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Theoretical considerations

〈A2
µ〉 is not gauge invariant, can it be relevant?

existence of 1/q2 power corrections advertized by Zakharov,
Narison, et al. from QCD phenomenology/(ultraviolet)
renormalon analysis/topological considerations

approaches based on AdS/QCD usually also predict 1/q2

corrections in e.g. (gauge invariant!) glueball correlators
(Andreev, Forkel, Gherghetta, Zakharov, et al.)
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Making 〈A2
µ〉 gauge invariant

Consider the minimum of 〈A2
µ〉 on the gauge orbit:

A2
min = min

u∈SU(N)
V−1

∫
d4x(Au

µ)2

is gauge invariant by construction

however: very non-local operator!
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Making A2
min local

iterative search for u ∈ SU(N) such that A2 gets minimized

A2
min =

∫
d4x

[
Aa

µ

(
δµν −

∂µ∂ν

∂2

)
Aa

ν

− gf abc

(
∂ν

∂2
∂Aa

)(
1

∂2
∂Ab

)
Ac

ν

]
+O(A4)

if we choose the Landau gauge ∂µAµ = 0, then:

A2
min = V−1

∫
d4xA2

µ
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More practical motivations

〈A2
µ〉 is a good observer of topological excitations

(e.g. monopoles, vortices. . . )

assume a thin vortex, carrying magnetic flux
∝
∫

~B · ~dS =
∮

~A · ~dx 6= 0

Aµ cannot be zero everywhere ⇒ A2
min 6= 0
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Compact QED on the lattice

compact QED shows
confinement for e2 > e2

c ∼ 1
(monopole condensation, mass
gap, see literature)

related to 〈A2
µ〉 (cfr. Gubarev

and Zakharov)
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In QCD

Gubarev and Zakharov provide 2 component picture for
〈A2

µ〉
soft (infrared) part, 〈A2

µ〉IR can enter OPE for gauge variant
things (like propagators, see lattice work by Boucaud et al.)

hard (ultraviolet) part 〈A2
µ〉UV can enter physical correlators

(modeled in phenomenology with gluon masses), see work by
Ruiz-Arriola, Megias et al., Zakharov et al.

⇒ example of nonperturbative UV effects in gauge theory.

effective gluon masses are nothing new, see work by
Cornwall, Parisi & Petronzio, Field, Bernard. . .

of course, no perturbative unitarity, but gluons are not the
physical degrees of freedom after all
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The asymmetry in the dimension two condensate

Yang–Mills phase transition is at finite T

let’s consider A2
4 and A2

i separately

the sum A2
µ has been investigated before

Chernodub and Ilgenfritz considered the difference
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The asymmetry in the dimension two condensate

Chernodub and Ilgenfritz considered the difference

at T = 0, the asymmetry vanishes

only consider temperature contributions (which are finite)

define:

∆A2(T ) = 〈g2A2
E 〉 −

1

3
〈g2A2

M〉

= 〈g2A2
d〉T −

1

d − 1

d−1∑
i=1

〈g2A2
i 〉T

David Vercauteren Electric-magnetic asymmetry of the dimension two condensate



Outline
The asymmetry

LCO and AµAν
Finite temperature

Conclusions

The dimension two condensate
The asymmetry
LCO’s

Naive expectations

We would naively expect:

at high T : ∆A2(T ) ∝ T 2

at low T= ∆A2(T ) ∝ e−m/T (m lowest mass in spectrum, in
SU(2) Yang–Mills: mgl ∼ 1700 MeV)

at low T , Abelian Higgs model gives ∆A2(T ) ∝ T 4/m2

(due to massless pole of longitudinal dof’s)
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Lattice results

∆A2 = 0 at T = 0

jump at deconfinement phase
transition

at T = 2.2Tc the asymmetry
flips sign, at higher T a
monopole gas is expected (cfr.
Chernodub & Zakharov,
Shuryak & Liao)
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Lattice results

at high T : ∆A2(T ) ∝ T 2 (no
surprise)

at low T : ∆A2(T ) ∝ e−m/T

with m ∼ 200 MeV
why such a low mass?
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Conclusion

Doing a continuum investigation?

Hoping to get more insight in

the three-phase diagram

the low-T behavior

Need a continuum formalism to study the A2
µ asymmetry.

Use the Local Composite Operator (LCO) formalism developed by
Verschelde et al.
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The LCO formalism

Developed by H. Verschelde et al. in Phys.Lett.B516 (2001) 307

add a term 1
2JA2

µ

non-renormalizable → add a term − ζ
2J2

new parameter ζ: must be determined in some way

choose ζ to be a unique meromorphic function of g2

the J2 term: Hubbard–Stratanovich transformation

result found for SU(N) Yang–Mills: 1
2〈g

2A2
µ〉 ∼ −(500 MeV)2

(both at one- and two-loop order)
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Which operator to take

separate access to A2
0 and A2

i possible?

maintain a clear view on renormalization (group)?

at least maintain Lorentz invariance when T = 0. A
replacement like 1

2JA2
µ → 1

2J1A
2
0 + 1

2J2A
2
i does not look as a

very good choice.

favourably, recover the T = 0 results?
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Which operator to take

good choice might be

1

2
JA2

µ →
1

2
JµνAµAν

gives rise to renormalization troubles, also JµµA2
ν comes to

life, difficult to control

the right thing:

1

2
JA2

µ →
1

2
JA2

µ +
1

2
ρµν

(
AµAν −

δµν

d
A2

σ

)
we can consider A2

µ (= trace of AµAν) and the traceless part
of AµAν , no mixing between the trace and “off-trace”
operator
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The AµAν operator

couple a source Kµν to traceless part of AµAν

add a source ηµν in a BRST doublet with Kµν :

LK = s

(
1

2
ηµνA

a
µAa

ν −
1

2d
ηµµA2 − ω

2
ηµνKµν +

ω

2d
ηµµKνν

)
=

1

2
KµνA

a
µAa

ν + ηµνA
a
µ∂νc

a − 1

2d
KµµA2

− 1

d
ηµµAa

ν∂νc
a − ω

2
KµνKµν +

ω

2d
K 2

µµ

ω is new parameter
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Algebraic renormalization

introduce two further external sources K a
µ and La:

Lext = −K a
µDab

µ cb +
1

2
gf abcLacbcc

we have the BRST nilpotent operator acting as

sAa
µ = −Dab

µ cb sca =
1

2
gf abccbcc

sca = ba sba = 0

sηµν = Kµν sKµν = 0

sK a
µ = 0 sLµ = 0
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Ward identities

The complete action obeys:

Slavnov-Taylor identity

S(Σ) =

∫
ddx

(
δΣ

δAa
µ

δΣ

δK a
µ

+
δΣ

δca

δΣ

δLa
+ ba δΣ

δca + Kµν
δΣ

δηµν

)
= 0

Landau gauge fixing condition
δΣ

δba
= ∂µAa

µ

antighost equation
δΣ

δca + ∂µ
δΣ

δK a
µ

= 0
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Ward identities

The complete action obeys:

The ghost Ward identity GaΣ = ∆a
cl with

Ga =

∫
ddx

(
δ

δca
+ gf abc

(
cb δ

δbc

))
and the classical breaking

∆a
cl = g

∫
ddxf abc

(
Kb

µAc
µ − Lbcc

)
additional identities δµν

δ

δKµν
Σ = 0 and δµν

δ

δηµν
Σ = 0
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Ward identities

The counterterms obey similar relations:

linearized Slavnov-Taylor identity BΣΣcount = 0 where

BΣ =

∫
ddx

(
δΣ

δAa
µ

δ

δK a
µ

+
δΣ

δK a
µ

δ

δAa
µ

+
δΣ

δca

δ

δLa

+
δΣ

δLa

δ

δca
+ ba δ

δca + Kµν
δ

δηµν

)
obeys BΣBΣ = 0

Landau gauge fixing condition
δΣcount

δba
= 0

David Vercauteren Electric-magnetic asymmetry of the dimension two condensate



Outline
The asymmetry

LCO and AµAν
Finite temperature

Conclusions

Which operator to take
The AµAν operator
Towards the asymmetry
The effective potential

Ward identities

The counterterms obey similar relations:

antighost equation
δΣcount

δca + ∂µ
δΣcount

δK a
µ

= 0

ghost Ward identity GaΣcount = 0

additional identities

δµν
δ

δKµν
Σcount = 0 and δµν

δ

δηµν
Σcount = 0
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Most general counterterm

quantum numbers:
Aµ c c b ηµν Kµν Kµ L

dimension 1 0 2 2 2 2 3 4

ghost number 0 1 −1 0 −1 0 −1 −2

most general counterterm is

Σcount =
a0

4

∫
ddxF a

µνF
a
µν + BΣ∆−1

with ∆−1 the most general local polynomial with dimension 4
and ghost number −1
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Most general counterterm

Writing down the most general local polynomial with dimension 4
and ghost number −1 and demanding it obey all necessary
identities gives:

∆−1 =

∫
ddx

(
a1

(
K a

µAaµ + ∂µcaAaµ
)

+ a2

(
ηµν

2
Aa

µAa
ν −

1

d
ηµµA2

ν

)
+ a3

(
ω

2
ηµνKµν −

1

d

ω

2
ηµµKνν

))
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Most general counterterm

Computing the most general counterterm from ∆−1, can we
reabsorb this?

Σ(g , ω, φ, Φ) + ϑΣcount = Σ(g0, ω0, φ0,Φ0) + O(ϑ2)

Yes, we can!

Conclusion

The Yang–Mills action with inclusion of the traceless part of AµAν

can be multiplicatively renormalized.
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Trace and traceless part

To add the A2
µ operator itself is completely analogous. It is

possible to prove the renormalizability of both the traceless part of
AµAν and the trace A2

µ together.

Conclusion

The Yang–Mills action with inclusion of the traceless part of AµAν

and of A2
µ can be multiplicatively renormalized.
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Hubbard–Stratanovich transformation

In order to get rid of the terms quadratic in the sources, introduce
the identities:

1 =
∫

[dσ]e
− 1

2ζ

R
ddx

�
σ
g
+ 1

2
A2

µ−ζJ
�2

1 =
∫

[dϕµν ]e
− 1

2ω

R
ddx

�
1
g
ϕµν+ 1

2
AµAν−ω(Kµν−

δµν
d

Kµµ)
�2

two new fields σ and (traceless) ϕµν with 〈σ〉 = −g
2 〈A

2
µ〉 and

〈ϕµν〉 = −g
2

〈
AµAν − δµν

d A2
〉
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The action

Our action is:

SYM + Sgf +

∫
ddx

[
1

2ζ

σ2

g2
+

1

2ζg
σA2

µ +
1

8ζ
(A2

µ)2

+
1

2ω

ϕ2
µν

g2
+

1

2ωg
ϕµνAµAν +

1

8ω
(Aa

µAa
ν)

2

]
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Determination of ζ and ω

ζ was determined by Verschelde et al., ω is analogous:

write down renormalization group equation for J and Kµν

consider ζ and ω function of g2

(for example for ζ: β(g2)
∂

∂g2
ζ(g2) =

2γJ(g
2)ζ(g2) + εδζ − β(g2)

∂

∂g2
(δζ) + 2γJ(g

2)δζ)

solve with a Laurent series
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Determination of ζ and ω

In practice:

compute anomalous dimensions and renormalization factors
up to two-loop order (for one-loop computation of effective
action)

plenty of diagrams (best done computerized)

solving the renormalization group equation

ζ =
N2 − 1

16π2

[
9

13

16π2

g2N
+

161

52

]
ω =

N2 − 1

16π2

[
1

4

16π2

g2N
+

73

1044

]
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Conventions

m2 =
13

9

N

N2 − 1
gσ = gσ′

Mµν = 4
N

N2 − 1
gϕµν = gϕ′µν

take Mµν = A


1

− 1
d−1

. . .

− 1
d−1


(introduces an electric-magnetic asymmetry, preserves 3d
rotational invariance)
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The effective action

Up to one-loop order, we have

Γ(1)(σ′, ϕ′µν) =
1

2ZζZ
2
J ζ

σ2

g2
+

1

2ZωZ 2
Kω

ϕ2
µν

g2

+
N2 − 1

2
tr ln

(
−∂2δµν +

(
1− 1

ξ

)
∂µ∂ν + δµνm

2 + Mµν

)
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The tr log

The operator in the tr log can be easily diagonalized. In the limit
ξ → 0 it decomposes as

tr ln(−∂2) + (d − 2) tr ln

(
−∂2 + m2 − A

d − 1

)
+ tr ln

(
−∂2 + m2 + A

(
1− d

d − 1

∂2
0

∂2

))
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The final result

Some “straightforward algebra” gives:

Γ(1)(σ′, ϕ′µν) =
N2 − 1

2(4π)2

{
9

13

(4π)2

g2N
m4 +

1

3

(4π)2

g2N
A2+

1

18
ln

(
m2 − A/3

µ2

)[
7A2 + 27m4

]
−155

522
A2+

11

12
Am2−87

26
m4+

1

4

m6

A

+
1

18

[
5A2 + 12Am2 + 9m4

] [
ln

(
A

A− 3m2

)
+ ln

(
1 +

√
m2 + A

m2 − A
3

)

− ln

(
1−

√
m2 + A

m2 − A
3

)]
−
(
m2 − A

3

)
12A

(6A2+11Am2+3m4)

√
m2 + A

m2 − A
3

}
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The final result

Remarks:

is real only if m2 ≥ A
3 and m2 ≥ −A

in the limit A → 0 it gives the result already found by
Verschelde et al.

its minimum is at A = 0 and with σ the value found by
Verschelde et al.

Conclusion

We found the effective potential in the presence of A2
µ and of an

electric-magnetic asymmetry ∆A2 . It has its minimum where it
should be.
(This is at T = 0.)
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Temperature corrections to the action

Finite-temperature corrections can be straightforwardly computed
using standard techniques. The result is

(N2 − 1)(d − 2)T

∫
d3k

(2π)3
ln

(
1− exp−

√
α

2T

)

+ (N2 − 1)T

∫
d3k

(2π)3

ln

1− exp−

r
α
2
+

√
α2−4β

2

T


+ ln

1− exp−

r
α
2
−
√

α2−4β
2

T


with α = m2 + 2~k2 − A/3 and β = ~k2(~k2 + m2 + A).
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Low-T expansion

For the lowest temperatures, we find:

∆A2 = (N2 − 1)
g2π2

30

(
1− 85

1044

g2N

(4π)2

)
T 4

m2

and no correction to 〈A2
µ〉 up to this order.

Observation

We see a ∝ T 4 behavior! This does not agree with the lattice
results, but those are only for T > 0.4Tc .
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Low T

(We put µ̄ equal to gσ′ in the T = 0 minimum.)

0.1 0.2 0.3 0.4 0.5 0.6
T�L

MS

-8

-6

-4

-2

(full line is 〈A2
µ〉, dotted line is ∆A2 , units ΛMS)
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Low T

(We put µ̄ equal to gσ′ in the T = 0 minimum.)
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High T

Once T > 0.67 ΛMS, no (real) solutions to the gap equation.

There are solutions when ignoring the imaginary part of the
effective potential.
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High-T expansion

For the highest temperatures, we find

〈A2
µ〉 = (N2 − 1)

T 2

4
, ∆A2 = (N2 − 1)

T 2

12
.

The effective gluon masses are negative and of order g2T 2 → need
for resummation.
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Resummation

resum the cactus diagrams

additional thermal mass

This helps, but is not yet sufficient.

Conclusion

A full HTL resummation may be needed.
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Conclusions

It is possible to add the traceless part of AµAν to the LCO
formalism. The action is renormalizable.

We computed the extra parameter ω.

We computed the effective action in the presence of a nonzero
〈A2

µ〉 and of an electric-magnetic asymmetry.

At finite temperature, there is a non-vanishing asymmetry.

At low temperature, the asymmetry behaves like ∝ T 4 instead
of exponentially.

At high temperature, resummation is needed.

For intermediary temperatures, a full treatment of
confinement may be necessary.
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