Themodynamics at strong coupling from Holographic QCD

Francesco Nitti

APC, U. Paris VII

Excited QCD Les Houches, February 23 2011

Work with E. Kiritsis, U. Gursoy, L. Mazzanti, G. Michalogiorgakis, '07-'10

Themodynamics at strong coupling from Holographic QCD - p. 1

Motivation: Thermodynamics of 4D YM

4D Pure YM theory exhibits a first order deconfining phase transition around $T_c \sim 260 MeV$.

Motivation: Thermodynamics of 4D YM

4D Pure YM theory exhibits a first order deconfining phase transition around $T_c \sim 260 MeV$.

• Can AdS/CFT techniques reproduce the phase transition and the YM equation of state found on the lattice?

Motivation: Thermodynamics of 4D YM

4D Pure YM theory exhibits a first order deconfining phase transition around $T_c \sim 260 MeV$.

- Can AdS/CFT techniques reproduce the phase transition and the YM equation of state found on the lattice?
- If yes, can it compute hydrodynamic and transport coefficient of the QCD plasma?

Outline

• AdS/CFT 101

• Holographic description of deconfinement transition

- AdS examples
- 5D Phenomenological models

Outline

• AdS/CFT 101

• Holographic description of deconfinement transition

- AdS examples
- 5D Phenomenological models

I will take a phenomenological point of view: Type III according to the Nahrgang classification of the approaches to QCD

Outline

• AdS/CFT 101

- Holographic description of deconfinement transition
 - AdS examples
 - 5D Phenomenological models

I will take a phenomenological point of view: Type III according to the Nahrgang classification of the approaches to QCD

(= being creative)

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime.

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime. Archetipal example Maldacena '98:

 $\mathcal{N} = 4$ Super YM on $R^{(3,1)} \Leftrightarrow$ Type *IIB* string theory on $AdS_5 \times S^5$

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime. Archetipal example Maldacena '98:

 $\mathcal{N} = 4$ Super YM on $R^{(3,1)} \Leftrightarrow$ Type *IIB* string theory on $AdS_5 \times S^5$

$$ds^{2} = \left(\frac{\ell}{r}\right)^{2} \left(dr^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}\right) + \ell^{2}d\Omega_{5}^{2}$$

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime. Archetipal example Maldacena '98:

 $\mathcal{N} = 4$ Super YM on $R^{(3,1)} \Leftrightarrow$ Type *IIB* string theory on $AdS_5 \times S^5$

$$ds^{2} = \left(\frac{\ell}{r}\right)^{2} \left(dr^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}\right) + \ell^{2}d\Omega_{5}^{2}$$

• $AdS_5 \times S^5$ has a "boundary" at r = 0 which maps to the $R^{(3,1)}$ where the gauge theory is defined.

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime. Archetipal example Maldacena '98:

 $\mathcal{N} = 4$ Super YM on $R^{(3,1)} \Leftrightarrow$ Type *IIB* string theory on $AdS_5 \times S^5$

$$ds^{2} = \left(\frac{\ell}{r}\right)^{2} \left(dr^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}\right) + \ell^{2}d\Omega_{5}^{2}$$

- $AdS_5 \times S^5$ has a "boundary" at r = 0 which maps to the $R^{(3,1)}$ where the gauge theory is defined.
- $r \Leftrightarrow \text{RG direction/energy scale } (\text{UV} \leftrightarrow r \rightarrow 0).$

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime. Archetipal example Maldacena '98:

 $\mathcal{N} = 4$ Super YM on $R^{(3,1)} \Leftrightarrow$ Type *IIB* string theory on $AdS_5 \times S^5$

$$ds^{2} = \left(\frac{\ell}{r}\right)^{2} \left(dr^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}\right) + \ell^{2}d\Omega_{5}^{2}$$

- $AdS_5 \times S^5$ has a "boundary" at r = 0 which maps to the $R^{(3,1)}$ where the gauge theory is defined.
- $r \Leftrightarrow \text{RG direction/energy scale (UV} \leftrightarrow r \rightarrow 0).$
- Isometry $(r, x^{\mu}) \rightarrow (\alpha r, \alpha x^{\mu}) \leftrightarrow QFT$ is conformal

Equivalence between a gauge theory in *D* space-time dimensions and a gravitational theory in higher-dimensional curved spacetime. Archetipal example Maldacena '98:

 $\mathcal{N} = 4$ Super YM on $R^{(3,1)} \Leftrightarrow$ Type *IIB* string theory on $AdS_5 \times S^5$

$$ds^{2} = \left(\frac{\ell}{r}\right)^{2} \left(dr^{2} + \eta_{\mu\nu}dx^{\mu}dx^{\nu}\right) + \ell^{2}d\Omega_{5}^{2}$$

- $AdS_5 \times S^5$ has a "boundary" at r = 0 which maps to the $R^{(3,1)}$ where the gauge theory is defined.
- $r \Leftrightarrow \text{RG direction/energy scale (UV} \leftrightarrow r \rightarrow 0).$
- Isometry $(r, x^{\mu}) \rightarrow (\alpha r, \alpha x^{\mu}) \leftrightarrow QFT$ is conformal

I will restrict the discussion to the 5D (x^{μ}, r) directions, and consider general non-conformal backgrounds.

• Gravity dual described by an action

$$S_{grav} = M_p^2 \int d^5x \sqrt{g}R - (\partial\Phi)^2 + \dots$$

• Gravity dual described by an action

$$S_{grav} = M_p^2 \int d^5x \sqrt{g}R - (\partial\Phi)^2 + \dots$$

• A bulk field $\Phi(x, r)$ acts as a source for a QFT operator O(x):

$$\int d^4x \,\bar{\Phi}(x) O(x), \qquad \bar{\Phi}(x) \sim \Phi(x, r=0).$$

• Gravity dual described by an action

$$S_{grav} = M_p^2 \int d^5x \sqrt{g}R - (\partial\Phi)^2 + \dots$$

• A bulk field $\Phi(x, r)$ acts as a source for a QFT operator O(x):

$$\int d^4x \,\bar{\Phi}(x) O(x), \qquad \bar{\Phi}(x) \sim \Phi(x, r=0).$$

• Generating Functional:

$$\mathcal{Z}_{QFT}[\bar{\Phi}] \simeq \exp i S_{grav}[\Phi_{cl}(x,r)]\Big|_{\Phi_{cl} \to \bar{\Phi}}$$

• Gravity dual described by an action

$$S_{grav} = M_p^2 \int d^5x \sqrt{g}R - (\partial\Phi)^2 + \dots$$

• A bulk field $\Phi(x, r)$ acts as a source for a QFT operator O(x):

$$\int d^4x \,\bar{\Phi}(x) O(x), \qquad \bar{\Phi}(x) \sim \Phi(x, r=0).$$

• Generating Functional:

$$\mathcal{Z}_{QFT}[\bar{\Phi}] \simeq \exp i S_{grav}[\Phi_{cl}(x,r)] \Big|_{\Phi_{cl} \to \bar{\Phi}}$$

Compute correlators of gauge-invariant operators from the gravity on-shell action by differentiating $\mathcal{Z}_{QFT}[\bar{\Phi}]$ w.r.t. $\bar{\Phi}$.

• Gravity dual described by an action

$$S_{grav} = M_p^2 \int d^5x \sqrt{g}R - (\partial\Phi)^2 + \dots$$

• A bulk field $\Phi(x, r)$ acts as a source for a QFT operator O(x):

$$\int d^4x \,\bar{\Phi}(x) O(x), \qquad \bar{\Phi}(x) \sim \Phi(x, r=0).$$

• Generating Functional:

$$\mathcal{Z}_{QFT}[\bar{\Phi}] \simeq \exp i S_{grav}[\Phi_{cl}(x,r)] \Big|_{\Phi_{cl} \to \bar{\Phi}}$$

Compute correlators of gauge-invariant operators from the gravity on-shell action by differentiating $\mathcal{Z}_{QFT}[\bar{\Phi}]$ w.r.t. $\bar{\Phi}$. Gravity description valid at large N, large g^2N

Finite Temperature

To describe thermodynamics @ $T = 1/\beta$, go to euclidean time τ , and identify $\tau \sim \tau + \beta$.

Finite Temperature

To describe thermodynamics @ $T = 1/\beta$, go to euclidean time τ , and identify $\tau \sim \tau + \beta$.

The partition function is given by the gravity action evaluated at its extremum (solution of the of the gravity-side field equation)

 $\mathcal{Z}(\beta) = e^{-S_{grav}[g_0, \Phi_0]}$

where g_0 and Φ_0 are periodic with period β .

Different thermal equilibrium states ⇔ Different classical solutions on the gravity side

- Different thermal equilibrium states ⇔ Different classical solutions on the gravity side
- Thermal partition function \simeq sum over stationary points:

$$\mathcal{Z}(\mathcal{T}) \simeq e^{-\beta \mathcal{F}_1} + e^{-\beta \mathcal{F}_2} \qquad \beta \mathcal{F}_i(T) = S_{grav} \Big|_{sol_i}$$

- Different thermal equilibrium states ⇔ Different classical solutions on the gravity side
- Thermal partition function \simeq sum over stationary points:

$$\mathcal{Z}(\mathcal{T}) \simeq e^{-\beta \mathcal{F}_1} + e^{-\beta \mathcal{F}_2} \qquad \beta \mathcal{F}_i(T) = S_{grav} \Big|_{sol_i}$$

• Phase transition happens at T_c where $\mathcal{F}_1(T_c) = \mathcal{F}_2(T_c)$

- Different thermal equilibrium states ⇔ Different classical solutions on the gravity side
- Thermal partition function \simeq sum over stationary points:

$$\mathcal{Z}(\mathcal{T}) \simeq e^{-\beta \mathcal{F}_1} + e^{-\beta \mathcal{F}_2} \qquad \beta \mathcal{F}_i(T) = S_{grav} \Big|_{sol_i}$$

- Phase transition happens at T_c where $\mathcal{F}_1(T_c) = \mathcal{F}_2(T_c)$
- From $\mathcal{F}_i(T)$ we can compute other equilibrium quantities (entropy, pressure, speed of sound) using standard thermodynamic formulae.

Plasma/Black Hole correspondence

Holographic description of a deconfined plasma in thermal equilibrium at temperature $T \equiv 1/\beta$: \updownarrow A Black Hole in the bulk with temperature $T_H = T$.

Plasma/Black Hole correspondence

Holographic description of a deconfined plasma in thermal equilibrium at temperature $T \equiv 1/\beta$:

A Black Hole in the bulk with temperature $T_H = T$.

- Due to AdS boundary conditions, BH is stable.
- Polyakov loop gets a vev, signaling deconfinement.
- Spectrum of quasinormal modes.

$\mathcal{N} = 4$ SYM on $\mathbb{R}^3 \times S^1 \Leftrightarrow$ Poincaré AdS_5

$$S = M_p^2 \int d^5x \sqrt{g} \left(R - \frac{12}{\ell^2} \right)$$

$\mathcal{N} = 4$ **SYM on** $\mathbb{R}^3 \times S^1 \Leftrightarrow$ **Poincaré** AdS_5

$$S = M_p^2 \int d^5x \sqrt{g} \left(R - \frac{12}{\ell^2} \right)$$

 $ds_{TG}^2 = \frac{\ell}{r^2} \left[dr^2 + d\tau^2 + d\vec{x}^2 \right] \quad ds_{BH}^2 = \frac{\ell}{r^2} \left[\frac{dr^2}{f(r)} + f(r)d\tau^2 + d\vec{x}^2 \right]$

$$f(r) = 1 - (\pi T r)^4, \quad r_h = \frac{1}{\pi T}$$

$\mathcal{N} = 4$ SYM on $\mathbb{R}^3 \times S^1 \Leftrightarrow$ Poincaré AdS_5

$$S = M_p^2 \int d^5x \sqrt{g} \left(R - \frac{12}{\ell^2} \right)$$

$$ds_{TG}^{2} = \frac{\ell}{r^{2}} \left[dr^{2} + d\tau^{2} + d\vec{x}^{2} \right] \quad ds_{BH}^{2} = \frac{\ell}{r^{2}} \left[\frac{dr^{2}}{f(r)} + f(r)d\tau^{2} + d\vec{x}^{2} \right]$$

$$f(r) = 1 - (\pi T r)^4, \quad r_h = \frac{1}{\pi T}$$

 $\mathcal{F}_{AdS} > \mathcal{F}_{BH}$ for all T > 0: BH always dominates; Thermodynamics of a conformal gas, $\mathcal{F} = c T^4$

To get a phase transition at nonzero T we need to introduce a scale,, e.g. put $\mathcal{N} = 4$ on an S^3 .

To get a phase transition at nonzero T we need to introduce a scale,, e.g. put $\mathcal{N} = 4$ on an S^3 .

• 2 BHs for $T > T_{min}$, none for $T < T_{min}$

To get a phase transition at nonzero T we need to introduce a scale,, e.g. put $\mathcal{N} = 4$ on an S^3 .

• 2 BHs for $T > T_{min}$, none for $T < T_{min}$

• "Large" BH dominant for $T_c > T_{min}$

To get a phase transition at nonzero T we need to introduce a scale,, e.g. put $\mathcal{N} = 4$ on an S^3 .

Hawking-Page transition.

Can we get a transition in R^3 rather than S^3 ? We need to introduce a scale in the theory

Can we get a transition in R^3 rather than S^3 ? We need to introduce a scale in the theory

- Black *D*4 background (Witten, '98)
 - not conformal in the UV

Can we get a transition in \mathbb{R}^3 rather than \mathbb{S}^3 ? We need to introduce a scale in the theory

- Black *D*4 background (Witten, '98)
 - not conformal in the UV
- Hard Wall AdS/QCD (Herzog, '06)

$$\mathcal{F} = \mathcal{F}_0 - cT^4, \qquad s \sim T^3$$

Can we get a transition in \mathbb{R}^3 rather than \mathbb{S}^3 ? We need to introduce a scale in the theory

- Black *D*4 background (Witten, '98)
 - not conformal in the UV
- Hard Wall AdS/QCD (Herzog, '06)

$$\mathcal{F} = \mathcal{F}_0 - cT^4, \qquad s \sim T^3$$

- still "too" conformal, except for the transition;
- issue of boundary conditions at the IR cutoff

5D Einstein-Dilaton Theories

A simple class of models that displays realistic thermodynamics

$$S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right]$$

5D Einstein-Dilaton Theories

A simple class of models that displays realistic thermodynamics

$$S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right]$$

• Thermal gas (Confined phase) :

$$ds^{2} = b_{0}^{2}(r) \left(dr^{2} + d\tau^{2} + dx_{i}^{2} \right), \qquad \Phi = \Phi_{0}(r), \qquad 0 < r < +\infty.$$

5D Einstein-Dilaton Theories

A simple class of models that displays realistic thermodynamics

$$S_E = -M_p^3 N_c^2 \int d^5 x \sqrt{-g} \left[R - \frac{4}{3} (\partial \Phi)^2 - V(\Phi) \right]$$

• Thermal gas (Confined phase) :

$$ds^{2} = b_{0}^{2}(r) \left(dr^{2} + d\tau^{2} + dx_{i}^{2} \right), \qquad \Phi = \Phi_{0}(r), \qquad 0 < r < +\infty.$$

Black holes (Deconfined phase - Gluon Plasma):

$$ds^{2} = b^{2}(r) \left(\frac{dr^{2}}{f(r)} + f(r)d\tau^{2} + dx_{i}^{2} \right), \quad \Phi = \Phi(r), \quad 0 < r < r_{h}$$
$$b(r) \underset{r \to 0}{\rightarrow} b_{0}(r) \sim \ell/r, \quad f(r) \underset{r \to 0}{\rightarrow} 1, \quad f(r_{h}) = 0,$$

Gürsoy, Kiritsis, Mazzanti, F.N. '08 Consider a potential that in the IR (large Φ) asymptotes:

 $V(\Phi) \sim e^{4/3\Phi} \Phi^{(\alpha-1)/\alpha}$

For $\alpha > 1$ vacuum solution has a mass-gap and discrete spectrum (confinement). BHs have qualitatively different behavior in confining ($\alpha > 1$) vs. non-confining ($\alpha < 1$) cases:

Gürsoy, Kiritsis, Mazzanti, F.N. '08 Consider a potential that in the IR (large Φ) asymptotes:

 $V(\Phi) \sim e^{4/3\Phi} \Phi^{(\alpha-1)/\alpha}$

For $\alpha > 1$ vacuum solution has a mass-gap and discrete spectrum (confinement). BHs have qualitatively different behavior in confining ($\alpha > 1$) vs. non-confining ($\alpha < 1$) cases:

- confining case: a minimal BH temperature and 2 BH branches;
- non-confining case: only 1 BH for all temperatures

Gürsoy, Kiritsis, Mazzanti, F.N. '08 Consider a potential that in the IR (large Φ) asymptotes:

 $V(\Phi) \sim e^{4/3\Phi} \Phi^{(\alpha-1)/\alpha}$

For $\alpha > 1$ vacuum solution has a mass-gap and discrete spectrum (confinement). BHs have qualitatively different behavior in confining ($\alpha > 1$) vs. non-confining ($\alpha < 1$) cases:

- confining case: a minimal BH temperature and 2 BH branches;
- non-confining case: only 1 BH for all temperatures

Situation as in the global AdS case ($\alpha > 1$) or Poincaré AdS ($\alpha < 1$)

Gürsoy, Kiritsis, Mazzanti, F.N. '08 Consider a potential that in the IR (large Φ) asymptotes:

 $V(\Phi) \sim e^{4/3\Phi} \Phi^{(\alpha-1)/\alpha}$

For $\alpha > 1$ vacuum solution has a mass-gap and discrete spectrum (confinement). BHs have qualitatively different behavior in confining ($\alpha > 1$) vs. non-confining ($\alpha < 1$) cases:

• confining case: Hawking-Page transition

Explicit Model

Gürsoy, Kiritsis, Mazzanti, F.N. '09 Simple parametrization for $V(\phi) \Rightarrow$ good numerical agreement with lattice Yang-Mills thermodynamics

Explicit Model

Gürsoy, Kiritsis, Mazzanti, F.N. '09 Simple parametrization for $V(\phi) \Rightarrow$ good numerical agreement with lattice Yang-Mills thermodynamics

• The setups I described (including AdS/QCD) are examples of phenomenological holographic models: they are designed to capture some features of 4D QCD, and at the same time stay simple and calculable.

- The setups I described (including AdS/QCD) are examples of phenomenological holographic models: they are designed to capture some features of 4D QCD, and at the same time stay simple and calculable.
- The true holographic dual of QCD* is likely a full non-critical string theory (not just 2-derivative gravity). True reason for this is the existence of a single scale in QCD ⇒ stringy states have masses comparable to gravity states.

*if it exists

- The setups I described (including AdS/QCD) are examples of phenomenological holographic models: they are designed to capture some features of 4D QCD, and at the same time stay simple and calculable.
- The true holographic dual of QCD* is likely a full non-critical string theory (not just 2-derivative gravity). True reason for this is the existence of a single scale in QCD ⇒ stringy states have masses comparable to gravity states.
- The potential V(Φ) is supposed to be fixed phenomenologically as a way of parametrizing some of the unknown features of the full holographic dual.

*if it exists

• Holography seems to naturally capture the thermodynamics of the deconfined phase of 4D gauge theories

- Holography seems to naturally capture the thermodynamics of the deconfined phase of 4D gauge theories
- Phenomenological 5D models can be used obtain quantitatively accurate results

- Holography seems to naturally capture the thermodynamics of the deconfined phase of 4D gauge theories
- Phenomenological 5D models can be used obtain quantitatively accurate results
- Natural to extend the description beyond equilibrium (e.g. diffusion)