Finite temperature lattice QCD with GPUs

Nuno Cardoso

CFTP, IST, Lisbon, Portugal

work done in collaboration with:

Pedro Bicudo Marco Cardoso

1/21

Feynman Path Integral

$$\begin{split} Z &= \int DA_{\mu} D\psi D\overline{\psi} \, \mathrm{e}^{-S_{E}} \\ S &= \int dx^{4} \Big(\frac{1}{4} F^{a}_{\mu\nu} F^{\mu\nu}_{a} - \overline{\psi} \Big(i\gamma^{\mu} D_{\mu} - m \Big) \psi \Big) \end{split}$$

Operator Mean Value

$$\left\langle \mathcal{O}\right\rangle =\frac{1}{Z}\int DA_{\mu}D\psi D\overline{\psi}\mathcal{O}\left(\psi,\overline{\psi},A_{\mu}\right)\,e^{-S_{E}}$$

• We use the quenched approximation (neglect the fermionic part):

• Lattice Gluon Action:

$$S_{G} = \beta \sum_{s \in lattice} \sum_{\mu < \nu} P_{\mu
u}(s)$$

• where the plaquette, $P_{\mu\nu}(s)$, is given by

$$P_{\mu\nu}(s) = 1 - \frac{1}{N} \text{Re Tr} \left[U_{\mu}(s) U_{\nu}(s+\hat{\mu}) U_{\mu}^{\dagger}(s+\hat{\nu}) U_{\nu}^{\dagger}(s) \right]$$

< 🗆 🕨

2/21

Gauge invariant operators in LQCD

- Plaquette $\rightarrow E_i^2$ and B_i^2
- Polyakov Loop \rightarrow $\langle L(x) \rangle = \prod_{t=0}^{N_{\tau}-1} U_{\mu=0}(x,t) \propto \exp\left(-\frac{F_{q}}{T}\right)$ $\langle L \rangle = 0 \rightarrow \text{confinement}$
 - $\langle L \rangle \neq 0 \rightarrow \text{deconfinement}$
- Two Polyakov Loops \rightarrow color averaged free energy: $e^{-F_{avg}(r,T)/T+C} = \frac{1}{N^2} \langle \operatorname{Tr} L(y) \operatorname{Tr} L^{\dagger}(x) \rangle$

• Wilson Loop \rightarrow quark-antiquark potential

• Wilson Loop of the Static gluon-quark-antiquark system $\rightarrow W_{gq\overline{q}} = W_1 W_2 - \frac{1}{3} W_3$

3/21

• Casimir scaling, $d_D = \mathcal{H}_D / \mathcal{H}_3$: • Wilson loop: $W_3 = \text{Tr } U$ $d_8 = 2.25$ $W_8 = (|W_3|^2 - 1)$ $d_6 = 2.5$ $W_6 = \frac{1}{2} \left[\left(\operatorname{Tr} U \right)^2 + \operatorname{Tr} U^2 \right]$ $d_{15a} = 4$ $d_{10} = 4.5$ $W_{15a} = \operatorname{Tr} U W_6 - \operatorname{Tr} U$ $d_{27} = 6$ $W_{10} = \frac{1}{6} \left[(\text{Tr } U)^3 + 3\text{Tr } U\text{Tr } U^2 + 2\text{Tr } U^3 \right]$ $d_{24} = 6.25$ $W_{24} = \text{Tr } U W_{10} - W_{6}$ $d_{15s} = 7$ $W_{27} = |W_6|^2 - |W_3|^2$

$$W_{15s} = \frac{1}{24} \left[(\text{Tr } U)^4 + 6 (\text{Tr } U)^2 \text{Tr } U^2 + 3 (\text{Tr } U^2)^2 + 8 \text{Tr } U \text{Tr } U^3 + 6 \text{Tr } U^4 \right]$$

- Using GPUs to generate pure gauge lattice configurations by heat bath method
- All the computation is done in the GPUs
- The CPU only controls de GPUs and saves the results to files.
- This was done with CUDA and OPENMP (allowing to use several GPUs on the same PC.

GPUs Tested

NVIDIA Geforce GTX	295 (GT200)	480 (Fermi)
Number of GPUs	2	1
CUDA Capability	1.3	2.0
Number of cores	2×240	480
Global memory	1792 MB GDDR3 (896MB per GPU)	1536 MB GDDR5
Number of threads per block	512	1024
Registers per block	16384	32768
Shared memory (per SM)	16KB	48KB or 16KB
L1 cache (per SM)	None	16KB or 48KB
L2 cache (per SM)	None	768KB
Clock rate	1.37 GHz	1.40 GHz

• CPU:

- Intel(R) Core(TM) i7 CPU 920, 2.67GHz
- L2 Cache 8 MB
- RAM 12GB

Excited QCD 2011: Finite temperature lattice QCD with GPUs

Generating configurations with the heat bath method

• SU(3): Similar to SU(2) heat bath, make the heat bath in 3 steps, using 3 blocks with 2x2 from the SU(3) matrix.

Single precision

• Double precision

8/21

• Polyakov Loop versus $\beta(g^2)$

• Polyakov Loop versus T/T_c

There is a dependence on the extension of the lattice in time direction. This is due to the self-energy contribution of the static quark source used as order parameter. Elimination of this self energy term is necessary to obtain an order parameter which is a function of the temperature alone.

SU(2) Polyakov Loop Renormalization

$$\langle L^r \rangle = Z^{N_\tau} \langle L \rangle$$

• $\pi/2$, π , 2π : Polyakov loop in HTL perturbation theory

10/21

SU(2) Color averaged free energy, F_{avg}

• To eliminate the trivial temperature dependence due to the color trace normalization

$$egin{array}{l} {\sf F}_{\sf avg}(r,T) o {\sf F}_{\sf avg}(r,T) - rac{T}{T_c} \log N^2 \end{array}$$

11/21

SU(2) string tension, $\sigma(T)$

• Fitting $F_{avg}(r, T)$ with $V(r, T) = a_0(T) - \frac{a_1(T)}{r} + \sigma(T)r$

• colour fields:

- gluon-quark-antiquark system;
- SU(3) representations and Casimir scaling.

Flux tube: two gluon glueball and quark-antiquark

• results with APE smearing only and 287 configurations.

static gluon-gluon system

1.99e-02

2 504-03

2.19e-03

1.88e-03

1.56e-03

1.25e-03

9.37e-04

6.25e-04

3.13e-04

0.00e+00

> 4

2

-2

-4 -3

• $-\langle B^2 \rangle$

-2-10123

• C.

>

2

.4 .3 ιî CFTP

-2 -1 0 1 2 3 4

• $\langle E^2 \rangle$

10

> 4

2

-2

Excited QCD 2011: Finite temperature lattice QCD with GPUs

3.10e-03

2.50e-03

2.19e-03

1.88e-03

1.56e-03

1.25e-03

9.37e-04

6.25e-04

3.13e-04

0.00++00

14/21

- Dual Superconductor Model
 - Quark/antiquark in a meson \leftrightarrow Magnetic monopoles in a superconductor
 - Chromoelectric field \leftrightarrow Magnetic Field
 - Confinement \leftrightarrow Meissner Effect
 - Dual gluon mass \leftrightarrow Effective Photon mass
 - Both give a constant force at large quark-antiquark (monopole-antimonopole) distances

(a)
$$\langle E^2 \rangle$$
 (b) $- \langle B^2 \rangle$

Excited QCD 2011: Finite temperature lattice QCD with GPUs

16/21

Results for the U geometry

CFTP

• results with APE smearing in space and HYP in time direction.

(e)
$$\langle E^2 \rangle$$
 (f) $- \langle B^2 \rangle$

Results for the U geometry at y = 4 and z = 0.

Excited QCD 2011: Finite temperature lattice QCD with GPUs

18/21

5

10

-0-

10

5

3. .0

Colour Fields for the various SU(3) representations and Casimir scaling

287 configurations with APE (space) and HYP (time) smearing. Sources in the xy plane. Sources at (-4,0,0) and (4,0,0) Results for the xz plane between the sources, in the middle of the flux tube.

19/21

Casimir Scaling

Sources in the xy plane. Sources at (-4,0,0) and (4,0,0)

END

Excited QCD 2011: Finite temperature lattice QCD with GPUs

21/21

C

 $\leftarrow \Box \rightarrow$