The QCD Equation of State — From Nuclear Physics to Perturbative QCD

Aleksi Vuorinen

Bielefeld University

Excited QCD 2011 Les Houches, 23.2.2011

Aleksi Vuorinen (Bielefeld University)

The QCD Equation of State

Table of contents

Setup

- Setting up the problem
- Splitting up the problem

2 Small θ : From Hadron Gas to Quark-Gluon Plasma

- $\rho \lesssim$ 100 MeV: Hadron resonance gas
- $\rho \gtrsim$ 1 GeV: Weakly coupled quasiparticles
- 100 MeV $\lesssim \rho \lesssim$ 1 GeV: Lattice regime

3) $heta pprox \pi/2$: Cold Nuclear/Quark Matter

- $\rho \lesssim$ 100 MeV: Nuclear matter
- $\rho \gtrsim$ 1 GeV: CFL quark matter
- 100 MeV $\lesssim \rho \lesssim$ 1 GeV: No man's land

Conclusions

Table of contents

Setup

- Setting up the problem
- Splitting up the problem

2 Small θ: From Hadron Gas to Quark-Gluon Plasma
 φ ≤ 100 MeV: Hadron resonance gas
 φ ≥ 1 GeV: Weakly coupled quasiparticles
 100 MeV ≤ φ ≤ 1 GeV: Lattice regime

3) $heta \approx \pi/2$: Cold Nuclear/Quark Matter

- $\rho \lesssim$ 100 MeV: Nuclear matter
- $\rho \gtrsim$ 1 GeV: CFL quark matter
- 100 MeV $\lesssim \rho \lesssim$ 1 GeV: No man's land

Conclusions

Aleksi Vuorinen (Bielefeld University)

Equilibrium thermodynamics

Conceptually simple goal: Evaluate grand potential of QCD

$$\Omega(T, \{\mu_f\}, \{m_f\}) = -T \log \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \mathcal{D}A_{\mu}e^{-\int_0^\beta d\tau \int d^3x \mathcal{L}_{QCD}}$$
$$\mathcal{L}_{QCD} = \frac{1}{4}F^a_{\mu\nu}F^a_{\mu\nu} + \bar{\psi}_f(\gamma_{\mu}D_{\mu} + m_f - \mu_f\gamma_0)\psi_f$$

Equilibrium thermodynamics from derivatives of Ω :

$$pV = -\Omega$$

$$sV = -\partial_T \Omega$$

$$n_f V = -\partial_{\mu_f} \Omega$$

$$\varepsilon = -p + Ts + \mu_f n_f$$

Equilibrium thermodynamics

In practice, no single method covers entire phase diagram \Rightarrow Need combination of (and interpolation between) several

Corners of the phase diagram

Parametrize the phase diagram by radial and angular variables:

$$ho\equiv\sqrt{T^2+rac{\mu_{\sf B}^2}{6\pi^2}}$$
 , $heta\equivrctanrac{\mu_{\sf B}}{T}$

- ρ measures, how strongly coupled the system is
 - $\rho \lesssim$ 100 MeV: Confinement; nuclear physics methods
 - 100 MeV $\lesssim \rho \lesssim$ 1 GeV: Phase transition region, non-perturbative; lattice, effective theories,...
 - $\rho\gtrsim$ 1 GeV: Weakly interacting, deconfined quasiparticles; weak coupling methods
- As function of θ , two separate, physically interesting regimes
 - $\theta \lesssim$ 1: Quark-gluon plasma, heavy ion collisions, early universe
 - $\theta \approx \pi/2$: Cold nuclear matter, neutron stars

Challenge: Determine EoS throughout the phase diagram

Table of contents

1) Setu

- Setting up the problem
- Splitting up the problem

Small θ : From Hadron Gas to Quark-Gluon Plasma

- $\rho \lesssim$ 100 MeV: Hadron resonance gas
- $\rho \gtrsim$ 1 GeV: Weakly coupled quasiparticles
- 100 MeV $\lesssim \rho \lesssim$ 1 GeV: Lattice regime
- 3) $heta pprox \pi/2$: Cold Nuclear/Quark Matter
 - $\rho \lesssim$ 100 MeV: Nuclear matter
 - $\rho \gtrsim$ 1 GeV: CFL quark matter
 - 100 MeV $\lesssim
 ho \lesssim$ 1 GeV: No man's land

Conclusions

Hadron resonance gas models

For low densities and $T \ll T_c$, a good approximation is to treat the system as a (nearly ideal) gas of hadrons \Rightarrow Hadron Resonance Gas Models (HRG)

Typical ingredients:

- Non-interacting, pointlike hadrons finite volumes and interactions taken into account at higher energies
- Baryonic and mesonic states (from PDG) up to M ~ 2-3 GeV; altogether typically O(100) stable hadrons and resonances included
- Overall strangeness neutrality

Hadron resonance gas models

For low densities and $T \ll T_c$, a good approximation is to treat the system as a (nearly ideal) gas of hadrons \Rightarrow Hadron Resonance Gas Models (HRG)

Typical result (Satarov et al., 0901.1430):

$$P = \sum_{i} \frac{g_{i}}{6\pi^{2}T} \int_{m_{i}}^{\infty} dE \frac{(E^{2} - m_{i}^{2})^{3/2}}{\exp[(E - \tilde{\mu}_{i})/T] \pm 1},$$

$$g_{i} = \text{degeneracy factor for species } i,$$

$$\tilde{\mu}_{i} \equiv \mu_{i} - v_{i}P$$

Hadron resonance gas models

For low densities and $T \ll T_c$, a good approximation is to treat the system as a (nearly ideal) gas of hadrons \Rightarrow Hadron Resonance Gas Models (HRG)

Satarov et al., 0901.1430

Perturbative physics at high T

At $T \gg T_c$, with $g \ll 1$, degrees of freedom of QCD quarks and gluons.

Clear hierarchy between three length scales $\left[n_b(E) \equiv 1/(e^{E/T} - 1)\right]$:

λ ~ 1/(πT): Wavelength of thermal fluctuations, inverse effective mass of non-static field modes (p₀ ≠ 0)

• $n_b(E)g^2(T) \sim g^2(T) \Rightarrow$ Contributes perturbatively at high T

- $\lambda \sim 1/(gT)$: Screening length of static color electric fluctuations, inverse thermal mass of A_0
 - $n_b(E)g^2(T) \sim g(T) \Rightarrow$ Physics somewhat perturbative at high T
- λ ~ 1/(g²T): Screening length of static color magnetic fluctuations, inverse "magnetic mass"

• $n_b(E)g^2(T) \sim g^0(T) \Rightarrow$ Physics non-perturbative at high T

No more longer length scales due to confinement

Perturbative physics at high T

Scale hierarchy \Rightarrow Efficient description of long-distance physics through dimensionally reduced 3d effective theory (EQCD)

- Natural separation of contributions from hard, soft and ultrasoft scales to the EoS
- Not expanding effective theory parameters in powers of g₄ leads to improved convergence very similarly to HTL
- Current status $\mathcal{O}(g^6 \ln g)$, Kajantie *e*t al., hep-ph/0211321

Generalization to finite μ straightforward; AV, hep-ph/0305183

- Only minor technical complication
- Dimensional reduction approach valid as long as $g\mu \lesssim T$; lpp *et al.*, hep-ph/0604060

Perturbative physics at high T

$$p_{\text{QCD}} = T^4 \Big\{ p_0(\mu/T) + g^2 \, p_2(\mu/T) + g^3 \, p_3(\mu/T) + g^4 \ln g \, p'_4(\mu/T) \\ + g^4 \, p_4(\mu/T) + g^5 \, p_5(\mu/T) + g^6 \ln g \, p'_6(\mu/T) + g^6 \, p_6(\mu/T) + \cdots \Big\}$$

Contribution of scale πT to $\mathcal{O}(g^6)$ term still partially unknown; fitting coefficient to lattice results gives an almost perfect match down to $2T_c$ (Laine, Schröder, hep-ph/0603048)

Lattice QCD: Recent developments

Phase transition region both technically and conceptually most difficult to access: For quantitative results the only reliable method is lattice field theory

- Recent high-precision results for 2+1 quarks with physical masses: Convergence on T_c, EoS,...
- Extension of results to $\mu \lesssim T$ doable
- Low *T* matching to HRG results and high *T* matching to resummed perturbation theory very successful
 - Low *T* matching nearly perfect (after adjustment of hadron masses in some cases)
 - At high *T*, Endrodi *et al.*: Extension of lattice results to almost arbitrarily high *T*

Lattice QCD: Recent developments

Phase transition region both technically and conceptually most difficult to access: For quantitative results the only reliable method is lattice field theory

Borsanyi et al., 1012.5215

Lattice QCD: Recent developments

Phase transition region both technically and conceptually most difficult to access: For quantitative results the only reliable method is lattice field theory

Endrodi et al., 0710.4197

Table of contents

- Setup
 - Setting up the problem
 - Splitting up the problem
- Small θ : From Hadron Gas to Quark-Gluon Plasma
 - $ho \lesssim$ 100 MeV: Hadron resonance gas
 - $\rho \gtrsim$ 1 GeV: Weakly coupled quasiparticles
 - 100 MeV $\leq \rho \leq$ 1 GeV: Lattice regime
- 3) $heta \approx \pi/2$: Cold Nuclear/Quark Matter
 - $\rho \lesssim$ 100 MeV: Nuclear matter
 - $\rho \gtrsim$ 1 GeV: CFL quark matter
 - 100 MeV $\lesssim \rho \lesssim$ 1 GeV: No man's land

Conclusions

Nuclear matter EoSs

Low energy nuclear physics not derivable from first principles, but experimentally under excellent control \Rightarrow Several model EoSs, which agree well at low densities

Problems start with increasing density: Uncertainties from

- Composition of the matter: Hyperons, Kaon condensation,...
- Multi-nucleon interactions (typically neglected)
- Form of variational ansatz
- Details of hyperon interactions, kaon condensation potential, etc.

Nuclear matter EoSs

Low energy nuclear physics not derivable from first principles, but experimentally under excellent control \Rightarrow Several model EoSs, which agree well at low densities

Quark matter EoS

At high densities, gauge coupling small \Rightarrow Use weak coupling techniques to evaluate EoS

Problem: Color superconductivity non-perturbative in nature $(\Delta \sim e^{-\#/g})$, but formulating weak coupling calculations with anomalous propagators and vertices difficult

- At asymptopia, physical phase Color-Flavor-Locking (CFL)
- Physically, two competing effects: Pairing increases pressure, but deformation of Fermi surfaces decreases it

Leading order solution: Add condensation energy term to the pressure of unpaired quark matter

$$oldsymbol{p} = oldsymbol{p}_{\mathsf{pert}} + \# imes rac{\Delta^2 \mu_{\mathsf{B}}^2}{3\pi^2}$$

Quark matter EoS

Complication in evaluation of p_{pert} : For practical applications, must keep strange quark mass non-zero — state of the art three loops (Kurkela, Romatschke, AV, 1012.1856)

Also need to enforce β -equilibrium and charge neutrality.

The QCD Equation of State

Quark matter EoS

Complication in evaluation of p_{pert} : For practical applications, must keep strange quark mass non-zero — state of the art three loops (Kurkela, Romatschke, AV, 1012.1856)

Interpolation to intermediate densities

For densities relevant for neutron star interiors, no quantitatively reliable method available

- Nuclear matter EoSs differ wildly
- Weak coupling expansions show poor convergence

In particular, details of the phase transition remain unknown: μ_{c} , existence of mixed phase,...

Two possibilities:

- Model calculations based on symmetries
 - Conceptually appealing but hard to estimate validity
- Interpolation between trusted limits, requiring thermodynamically stable matching
 - Hope: Bulk thermo insensitive to details of phase structure

Interpolation to intermediate densities

Result of thermodynamic matching: EoS band for all densities; Kurkela, Romatschke, AV, Wu (1006.4062)

Interpolation to intermediate densities

Ultimately, mass-radius measurements of neutron stars will determine the correct EoS; Kurkela, Romatschke, AV, Wu (1006.4062)

Table of contents

- 1) Setup
 - Setting up the problem
 - Splitting up the problem
- Small θ : From Hadron Gas to Quark-Gluon Plasma
 - $ho \lesssim$ 100 MeV: Hadron resonance gas
 - $\rho \gtrsim$ 1 GeV: Weakly coupled quasiparticles
 - 100 MeV $\lesssim \rho \lesssim$ 1 GeV: Lattice regime
- 3 $heta pprox \pi/2$: Cold Nuclear/Quark Matter
 - $\rho \lesssim$ 100 MeV: Nuclear matter
 - $\rho \gtrsim$ 1 GeV: CFL quark matter
 - 100 MeV $\lesssim
 ho \lesssim$ 1 GeV: No man's land

Conclusions

Conclusions

Conclusions

$$\rho \equiv \sqrt{T^2 + \frac{\mu_{\rm B}^2}{6\pi^2}}, \quad \theta \equiv \arctan\frac{\mu_{\rm B}}{T} :$$

	$ ho \lesssim$ 100 MeV:	0.1 GeV $\lesssim ho \lesssim$ 1 GeV	$ ho \gtrsim$ 1 GeV
$\theta \lesssim 1$	Gas of weakly	Non-perturbative;	Quasiparticles;
	int. hadrons; HRG	lattice QCD	perturb. theory
$\theta \approx$	Nuclear matter;	?????	CFL phase;
π/2	potential models		weak coupling