

Generalized Dalitz Plot analysis of the near threshold $pp \rightarrow ppK^{+}K^{-}$ reaction in view of the $K^{+}K^{-}$ interaction

Michał Silarski

Jagiellonian University

Excited QCD, Stara Lesna, 4th February 2010

Outline

- Physical motivation
- $\Box \quad \text{Measurements of the pp} \rightarrow \text{pp} K^+ K^- \text{ reaction with COSY-11}$
- □ Study of the proton-kaon and kaon-antikaon interactions
 - differential cross sections at excess energy Q = 10 MeV and Q = 28 MeV
 - Generalization of the Dalitz Plot
 - * Analysis of the K^+K^- final state interaction
- □ Summary

Physical motivation

- ♦ a_0 and f_0 mesons as a K⁺K⁻ molecules
- ★ Nature of $\Lambda(1405) K^{-}p$ bound state (?)
- ♦ Mechanism of the $pp \rightarrow ppK^+K^-$ reaction
- Physics of heavy ion collisions
- Physics of neutron stars: kaon condensates

• meson production up to $\phi(1020)$

COSY-11: M. Wolke, PhD thesis

DISTO: F. Balestra et al., Phys. Rev. C 63, 024004 (2001)

ANKE: Y.Maeda et al. Phys., Rev. C 77, 01524 (2008)

a = (0 + i1.5) [fm]

Differential cross sections for the $pp \rightarrow ppK^{+}K^{-}$ reaction at Q = 10 MeV

 $\sigma_{tot} = 0.95 \pm 0.17 \text{ nb}$

$$R_{pK} = \frac{d\sigma/dM_{pK^{-}}}{d\sigma/dM_{pK^{+}}};$$

$$R_{ppK} = \frac{d\sigma/dM_{ppK^{-}}}{d\sigma/dM_{ppK^{+}}}$$

Differential cross sections for the $pp \rightarrow ppK^{+}K^{-}$ reaction at Q = 28 MeV

 $\sigma_{tot} = 6.5 \pm 1.1 \text{ nb}$

 $d\sigma/dM$ $R_{pK} =$ $d\sigma/dM$

 $d\sigma/dM$ R_{ppK} ppK $d\sigma/dM$ ppK^+

Generalization of the Dalitz Plot

Event representation: interior of a equilateral triangle

$$\sqrt{s} = E_1 + E_2 + E_3$$

$$dE_{i}dE_{j} = \frac{1}{4s} dM_{jk}^{2} dM_{ki}^{2}$$
$$M_{jk}^{2} = (E_{j} + E_{k})^{2} - (p_{j} + p_{k})^{2}$$

Final state interaction: modification of the homogeneous event distribution

Generalization of the Dalitz Plot

□ Probability of reaction yielding a state with the *i*-th particle in momentum range dp_i (in CM):

$$d^{12}R = d^{3}p_{1}d^{3}p_{2}d^{3}p_{3}d^{3}p_{4}\frac{1}{16E_{1}E_{2}E_{3}E_{4}}\delta^{3}\left(\sum_{j}\vec{p}_{j}\right)\delta\left(\sum_{j}E_{j}-\sqrt{s}\right)f^{2}$$

 \Box Assuming that f depends only on invariant masses of the particles one obtains (Nyborg et al. Phys. Rev. 140 922 (1965)):

$$d^{5}R = f^{2} \frac{\pi^{2}}{8s\sqrt{-B}} dM_{12}^{2} dM_{14}^{2} dM_{34}^{2} dM_{124}^{2} dM_{134}^{2}$$
$$B = B\left(M_{12}^{2}, M_{14}^{2}, M_{34}^{2}, M_{124}^{2}, M_{134}^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2}, s\right)$$

Analysis of the K⁺K⁻ final state interaction

$$\begin{split} \left| M_{pp \to ppK^{+}K^{-}} \right|^{2} &\approx \left| M_{0} \right|^{2} \left| F_{FSI} \right| \\ F_{FSI} &= F_{pp}(q) \times F_{p_{1}K^{-}}(k_{1}) \times \\ &\times F_{p_{2}K^{-}}(k_{2}) \times F_{K^{+}K^{-}}(k_{3}) \\ \\ F_{K^{+}K^{-}}(k_{3}) &= \frac{1}{1 - ik_{3}a_{K^{+}K^{-}}} \end{split}$$

Analysis of the K⁺K⁻ final state interaction

Phys. Rev. C 80, 045202 (2009)

Summary

- ★ Shape of the excitation function for the near threshold $pp \rightarrow ppK^+K^-$ reaction reveal a significant enhancement which may be plausibly assigned to the influence of the pK⁻ or K⁺K⁻ interaction
- Calculations which take into account the proton-proton and proton-kaon interactions underestimate experimental data very close to threshold
- Ansatz proposed by ANKE collaboration reproduces the experimental ratios R_{pK} R_{ppK} also at significantly lower enegies
- The estimated K^+K^- scattering length amounts to:

$$a_{K^+K^-} = [(0.5^{+4}_{-0.5}) + i(3\pm3)] \text{fm}$$

\odot Thank You for attention \odot