AdS/CFT for Heavy Ion Collisions

Edmond Iancu CERN PH-TH & IPhT Saclay

• A fascinating question: What should be the behaviour of a quantum field theory at strong coupling ?

- A fascinating question: What should be the behaviour of a quantum field theory at strong coupling ?
- ... potentially relevant for heavy ion collisions: some RHIC and LHC data suggest a strongly coupled QGP

- A fascinating question: What should be the behaviour of a quantum field theory at strong coupling ?
- ... potentially relevant for heavy ion collisions: some RHIC and LHC data suggest a strongly coupled QGP
- ... which rises an obvious 'technical' problem : how to compute in a gauge theory at strong coupling ?

- A fascinating question: What should be the behaviour of a quantum field theory at strong coupling ?
- ... potentially relevant for heavy ion collisions: some RHIC and LHC data suggest a strongly coupled QGP
- ... which rises an obvious 'technical' problem : how to compute in a gauge theory at strong coupling ?
- AdS/CFT : a coherent framework from first-principles
 - tailored for the strong coupling limit of conformal theories
 - physical guidance for well chosen problems in QCD

- A fascinating question: What should be the behaviour of a quantum field theory at strong coupling ?
- ... potentially relevant for heavy ion collisions: some RHIC and LHC data suggest a strongly coupled QGP
- ... which rises an obvious 'technical' problem : how to compute in a gauge theory at strong coupling ?
- AdS/CFT : a coherent framework from first-principles
 - tailored for the strong coupling limit of conformal theories
 - physical guidance for well chosen problems in QCD
- A fascinating field by itself : unexpected and potentially deep connections between different areas of physics
 QFT, string theory, gravity, hydrodynamics...

Results

Heavy Ion Collisions @ RHIC & LHC

Results

Hadron production in HIC

- Au+Au collisions at RHIC: ~ 3000 hadrons in the final state !
- Particle correlations are essential to disentangle phenomena

Hadron production in HIC

- Pb+Pb collisions at LHC: ~ 1600 hadrons at central rapidity !
- Particle correlations are essential to disentangle phenomena

Results

Elliptic flow v_2 (cf. talks by Bailhache, Luzum, Mota, Beraudo)

• Non-central AA collision: Particle distribution is not axially symmetric : $dN/d\phi \propto 1 + 2v_2 \cos 2\phi$ ($v_2 = 0$ for 'dust')

 RHIC & LHC find a very large v₂. Natural for a liquid : Pressure gradient is larger along the smaller axis (x)

Elliptic flow for heavy quarks

• Even heavy quarks (c, b) seem to flow !

Hydro simulations for v_2 (Luzum and Romatschke, 08)

- A good hydro description of the data requires :
 - a very short equilibration (isotropisation ?) time $au_{
 m eq} \lesssim 1 \ {
 m fm/c}$
 - a very small viscosity/entropy ratio $\eta/s \sim 0.1$
- The hallmarks of a system with strong interactions !
 - η is proportional to the mean free path $\ \ell \propto 1/\sigma \sim 1/g^4$

Results

Hydro simulations for v_2 (Luzum and Romatschke, 08)

• AdS/CFT prediction for $\mathcal{N} = 4$ SYM at strong coupling (*Policastro, Son, Starinets, 2001*)

 $\eta/s
ightarrow 1/4\pi$ when $\lambda \equiv g^2 N_c
ightarrow \infty$

• "strongly-coupled quark-gluon plasma" or "perfect fluid"

Results

Jet 'quenching' in nucleus–nucleus collisions

- The "away-side" jet has disappeared ! absorbtion (or energy loss, or "jet quenching") in the medium
- The matter produced in a heavy ion collision is opaque high density, strong interactions, ... or both

How to measure jet quenching ? (cf. talk by Bailhache)

• Nuclear modification factor

 $R_{AA}(p_{\perp}) \equiv \frac{\text{Yield}(A+A)}{\text{Yield}(p+p) \times A^2}$

- $R_{AA} \simeq 0.15$ at the LHC
- This seems hard to understand at weak coupling

Results

ATLAS & CMS (cf. talks by Newman & Bora)

- How to explain the medium broadening of a ... 200 GeV jet ??
- Scenarios for jet quenching at weak coupling
 - cf. the talks by Y. Mehtar-Tani and J. Casalderrey-Solana

The AdS/CFT correspondance (Maldacena, 1997)

Heavy Ion Collisions

- A 'duality' (equivalence) between 2 very different theories
- A supersymmetric gauge theory in D = 3 + 1 ($\mathcal{N} = 4$ SYM)
 - $SU(N_c)$, conformal invariance, fixed coupling, no confinement

AdS/CFT

Results

- A string theory in D = 9 + 1 (type IIB in $AdS_5 \times S^5$)
- Strong 't Hooft coupling limit : $\lambda \, \equiv \, g^2 N_c \gg 1 \, \& \, g^2 \ll 1$
 - \iff Semiclassical limit of the string theory ('supergravity')
 - no string loops, no internal string excitations
- $\mathcal{N} = 4$ SYM at finite temperature \implies Black Hole in AdS_5
 - a Black Hole has entropy and thermal (Hawking) radiation

Heavy	lon	Co	llisions			

Results

Finite T lattice QCD (cf. talk by Fodor)

• $\alpha_s \approx 0.3 \implies g \approx 2 \implies \lambda \equiv g^2 N_c \simeq 10$

trace anomaly : $\beta(g) \frac{\mathrm{d}p}{\mathrm{d}g} = \langle T^{\mu}_{\mu}
angle = \mathcal{E} - 3p$

• $(\mathcal{E} - 3p)/\mathcal{E}_0 \lesssim 10\%$ for any $T \gtrsim 2T_c \simeq 400$ MeV \implies nearly conformal, rather strongly coupled

Lattice QCD: weak or strong coupling ?

AdS/CFT

00000000

• For $T \gtrsim 2.5T_c$, lattice results are well reproduced by resummed perturbation theory! (cf. talks by Blaizot and Vuorinen)

Lattice QCD: weak or strong coupling ?

AdS/CFT

• For $T \gtrsim 2.5T_c$, lattice results are well reproduced by resummed perturbation theory! (cf. talks by Blaizot and Vuorinen)

• ... but AdS/CFT is not very far away either : $s/s_0 = 3/4$

Lattice QCD: weak or strong coupling ?

AdS/CFT

- For $T \gtrsim 2.5T_c$, lattice results are well reproduced by resummed perturbation theory! (cf. talks by Blaizot and Vuorinen)
- ... but AdS/CFT is not very far away either : $s/s_0 = 3/4$
- Very soft modes $(k \sim g^2 T)$ are anyway strongly coupled and they seem to significantly contribute to the pressure.

AdS₅ Black Hole space-time

 $\bullet~{\rm AdS}_5$: our Minkowski world \times a 'radial' dimension χ

- 'radial', or '5th', coordinate : $0 \le \chi < \infty$
- the gauge theory lives at the Minkowski boundary $\chi = 0$
- finite temperature T: black hole horizon at $\chi=1/T$

 $S_{\rm BH}$ =

Horizon area

 $4G_{10}$

Heavy Quark in a strongly-coupled plasma

- Physical sources on the boundary (*i.e.* in the gauge theory) act as perturbations of the bulk
- Heavy quark in 4D \longleftrightarrow 'Trailing string' in AdS₅ BH
- Energy loss $dE/dt \iff$ Energy flux down the string

Herzog, Karch, Kovtun, Kozcaz, and Yaffe; Gubser (2006) Casalderrey–Solana, Teaney (2006); Giecold, E.I., Al Mueller (2009) Excited QCD2011, Les Houches, Feb. 20-25, 2011 AdS/CET for Heavy Ion Collisions

Heavy Ion Collisions

AdS/CFT

Results

DIS off the Black Hole (Hatta, E.I., Mueller, 07)

- $\bullet\,$ Deep inelastic scattering or e^+e^- annihilation: virtual photon
- E.m. current J^{μ}_{em} in 4D \longleftrightarrow Maxwell wave A_{μ} in AdS₅ BH
- \bullet DIS cross section \longleftrightarrow absorption of the wave by BH

 $\partial_m \left(\sqrt{-g} g^{mn} g^{pq} F_{nq} \right) = 0$

 $F_{mn} = \partial_m A_n - \partial_n A_m$

- BH is implicit in the metric g^{mn}
- No explicit coupling

Heavy Ion Collisions

• Ultrarelativistic Heavy Ion Collision in 4D \longleftrightarrow

The scattering between two gravitational shock–waves in \mbox{AdS}_5

• Thermalization \longleftrightarrow Formation of a BH horizon

• The 5th dimension plays the rôle of the quantum virtuality

Results

- Radial penetration χ of the space-like 'photon' in AdS₅ transverse size $L \sim 1/Q$ of the partonic fluctuation
- Allows for the physical interpretation of the results.

No jets at strong coupling !

• e^+e^- annihilation in center of mass frame (time-like photon)

- Weak coupling: a pair of back-to-back jets.
- Strong coupling: isotropic distribution of many soft hadrons
- Quasi-democratic parton branching: $\omega_n \approx \frac{\omega_{n-1}}{2}$, $Q_n \approx \frac{Q_{n-1}}{2}$

No partons with large x

- $\bullet \ x \equiv p_z/P$: longitudinal momentum fraction of a parton
- Weak coupling: Bremsstrahlung
 - \implies soft & collinear emissions

Weak coupling: the energy is carried by partons with x ~ 1 ⇒ valence quarks, pointlike constituents, hard scattering
 Strong coupling: 'hadron' = a jelly of soft partons

No forward/backward jets !

 No large-x partons ⇒ no forward/backward particles (no particle production close to the collision axis)

- Forward particles are beam remnants (partons) with large x
- This is of course contradicted by the RHIC and LHC data !

Partons at RHIC

- Central rapidity: small-x partons
- Forward/backward rapidities: large-x partons

Heavy	lon	Col	lisions
00000	000	00	

Parton saturation: weak vs. strong coupling

- Weak coupling : $Q_s^2(x) \propto 1/x^{0.3}$
 - $Q > Q_s(x)$: 'leading-twist' pdf
 - $Q < Q_s(x) : n \sim 1/\alpha_s$ (CGC)

- Strong coupling : $Q_s^2(x) \propto 1/x$
 - $Q > Q_s(x)$: no partons

•
$$Q < Q_s(x) : n \sim 1$$

Heavy Quark in a strongly-coupled plasma

• Heavy quark ($M \gg T$): medium-induced radiation

- Weak coupling: thermal rescattering
- Strong coupling: medium induced parton branching (there are no plasma constituents to scatter off !)
- Plasma acts on partons with a tidal force which splits them apart ⇒ gravity out of the gauge interactions !

Heavy	lon	Co	llisions
00000			

Results

Energy distribution on the boundary

- Energy is transferred from the heavy quark to the plasma
- If the quark velocity is larger than the speed of sound $(c_s = 1/3) \implies$ Mach cone (Chesler and Yaffe, 2007)
- The experimental evidence at RHIC is still under debate

Thermalization from shock-wave scattering

(Chesler and Yaffe, 2010)

- $\bullet\,$ The remnants of the two shock waves move away from each other, but with velocities v<1
- The pressure shows isotropisation

Instead of conclusions: Why gravity ?

- Why should gravity describe gauge theory at strong coupling ?
- OPE for DIS: Partons \longleftrightarrow 'twist-2' operators
- The operators depend upon the resolution scale

- $\lambda \to \infty$: rapid evolution \Rightarrow all operators are suppressed
- ... with one exception: the energy momentum tensor $T^{\mu\nu}$ \implies the effective theory for scattering must be gravity !