & f_{0}(600) = \frac{1}{2}[\overline{u},\overline{d}][u,d] \\ & & f_{0}(600) = \frac{1}{2}[\overline{u},\overline{d}][u,d] \end{split}$$

- tertaquark picture generates many resonances
- $f_0(600)$ is an s-wave state, thus it can be lighter than 1 GeV
- mass degeneracy of $a_0(980)$ and $f_0(980)$ can be explained with constituent quarks

Introduction	Our model	Results	Conclusion and outlook
000	●○○○	000000	
Our potential			

the model we use is the $SU(2)_r \times SU(2)_l$ limit of the $SU(3)_r \times SU(3)_l$ case F. Giacosa, **Phys.Rev.D75:054007 (2007)** A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, **Phys.Rev.D79:037502 (2009)**

Introduction	Our model	Results	Conclusion and outlook
000	●○○○	000000	
Our potential			

the model we use is the $SU(2)_r \times SU(2)_l$ limit of the $SU(3)_r \times SU(3)_l$ case F. Giacosa, **Phys.Rev.D75:054007 (2007)** A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, **Phys.Rev.D79:037502 (2009)**

linear sigma model + tetraquark

$$V = \frac{\lambda}{4} (\overrightarrow{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi$$

Introduction	Our model	Results	Conclusion and outlook
000	●○○○	000000	
Our potential			

the model we use is the $SU(2)_r \times SU(2)_I$ limit of the $SU(3)_r \times SU(3)_I$ case F. Giacosa, **Phys.Rev.D75:054007 (2007)** A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, **Phys.Rev.D79:037502 (2009)**

linear sigma model + tetraquark

$$V = \frac{\lambda}{4} (\overrightarrow{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi + \frac{1}{2} M_{\chi}^2 \chi^2 - g \chi (\overrightarrow{\pi}^2 + \varphi^2)$$

tetraquark: $\chi = \rho^{\dagger} \rho$ diquark: $\rho = \sqrt{\frac{1}{2}} \epsilon_{ij} q_i^t (C \gamma^5) q_j$

for SU(2) each diquark ρ is invariant under chiral transformation

ب مالمان بينما ال		000000	00
المعيناطام ب	ha maaaaa		
000	0000	000000	00
Introduction	Our model	Results	Conclusion and outlook

$$V = \frac{\lambda}{4} (\overrightarrow{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi + \frac{1}{2} M_{\chi}^2 \chi^2 - g \chi (\overrightarrow{\pi}^2 + \varphi^2)$$

$$\varphi_0 = \frac{F}{\sqrt{1 - (2g)/(\lambda M_{\chi}^2)}} + \frac{\epsilon}{2\lambda F^2} + \dots$$
quark condensate
$$\chi_0 = \frac{g}{M_{\chi}^2} \varphi_0^2$$
tetraquark condensate

المعيناطام ب	ha maaaaa		
	0000		
Introduction	Our model	Results	Conclusion and outlook

$$V = \frac{\lambda}{4} (\overrightarrow{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi + \frac{1}{2} M_{\chi}^2 \chi^2 - g \chi (\overrightarrow{\pi}^2 + \varphi^2)$$

$$\begin{split} \varphi_0 &= \frac{F}{\sqrt{1 - (2g)/(\lambda M_{\chi}^2)}} + \frac{\epsilon}{2\lambda F^2} + \dots & \text{quark condensate} \\ \chi_0 &= \frac{g}{M_{\chi}^2} \varphi_0^2 & \text{tetraquark condensate} \end{split}$$

expanding the potential around the minimum:

$$V = \frac{1}{2}(\chi,\varphi) \begin{pmatrix} M_{\chi}^2 & -2g\varphi_0 \\ -2g\varphi_0 & M_{\varphi}^2 \end{pmatrix} \begin{pmatrix} \chi \\ \varphi \end{pmatrix} + \frac{1}{2}M_{\pi}^2\vec{\pi}^2 + \dots$$

where $M_{\varphi}^2 = \varphi_0^2 \left(3\lambda - \frac{2g^2}{M_{\chi}^2}\right) - \lambda F^2$ and $M_{\pi}^2 = \frac{\varepsilon}{\varphi_0}$

non diagonal mass matrix

 $-2g\varphi_0\varphi\chi$

since the mass matrix is not diagonal we have to diagonalize the potential

000	0000	000000	00
Untwiddle t	he masses		

H and S chosen to diagonalize the potential

$$\left(\begin{array}{c}H\\S\end{array}\right) = \left(\begin{array}{cc}\cos\theta_0 & \sin\theta_0\\-\sin\theta_0 & \cos\theta_0\end{array}\right) \left(\begin{array}{c}\chi\\\varphi\end{array}\right) = B\left(\begin{array}{c}\chi\\\varphi\end{array}\right)$$

Untwiddle th	ne masses		
	0000		
Introduction	Our model	Results	Conclusion and outlook

H and S chosen to diagonalize the potential

$$\begin{pmatrix} H \\ S \end{pmatrix} = \begin{pmatrix} \cos \theta_0 & \sin \theta_0 \\ -\sin \theta_0 & \cos \theta_0 \end{pmatrix} \begin{pmatrix} \chi \\ \varphi \end{pmatrix} = B \begin{pmatrix} \chi \\ \varphi \end{pmatrix} \equiv \begin{pmatrix} f_0(600) \\ f_0(1370) \end{pmatrix}$$

Untwiddle the	e masses		
	6000	000000	
Introduction	Our model	Results	Conclusion and outlook

H and S chosen to diagonalize the potential

$$\begin{pmatrix} H \\ S \end{pmatrix} = \begin{pmatrix} \cos\theta_0 & \sin\theta_0 \\ -\sin\theta_0 & \cos\theta_0 \end{pmatrix} \begin{pmatrix} \chi \\ \varphi \end{pmatrix} = B \begin{pmatrix} \chi \\ \varphi \end{pmatrix} \equiv \begin{pmatrix} f_0(600) \\ f_0(1370) \end{pmatrix}$$

•

$$V = \frac{1}{2}(\chi,\varphi)B^{t}B\begin{pmatrix} M_{\chi}^{2} & -2g\varphi_{0} \\ -2g\varphi_{0} & M_{\varphi}^{2} \end{pmatrix}B^{t}B\begin{pmatrix} \chi \\ \varphi \end{pmatrix} + \dots$$
$$= \frac{1}{2}(H,S)\begin{pmatrix} M_{H}^{2} & 0 \\ 0 & M_{S}^{2} \end{pmatrix}\begin{pmatrix} H \\ S \end{pmatrix} + \dots$$
$$\theta_{0} = \frac{1}{2}\arctan\frac{4g\varphi_{0}}{M_{\varphi}^{2} - M_{\chi}^{2}}, \quad -\frac{\pi}{4} < \theta_{0} < \frac{\pi}{4}$$
$$M_{H}^{2} = M_{\chi}^{2}\cos^{2}\theta_{0} + M_{\varphi}^{2}\sin^{2}\theta_{0} - 2g\varphi_{0}\sin(2\theta_{0})$$
$$M_{S}^{2} = M_{\varphi}^{2}\cos^{2}\theta_{0} + M_{\chi}^{2}\sin^{2}\theta_{0} + 2g\varphi_{0}\sin(2\theta_{0})$$

 $\left(M_{S}^{2}-M_{H}^{2}
ight)^{2}=\left(M_{\varphi}^{2}-M_{\chi}^{2}
ight)^{2}+\left(4garphi_{0}
ight)^{2}\ o\ \left|M_{S}^{2}-M_{H}^{2}
ight|\geq4garphi_{0}$

we employ the CJT-formalism in the Hartree-Fock approximation to calculate the T dependency of our masses, condensates and mixing angle

Introduction	Our model	Results	Conclusion and outlook
000	○○○●	000000	
Nonzero T mode	el		

we employ the CJT-formalism in the Hartree-Fock approximation to calculate the T dependency of our masses, condensates and mixing angle

masses, condensates and mixing angle become T dependent

$$\begin{array}{ll} M_H \to M_H(T) & M_S \to M_S(T) & M_\pi \to M_\pi(T) \\ \varphi_0 \to \varphi(T) & \chi_0 \to \chi(T) & \theta_0 \to \theta(T) \end{array}$$

$$\begin{array}{ll} M_H(0) = M_H & M_S(0) = M_S & M_\pi(0) = M_\pi \\ \varphi(0) = \varphi_0 & \chi(0) = \chi_0 & \theta(0) = \theta_0 \end{array}$$

Introduction 000	Our model 0000	Results	Conclusion and outlook
Range of the par	rameters		

our potential

$$V = \frac{\lambda}{4} (\overrightarrow{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi + \frac{1}{2} M_{\chi}^2 \chi^2 - g \chi (\overrightarrow{\pi}^2 + \varphi^2)$$

Demme of the m			
000	0000	00000	00
Introduction	Our model	Results	Conclusion and outlook

Range of the parameters

our potential

$$V = \frac{\lambda}{4} (\vec{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi + \frac{1}{2} M_{\chi}^2 \chi^2 - g \chi (\vec{\pi}^2 + \varphi^2)$$

two known values

 $egin{aligned} \mathcal{M}_{\pi} &= 0.139 \,\, \mathrm{GeV} \ arphi_0 &= \mathit{f}_{\pi} &= 0.0924 \,\, \mathrm{GeV} \end{aligned}$

Demme of the m			
000	0000	00000	00
Introduction	Our model	Results	Conclusion and outlook

Range of the parameters

our potential

$$V = \frac{\lambda}{4} (\vec{\pi}^2 + \varphi^2 - F^2)^2 - \epsilon \varphi + \frac{1}{2} M_{\chi}^2 \chi^2 - g \chi (\vec{\pi}^2 + \varphi^2)$$

two known values

 $M_{\pi} = 0.139 \text{ GeV}$ $\varphi_0 = f_{\pi} = 0.0924 \text{ GeV}$

three approximately known values

$M_H pprox 0.4 { m GeV}$	$f_0(600) = 0.4 \text{ GeV} - 1.2 \text{ GeV}$
$M_S pprox 1.2 { m GeV}$	$f_0(1370) = 1.2 \text{ GeV} - 1.5 \text{ GeV}$
g should be of the order	of a few GeV

to manage these uncertainties we study variation of g, M_S and M_H A. Heinz, S. Strüber, F. Giacosa, and D. H. Rischke, **Phys.Rev.D79:037502** (2009)

Introduction Our model October $M_H = 0.4 \, GeV$ fixed, g and M_S vary

- forbidden area arises from $\left| M_{S}^{2} M_{H}^{2} \right| \geq 4g\varphi_{0}$
- between first order and crossover region we find a second order phase transition
- $g \rightarrow 0$: χ and φ decouple $H \rightarrow \chi$, $S \rightarrow \varphi$ $M_S > 0.948 GeV$: first order phase transition $M_S < 0.948 GeV$: crossover phase transition

Introduction	Our model	Results	Conclusion and outlook
		00000	
T_{c} behaviour			

increasing of g:

- mixing increases
- T_c decreases
- first order softens
- crossover is obtained for large g

 $\frac{M_{S}}{M_{S}} = 1.2 \text{ GeV fixed, g and } M_{H} \text{ vary}$

- forbidden area arises from $\left| M_{S}^{2} M_{H}^{2} \right| \geq 4g\varphi_{0}$
- between first order and crossover region we find a second order phase transition
- $g \rightarrow 0$: χ and φ decouple $H \rightarrow \chi$, $S \rightarrow \varphi$ we get first order phase transition
- to get a crossover for a large M_S we need a large gap between M_S and M_H

OCO		Conclusion and outlook
Condensate		

$$M_H = 0.4$$
 GeV, $M_S = 1.2$ GeV and $g = 3.4$ GeV

- crossover phase transition at $T_c \approx 170 MeV$
- $T < T_c$: $\chi(T)$ goes like $\frac{g}{M_{\chi}^2} \varphi(T)^2$
- $T > T_c$: $\chi(T)$ increases

 $M_H = 0.4$ GeV, $M_S = 1.2$ GeV and g = 3.4 GeV

- predominantly M_S(T) consists of quarkonium predominantly M_H(T) consists of tetraquark
- mixing angle $\theta(T)$ increases till $T_s = 155 MeV$, then sign becomes negative T_s defined as $\theta(T_s) = \frac{\pi}{4}$
- at *T_s* both masses behave discontinously and the states interchange their roles
- for large T the mixing goes to zero and everything behaves like in the linear sigmar model

000	0000	000000	•0
Conclusion ar	nd outlook		

- a T dependent model including a tetraquark state
- order of phase transition changes with coupling g; if coupling g and mixing is large enough we also obtain a crossover phase transition for a mass of the chiral partner above 1 GeV
- mixing increases with T and at a temerature T_s a role interchange takes place
- include glueball states and vectormesons

Introduction	Our model	Results	Conclusion and outlook
			0•

Thank you for your attention