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Motivation: Thermodynamics of 4D YM

4D Pure YM theory exhibits afirst order deconfining phase
transitionaroundTc ∼ 260MeV .

Karsch,

hep-lat/0106019
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Motivation: Thermodynamics of 4D YM

4D Pure YM theory exhibits afirst order deconfining phase
transitionaroundTc ∼ 260MeV .

Karsch,

hep-lat/0106019

• Can AdS/CFT techniques reproduce the phase transition and
the YM equation of state found on the lattice?
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Motivation: Thermodynamics of 4D YM

4D Pure YM theory exhibits afirst order deconfining phase
transitionaroundTc ∼ 260MeV .

Karsch,

hep-lat/0106019

• Can AdS/CFT techniques reproduce the phase transition and
the YM equation of state found on the lattice?

• If yes, can it compute hydrodynamic and transport coefficient
of the QCD plasma?
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Outline

• AdS/CFT 101

• Holographic description of deconfinement transition

• AdS examples

• 5D Phenomenological models
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Outline

• AdS/CFT 101

• Holographic description of deconfinement transition

• AdS examples

• 5D Phenomenological models

I will take a phenomenological point of view: Type III
according to the Nahrgang classification of the approaches to
QCD
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Outline

• AdS/CFT 101

• Holographic description of deconfinement transition

• AdS examples

• 5D Phenomenological models

I will take a phenomenological point of view: Type III
according to the Nahrgang classification of the approaches to
QCD
( = being creative)
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Gauge/Gravity duality

Equivalencebetween agauge theoryin D space-time dimensions
and agravitational theoryin higher-dimensional curved spacetime.
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Gauge/Gravity duality

Equivalencebetween agauge theoryin D space-time dimensions
and agravitational theoryin higher-dimensional curved spacetime.
Archetipal exampleMaldacena ’98:

N = 4 Super YM onR(3,1) ⇔ TypeIIB string theory on
AdS5 × S5
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Equivalencebetween agauge theoryin D space-time dimensions
and agravitational theoryin higher-dimensional curved spacetime.
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• AdS5 × S5 has a “boundary” atr = 0 which maps to theR(3,1)

where the gauge theory is defined.
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Archetipal exampleMaldacena ’98:

N = 4 Super YM onR(3,1) ⇔ TypeIIB string theory on
AdS5 × S5

ds2 =
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(

dr2 + ηµνdxµdxν
)

+ ℓ2dΩ2
5

• AdS5 × S5 has a “boundary” atr = 0 which maps to theR(3,1)

where the gauge theory is defined.

• r ⇔ RG direction/energy scale(UV ↔ r → 0).
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Gauge/Gravity duality
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and agravitational theoryin higher-dimensional curved spacetime.
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dr2 + ηµνdxµdxν
)

+ ℓ2dΩ2
5

• AdS5 × S5 has a “boundary” atr = 0 which maps to theR(3,1)

where the gauge theory is defined.

• r ⇔ RG direction/energy scale(UV ↔ r → 0).

• Isometry(r, xµ) → (αr, αxµ) ↔ QFT is conformal
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Gauge/Gravity duality

Equivalencebetween agauge theoryin D space-time dimensions
and agravitational theoryin higher-dimensional curved spacetime.
Archetipal exampleMaldacena ’98:

N = 4 Super YM onR(3,1) ⇔ TypeIIB string theory on
AdS5 × S5

ds2 =

(

ℓ

r

)2
(

dr2 + ηµνdxµdxν
)

+ ℓ2dΩ2
5

• AdS5 × S5 has a “boundary” atr = 0 which maps to theR(3,1)

where the gauge theory is defined.

• r ⇔ RG direction/energy scale(UV ↔ r → 0).

• Isometry(r, xµ) → (αr, αxµ) ↔ QFT is conformal

I will restrict the discussion to the5D (xµ, r) directions,and
consider generalnon-conformal backgrounds.
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Field/Operator correspondence

• Gravity dual described by an action

Sgrav = M2
p

∫

d5x
√

gR − (∂Φ)2 + . . .
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Field/Operator correspondence

• Gravity dual described by an action

Sgrav = M2
p

∫

d5x
√

gR − (∂Φ)2 + . . .

• A bulk field Φ(x, r) acts as asourcefor a QFT operatorO(x):

∫

d4x Φ̄(x)O(x), Φ̄(x) ∼ Φ(x, r = 0).
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Field/Operator correspondence

• Gravity dual described by an action

Sgrav = M2
p

∫

d5x
√

gR − (∂Φ)2 + . . .

• A bulk field Φ(x, r) acts as asourcefor a QFT operatorO(x):

∫

d4x Φ̄(x)O(x), Φ̄(x) ∼ Φ(x, r = 0).

• Generating Functional:

ZQFT [Φ̄] ≃ exp iSgrav[Φcl(x, r)]
∣

∣

∣

Φcl→Φ̄
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Field/Operator correspondence

• Gravity dual described by an action

Sgrav = M2
p

∫

d5x
√

gR − (∂Φ)2 + . . .

• A bulk field Φ(x, r) acts as asourcefor a QFT operatorO(x):

∫

d4x Φ̄(x)O(x), Φ̄(x) ∼ Φ(x, r = 0).

• Generating Functional:

ZQFT [Φ̄] ≃ exp iSgrav[Φcl(x, r)]
∣

∣

∣

Φcl→Φ̄

Computecorrelators of gauge-invariant operatorsfrom thegravity
on-shell actionby differentiatingZQFT [Φ̄] w.r.t. Φ̄.
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Field/Operator correspondence

• Gravity dual described by an action

Sgrav = M2
p

∫

d5x
√

gR − (∂Φ)2 + . . .

• A bulk field Φ(x, r) acts as asourcefor a QFT operatorO(x):

∫

d4x Φ̄(x)O(x), Φ̄(x) ∼ Φ(x, r = 0).

• Generating Functional:

ZQFT [Φ̄] ≃ exp iSgrav[Φcl(x, r)]
∣

∣

∣

Φcl→Φ̄

Computecorrelators of gauge-invariant operatorsfrom thegravity
on-shell actionby differentiatingZQFT [Φ̄] w.r.t. Φ̄.
Gravity description valid at largeN , largeg2N
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Finite Temperature

To describe thermodynamics @T = 1/β, go to euclidean timeτ ,
and identifyτ ∼ τ + β.
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Finite Temperature

To describe thermodynamics @T = 1/β, go to euclidean timeτ ,
and identifyτ ∼ τ + β.

Thepartition functionis given by thegravity action evaluated at its
extremum(solution of the of the gravity-side field equation)

Z(β) = e−Sgrav[g0,Φ0]

whereg0 andΦ0 are periodic with periodβ.
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Thermal phase transitions

• Different thermal equilibrium states⇔ Different classical
solutions on the gravity side
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Thermal phase transitions

• Different thermal equilibrium states⇔ Different classical
solutions on the gravity side

• Thermal partition function≃ sum over stationary points:

Z(T ) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli
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• Thermal partition function≃ sum over stationary points:

Z(T ) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli

• Phase transitionhappens atTc whereF1(Tc) = F2(Tc)
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Thermal phase transitions

• Different thermal equilibrium states⇔ Different classical
solutions on the gravity side

• Thermal partition function≃ sum over stationary points:

Z(T ) ≃ e−βF1 + e−βF2 βFi(T ) = Sgrav

∣

∣

∣

soli

• Phase transitionhappens atTc whereF1(Tc) = F2(Tc)

• FromFi(T ) we can compute other equilibrium quantities
(entropy, pressure, speed of sound) using standard
thermodynamic formulae.
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Plasma/Black Hole correspondence

Holographic description of a deconfined plasma in thermal
equilibrium at temperatureT ≡ 1/β:

m
A Black Hole in the bulk with temperatureTH = T .
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Plasma/Black Hole correspondence

Holographic description of a deconfined plasma in thermal
equilibrium at temperatureT ≡ 1/β:

m
A Black Hole in the bulk with temperatureTH = T .

• Due to AdS boundary conditions,BH is stable.

• Polyakov loop gets a vev, signaling deconfinement.

• Spectrum of quasinormal modes.
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N = 4 SYM on R
3 × S1 ⇔ PoincaréAdS5

S = M2
p

∫

d5x
√

g
(

R − 12

ℓ2

)
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N = 4 SYM on R
3 × S1 ⇔ PoincaréAdS5

S = M2
p

∫

d5x
√

g
(

R − 12

ℓ2

)

Thermal gas inAdS AdS Black Hole

ds2
TG =

ℓ

r2

[

dr2 + dτ2 + d~x2
] ds2

BH =
ℓ

r2

[

dr2

f(r)
+ f(r)dτ2 + d~x2

]

f(r) = 1 − (πTr)4, rh = 1
πT
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N = 4 SYM on R
3 × S1 ⇔ PoincaréAdS5

S = M2
p

∫

d5x
√

g
(

R − 12

ℓ2

)

Thermal gas inAdS AdS Black Hole

ds2
TG =

ℓ

r2

[

dr2 + dτ2 + d~x2
] ds2

BH =
ℓ

r2

[

dr2

f(r)
+ f(r)dτ2 + d~x2

]

f(r) = 1 − (πTr)4, rh = 1
πT

FAdS > FBH for all T > 0: BH always dominates;
Thermodynamics of aconformal gas,F = c T 4
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N = 4 SYM on S
3 × S1 ⇔ Global AdS5

To get a phase transition at nonzeroT we need to introduce ascale,,
e.g. putN = 4 on anS3.

l
h

min

h
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N = 4 SYM on S
3 × S1 ⇔ Global AdS5

To get a phase transition at nonzeroT we need to introduce ascale,,
e.g. putN = 4 on anS3.

• 2 BHs forT > Tmin,
none forT < Tmin

2 l
rh

Tmin

T

h
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N = 4 SYM on S
3 × S1 ⇔ Global AdS5

To get a phase transition at nonzeroT we need to introduce ascale,,
e.g. putN = 4 on anS3.

• 2 BHs forT > Tmin,
none forT < Tmin

• “Large” BH dominant for
Tc > Tmin

2 l
rh

Tmin

T

2 l
rh

F
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N = 4 SYM on S
3 × S1 ⇔ Global AdS5

To get a phase transition at nonzeroT we need to introduce ascale,,
e.g. putN = 4 on anS3.

Tc=
3

2Π l

T

F

Hawking-Page transition.
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HP Transitions on R3

Can we get a transition inR3 rather thanS3 ? We need to introduce
a scale in the theory
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HP Transitions on R3

Can we get a transition inR3 rather thanS3 ? We need to introduce
a scale in the theory

• BlackD4 background(Witten, ’98)

• not conformal in the UV
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HP Transitions on R3

Can we get a transition inR3 rather thanS3 ? We need to introduce
a scale in the theory

• BlackD4 background(Witten, ’98)

• not conformal in the UV

• Hard Wall AdS/QCD(Herzog, ’06)

F = F0 − cT 4, s ∼ T 3

Themodynamics at strong coupling from Holographic QCD – p. 12



HP Transitions on R3

Can we get a transition inR3 rather thanS3 ? We need to introduce
a scale in the theory

• BlackD4 background(Witten, ’98)

• not conformal in the UV

• Hard Wall AdS/QCD(Herzog, ’06)

F = F0 − cT 4, s ∼ T 3

• still “too” conformal, except for the transition;

• issue of boundary conditions at the IR cutoff
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5D Einstein-Dilaton Theories

A simple class of models that displaysrealisticthermodynamics

SE = −M3
p N2

c

∫

d5x
√−g

[

R − 4

3
(∂Φ)2 − V (Φ)

]
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5D Einstein-Dilaton Theories

A simple class of models that displaysrealisticthermodynamics

SE = −M3
p N2

c

∫

d5x
√−g

[

R − 4

3
(∂Φ)2 − V (Φ)

]

• Thermal gas(Confined phase):

ds2 = b2
0(r)

(

dr2 + dτ2 + dx2
i

)

, Φ = Φ0(r), 0 < r < +∞.
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5D Einstein-Dilaton Theories

A simple class of models that displaysrealisticthermodynamics

SE = −M3
p N2

c

∫

d5x
√−g

[

R − 4

3
(∂Φ)2 − V (Φ)

]

• Thermal gas(Confined phase):

ds2 = b2
0(r)

(

dr2 + dτ2 + dx2
i

)

, Φ = Φ0(r), 0 < r < +∞.

• Black holes(Deconfined phase - Gluon Plasma):

ds2 = b2(r)

(

dr2

f(r)
+ f(r)dτ2 + dx2

i

)

, Φ = Φ(r), 0 < r < rh

b(r) →
r→0

b0(r) ∼ ℓ/r, f(r) →
r→0

1, f(rh) = 0,
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Dilatonic Black holes
Gürsoy, Kiritsis, Mazzanti, F.N. ’08

Consider a potential that in the IR (largeΦ) asymptotes:

V (Φ) ∼ e4/3ΦΦ(α−1)/α

Forα > 1 vacuum solution has a mass-gap and discrete spectrum
(confinement). BHs havequalitatively different behaviorin
confining (α > 1) vs. non-confining(α < 1) cases:
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Forα > 1 vacuum solution has a mass-gap and discrete spectrum
(confinement). BHs havequalitatively different behaviorin
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• confiningcase: a minimal BH temperature and 2 BH branches;

• non-confiningcase: only 1 BH for all temperatures
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Dilatonic Black holes
Gürsoy, Kiritsis, Mazzanti, F.N. ’08

Consider a potential that in the IR (largeΦ) asymptotes:

V (Φ) ∼ e4/3ΦΦ(α−1)/α

Forα > 1 vacuum solution has a mass-gap and discrete spectrum
(confinement). BHs havequalitatively different behaviorin
confining (α > 1) vs. non-confining(α < 1) cases:

• confiningcase: a minimal BH temperature and 2 BH branches;

• non-confiningcase: only 1 BH for all temperatures

Situation as in the globalAdS case (α > 1) or PoincaréAdS (α < 1)
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Dilatonic Black holes
Gürsoy, Kiritsis, Mazzanti, F.N. ’08

Consider a potential that in the IR (largeΦ) asymptotes:

V (Φ) ∼ e4/3ΦΦ(α−1)/α

Forα > 1 vacuum solution has a mass-gap and discrete spectrum
(confinement). BHs havequalitatively different behaviorin
confining (α > 1) vs. non-confining(α < 1) cases:

• confiningcase:Hawking-Page transition
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Explicit Model

Gürsoy, Kiritsis, Mazzanti, F.N. ’09

Simple parametrization forV (φ) ⇒ good numerical agreement with
lattice Yang-Mills thermodynamics
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Simple parametrization forV (φ) ⇒ good numerical agreement with
lattice Yang-Mills thermodynamics
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Being Phenomenological
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Being Phenomenological

• The setups I described (including AdS/QCD) are examples of
phenomenological holographic models:they are designed to
capturesome featuresof 4D QCD, and at the same time stay
simple and calculable.
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Being Phenomenological

• The setups I described (including AdS/QCD) are examples of
phenomenological holographic models:they are designed to
capturesome featuresof 4D QCD, and at the same time stay
simple and calculable.

• Thetrueholographic dual of QCD∗ is likely a full non-critical
string theory (not just 2-derivative gravity). True reason for this
is the existence of asingle scalein QCD⇒ stringy states have
masses comparable to gravity states.

*if it exists
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Being Phenomenological

• The setups I described (including AdS/QCD) are examples of
phenomenological holographic models:they are designed to
capturesome featuresof 4D QCD, and at the same time stay
simple and calculable.

• Thetrueholographic dual of QCD∗ is likely a full non-critical
string theory (not just 2-derivative gravity). True reason for this
is the existence of asingle scalein QCD⇒ stringy states have
masses comparable to gravity states.

• The potentialV (Φ) is supposed to be fixed phenomenologically
as a way of parametrizing some of the unknown features of the
full holographic dual.

*if it exists
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Conclusion
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Conclusion

• Holography seems to naturally capture the thermodynamics of
the deconfined phase of 4D gauge theories
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Conclusion

• Holography seems to naturally capture the thermodynamics of
the deconfined phase of 4D gauge theories

• Phenomenological 5D models can be used obtain quantitatively
accurate results
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Conclusion

• Holography seems to naturally capture the thermodynamics of
the deconfined phase of 4D gauge theories

• Phenomenological 5D models can be used obtain quantitatively
accurate results

• Natural to extend the description beyond equilibrium (e.g.
diffusion)
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