Analytic approach to the study of the electric-magnetic asymmetry of the dimension two condensate

David Vercauteren

Ghent University

1st February 2010

Outline

The asymmetry LCO and $A_{\mu}A_{\nu}$ Finite temperature Conclusions

Overview

- The dimension two condensate and its asymmetry
 - The dimension two condensate
 - The asymmetry in the dimension two condensate
 - The LCO formalism
- ② The LCO formalism extended to $A_\mu A_
 u$
 - Which operator to take
 - The $A_{\mu}A_{\nu}$ operator
 - Towards the asymmetry
 - The effective potential
- 3 Finite temperature
 - Low-T behavior
 - Numerical analysis
 - High-T behavior

- work done in collaboration with D. Dudal, J.A. Gracey, N. Vandersickel and H. Verschelde
- Phys.Rev.D80 (2009) 065017, and work in preparation
- motivated by work by M.N. Chernodub and E.-M. Ilgenfritz (Phys.Rev.D78 (2008) 034036)

・ 同 ト ・ ヨ ト ・ ヨ ト

The dimension two condensate The asymmetry _CO's

Overview

- The dimension two condensate and its asymmetry
 - The dimension two condensate
 - The asymmetry in the dimension two condensate
 - The LCO formalism
- 2) The LCO formalism extended to $A_\mu A_
 u$
 - Which operator to take
 - The $A_{\mu}A_{\nu}$ operator
 - Towards the asymmetry
 - The effective potential
- 3 Finite temperature
 - Low-T behavior
 - Numerical analysis
 - High-T behavior

4 Conclusions

同 ト イ ヨ ト イ ヨ ト

The dimension two condensate The asymmetry LCO's

Theoretical considerations

- $\langle A_{\mu}^2 \rangle$ is not gauge invariant, can it be relevant?
- existence of 1/q² power corrections advertized by Zakharov, Narison, et al. from QCD phenomenology/(ultraviolet) renormalon analysis/topological considerations
- approaches based on AdS/QCD usually also predict $1/q^2$ corrections in e.g. (gauge invariant!) glueball correlators (Andreev, Forkel, Gherghetta, Zakharov, et al.)

• (1) • (

The dimension two condensate The asymmetry LCO's

Making $\langle A_{\mu}^2 \rangle$ gauge invariant

Consider the minimum of $\langle A_{\mu}^2 \rangle$ on the gauge orbit:

$$A_{\min}^2 = \min_{u \in SU(N)} \mathcal{V}^{-1} \int d^4 x (A_{\mu}^u)^2$$

- is gauge invariant by construction
- however: very non-local operator!

- - E + - E +

The dimension two condensate The asymmetry LCO's

Making A_{\min}^2 local

• iterative search for $u \in SU(N)$ such that A^2 gets minimized

$$A_{\min}^{2} = \int d^{4}x \left[A_{\mu}^{a} \left(\delta_{\mu\nu} - \frac{\partial_{\mu}\partial_{\nu}}{\partial^{2}} \right) A_{\nu}^{a} - gf^{abc} \left(\frac{\partial_{\nu}}{\partial^{2}} \partial A^{a} \right) \left(\frac{1}{\partial^{2}} \partial A^{b} \right) A_{\nu}^{c} \right] + \mathcal{O}(A^{4})$$

• if we choose the Landau gauge $\partial_{\mu}A_{\mu} = 0$, then:

$$A_{\rm min}^2 = \mathcal{V}^{-1} \int d^4 x A_{\mu}^2$$

・ 同 ト ・ ヨ ト ・ ヨ ト

-

The dimension two condensate The asymmetry LCO's

More practical motivations

 $\langle A_{\mu}^2 \rangle$ is a good observer of topological excitations (e.g. monopoles, vortices. . .)

- assume a thin vortex, carrying magnetic flux $\propto \int \vec{B} \cdot \vec{dS} = \oint \vec{A} \cdot \vec{dx} \neq 0$
- A_{μ} cannot be zero everywhere \Rightarrow $A_{\min}^2
 eq 0$

伺 ト く ヨ ト く ヨ ト

The dimension two condensate The asymmetry LCO's

Compact QED on the lattice

- compact QED shows confinement for $e^2 > e_c^2 \sim 1$ (monopole condensation, mass gap, see literature)
- related to $\langle A_{\mu}^2 \rangle$ (cfr. Gubarev and Zakharov)

I ≡ ▶ < </p>

The dimension two condensate The asymmetry LCO's

In QCD

- Gubarev and Zakharov provide 2 component picture for $\langle A_{\mu}^2 \rangle$
- soft (infrared) part, $\langle A^2_\mu \rangle_{\rm IR}$ can enter OPE for gauge variant things (like propagators, see lattice work by **Boucaud et al.**)
- hard (ultraviolet) part $\langle A_{\mu}^2 \rangle_{\rm UV}$ can enter physical correlators (modeled in phenomenology with gluon masses), see work by **Ruiz-Arriola, Megias et al., Zakharov et al.**
- ullet \Rightarrow example of nonperturbative UV effects in gauge theory.
- effective gluon masses are nothing new, see work by Cornwall, Parisi & Petronzio, Field, Bernard...
- of course, no perturbative unitarity, but gluons are not the physical degrees of freedom after all

・ロト ・得ト ・ヨト ・ヨト

The dimension two condensate The asymmetry LCO's

The asymmetry in the dimension two condensate

- Yang–Mills phase transition is at finite T
- let's consider A_4^2 and A_i^2 separately
- the sum A^2_{μ} has been investigated before
- Chernodub and Ilgenfritz considered the difference

The dimension two condensate The asymmetry LCO's

The asymmetry in the dimension two condensate

- Chernodub and Ilgenfritz considered the difference
- at T = 0, the asymmetry vanishes
- only consider temperature contributions (which are finite)
- define:

$$\begin{aligned} \Delta_{A^2}(T) &= \langle g^2 A_E^2 \rangle - \frac{1}{3} \langle g^2 A_M^2 \rangle \\ &= \langle g^2 A_d^2 \rangle_T - \frac{1}{d-1} \sum_{i=1}^{d-1} \langle g^2 A_i^2 \rangle_T \end{aligned}$$

.

The dimension two condensate The asymmetry LCO's

Naive expectations

We would naively expect:

- at high T: $\Delta_{A^2}(T) \propto T^2$
- at low $T = \Delta_{A^2}(T) \propto e^{-m/T}$ (*m* lowest mass in spectrum, in SU(2) Yang–Mills: $m_{gl} \sim 1700 \text{ MeV}$)
- at low T, Abelian Higgs model gives $\Delta_{A^2}(T) \propto T^4/m^2$ (due to massless pole of longitudinal dof's)

< 同 > < 三 > < 三 > -

The dimension two condensate The asymmetry LCO's

Lattice results

- $\Delta_{A^2} = 0$ at T = 0
- jump at deconfinement phase transition
- at T = 2.2T_c the asymmetry flips sign, at higher T a monopole gas is expected (cfr. Chernodub & Zakharov, Shuryak & Liao)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The dimension two condensate The asymmetry LCO's

Lattice results

- at high T: $\Delta_{\mathcal{A}^2}(T) \propto T^2$ (no surprise)
- at low T: $\Delta_{A^2}(T) \propto e^{-m/T}$ with $m \sim 200 \text{ MeV}$

A 10

A B + A B +

• why such a low mass?

The dimension two condensate The asymmetry LCO's

Conclusion

Doing a continuum investigation?

Hoping to get more insight in

- the three-phase diagram
- the low-T behavior

Need a continuum formalism to study the A^2_{μ} asymmetry. Use the Local Composite Operator (LCO) formalism developed by **Verschelde et al.**

/□ ▶ < 글 ▶ < 글

The dimension two condensate The asymmetry LCO's

The LCO formalism

Developed by H. Verschelde et al. in Phys.Lett.B516 (2001) 307

- add a term $\frac{1}{2}JA_{\mu}^{2}$
- non-renormalizable \rightarrow add a term $-\frac{\zeta}{2}J^2$
- new parameter ζ : must be determined in some way
- choose ζ to be a unique meromorphic function of g^2
- the J^2 term: Hubbard–Stratanovich transformation
- result found for SU(N) Yang-Mills: $\frac{1}{2}\langle g^2 A_{\mu}^2 \rangle \sim -(500 \text{ MeV})^2$ (both at one- and two-loop order)

イロト イポト イヨト イヨト 二日

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Overview

- 1 The dimension two condensate and its asymmetry
 - The dimension two condensate
 - The asymmetry in the dimension two condensateThe LCO formalism
- 2 The LCO formalism extended to $A_{\mu}A_{\nu}$
 - Which operator to take
 - The $A_{\mu}A_{\nu}$ operator
 - Towards the asymmetry
 - The effective potential
 - 3 Finite temperature
 - Low-T behavior
 - Numerical analysis
 - High-T behavior
- 4 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ ト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Which operator to take

- separate access to A_0^2 and A_i^2 possible?
- maintain a clear view on renormalization (group)?
- at least maintain Lorentz invariance when T = 0. A replacement like $\frac{1}{2}JA_{\mu}^2 \rightarrow \frac{1}{2}J_1A_0^2 + \frac{1}{2}J_2A_i^2$ does not look as a very good choice.
- favourably, recover the T = 0 results?

・ 同 ト ・ ヨ ト ・ ヨ ト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Which operator to take

good choice might be

$$rac{1}{2}J\!A_{\mu}^2
ightarrow rac{1}{2}J_{\mu
u}A_{\mu}A_{
u}$$

- gives rise to renormalization troubles, also $J_{\mu\mu}A_{\nu}^2$ comes to life, difficult to control
- the right thing:

$$\frac{1}{2}JA_{\mu}^{2} \rightarrow \frac{1}{2}JA_{\mu}^{2} + \frac{1}{2}\rho_{\mu\nu}\left(A_{\mu}A_{\nu} - \frac{\delta_{\mu\nu}}{d}A_{\sigma}^{2}\right)$$

• we can consider A_{μ}^2 (= trace of $A_{\mu}A_{\nu}$) and the traceless part of $A_{\mu}A_{\nu}$, no mixing between the trace and "off-trace" operator

・ロト ・同ト ・ヨト ・ヨト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

The $A_{\mu}A_{\nu}$ operator

- couple a source $K_{\mu\nu}$ to traceless part of $A_{\mu}A_{\nu}$
- add a source $\eta_{\mu\nu}$ in a BRST doublet with $K_{\mu\nu}$:

$$\mathcal{L}_{K} = s \left(\frac{1}{2} \eta_{\mu\nu} A^{a}_{\mu} A^{a}_{\nu} - \frac{1}{2d} \eta_{\mu\mu} A^{2} - \frac{\omega}{2} \eta_{\mu\nu} K_{\mu\nu} + \frac{\omega}{2d} \eta_{\mu\mu} K_{\nu\nu} \right)$$
$$= \frac{1}{2} K_{\mu\nu} A^{a}_{\mu} A^{a}_{\nu} + \eta_{\mu\nu} A^{a}_{\mu} \partial_{\nu} c^{a} - \frac{1}{2d} K_{\mu\mu} A^{2}$$
$$- \frac{1}{d} \eta_{\mu\mu} A^{a}_{\nu} \partial_{\nu} c^{a} - \frac{\omega}{2} K_{\mu\nu} K_{\mu\nu} + \frac{\omega}{2d} K^{2}_{\mu\mu}$$

• ω is new parameter

・ 同 ト ・ ヨ ト ・ ヨ ト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Algebraic renormalization

• introduce two further external sources K_{μ}^{a} and L^{a} :

$$\mathcal{L}_{ ext{ext}} = - \mathcal{K}^{a}_{\mu} \mathcal{D}^{ab}_{\mu} c^{b} + rac{1}{2} g f^{abc} \mathcal{L}^{a} c^{b} c^{c}$$

we have the BRST nilpotent operator acting as

$$\begin{aligned} sA^a_\mu &= -D^{ab}_\mu c^b \qquad \qquad sc^a &= \frac{1}{2}gf^{abc}c^bc^c \\ s\overline{c}^a &= b^a \qquad \qquad sb^a &= 0 \\ s\eta_{\mu\nu} &= K_{\mu\nu} \qquad \qquad sK_{\mu\nu} &= 0 \\ sK^a_\mu &= 0 \qquad \qquad sL_\mu &= 0 \end{aligned}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Ward identities

The complete action obeys:

Slavnov-Taylor identity

$$\mathcal{S}(\Sigma) = \int d^{d}x \left(\frac{\delta \Sigma}{\delta A^{a}_{\mu}} \frac{\delta \Sigma}{\delta K^{a}_{\mu}} + \frac{\delta \Sigma}{\delta c^{a}} \frac{\delta \Sigma}{\delta L^{a}} + b^{a} \frac{\delta \Sigma}{\delta \overline{c}^{a}} + K_{\mu\nu} \frac{\delta \Sigma}{\delta \eta_{\mu\nu}} \right) = 0$$

- Landau gauge fixing condition $\frac{\delta \Sigma}{\delta b^a} = \partial_\mu A^a_\mu$
- antighost equation $\frac{\delta \Sigma}{\delta \overline{c}^a} + \partial_\mu \frac{\delta \Sigma}{\delta K^a_\mu} = 0$

→ 3 → 4 3

A 10

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Ward identities

The complete action obeys:

 $\bullet\,$ The ghost Ward identity $\mathcal{G}^a\Sigma=\Delta^a_{\rm cl}$ with

$$\mathcal{G}^{a} = \int d^{d}x \left(\frac{\delta}{\delta c^{a}} + g f^{abc} \left(\overline{c}^{b} \frac{\delta}{\delta b^{c}} \right) \right)$$

and the classical breaking

$$\Delta_{\rm cl}^{a} = g \int d^{d} x f^{abc} \left(K_{\mu}^{b} A_{\mu}^{c} - L^{b} c^{c} \right)$$

• additional identities
$$\delta_{\mu
u} rac{\delta}{\delta K_{\mu
u}} \Sigma = 0$$
 and $\delta_{\mu
u} rac{\delta}{\delta \eta_{\mu
u}} \Sigma = 0$

・ 同 ト ・ ヨ ト ・ ヨ

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Ward identities

The counterterms obey similar relations:

 \bullet linearized Slavnov-Taylor identity $\mathcal{B}_{\Sigma}\Sigma^{\rm count}=0$ where

$$\begin{split} \mathcal{B}_{\Sigma} &= \int d^{d}x \left(\frac{\delta \Sigma}{\delta A^{a}_{\mu}} \frac{\delta}{\delta K^{a}_{\mu}} + \frac{\delta \Sigma}{\delta K^{a}_{\mu}} \frac{\delta}{\delta A^{a}_{\mu}} + \frac{\delta \Sigma}{\delta c^{a}} \frac{\delta}{\delta L^{a}} \right. \\ &\left. + \frac{\delta \Sigma}{\delta L^{a}} \frac{\delta}{\delta c^{a}} + b^{a} \frac{\delta}{\delta \overline{c}^{a}} + \mathcal{K}_{\mu\nu} \frac{\delta}{\delta \eta_{\mu\nu}} \right) \end{split}$$

obeys $\mathcal{B}_{\Sigma}\mathcal{B}_{\Sigma}=0$

• Landau gauge fixing condition $\frac{\delta \Sigma^{\mathrm{count}}}{\delta b^a} = 0$

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Ward identities

The counterterms obey similar relations:

- antighost equation $\frac{\delta \Sigma^{\text{count}}}{\delta \overline{c}^a} + \partial_\mu \frac{\delta \Sigma^{\text{count}}}{\delta K^a_\mu} = 0$
- ghost Ward identity $\mathcal{G}^a\Sigma^{\rm count}=0$
- additional identities $\delta_{\mu\nu} \frac{\delta}{\delta K_{\mu\nu}} \Sigma^{\text{count}} = 0 \text{ and } \delta_{\mu\nu} \frac{\delta}{\delta \eta_{\mu\nu}} \Sigma^{\text{count}} = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Most general counterterm

• quantum numbers:

	A_{μ}	С	ī	b	$\eta_{\mu\nu}$	$K_{\mu u}$	K_{μ}	L
dimension	1	0	2	2	2	2	3	4
ghost number	0	1	-1	0	-1	0	-1	-2

most general counterterm is

$$\Sigma^{
m count} = rac{a_0}{4}\int d^dx F^a_{\mu
u}F^a_{\mu
u} + \mathcal{B}_{\Sigma}\Delta^{-1}$$

with Δ^{-1} the most general local polynomial with dimension 4 and ghost number -1

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Most general counterterm

Writing down the most general local polynomial with dimension 4 and ghost number -1 and demanding it obey all necessary identities gives:

$$\begin{split} \Delta^{-1} &= \int d^d x \Biggl(a_1 \left(K^a_\mu A^{a\mu} + \partial_\mu \overline{c}^a A^{a\mu} \right) \\ &+ a_2 \left(\frac{\eta_{\mu\nu}}{2} A^a_\mu A^a_\nu - \frac{1}{d} \eta_{\mu\mu} A^2_\nu \right) \\ &+ a_3 \left(\frac{\omega}{2} \eta_{\mu\nu} K_{\mu\nu} - \frac{1}{d} \frac{\omega}{2} \eta_{\mu\mu} K_{\nu\nu} \right) \Biggr) \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Most general counterterm

• Computing the most general counterterm from $\Delta^{-1},$ can we reabsorb this?

$$\Sigma(g,\omega,\phi,\Phi) + artheta \Sigma^{\mathsf{count}} = \Sigma(g_0,\omega_0,\phi_0,\Phi_0) + O(artheta^2)$$

• Yes, we can!

Conclusion

The Yang–Mills action with inclusion of the traceless part of $A_{\mu}A_{\nu}$ can be multiplicatively renormalized.

| 4 同 1 4 三 1 4 三 1

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Trace and traceless part

To add the A^2_{μ} operator itself is completely analogous. It is possible to prove the renormalizability of both the traceless part of $A_{\mu}A_{\nu}$ and the trace A^2_{μ} together.

Conclusion

The Yang–Mills action with inclusion of the traceless part of $A_{\mu}A_{\nu}$ and of A_{μ}^2 can be multiplicatively renormalized.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Hubbard–Stratanovich transformation

In order to get rid of the terms quadratic in the sources, introduce the identities:

. .

•
$$1 = \int [d\sigma] e^{-\frac{1}{2\zeta} \int d^d x \left(\frac{\sigma}{g} + \frac{1}{2} A_{\mu}^2 - \zeta J\right)^2}$$

•
$$1 = \int [d\varphi_{\mu\nu}] e^{-\frac{1}{2\omega} \int d^d x \left(\frac{1}{g} \varphi_{\mu\nu} + \frac{1}{2} A_{\mu} A_{\nu} - \omega (\kappa_{\mu\nu} - \frac{\delta_{\mu\nu}}{d} \kappa_{\mu\mu})\right)^2}$$

• two new fields σ and (traceless) $\varphi_{\mu\nu}$ with $\langle \sigma \rangle = -\frac{g}{2} \langle A_{\mu}^2 \rangle$ and $\langle \varphi_{\mu\nu} \rangle = -\frac{g}{2} \langle A_{\mu} A_{\nu} - \frac{\delta_{\mu\nu}}{d} A^2 \rangle$

- 4 同 2 4 日 2 4 日 2

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

The action

Our action is:

$$S_{\rm YM} + S_{\rm gf} + \int d^d x \left[\frac{1}{2\zeta} \frac{\sigma^2}{g^2} + \frac{1}{2\zeta g} \sigma A_{\mu}^2 + \frac{1}{8\zeta} (A_{\mu}^2)^2 + \frac{1}{2\omega} \frac{\varphi_{\mu\nu}^2}{g^2} + \frac{1}{2\omega g} \varphi_{\mu\nu} A_{\mu} A_{\nu} + \frac{1}{8\omega} (A_{\mu}^a A_{\nu}^a)^2 \right]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Determination of ζ and ω

 ζ was determined by Verschelde et al., ω is analogous:

- ullet write down renormalization group equation for J and $K_{\mu
 u}$
- consider ζ and ω function of g^2 (for example for ζ : $\beta(g^2)\frac{\partial}{\partial g^2}\zeta(g^2) = 2\gamma_J(g^2)\zeta(g^2) + \epsilon\delta\zeta - \beta(g^2)\frac{\partial}{\partial g^2}(\delta\zeta) + 2\gamma_J(g^2)\delta\zeta)$
- solve with a Laurent series

伺 ト イ ヨ ト イ ヨ ト

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Determination of ζ and ω

In practice:

- compute anomalous dimensions and renormalization factors up to two-loop order (for one-loop computation of effective action)
- plenty of diagrams (best done computerized)
- solving the renormalization group equation

•
$$\zeta = \frac{N^2 - 1}{16\pi^2} \left[\frac{9}{13} \frac{16\pi^2}{g^2 N} + \frac{161}{52} \right]$$

• $\omega = \frac{N^2 - 1}{16\pi^2} \left[\frac{1}{4} \frac{16\pi^2}{g^2 N} + \frac{73}{1044} \right]$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

Conventions

•
$$m^2 = \frac{13}{9} \frac{N}{N^2 - 1} g\sigma = g\sigma'$$

• $M_{\mu\nu} = 4 \frac{N}{N^2 - 1} g\varphi_{\mu\nu} = g\varphi'_{\mu\nu}$
• take $M_{\mu\nu} = A \begin{pmatrix} 1 & & \\ & -\frac{1}{d-1} & \\ & & \ddots & \\ & & & -\frac{1}{d-1} \end{pmatrix}$
(introduces an electric-magnetic asymmetry, preserves 3c rotational invariance)

<ロ> <同> <同> < 回> < 回>

э

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

The effective action

Up to one-loop order, we have

$$\begin{aligned} & -^{(1)}(\sigma',\varphi'_{\mu\nu}) = \frac{1}{2Z_{\zeta}Z_{J}^{2}\zeta}\frac{\sigma^{2}}{g^{2}} + \frac{1}{2Z_{\omega}Z_{K}^{2}\omega}\frac{\varphi_{\mu\nu}^{2}}{g^{2}} \\ & + \frac{N^{2}-1}{2}\operatorname{tr}\ln\left(-\partial^{2}\delta_{\mu\nu} + \left(1-\frac{1}{\xi}\right)\partial_{\mu}\partial_{\nu} + \delta_{\mu\nu}m^{2} + M_{\mu\nu}\right) \end{aligned}$$

- 4 同 ト 4 ヨ ト 4 ヨ

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

The tr log

The operator in the tr log can be easily diagonalized. In the limit $\xi \to 0$ it decomposes as

$$\begin{aligned} \operatorname{tr}\ln(-\partial^2) + (d-2)\operatorname{tr}\ln\left(-\partial^2 + m^2 - \frac{A}{d-1}\right) \\ &+ \operatorname{tr}\ln\left(-\partial^2 + m^2 + A\left(1 - \frac{d}{d-1}\frac{\partial_0^2}{\partial^2}\right)\right) \end{aligned}$$

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

The final result

Some "straightforward algebra" gives:

$$\begin{split} \Gamma^{(1)}(\sigma',\varphi'_{\mu\nu}) &= \frac{N^2 - 1}{2(4\pi)^2} \Biggl\{ \frac{9}{13} \frac{(4\pi)^2}{g^2 N} m^4 + \frac{1}{3} \frac{(4\pi)^2}{g^2 N} A^2 + \\ \frac{1}{18} \ln\left(\frac{m^2 - A/3}{\overline{\mu}^2}\right) \left[7A^2 + 27m^4 \right] - \frac{155}{522} A^2 + \frac{11}{12} Am^2 - \frac{87}{26} m^4 + \frac{1}{4} \frac{m^6}{A} \\ &+ \frac{1}{18} \left[5A^2 + 12Am^2 + 9m^4 \right] \left[\ln\left(\frac{A}{A - 3m^2}\right) + \ln\left(1 + \sqrt{\frac{m^2 + A}{m^2 - \frac{A}{3}}}\right) \\ &- \ln\left(1 - \sqrt{\frac{m^2 + A}{m^2 - \frac{A}{3}}}\right) \Biggr] - \frac{(m^2 - \frac{A}{3})}{12A} (6A^2 + 11Am^2 + 3m^4) \sqrt{\frac{m^2 + A}{m^2 - \frac{A}{3}}} \Biggr\} \end{split}$$

(日) (同) (三) (三)

Which operator to take The $A_{\mu}A_{\nu}$ operator Towards the asymmetry The effective potential

The final result

Remarks:

- is real only if $m^2 \geq rac{A}{3}$ and $m^2 \geq -A$
- in the limit $A \rightarrow 0$ it gives the result already found by Verschelde *et al.*
- its minimum is at A = 0 and with σ the value found by Verschelde *et al.*

Conclusion

We found the effective potential in the presence of A_{μ}^2 and of an electric-magnetic asymmetry Δ_{A^2} . It has its minimum where it should be. (This is at T = 0.)

(日) (同) (三) (三)

Low-T behavior Numerical analysis High-T behavior

Overview

- The dimension two condensate and its asymmetry
 - The dimension two condensate
 - The asymmetry in the dimension two condensateThe LCO formalism
- ② The LCO formalism extended to $A_\mu A_
 u$
 - Which operator to take
 - The $A_{\mu}A_{\nu}$ operator
 - Towards the asymmetry
 - The effective potential
- 3 Finite temperature
 - Low-T behavior
 - Numerical analysis
 - High-T behavior

Conclusions

/□ ▶ < 글 ▶ < 글

Low-T behavior Numerical analysis High-T behavior

Temperature corrections to the action

Finite-temperature corrections can be straightforwardly computed using standard techniques. The result is

$$(N^{2}-1)(d-2)T \int \frac{d^{3}k}{(2\pi)^{3}} \ln\left(1-\exp-\frac{\sqrt{\alpha}}{2T}\right)$$
$$+ (N^{2}-1)T \int \frac{d^{3}k}{(2\pi)^{3}} \left(\ln\left(1-\exp-\frac{\sqrt{\frac{\alpha}{2}+\frac{\sqrt{\alpha^{2}-4\beta}}{2}}}{T}\right)\right)$$
$$+ \ln\left(1-\exp-\frac{\sqrt{\frac{\alpha}{2}-\frac{\sqrt{\alpha^{2}-4\beta}}{2}}}{T}\right)\right)$$

with $\alpha = m^2 + 2\vec{k}^2 - A/3$ and $\beta = \vec{k}^2(\vec{k}^2 + m^2 + A)$.

< 3 > < 3 >

Low-T behavior Numerical analysis High-T behavior

Low-T expansion

For the lowest temperatures, we find:

$$\Delta_{\mathcal{A}^2} = (\mathcal{N}^2 - 1) \frac{g^2 \pi^2}{30} \left(1 - \frac{85}{1044} \frac{g^2 \mathcal{N}}{(4\pi)^2} \right) \frac{T^4}{m^2}$$

and no correction to $\langle A_{\mu}^2 \rangle$ up to this order.

Observation

We see a $\propto T^4$ behavior! This does not agree with the lattice results, but those are only for $T > 0.4T_c$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Low-T behavior Numerical analysis High-T behavior

Low T

(We put $\bar{\mu}$ equal to $g\sigma'$ in the T=0 minimum.)

(full line is $\langle A_{\mu}^2 \rangle$, dotted line is Δ_{A^2} , units $\Lambda_{\overline{\text{MS}}}$)

< 🗇 > < 🖃 >

< E

Low-T behavior Numerical analysis High-T behavior

(We put $\bar{\mu}$ equal to $g\sigma'$ in the T = 0 minimum.)

(full line is magnetic part, dotted line is electric part, units $\Lambda_{\overline{MS}}$)

・ 同 ト ・ ヨ ト ・ ヨ ト

Low-T behavior Numerical analysis High-T behavior

- Once $\mathcal{T} > 0.67 \, \Lambda_{\overline{\rm MS}}$, no (real) solutions to the gap equation.
- There are solutions when ignoring the imaginary part of the effective potential.

(日) (同) (三) (三)

Low-T behavior Numerical analysis High-T behavior

High-T expansion

For the highest temperatures, we find

$$\langle A_{\mu}^2
angle = (N^2-1) rac{T^2}{4} \; , \qquad \Delta_{A^2} = (N^2-1) rac{T^2}{12} \; .$$

The effective gluon masses are negative and of order $g^2 \mathcal{T}^2 \rightarrow$ need for resummation.

- 4 同 6 4 日 6 4 日 6

Low-T behavior Numerical analysis High-T behavior

Resummation

- resum the cactus diagrams
- additional thermal mass
- This helps, but is not yet sufficient.

Conclusion

A full HTL resummation may be needed.

・ 同 ト ・ ヨ ト ・ ヨ

Overview

- The dimension two condensate and its asymmetry
 - The dimension two condensate
 - The asymmetry in the dimension two condensate
 The LCO formalism
- ② The LCO formalism extended to $A_\mu A_
 u$
 - Which operator to take
 - The $A_{\mu}A_{\nu}$ operator
 - Towards the asymmetry
 - The effective potential
- 3 Finite temperature
 - Low-T behavior
 - Numerical analysis
 - High-T behavior

- ₹ 🖬 🕨

 $\begin{array}{c} \text{Outline} \\ \text{The asymmetry} \\ \text{LCO and } A_{\mu}A_{\nu} \\ \text{Finite temperature} \\ \text{Conclusions} \end{array}$

Conclusions

- It is possible to add the traceless part of $A_{\mu}A_{\nu}$ to the LCO formalism. The action is renormalizable.
- We computed the extra parameter ω .
- We computed the effective action in the presence of a nonzero $\langle A_{\mu}^2 \rangle$ and of an electric-magnetic asymmetry.
- At finite temperature, there is a non-vanishing asymmetry.
- At low temperature, the asymmetry behaves like $\propto T^4$ instead of exponentially.
- At high temperature, resummation is needed.
- For intermediary temperatures, a full treatment of confinement may be necessary.