

Recent CLEO results on quarkonium spectroscopy

Tomasz Skwarnicki

	CLEO	Resu	Its Excited	QCD 2010	T. Skwarnick	i 2					
	onia 🛛 🕹										
FORCES			System	Ground triplet state 1 ³ S ₁			(v/c)²	Number of states below dissociation energy			
binding	dec	ay		Name	Γ (MeV)	Mass (GeV)		n ³ S ₁	all		
				P	OSITRONIL	JM]	
EM	EM		e+e−	Ortho-	5 10 ⁻¹⁵	0.001	~0.0	2	8		
				Q	UARKONIU	IM				1	
	S		uū,dd	ρ	150.00	0.8	~1.0	0	0	1	
S T	Т		ss	φ	4.40	1.0	~0.8	"1"	"2"		
R		Е	cc	Ψ	0.09	3.1	~0.25	2	8		
N	IN G	Μ	bb	Ŷ	0.05	9.5	~0.08	3	30	Г	
G	weak tt		ŧŧ		(3000.0)	(360.)	<0.01	0	0]•	I oponium is not a la for QCD

Consequences of large m_Q:

- velocities of constituents are small
- strong coupling constant in annihilation and production is small α_s parameters

This opens avenues for **effective theories** of strong interactions:

- purely phenomenological potential models
- more recently NRQCD and much improved QCD on Lattice

Expansion

Content of this talk

- Report on two recent measurements with the CLEO-III and CLEO-c detectors:
 - Measurement of the $\eta_b(1S)$ mass and the branching fraction for $\Upsilon(3S) \rightarrow \gamma \eta_b(1S)$ [arXiv:0909.5474]
 - Higher-order multipole amplitudes in charmonium radiative transitions [Phys.Rev.D80:112003,2009].

- CLEO-c detector (cc data):
 - Charged particle detection (1T): $\sigma_p/p=0.6\%$ at 1 GeV
 - Photon detection: $\sigma_{\rm E}/{\rm E}$ =4.8% at 100 MeV, 2.2% at 1 GeV
 - Hadron ID: dE/dX+RICH (fake rates at a few % level)
- CLEO-III detector (bb data):
 - The same detector except for inner vertex detector (silicon) and magnetic field (1.5T)

- Expected to be significant only for S states (L=0)
- Hyperfine splitting of the ground state of bb (n=1) a good place to test lattice QCD calculations:

 $\Delta M_{hf}(1S)_{bb} = M(1^3S_1) - M(1^1S_0) = M(\Upsilon) - M(\eta_b)$

• Only recently measured experimentally thanks to the first observation of η_b by BaBar

Confirmation from the CLEO data?

- The CLEO $\Upsilon(3S)$ data samples is ~18 times smaller than the BaBar's
- We published the upper limit on BR(Υ(3S) →γη_b) < 4.3x10⁻⁴ (90% C.L.) in 2005 [vs BaBar (4.8±0.5 ± 0.6)x10⁻⁴], but:
 - We did not include the ISR peak in the background fit which biased the BR down;
 - We assumed $\Gamma(\eta_b)=0$, while 4-20 MeV is predicted (not completely negligible compared to the resolution).
 - We did not use continuum background suppression cuts, which BaBar proved to be beneficial for this channel (our analysis was optimized to lower energy E1 transitions where continuum backgrounds were insignificant)

 $E(\gamma)$ (MeV)

We perform simultaneous fit to all 3 photon spectra

	CLEO R	esults Excited QCI	D 2010 T. Skwarnicki	10			
	(CLEO vs E	BaBar vs theory				
				(Assuming $\Gamma(\eta_b){=}10~\text{MeV}$)			
			$\Delta M_{hf}(1S)_{b\bar{b}}$, (MeV)	${\cal B}(\Upsilon(nS) o \gamma \eta_b) imes 10^4$	significance		
$\Upsilon(3S)$ -	$ ightarrow \gamma\eta_b$	(CLEO)	$68.5 \pm 6.6 \pm 2.0$	$7.1\pm1.8\pm1.1$	4σ		
		(BaBar)	$71.4^{+3.1}_{-2.3} \pm 2.7$	$4.8\pm0.5\pm0.6$	$\geq 10\sigma$		
$\Upsilon(2S)$ -	$ ightarrow \gamma \eta_b$	(CLEO)	—	< 8.4 (90% CL)	—		
		(BaBar)	$67.4^{+4.8}_{-4.6}\pm2.0$	$3.9^{+1.1}_{-1.0}\pm0.9$	3.5σ		
Lattice (UKQCD+HPQCD)			61 ± 14				
		(TWQCD)	70 ± 5 \rightarrow U	Jnquenched			
		(Ehrman)	37 ± 8				
pQCD (various)			35 - 100	$0.05 - 25 (\Upsilon(3S))$			
				$0.05 - 15 (\Upsilon(2S))$	_		

- The experimental results for hyperfine mass splitting agree with the unquenched lattice QCD calculations
- BaBar has the best measurements
- Significance of the CLEO measurement is in independent confirmation of the BaBar results

Higher-order mutipole amplitudes in charmonium radiative transitions

- Denote these fractions as:
 - \boldsymbol{b}_2^J for $\psi(2S) \rightarrow \gamma \chi_{cJ}(1P_J)$
 - a_2^J for $\chi_{cJ}(1P_J) \rightarrow \gamma J/\psi(1S)$

Wavelength of the radiated photon large compared to the radiating system, thus lowest multipole amplitude dominates: E1

- Allowed higher order mutipoles:
 - For 1³P₁: M2
 - For 1³P₂: M2, E3
- To the first order in Eγ/m_c, a fraction of M2 amplitude is expected to be:

$$\begin{cases} \mathbf{1^{3}P_{1}} & \frac{M2}{\sqrt{E1^{2} + M2^{2}}} = -\frac{E_{\gamma}}{4m_{c}}(1 + \kappa_{c}) \\ \mathbf{1^{3}P_{2}} & \frac{M2}{\sqrt{E1^{2} + M2^{2} + E3^{2}}} = -\frac{3}{\sqrt{5}}\frac{E_{\gamma}}{4m_{c}}(1 + \kappa_{c}) \end{cases}$$

 κ_{c} – anomalous magnetic moment of c-quark (expect $\kappa_{c}{=}0)$

Inconsistencies between data and theory

• Select $\gamma \gamma \mu^+ \mu^-$ or $\gamma \gamma e^+ e^-$ events. Backgrounds are small and under control. The χ_{c1} and χ_{c2} are well separated.

• By an order of magnitude larger statistics than in the previous experiments.

• Good agreement with the theoretical predictions (m_c=1.5 ----- GeV, κ_c =0)

Allowing electric octupole (E3) amplitude for J=2 data: $a_3^{J=2} = (1.7 \pm 1.4 \pm 0.3) \ 10^{-3}$ $b_3^{J=2} = (-0.8 \pm 1.2 \pm 0.2) \ 10^{-3}$ (the results for $a_2^{J=2}$, $b_2^{J=2}$ change within the errors)

• The inconsistencies with the theory has been resolved $\kappa_c = -0.123 \pm 0.088 \pm 0.034 \pm 0.175$ (last error due to $m_c=1.5 \pm 0.3$ GeV)

Conclusions

• BaBar's observation of the $\Upsilon(3S) \to \gamma \eta_b$ confirmed by the CLEO data:

16

- The experimental results for hyperfine mass splitting agree with the lattice QCD calculations
- Admixture of the magnetic quadrupole amplitude to predominantly electric dipole transitions 2^3S_1 $\rightarrow 1^3P_{1,2} \rightarrow 1^3S_1$ in charmonium well established by the CLEOc data:
 - No inconsistencies with the expectations, unlike in the previous experiments
 - No evidence for anomalous magnetic moment of cquark